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We investigate layered nanostructures of the type II antiferromagnetic semiconductors separated

by diamagnetic spacers. The magnetic ordering is described by isotropic Heisenberg exchange and

dipolar interaction including an external magnetic �eld. According to the Hohenberg{Mermin{

Wagner theorem, two{dimensional short ranged Heisenberg systems do not order at all. This does

hold no longer as soon as dipolar interactions or other anisotropies are considered. Mean �eld

predictions for the N�eel Temperature T

N

of EuTe/PbTe heterostructures are in good agreement

with the measured values.
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Among the low dimensional magnetic/non{magnetic

superlattice structures antiferromagnetic insulators are

ideal candidates for the study of phase diagrams and

of dimensional crossover phenomena in thin �lms. The

main reasons are that in contrast to the itinerant metal-

lic layered systems the magnetic interactions in antiferro-

magnetic insulators are of short range and well localized.

Most investigations in literature [1,2] concern the anti-

ferromagnets NiO, CoO, CoF

2

, FeF

2

which can be grown

on lattice matched diamagnetic layers of ZnF

2

, MgF

2

or

on amorphous layers like SiO

2

. These insulating super-

lattices exhibit ordering temperatures near room tem-

perature and belong to the Ising type universality class

of dimension two due to their strong magnetic anisotropy

along the growth direction. These arti�cial structures

show a magnetic behaviour di�erent from their bulk

properties because in reduced dimensions additional in-

teractions appear to be dominant [3]: biquadratic besides

bilinear exchange interaction, fourth order anisotropy

terms and modi�ed dipolar interactions. Also �nite size

e�ects [4,5] and new magnetic phases beyond the stan-

dard three dimensional antiferromagnetic spin{
op and

paramagnetic phases can be observed, e.g. asymmetric

and spiral phases dependent on the thickness of the mag-

netic layers.

In our study we investigate low dimensional antiferro-

magnetic semiconductor (111) EuTe with a strong out of

plane anisotropy (xy character). We start from a bilin-

ear isotropic Heisenberg Hamiltonian and include dipo-

lar interactions. We calculate the dependence of the N�eel

temperature on the reduction of the layer thickness using

mean �eld approximation and we obtain special phases

(parallel, spin{
op, antiparallel) with respect to an ex-

ternal applied magnetic �eld. The model is able to derive

the whole phase diagram in the mean �eld picture.

The antiferromagnetism of EuTe is of type II, alter-

nating ferromagnetic (111) layers form a staggered mag-

netisation. The exchange interactions are short ranged

with twelve ferromagnetic nearest neighbours (J

NN

>

0) and six antiferromagnetic next nearest neighbours

(J

NNN

< 0). These couplings are distributed within the

(111) plane and across the neighbouring planes. There-

fore for reduced dimensional EuTe some of these inter-

actions are truncated and modify the magnetic struc-

ture. From neutron studies it is well known that the Eu

spins are oriented within (111) planes having a very low

in{plane anisotropy. Dipolar interaction is responsible

for the easy plane{like behaviour. For thin layers only

a single (111) domain remains out of the four equiva-

lent domains which exist in bulk material. The growth

plane coincides with the magnetic easy plane. Alternat-

ing spin layers are stacked on each other. The Eu spin

originates from a halve �lled 4f shell with con�guration

[Xe]4f

7

5d

0

6s

2

and is well localized. It is treated as a clas-

sical spin vector with s =

7

2

. The nature of exchange in-

teractions J

NN

, J

NNN

can be described in terms of band

mediated and super exchange interactions [6,7]. If one

includes the dipolar interaction the isotropic Heisenberg

Hamiltonian is modi�ed.

The Hamiltonian in a homogeneous external magnetic

�eld H reads

H = �
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with spins S

l

at lattice sites x

l

. The �rst term in brackets

is the exchange interaction J

ll

0

(J

NN

for nearest neigh-

bours, J

NNN

for next nearest neighbours and zero other-

wise). The second term is the usual dipole{dipole inter-

action
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;

�, � denote the Cartesian components of the vectors x

and S. The second term in this equation introduces an
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anisotropy in the otherwise isotropic Hamiltonian.

We de�ne a set of mean �eld equations according to

the thermally averaged spins at location l

0

hS

l

0

i =

X

l

0

jX

l

0

j

sB

s

�

g�

B

s jX

l

0

j

kT

�

: (1)

X

l

0

is the e�ective molecular �eld at site l

0

X

�

l

0

= H

�

+
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B

X

l6=l
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�
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�
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l

i (2)

and B

s

(x) is the Brillouin{function for spin s.

The mean �eld Hamiltonian H

0

neglects 
uctuations

and replaces the spins by their thermal averages and the

magnetic �eld by the e�ective �eld:
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(a) H perpendicular to the planes.
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(b) H in{plane, 
opped spins for even n only.
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(c) H in{plane with collinear spin orientation.

Fig. 1. Average spin per Eu atom of n = 1 up to n = 6

EuTe monolayers as a function of temperature T in an ex-

ternal magnetic �eld H = 2kOe. The insets show magni�ed

views of the region near the phase transition temperature

T

N

(n). n =1 corresponds to three dimensional (bulk) EuTe.
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Fig. 2. Normalized shift of the phase transition tempera-

ture T

N

(n) versus number n of monolayers EuTe in an exter-

nal magnetic �eld H = 2kOe. Crosses and bold line denote

experimental (exp) data. Circles, squares and diamonds show

results of mean �eld (mf) calculations. The values of the shift

exponent � and correlation length critical amplitude �

0

are

given in the text. T

N

(1) is the N�eel temperature of bulk

EuTe: T

exp

N

(1) = 10:08K and T

mf

N

(1) = 10:69K.

The mean �eld equations are solved selfconsistently for

the hS

�

l

i which means that at each site l the e�ective �eld

X

l

lines up parallel with hS

l

i. The corresponding mean

�eld Hamiltonian gives the best possible approximation

to the true free energy of the system [8]. To reduce the

in�nite set of mean �eld equations we restrict the system

to a �nite{sized hexagonal cluster with periodic in{plane

(111) boundary conditions with a perpendicular exten-

sion of a stack of n planes aligned according to the fcc

structure along the [111] direction. In order to rule out

incommensurate spin arrangements the size of the clus-

ter has been varied from three up to seven spins per

edge of the hexagon. Within this range we �nd identi-

cal solutions. The calculations yield the staggered spin

arrangements along the [111] direction with ferromagnet-

ically organized (111) planes. One should recall that the

xy character of spin alignment is caused by the dipolar

interaction.

We investigate EuTe layers with the thickness rang-

ing from n = 1 up to n = 6 monolayers and in addition

n = 1 by using a cubic cluster with periodic boundary

conditions along all three spatial extensions. For n =1

(bulk case) we compared the experimentally observed

phase transition temperature (T

N

' 10:08K) with the

calculated one (T

N

' 10:69K) by choosing the exchange

parameters J

1

= 0:06K and J

2

= �0:16K from the liter-

ature [9]. We adopt the same values for the investigation

of the reduced dimensional systems.

In accordance with experiments we align the external

magnetic �eld H to a perpendicular or in plane direc-

tion. In the latter case it can be shown that due to a

lack of any in{plane anisotropy all magnetic �eld direc-

tions are equivalent within the ferromagnetic sheets. The

model explicitly yields two in{plane solutions: the spin{


op state and the antiferromagnetic state. It comes out

that the local order parameter hS

l

i depends only on the

location of the sublayer: the spin orientation within an

individual (111) layer is independent of its location in

the plane. In Fig. 1 we present the spatially averaged

order parameter hSi as a function of temperature for a

magnetic �eld H = 2kOe perpendicular to the planes

(Fig. 1a), the spin{
op in{plane magnetic �eld (Fig. 1b)

and the in{plane �eld aligned with a sublayer magneti-

sation (Fig. 1c). In Fig. 1a a single ferromagnetic EuTe

monolayer shows the maximummagnetisation. The con-

stant magnetisation below T

c

' 4:8K arises from spins

which are canted out of plane. Its magnitude depends

only on the strength of dipolar coupling. In contrast,

in the absence of dipolar interaction one would expect

the saturation values hSi = s. For n > 1 the exchange

interaction competes with the Zeeman and dipolar inter-

action and yields a reduced magnetisation. For n > 2 the

sublattice magnetisations are generally not compensated

which gives a partial increase of the magnetisation. For

bilayers and bulk like systems perfect compensation is

observed.

For a magnetic �eld H in plane (Fig. 1b) a similar

behaviour for the so called spin{
op phase is expected.

Systems with odd numbers of monolayers n are unsta-

ble in the spin{
op phase. Therefore in Fig. 1b only the

compensated even numbered systems are shown. They

exhibit a plateau or ferrimagnetic like behaviour, re-

spectively, below the phase transition temperature T

N

which is higher susceptible in magnetic �eld than the

out of plane �eld direction. The spin{
op phase is ener-

getically favoured with respect to the antiferromagnetic

phase Fig. 1c.

In the collinear antiferromagnetic phase the sublattice

magnetisations are aligned with the in{plane �eld. As

expected from the common antiferromagnetic behaviour

the magnetisation increases for increasing temperature

as long as T < T

N

. It is obvious that odd numbers

of monolayers contribute to an uncompensated (ferri{)

magnetic moment.

For all three phases according to Figs. 1a{c the phase

transition temperature is plotted in Fig. 2 as a function

of the number of monolayers (ML) n together with ex-

perimental data. We �tted the calculated and measured

phase transition temperatures to the �nite{size scaling

relation [4]

T

N

(1)� T

N

(n)

T

N

(1)

=

�

�

0

n

�

�

: (3)

The shift exponent � is related to the critical exponent �
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of the bulk (n!1) correlation length: � = �

�1

. In our

case of a continuous phase transition, �nite size scaling

is important if the correlation length � = �

0

�

�

�

T�T

N

(n)

T

N

(1)

�

�

�

exceeds the thickness of the �lm. The relations Eq. (3)

and � = �

�1

are based on the validity of the hyperscaling

relation d� = 
+2� (with d the dimension of the system

and 
 and � the critical exponents of susceptibility and

the magnetisation, respectively) and on the occurrence

of a unique single correlation length. Even for d > 4 cor-

rect �nite size scaling cannot be deduced frommean �eld

theory as it is demonstrated for standard �

4

�eld theory

[10].

From our calculations Eqs. (1), (2) we �nd � = 0:72

which deviates from � = 0:5 as anticipated by mean

�eld theory. In contrast, from measured data we extract

�

meas

= 0:53 quite close to the mean �eld value and

a critical amplitude �

meas

0

= 1:3ML. This discrepancy

cannot be clari�ed at the moment but we conjecture it

originates from the long range character of dipolar inter-

action.

Summarizing, the temperature dependent magneti-

sation behaves nonmonotonically for even n whereas

for odd n magnetisation decreases smoothly (H > 0)

with increasing temperature (Fig. 1c). In the latter

case the phase transition is quenched like for ferromag-

nets in a �nite magnetic �eld. For the compensated

antiferromagnetic{like systems (even n) the magnetic

�eld is an irrelevant variable for the order parameter

and does not in
uence the antiferromagnetic phase tran-

sition.

As has been proved by N. D. Mermin and H. Wagner

[11] one or two dimensional isotropic spin{s Heisenberg

models with �nite range exchange interaction can be nei-

ther ferromagnetic nor antiferromagnetic at any nonzero

temperature. This conclusion cannot be reproduced by

mean �eld analysis. However if one includes dipolar in-

teraction C. Pich and F. Schwabl [12] have shown that

long range order is possible in two dimensional Heisen-

berg antiferromagnets. In this context mean �eld analy-

sis becomes tractable to explain the experimentally ob-

served phase transitions in antiferromagnetic 2D layers.

In addition dipolar interaction can mediate long range

interlayer couplings across non{magnetic spacer layers

like in superlattice samples. Such systems can induce a

rich variety of phase transition phenomena.
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