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The solitary plane wave form collective motion of defects in quantum crystals (particularly

vacancies soliton in solid

4

He) is investigated. The parameters specifying such solitons are calculated.

It is mentioned that under speci�c conditions obtained here the solitons of defects can be observed

experimentally.
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Di�erent mobilities in quantum crystals [1] caused by

the tunnelling of admixture defects (such as vacancies

in solid

3

He or

4

He,

3

He atoms in solid

4

He or vice

versa) have been the subject of intensive studies during

a long time (particularly, quantum di�usion phenomena

[2], spin{lattice relaxation in solid

3

He [3] and solid Hy-

drogen [4] caused by tunnelling e�ects etc.). These mo-

bilities can be described by a �ctitious spin formalism

[1]. Thereby the existence of linear wave{like excitations

of defects (in case of their small concentration) can be

also supposed [5,1], though the experimental veri�cation

of the latter assertion is connected with some problems:

The observation of di�erent manifestations of the wave

nature of vacancies is almost impossible yet because of

their negligible concentration [3].

On the other hand, any instability may cause the ap-

pearance of solitary wave of defects which can propagate

within a sample with the amplitude su�cient to be ob-

served experimentally. Therefore we study the possibility

of the existence of such nonlinear waves and investigate

the properties of wave excitations.

The method of the inverse scattering problem [6] is

usually used to �nd out the exact solitary solutions of

the corresponding motion equations in simple spin struc-

tures (such as ferromagnets [7], easy axis type antiferro-

magnets [8] etc.). So it can be applied for our needs: to

describe the nonlinear transition of defects by the use

of the �ctitious spin formalism. But as the amplitude of

solitary wave (the local relative concentration of defects)

should be much less than unity (otherwise at low tem-

peratures defects are localized [2]) it is easier to apply

the reductive perturbation method developed in [9].

This method has been successfully used for describing

solitary waves' propagation in plasma [10] and magnetic

materials [11]. Moreover, the above method can be ex-

tended for the investigation of propagation of dynamical

solitons formed by short wavelength (by order of lattice

parameter scale) excitations to be demonstrated below.

Using �ctitious spin formalism the Hamiltonian of

the system with defects can be written in the following

form [1]:

H = !

0

N

X

f

�

S

z
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�

�
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X
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fg
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+
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�
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where S

f

is the operator of a �ctitious spin situated in

the lattice site f ; S

z

f

= 1=2 and S

z

f

= �1=2 correspond

to the absence and existence of a defect in the lattice

site f , respectively; S

�

f

� S

x

f

� iS

y

f

; A

fg

is a constant

characterizing tunnelling of a defect from site f to g.

The motion equation for the considered �ctitious spin{

system has the form:
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Denoting M

�

f

� hS

�

f

i, M

z

f

� hS

z

f

i (the brackets

h: : :i express quantum{statistical averaging) let us de-

termine a reduced dynamical part of M

f

as m

f

�

�

M

f

�M

0

�

=jM

0
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0

= M

0

e

z

, e

z

is a unit vector

along the z axis in a �ctitious space, M

0

' �1=2 andM

0

is a statical value ofM

f

. It should be noticed that using

the above de�nitions a relative concentration of defects

can be presented as

x = x

0

+ �x; x

0

= M

0

+ 1=2; �x = jM

0

jm

z

(3)

(x

0

is a statical relative concentration of defects). After-

wards in Weiss �eld approximation [1] (neglecting quan-

tum correlations e.g. hS

+

f

S

�

g

i � hS

+

f

ihS

�

g

i etc., where

f 6= g), we get from (2) the equation
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and the relation

m
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2

�
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derived from the conservation law jM

f

j

2

= M

2

0

, which

can be easily obtained averaging quantum{statistically

set of equations (2) in Weiss �eld approximation.

Following [9] and considering the weakly nonlinear �c-

titious spin excitations let us search for the solution of

the system of equations (4), (5) in the form

m
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where
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are slowly varying space{time variables [9] (� � k=k so

the modulation along k is examined); � is the propaga-

tion velocity of modulated wave and " is a formal small

parameter. " will enter (as we will see below) in combina-

tion withm which will play the role of the expansion pa-

rameter and in the �nal results we will set " to unity. As

components of m

l

�

�

g

; �

�

depend only on slow variables

(7) we can suppose that their inhomogeneous parameter

� � a (a is a distance between the nearest neighboring

sites of the lattice), so m

l

�

�

g

; �

�

can be considered as a

continuous function. Let us note that the indices f and g

numerate lattice sites while the index l speci�es di�erent

harmonics of m

f

.

For calculating the combination

P
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in equations (4) let us expand m
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since the tunnelling radius is by the order of the

lattice parameter scale (so the above sum is restricted

to the nearest neighborhoods) and the inhomogeneous

scale of m
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Substituting expressions (7), (8) into equations (4), (5)

and equating the coe�cients of various powers of " in the

same harmonics to zero one can obtain the closed system

of equations to calculate the values of m

�(�)

l

(�; � ) and

m

z(�)

l

(�; � ). Applying the reductive perturbation method

[9] we get �nally (in the third order " approximation)

the nonlinear Schr�odinger equation for m

+(1)

1

(�; � ). Its

well{known solution yields (in view of (3) and (5)) the

expression for a relative concentration of defects

x = x

0

+ �x; (10)
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m
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:

Here it was taken into account that jM

0

j ' 1=2; �x

m

is

amplitude of �x. So the width of soliton of defects is

� =

r

!
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m

�

; (11)

where (a; b = x; y; z)
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It should be mentioned that solution (11) is valid till

Lighthill condition [12] !

00

� > 0 holds.

The value of �x can be much more than statical rel-

ative concentration x

0

(weak nonlinearity requires only

satisfaction of condition �x

m

� 1).

All parameters specifying the soliton depend upon the

function A(k) (see expressions (12) and (11)). We will

determine it for the bcc phase of solid Helium crystal.

Directing the axis of frame of references along the lat-

tice edges (crystallographic axis), supposing that a quan-

tum tunnelling is restricted to the only 8 neighboring
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sites and denoting A

fg

= A we get from de�nition (9)

A(k) = 8A � cos

ak

x

p

3

cos
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3
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: (13)

Considering large wavelength excitations ka� 1 we eas-

ily obtain

A(k) = 8A

�

1�

1

6

(ak)

2

+ � � �

�

(14)

and thereby we get the dispersion law coinciding with the

respective one discussed in [3,5]. From (12) and taking

into account (14) it can be concluded that the Lighthill

condition is not satis�ed and consequently the existence

of a solitary creation of defects is impossible for the large

wavelength excitations. Analyzing further (14) we also

obtain that a solitary solution does not exist if k is di-

rected along the crystallographic axis x; y; z. But it is

easy to show that in the wide range of k soliton solution

may exist. Indeed if we examine for simplicity the case

when k is situated in the xy plane, in view of (11), (12)

and (13) the following expression for the width of soliton

can be obtained:
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Which is valid if
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:

From (15), (11) it follows that generally

� � a=

p

�x

m

and we should check that the condition �� a should be

satis�ed. Furthermore as it is easy to see from (15) the

width of soliton grows rapidly if cos

�

ak

x

=

p

3

�

! 0; k

y

6=

0 or cos

�

ak
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=

p

3

�

! 0; k

x

6= 0.

In contrast to the linear case (when relative concen-

tration of defects remains constant) in the case when

solitary solution exists x varies according to expression

(11). So it can be directly observed experimentally ap-

plying X{ray di�raction technique. As mentioned above

the vacancy soliton propagating along crystallographic

axes does not exist. However the solitary collective mo-

tion can be observed e.g. if k

z

= 0, k

x

= k

y

. Then in

view of (15) we get

�

4

<

�

�

�

�

ak

p

6

�

�

�

�

<

3�

4

:

Thus if the vacancies with such a wave number are ex-

cited (e.g. using acoustic waves) the collective motion

along the 110 axis can be observed.
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