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The critical behavior of 2D anisotropic systems with weak quenched disorder described by the

so{called generalized Ashkin{Teller model (GATM), including the Ising model with random bonds,

the dilute Baxter model, the impure N{color Ashkin{Teller model, and minimal conformal �eld

theory models (MCFTM) with c < 1 (c is the central charge) perturbed by randomness is discussed.

All these models except MCFTM were found to belong to the Ising model universality class. Critical

exponents of disordered MCFTM are calculated within perturbative expansions in the powers of

� = c� 1=2. RG ows exhibit the rounding of uctuation{driven �rst{order phase transitions by

disorder.
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The physics of disorder continues to be a very ac-

tive and important area of research, particularly for

two{dimensional (2D) condensed matter systems where

a rich scenario of homogeneous{system phase transi-

tions is known to occur [1]. These systems encompass

a large spectrum of important condensed{matter struc-

tures ranging from physisorbed layers to surfaces, from

layered structures to vortex lattices. The e�ects of disor-

der on the phase transitions in these cooperative systems

is currently subject of intense investigations through

both theory and experiments.

The case of quenched impurities in layered mag-

netic and superconducting structures represents a well{

established and long{studied con�guration of defects.

However, for physisorbed layers, thin �lms and crystal

surfaces quenched disorder represents still somewhat of

a novel playground for both predictions and experiments.

Normally, impurities appear with thermally annealed,

equilibrium distributions in these systems and the sit-

uation where heavy or chemisorbed impurities are intro-

duced in a controlled fashion is still awaiting systematic

investigation. We will argue, however, in this Letter that

interesting new aspects are ready to be studied, and pre-

dictions to be veri�ed, for these systems in the presence

of quenched disorder.

Besides the recently{debated issues of the e�ects of

disorder on realizations of the 3{ and 4{state Potts

models in physisorbed layers [2], where evidence for

symmetry{independent critical behaviour of the random

Ising model (RIM) type is emerging, we also recall the

question of the suppression of a �rst{order transition

[3] as induced by disorder. Furthermore, a few 2D sys-

tems are known to exhibit the remarkable phenomenon

of weak universality (inherent to the Baxter or eight{

vertex model [4]). Examples are the p(2�1) and p(2�2)

structures in physisorbed layers [5], direct realizations of

the Baxter model, and more recently the fcc(110) noble{

metal and fcc(111) rare{gas crystal faces, characterised

by the preroughening transition [6]. It is therefore in-

teresting and important to investigate the robustness of

the Baxter line to the introduction of inevitable weak

quenched disorder.

In this paper we provide some sound theoretical ev-

idence for the RIM superuniversality for a class of

discrete{symmetry continuous phase transitions in 2D

systems where disorder leads to the �xed point and crit-

ical exponents of the RIM universality class. We verify

this rigorously for the N{colour and generalised Ashkin{

Teller models, known to correspond in 2D to a num-

ber of experimental realizations [1]. For the minimal

conformal{�eld{theory models (MCFTM) (hence for the

3{ and 4{state Potts models), however, we �nd that RIM

superuniversality holds only approximately, but remark-

ably to a very high degree of accuracy, when disorder is

introduced. Furthermore, we con�rm that disorder de-

stroys the Baxter line of variable critical exponents (in-

cluding that of preroughening) with a full crossover to

the RIM behaviour. Some of these features were already

obtained some time ago by Dotsenko and Dotsenko [7]

(see, however, also Ref. [8]).

We consider, to begin with, the N{colour Ashkin{

Teller model (ATM) [9] described by the following Lan-

dau e�ective Hamiltonian, in the presence of weak disor-

der �(x)
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c

, with

T

c

the pure system's critical temperature, and �(x) is a

Gaussian distributed �eld taking disorder into account.

The homogeneous part of Eq. (1) is the usual Landau ex-

pansion for a stack of N Ising systems, coupled to each

other by the energy operator:
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g;

which in the case of N = 2 de�nes the eight{vertex or

Baxter model [4]. For general N , this model describes a

number of magnetic and structural transitions in a va-

riety of solids [10], whilst for N = 2 and in 2D it de-

scribes the weak universality of phase transitions in ph-

ysisorbed layers and surfaces [5,6]. In the N = 0 limit,

and �(x) = 0, it represents the Landau expansion for

the RIM [11]. Finally, for N!1 Aharony [12] showed

that the �(x) = 0 Hamiltonian is appropriate for the

description of the annealed RIM critical behaviour. In

2D the ATM can be studied by means of the fermioniza-

tion method [13], through which the e�ective action be-

comes that of the O(N ){symmetric Gross{Neveu model

(GNM), with the inclusion of disorder:
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Now  is an N{component (real) Majorana �eld; thus,

for N!0 (and �(x) = 0) the fermionic mapping for the

RIM is reproduced. In the absence of �(x) (hence for

the pure ATM or, for N = 0 or N = 1, for the RIM),

the behaviour near T

c

is known [8] from the solution of

the one{loop renormalization group (RG) equations. For

the thermodynamic functions (correlation length � and

speci�c heat C) we have: ���

�1

j ln � j

(N�1)=(N�2)

and

C�j ln � j

N=(2�N)

, while for the correlation{function at

criticality G(R), susceptibility � and magnetization M

we get: G(R) � R

�1=4

, � � �

�7=4

j ln � j

7(N�1)=4(N�2)

and M � (�� )

1=8

j ln(�� )j

(N�1)=8(N�2)

. These results

clearly show how the Baxter model, N = 2, is a spe-

cial case within the RG scheme and needs a separate

solution, via, e.g., bosonization or the mapping on the

massive Thirring model, leading to continuously{varying

exponents.

Let us now discuss the e�ects of disorder on the ATM,

�(x)6=0 and �nite N . It is convenient to slightly general-

ize the cubic Hamiltonian of Eq. (1), by introducing two

interacting N{ and M{colour ATMs
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where �

k

, k = 1; 2; : : : ;M+N is an (M+N ){component order parameter, a = 1; 2; : : : ; N , c = N+1; N+2; : : : ; N+M ,

m

2

0

�� and v

�

; u

�

> 0 (�; � = 1; 2). Summation over repeated indices is understood in all quadratic operators. The

Gaussian{distributed disorder �elds �

�

(x) may be taken as uncorrelated, h�

�

(x)�

�

(y)i = z

�

�

��

�(x�y), or correlated,

h�

�

(x)�

�

(y)i = z

0

�(x � y). In 4 � � dimensions, with and without disorder, this generalized Ashkin{Teller model

(GATM) was studied by a number of workers [14] for describing structural and magnetic phase transitions in solids.

By applying the standard fermionization and replica tricks, we are lead to an e�ective action containing a number

of quartic terms:
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(4)

with 	

�

k

the (real) Majorana �eld, �; � = 1; 2; : : :; n (n!0) the replica indices, a; b = 1; 2; : : : ; N and c; d = N+1; N+

2; : : : ; N+M . Notice the presence of the additional coupling r

0

(absent in the bare action) induced by renormalization

and ensuring the closedness of the operator algebra. We shall see that the presence of the corresponding operator

will violate the Harris criterion for the positiveness of the speci�c heat exponent. The one{loop RG equations read

(for n = 0):
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du

1

dt

= �(N � 2)u

2

1

� 2z

1

u

1

�Mw

2

;

du

2

dt

= �(M � 2)u

2

2

� 2z

2

u

2

�Nw

2

;

dw

dt

= �w[(N � 1)u

1

+ (M � 1)u

2

+ z

1

+ z

2

]; (5)

dz

1

dt

= �2z

1

[z

1

+ (N � 1)u

1

+ 2Mr];

dz

2

dt

= �2z

2

[z

2

+ (M � 1)u

2

+ 2Nr];

dr

dt

= �r[(N � 1)u

1

+ (M � 1)u

2

+ z

1

+ z

2

]� w[Nz

1

+Mz

2

]

with the initial conditions z

1

(0) = z

2

(0) = z

0

, r(0) = 0,

for uncorrelated disorder, and z

1

(0) = z

2

(0) = 2r(0) =

z

0

for the correlated case. We can now see that for

N = M = 1 (random Baxter, or 2{colour ATM) one

arrives at the RG equations �rst obtained by Dotsenko

and Dotsenko [7]. In this case the couplings u

1

; u

2

de-

couple from the others. Also, we have only one coupling

constant z

1

= z

2

�z and we see that disorder changes the

critical behaviour of the 2{colour ATM, characterised by

weak universality, to that of the RIM modi�ed by some

logarithmic corrections (see also [8] for correlation func-

tion asymptotics). Even though the critical exponent �

is negative for w

0

< 0 (case of preroughening [6]), for

uncorrelated disorder we still �nd a change to RIM crit-

ical behaviour due to the presence of the coupling r. For

correlated disorder and w

0

< 0 weak universality persists

[7], except for the correlation{function related quantities

[8], for which RIM exponents are recovered.

We now come to discuss the e�ect of disorder on the

MCFT models, our main new result. In accordance with

the Harris criterion, weak disorder is expected to be rel-

evant in these models since � = 2(m � 3)=3(m � 1),

with m = 3; 4; : : :, is always positive. In particular, for

the 3{state (m = 5) and 4{state (m = 1) Potts mod-

els we have � =

1

3

and � =

2

3

, respectively. In some

pioneering work, Ludwig [15] and Dotsenko, Picco and

Pujol [16] have succeeded in developing a powerful ap-

proach, connected to the formalism developed for the

GATM, by exploiting a special kind of �{expansion, with

� = c�

1

2

(c < 1 being the central charge of the MCFTM

and

1

2

that of the 2D Ising model). The main result is

that the �(u) and 

�

  

(u) functions coincide with those

of the O(N ){symmetric GNM obtained in the minimal{

subtraction scheme using dimensional regularization, ex-

cept for the �rst trivial term in the �{function. Although

5{loop expansions are available, owing to some unknown

higher{order coe�cients we report the results to 3{loop

order [16,17]
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From these equations, it follows that the correlation

length critical exponent is given by
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where �

0

refers to the pure system. To check the consis-

tency of this result, we consider the N!1 limit describ-

ing annealed disorder, to get � = 2m=(m+ 3) = �

0

=(1�

�

0

), in agreement with Fisher renormalization [18]. From

[16] it also follows that the � exponent remains un-

changed in this limit, � = �

0

= (m+3)(m�1)=4m(m+1)

with q = 4 cos

2

(�=(m + 1)) for the number of Potts de-

grees of freedom. For N = 1 one gets the critical expo-

nents of the pure system.

The critical exponent �

r

for the random models can

be obtained by setting N = 0 in Eq. (7). The results of

the apparently convergent resulting series are reported

in Table I. One can see that the correlation length ex-

ponent is to a very good approximation the same as for

the RIM, �

r

�1, as was indeed observed in some numeri-

cal studies [2]. This is also observed for the exponent �

r

[16], leading to an (approximate) superuniversality of all

the MCFT models. It is known, however, that the RIM
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�xed point does not correspond exactly to that for the

disordered 4{state Potts model [15,16].

model m � �

0

�

1

�

2

�

3

�

r

TIM 4 -0.125 0.889 0.099 0.017 0.003 1.008

3-PM 5 -0.2 0.833 0.139 0.038 0.008 1.018

TPM 6 -0.25 0.8 0.16 0.052 0.014 1.026

4-PM 1 -0.5 0.667 0.222 0.13 0.062 1.081

Table I. Critical correlation length exponent � for ran-

dom minimal models: TIM (Tricritical Ising Model), 3{PM

(3{state Potts Model), TPM (Tricritical Potts Model),

and 4{PM (4{state Potts Model). m denotes the minimal

model, � = (3 � m)=2m, �

0

is the homogeneous exponent,

�

r

= �

0

+ �

1

+ �

2

+ �

3

the random one and �

n

denotes the

n{loop contribution to �

r

.

In conclusion, we have shown the RIM to be a cen-

tral theme in the physics of disordered 2D discrete{

symmetry systems. Many models, notably the ATM and

GATM, give way to the RIM �xed point in the presence

of weak disorder, whilst for others, e.g. the MCFTM,

the RIM critical behaviour is observed, but only to a

very good approximation. The conjectured [2] superuni-

versality therefore holds in a rigorous fashion only when

Ising variables are involved. Details of the present inves-

tigation will be reported elsewhere.
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