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Strongly correlated electron systems with planar structure, like high{T

c

superconductors, are

currently under intensive study. In the search for a realistic model to describe the anomalous

behaviors of these systems, we have studied the 2D Extended Hubbard model by means of the

Composite Operator Method. The local properties, the density of states and the Fermi surface have

been calculated as functions of the model parameters. Particular attention has been paid to the role

played by the intersite interaction V which drives important changes in the electronic properties of

the system.
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I. INTRODUCTION

The Hubbard model contains the essence of strong

electronic correlations and has been studied as a min-

imal model for describing a variety of phenomena rang-

ing from metal{insulator transition to itinerant mag-

netism. Nevertheless, the electronic properties of materi-

als with strongly correlated electrons still present unclar-

i�ed issues which call for a generalization of the Hub-

bard Hamiltonian. Many authors have emphasized the

importance of considering non{local Coulomb interac-

tion terms in describing doped systems like the cuprate

superconductors or the fullerides [1].

The simplest Hamiltonian satisfying these require-

ments is the Extended Hubbard model, where a nearest{

neighbor Coulomb interaction term V is added to the

original Hubbard Hamiltonian. The inclusion of non{

local Coulomb interactions substantially modi�es the

electronic properties of the model. For instance, the

charge transfer excitons, which can only be detected by

optical spectroscopy at half{�lling, attain some charge in

doped systems and become visible in direct and inverse

photoelectron spectroscopies [2]. Other studies, using an

e�ective extended Hubbard model, support the appear-

ance, upon doping, of the states evenly distributed inside

the gap [3]. This suggests that the general features of the

spectral properties of the cuprates can be well described

by using this e�ective extended Hubbard Hamiltonian.

The extended Hubbard model, with an attractive inter-

site Coulomb interaction has also been used to mimic

some of the experimental features of the cuprates in the

superconducting state by means of a BCS treatment [4].

According to this, we have studied the Extended Hub-

bard model by means of the Composite Operator method

(COM) in the static approximation [5]. In this calcula-

tion scheme the long-lived excitations of the system are

described by an appropriate combination of the stan-

dard fermionic �eld operators. The properties of the new

fermionic �elds are determined self{consistently by the

dynamics. To �x the internal parameters some symmetry

requirements, like the Pauli principle and the particle-

hole symmetry, are imposed. This procedure permits to

recover symmetries that are badly violated by other ap-

proaches, and thus is expected to provide a better de-

scription of strongly correlated systems.

This systematics has been applied to the study of sev-

eral models, like the p{d model, the 1D and 2D Hub-

bard models, and the t{t

0

{U model among others [5].

The results obtained for the thermodynamic and mag-

netic properties are in good agreement with the numeri-

cal data. Some anomalous behaviors, experimentally ob-

served in high{T

c

cuprate superconductors, have also

been explained successfully.

In the present work we have studied the e�ect of the

intersite Coulomb interaction term on some properties of

the system; namely, the local properties, the Fermi sur-

face, the van Hove singularity and the Mott{Hubbard

transition.

II. METHOD

The Extended Hubbard model is described by the fol-

lowing Hamiltonian:

H =

X

ij
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is the electron operator on

site i in the spinor notation, n

�

(i) is the charge{density

operator for the spin � and n (i) is the total charge{

density operator. In the hopping matrix
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only the terms up to the nearest neighbors have been

considered; �

ij

is the projector on the nearest neighbors.

The U and V parameters are the onsite and intersite

Coulomb repulsions, respectively, and � the chemical po-

tential.

The Extended Hubbard model has been analyzed by

means of COM in the static approximation, where �nite

life-time e�ects are neglected, using the Hubbard dou-

blet as a basic �eld. The single-particle retarded thermal

Green's function is a function of the external parameters

t, U , n (�lling) and T (temperature) and four internal pa-

rameters: �, �, p and �

�

0

. The parameters � and p have

already been de�ned in Ref. [5]. �

�

0

=

P

j

�

ij

hn (i) n (j)i

is the charge susceptibility calculated between nearest

neighbor sites. They satisfy the following system of cou-

pled self-consistent equations
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coming from the existing relations with the elements of

the Green's function (1

st

and 2

nd

equations), the require-

ment of the Pauli principle at the level of matrix elements

(3

rd

equation) and the use of the equations of motion (4

th

equation). I is the renormalization matrix

I

1

= 1�

n

2

;

I

2

=

n

2

:

S

��

and S

�

��

are the elements of the Green's function cal-

culated on the same site and on nearest{neighbor sites,

respectively.

In the framework of COM, the Fourier transform of the

single{particle retarded thermal Green's function may be

written as:

S (k; !) =

2

X

i=1

�

i

(k)

! � E

i

(k)

: (5)

The changes driven by the presence of the V term can

be summarized by giving those in the m matrix
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0

(k) + V m
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m

V

11

(k) = 4

�

n�

1

2

�

�

0

�

+ 4� (k)S

�

11

; (7)

m

V

12

(k) = 4� (k)S

�

12

; (8)

m

V

22

(k) = 2�

�

0

+ 4� (k)S

�

22

; (9)

where m

0

(k) is the simple Hubbard part, already shown

in Ref. [5]. All the other relevant quantities can be cal-

culated from the energy matrix " (k) = m (k) I

�1

; for

instance, the energy bands E

1;2

(k) are the eigenvalues

of " (k) and the �

1;2

(k) are simple functions of its ele-

ments [5].

III. RESULTS

The study of the local properties of the model has

shown the following behaviors: near half-�lling the chem-

ical potential, the double occupancy and the mobility

increase on increasing V and drive a lowering of the to-

tal energy of the system (see Figs. 1(a) and 1(b)). Any

additional particle has a certain probability to be the

nearest neighbor of some others already present in the

system leading to an increment of the chemical poten-

tial. The cost in energy U of a double occupied site is in

part balanced by the energy V of two particles on the

nearest neighbor sites. This results in a greater double

occupancy. The mobility increases according to the over-

all tendency towards a charge density instability driven

by the V term in agreement with the mean{�eld result

[6].

Fig. 1. (a) Kinetic energy for various values of V ; (b) Total

energy for various values of V .
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Fig. 2. (a) Fermi surface for various values of V at n = 0:7;

(b) As in (a) at n = 0:9.

Fig. 3. (a) n

c

as a function of V for various values of U ;

(b) U

c

as a function of V .

The Fermi surface of the system does not change

its overall shape and bending on varying V , but, al-

most rigidly, decreases its volume on increasing V (see

Figs. 2(a) and 2(b)). This can be explained as an

isotropic increment of the available states in k-space and

can be useful to describe quantitatively rather than qual-

itatively (as the usual Hubbard model does) the ARPES

determinations of the Fermi surfaces of the cuprate su-

perconductors [7].

Static susceptibility [8] and speci�c heat [9] measure-

ments in the cuprate superconductors have shown the

presence of well{de�ned peaks as functions of the �lling.

This feature, within the framework of the van Hove sce-

nario, is related to the crossing of the Fermi level through

a van Hove singularity in the density of states. We have

studied the value of the �lling n

c

, at which this crossing

occurs. The result is shown in Fig. 3(a), as a function

of U and V . As we can see, n

c

increases on increasing

V until a certain value of U is reached. Above this crit-

ical value of U the inuence of V is almost null. This

is a clear indication that if we would like to explain the

cuprates superconductors and their anomalous features

by means of models �a la Hubbard we need to exploit

the intermediate regime for the onsite coupling and the

weak regime for the intersite one. Only in this region

of the model parameters, n

c

is in qualitative agreement

with the experimental data [8,9].

The physical quantity that mostly feels the intersite

Coulomb repulsion V is U

c

, i.e. the critical value of U

that marks the Mott{Hubbard transition in the model.

As we can see in Fig. 3(b), U

c

decreases rapidly and be-

comes of the order of the bandwidth for high values of

V . This can be understood as the signature of an insta-

bility of the system towards a phase with a strong charge

ordering.

IV. CONCLUSIONS

The variety of phenomena present in the strongly cor-

related electron materials calls for a generalization of the

Hubbard model. The inclusion of non{local Coulomb in-

teraction terms is considered important for describing

the anomalous behaviors of some doped systems like the

cuprate superconductors or the fullerides.

According to this, we have studied the Extended Hub-

bard Hamiltonian by means of the Composite Opera-

tor Method. Using this fully self-consistent treatment

we have obtained both the local and the single{particle

properties of the model. The former show a tendency

towards a charge ordered phase instability. The latter

are modi�ed quantitatively, but not qualitatively, with

respect to the results obtained with the usual Hubbard

Hamiltonian. This could permit to �t more accurately

the experimental data for the cuprates superconductors.

The value of the �lling at which the Fermi level crosses

the van Hove singularity in the density of states has been

studied as a function of the coupling constants. A com-

parison with the experimental data for the magnetic and
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thermodynamical properties of high{T

c

superconductors

suggests an intermediate regime for the onsite coupling

and a weak regime for the intersite one as most adequate

for the description of these materials.
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