
�URNAL F�ZIQNIH DOSL�D�EN^

t. 2, } 2 (1998) s. 228{231

JOURNAL OF PHYSICAL STUDIES

v. 2, No 2 (1998) p. 228{231

LOCAL QUANTITIES FOR THE 1D HUBBARD MODEL

IN THE COMPOSITE OPERATOR METHOD

A. Avella, F. Mancini, M. M. S�anchez, D. Villani

Universit�a degli Studi di Salerno | Unit�a INFM di Salerno

Dipartimento di Scienze Fisiche "E. R. Caianiello"

84081 Baronissi (SA), Italy,

F. D. Buzatu

National Institute for Physics and Nuclear Engineering

Dept. of Theoretical Physics, 76900 M�agurele, Bucharest, Romania

(Received March 9, 1998)

The discovery of new materials with properties dominated by strong correlations among electrons

has opened the problem of new appropriate calculation schemes. In the case of 1D models the

Bethe ansatz provides an exact evaluation of many relevant physical quantities, but not a complete

framework. By way of developing new methods appropriate to strongly correlated systems, we study

the 1D Hubbard model by means of the Composite Operator Method. We investigate various local

quantities. A comparison with exact results and other analytical approaches show a reasonable

agreement and determine the applicability range of our approximate scheme.
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I. INTRODUCTION

Electron correlations in narrow energy bands play a

key role in the description of many new materials that

present anomalous behaviors. The Hubbard model is the

simplest Hamiltonian containing the essence of strong

correlation and its one{dimensional (1D) version can give

us the basic understanding of this �eld. In addition, in

nature we �nd real quasi{1D systems like TTF{TCNQ

and KCP salts [1] and the Cu{O chains of the high{T

c

cuprates that seem to show features whose comprehen-

sion requires an intensive study of the 1D models. More-

over, since Anderson proposed that the high{T

c

super-

conductors should be considered as Luttinger liquids [2],

the 1D Hubbard model, as paradigm of these systems,

has been widely studied.

As it is well known, the Bethe ansatz solution for the

1D Hubbard model provides an exact evaluation of some

local quantities as the energy of the ground state, the

double occupancy, the energy gap and so on [3]. Never-

theless, this ansatz cannot be thought of as a complete

framework for the 1D Hubbard model, since if we want

to evaluate more relevant physical properties of the sys-

tem, i.e. the response functions, we must address other

approaches. On the one hand we have numerical meth-

ods as the quantum Monte Carlo and Lanczos [4]; on the

other we can turn to many analytical approaches [5{7].

However, the small size of the clusters and the impossi-

bility of working at very low temperatures are inherent

to all numerical techniques; whereas, not all the available

analytical methods give satisfactory results.

In this paper we want to present an alternative analyti-

cal approach to the study of the 1D Hubbard model, that

does not present the inconveniences mentioned above.

This method, called the Composite Operator Method

(COM) [8], is based on the idea that the long{lived exci-

tations present in the system could be better described

by some auxiliary fermionic �elds (whose properties are

self{consistently determined by the dynamics) than by

the standard electronic ones. Moreover, the use of such a

non{standard basis in the determination of the Green's

function leads to the appearance of some free parame-

ters not directly connected to the elements of the Green's

function itself. In COM, these parameters are �xed self{

consistently by imposing some symmetry requirements,

like the Pauli principle and the particle{hole symmetry

[8]. This procedure permits to recover these symmetries,

usually badly violated by other approaches, and thus

to properly describe strongly correlated systems, where

the interplay between self{consistency and symmetry re-

quirement could be the only practicable way to face the

problem. This line of thinking has given its fruits when

applied to many systems [8]. The results obtained for

the thermodynamic and magnetic properties are in good

agreement with the numerical data. Some anomalous be-

haviors, experimentally observed in high{T

c

cuprate su-

perconductors, have also been explained successfully [8].

The reliability of COM on the evaluation of the rele-

vant response functions of the 1D Hubbard model can

be deduced by a comparison with the Bethe ansatz re-

sults on the local quantities. Also, the comparison with

other analytical approaches [5{7] will allow to establish

the relevance and reliability of the method.

II. METHOD

The 1D Hubbard model is described by the following

Hamiltonian:
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density operator. In the hopping matrix
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only the terms up to the nearest neighbors have been

considered; �

ij

is the projector on the nearest neighbors.

The U parameter is the onsite Coulomb repulsion.

The 2D Hubbard model has been previously analyzed

by means of COM in the static approximation where

�nite life{time e�ects are neglected using the Hubbard

doublet as a basic �eld [8]. The single{particle retarded

thermal Green's function is a function of the external pa-

rameters t, U , n (�lling) and T (temperature) and three

internal parameters �, � and p. The latter have been

determined using a system of self{consistent equations

which come from the existing relations with the elements

of the Green's function and from the requirement of the

Pauli principle at the level of matrix elements. In the case

of the 1D Hubbard model the same scheme of calcula-

tions can be applied. The resulting formulas di�er from

the ones of the 2D model only in the explicit expression

for the � projector.

In the framework of COM, the Fourier transform of the

single{particle retarded thermal Green's function may be

written as:
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2
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and � the chemical potential.

The energy bands E

1;2

(k) have the following expression:

E

i

(k) = R (k) + (�)

i+1

Q (k) : (13)

The internal energy has been calculated following two

di�erent schemes. One determination comes directly by

taking the thermal average of the Hamiltonian (E

H

). The

other one is obtained by introducing the Helmhotz free

energy per site

F = E � TS; (14)

where S is the entropy per site. From thermodynamics

we have

S = �

@F

@T

; � =

@F

@n

)

@S
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@�
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: (15)

Then, it is straightforward to get the expression

E

T

=

Z

n

0

�
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@�

@T

(T; ~n)

�

d~n: (16)

III. RESULTS

We have studied the paramagnetic solution of the

model and found two solutions of the coupled self{

consistent equations that will be called henceforth

COM 1 and COM 2. They di�er principally in the sign of

the p parameter (p < 0 for COM 1 and p > 0 for COM 2)

which drives the overall shape of the bands (see Eqs. 12

and 13). The �rst solution has very strong antiferromag-

netic correlations with respect to the second one. As can

be seen in Fig. 1a, COM 1 presents a typical antiferro-

magnetic band pattern, i.e. a very narrow bandwidth of

the order J =

4t

2

U

, the �rst excitation at k = �

�

2

and a

quasi{halved Brillouin zone. COM 2 shows a bandwidth

of the order 8t, the �rst hole excitation at k = �� and

the �rst electron excitation at k = 0. In Fig. 1b, COM 1

shows a gap in the excitation spectrum which is almost

equal to U . This is consistent with the Bethe ansatz re-

sults which present a gap for any value of U . Neverthe-

less, the magnitude of the gap increases too much in the
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weak coupling regime, but reaches the Bethe ansatz rate

for the values of U � 4. On the contrary, COM 2 is char-

acterized by the critical value U

c

� 6:6, above which the

gap opens.

Fig. 1. a) Energy bands for COM 1 (upper panel) and

COM 2 (lower panel); b) Energy gap for COM 1, COM 2 and

BA (Bethe ansatz).

The energy of the ground state for the two solu-

tions has been calculated both thermodynamically and

through the average of the Hamiltonian. In the following

�gures, we will present only the lowest determination

of the energy in the chosen range of external param-

eters. We present the results for the ground{state en-

ergy of the system obtained with our method (E

COM1

H

),

Bethe ansatz and other analytical approaches [5{7] (see

Fig. 2a). The excellent agreement between our result and

Bethe ansatz is correlated to the opening of the gap men-

tioned above. We can also see that both the Ladder [7]

and the Gutzwiller approximations [6] go to zero at the

�nite value of U , whereas COM, together with the Renor-

malization Group [5], has the right asymptotic behavior.

Nevertheless the latter approach fails completely in the

free limit (U = 0). The self{consistent Ladder approx-

imation [7] has a good behavior for all regime of cou-

plings, but gives a �nite ground state energy for in�nite

U . The double occupancy and kinetic energy in COM 1

for the same value of the external parameters is also in

qualitative agreement with the Bethe ansatz results.

Fig. 2. a) Ground state energy for COM 1 (E

H

), BA, RG

(Renormalization Group), GWF (Gutzwiller wave function),

GWA (Gutzwiller approximation), LA (Ladder approxima-

tion) and SCLA (Self consistent LA); b) As in (a) for COM 1

(E

H

) COM 2 (E

T

), BA, GWF, GWA and LA.

Fig. 2b shows the ground{state energy away from half

�lling for an intermediate value of the coupling. Follow-

ing the minimum energy criterium mentioned above, we

plot COM 1 near half{�lling and COM 2 otherwise. This

fact can be interpreted as a transition, within our para-

magnetic solution, from a ground state characterized by

very weak antiferromagnetic correlations away from half

�lling to another one where these correlations are very
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strong near half �lling. The agreement between our re-

sults and Bethe ansatz is excellent very near half �lling

where, as it is known, the system is in an antiferromag-

netic ground state. On the contrary, the Ladder approx-

imation [7], the Gutzwiller wave function and Gutzwiller

method [6] deviate from Bethe ansatz at half{�lling. The

self{consistent ladder approximation [7] probes excel-

lently at any doping but deviates slightly at half{�lling.

IV. CONCLUSIONS

The search for new schemes of approximation has been

renewed by the discovery of new materials dominated

by strong electronic correlations. The Bethe ansatz solu-

tion of the 1D Hubbard model does not provide a com-

plete framework for calculations since it does not allow

the evaluation of many response functions of the sys-

tem. We have used the Composite Operator Method to

study some local quantities and compare our results to

Bethe ansatz as well as to other analytical approaches.

The proposed method has a very good agreement with

the exact result at half{�lling for any value of the cou-

pling; for intermediate value of both doping and coupling

the deviation is not more than 10%. In spite of consid-

ering a paramagnetic solution, at half{�lling we found a

ground state with strong antiferromagnetic correlations;

this state shows a gap for any value of the coupling in

agreement with the Bethe ansatz solution, although the

increasing rate is larger in our case. From the present re-

sults, our method seems to be a reasonable framework to

study the 1D Hubbard model. Therefore, we will apply

this scheme to calculate the response functions of the

system with the aim of describing some real quasi{1D

materials.
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