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We present a new representation of spin operators in terms of bosonic creation{annihilation

operators. This representation allows us to formulate a new �eld{theoretical description of spin

systems which is free of any constraints. The corresponding functional integral representations for

thermodynamic quantities are given and the application to investigations of Long Range Order in

the system is discussed.
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I. INTRODUCTION

There are two sources of motivation to search for

bosonic representations of spin systems and systems of

truncated oscillators: the �rst is technical while the sec-

ond is of principle. Indeed, a general problem of any per-

turbative investigation of spin systems is the complicated

diagram technique which originate from spin{spin com-

mutation relations. On the other hand, for systems with

the Hamiltonian formulated in terms of the bosonic or

fermionic creation{annihilation operators, the diagram

technique is standard and straightforward. That is why

we need a bosonic representation for the spin operators

to cast the complicated technique into the common form

and use the �eld{theoretical machinery. Another set of

problems where the bosonic treatment is vital is when

looking for Long Range Order (LRO) in the systems. It

is well-known that LRO is re
ected in the appearance of

anomalous averages. It is always very tempting to refor-

mulate the problem in such a way that the anomalous av-

erages become amplitudes of a Bose{condensate of some

auxiliary bosons. This was a guideline, for example, in

Ref. [1] where constraint{free representations were found

for Paulions to predict the Bose{condensation of Frenkel

excitons. In this paper, we go along a similar line and

develop a constraint{free description for arbitrary spin

system. To this end we make use of the approach devel-

oped for truncated oscillators in [2].

We have to note that there are several transformations

that express the spin operators in terms of the bosonic or

fermionic ones [3,4]. However, all of them require either

the restriction of the bosonic Hilbert space which leads

to constraints for the bosonic system or the restriction of

the study to 1D systems. The constraints do not cause

any problem unless the systems are treated exactly. Since

it is very di�cult to get exact results for spin systems,

some a type of approximations should be used. The most

popular approximation scheme is based on the mean �eld

description. At this point drawbacks of the constrained

description emerge. Indeed, the mean �eld approxima-

tion does not treat local (on-site) constraints in a proper

way. It means that instead of many local constraints only

one global constraint appears. All together it leads to the

problems of the account of unphysical local 
uctuations.

This e�ectively returns us to the local constraints and ex-

plains the importance of the constraint{free formulation

of the mapping from spin systems to bosonic ones.

Similar to the approach of the sigma{model with

Wess{Zumino term [4,5] we treat the constraint on the

number of particles on each site exactly. To do this we

use the mapping of the orthogonal sum of identical copies

of the lattice spin space of states to the bosonic space of

states. In this mapping spin operators are represented in

the form of a power series of the bosonic creation and an-

nihilation operators. This compels us to deal with in�nite

series of di�erent vertices in the diagram technique. The

choice of relevant contributions in such series should be

dictated as usual by the features of the concrete problem.

II. MAPPING OF SPINS TO BOSONS WITHOUT

CONSTRAINT

In this section we will describe the mapping from the

system of lattice spins to the auxiliary bosonic system.

The goal is to escape the introduction of a constraint. To

do this we will emb an in�nite number of copies of the

�nite dimensional space of states in the bosonic space of

states and then proceed with the consideration of this

new (auxiliary) bosonic space.

To explain this in detail, let us �rst of all consider one

degree of freedom (i.e. a single site). Spin operators obey

the following commutation relations (for spin m/2):
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with the basis fj0i; j1i; :::; jmig and the obvious notations.

Now we introduce the in�nite orthogonal sum H
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basis ffj0i; j1i; : : :; jm� 1ig; : : : ; fjnm+ 1i; jnm+ 2i; : : : ; jnm+mig; : : :g. The extensions of operators S
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It follows that all thermodynamic quantities calculated with the operators
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those calculated with the original operators S
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coincides with the same expressions but without hats due to the block structure of our operators (we should add that

the partition functions di�er by an in�nite numerical constant which does not a�ect observable physical quantities).

The conclusion is still valid if we start with a lattice of spins and then introduce hats for the operators.

III. BOSONIC REPRESENTATION FOR SPIN OPERATORS

Let us now derive the relations for matrix elements of operators

^

S

+

,

^

S

�

and

^

S

z

. To do this we will follow the

method proposed by Chernyak in Ref. [6] for Paulions. The main point of the method is to use the projection operator

on the vacuum state of the auxiliary boson system, i.e. on the vector j0i. This projection operator P has the following

expression in terms of the bosonic creation and annihilation operators:
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We now can use this representation to construct the operators
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which obey algebra (2). Indeed, it is

easy to check from the matrix form that the following relations hold:
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It is obvious that these relations satisfy algebra (2). For the particular case of m = 2 our formulae reduce to the

formulae originally obtained by Chernyak [6] for the case of paulionic operators.
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IV. THERMODYNAMICS IN FUNCTIONAL INTEGRAL REPRESENTATION

The formulae considered above can be applied to construct the Hamiltonian of the auxiliary bosonic system. Let

us start with the following Hamiltonian H

S

of spins on a lattice:
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Using operators S

+

, S

�

one can cast it in the following form:
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The corresponding Hamiltonian of the auxiliary bosons based on the relations (2) has the form:
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Here the following notations have been introduced:
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Using the standard procedure, we can write down the functional integral representation of the partition function

and correlators of the auxiliary bosonic system and the original system of truncated oscillators. For example, according

to the de�nition and formula (2), the following relations arise:
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where the action S is de�ned by the form of the Hamiltonian H:
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All other correlators can be obtained in the same man-

ner and they give us the bosonic functional integral repre-

sentation which is free of constraints and limiting proce-

dures The functional integral form then allows the sim-

plest approach to the derivation of diagram technique

rules which are standard ones for the problems in ques-

tion. It is tempting to note that this technique is much

less complicated and much more straightforward than

the spin operator technique and is very natural for the

consideration of problems concerning Bose{condensation

(Long Range Order) in the system just using the stan-

dard Bogoliubov's approach to the subject.
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