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We investigate the charge susceptibility in strongly correlated electron systems by using a Bethe-

Salpeter equation in a generalized cumulant expansion for the p{d model, at varying values of the

doping and temperature. We �nd that for small values of the correlation U

d

, the charge susceptibility

decreases near the half{�lling as hole{doping approaches zero, this behavior suggesting the precursor

of the Mott{Hubbard gap formation. Particular attention is paid to the role played by the Van Hove

singularity near the Fermi level in the density of states, in connection with the unusual normal state

properties of the hole{doped cuprates.
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I. INTRODUCTION

Since the discovery of high temperature superconduct-

ing cuprates (HTSC), one of the central issues in the

study of strongly correlated electron systems has been

whether the two{dimensional systems behave as Fermi

liquid or not [1]. Compared with the conventional su-

perconductors, the HTSC seem to behave rather nor-

mally in the superconducting phase except for having

high values of T

c

but quite anomalously in the normal

phase. Therefore, one may think that the key for clari-

fying origins of the high{T

c

superconductivity must be

in clarifying origins of the anomalous phenomena in the

normal phase. On the other hand, studies done so far

seem to suggest that those anomalous phenomena may

be related intimately to the strong electronic correla-

tions. Roughly speaking, one may classify e�ects of the

electronic correlations into two di�erent types, those due

to spin density 
uctuations and others due to charge den-

sity 
uctuations. Up till now, the e�ects of spin density


uctuations have been studied extensively, while small

attention has been devoted to those of charge density


uctuations. However, we believe that the mechanism of

the high{T

c

cannot be determined without clarifying the

role of the charge 
uctuations. Therefore, in the present

work we intend to �gure out thoroughly the properties of

the charge 
uctuations in the CuO

2

{2D electronic sys-

tems by studying the charge susceptibility in the p{d

model. In particular, we are interested in the depen-

dence on the hole{doping x of the charge susceptibil-

ity. It is well known that when x approaches zero, the

system exhibits a metal{insulator transition (MIT) be-

coming incompressible near the transition. So, it is gen-

erally expected that the charge susceptibility decreases

and eventually vanishes when the MIT is approached. In

fact, such a behavior has been obtained in some numer-

ical studies on the basis of the quantum Monte Carlo

(QMC) method [2] and in a perturbation study in the

weak{coupling regime [3] of the two{dimensional Hub-

bard model. A completely di�erent result, however, has

been reported in other QMC simulations [4]: The charge

susceptibility diverges like � 1=x as x approaches zero.

The investigation of these controversial results provides a

primary motivation for the present work. By using a gen-

eralized \cumulant" expansion around the atomic limit,

we investigate the tendency of the change response near

the MIT due to the correlation e�ects.

In order to evaluate the charge susceptibility properly

in the vicinity of the half{�lling, we utilize a Bethe{

Salpeter equation for the vertex function taking into ac-

count the correlation e�ects through the inclusion of the

cumulants of the �rst and second order. The calculations

are performed in the framework of the well{known �nite

temperature Green function formalism.

II. MODEL HAMILTONIAN AND METHOD

Taking into account the characteristic feature of the

2D CuO

2

plane, we adopt the simplest p{d model, in

which tight{binding holes are composed of Cu{d

x

2

�y

2

orbitals which form a square lattice and O{p

�

orbitals

which connect the nearest{neighbor Cu sites (see Fig. 1).

The non{interacting part of the Hamiltonian con-

sists of site energy terms of d{ and p{orbitals and the

Coulomb repulsion U

d

on each d{orbital. As for the in-

teraction, we consider the transfer term between nearest{

neighbor d{ and p{orbitals. Thus we obtain the following

Hamiltonian,

H = H

0

+H

1

; (1)

where

H

0

= ("

p

� �)

X

k;�

p

y

k�

p

k�

+ ("

d

� �)

X

k;�

d

y

k�

d

k�
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+ U

d

X

i

d

y

i"

d

i"

d

y

i#

d

i#

;
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H

1

=

X

k;�

V

k

(d

y

k�

p

k�

+ h:c:); (3)

where d

y

k�

(d

k�

) and p

y

k�

(p

k�

) are the creation (annihila-

tion) operator for d{ and p{ holes of momentum k and

spin �, respectively; d

i

=

1

N

P

k

d

k

e

ikR

i

. The site energy

of d{ and p{holes are given by ("

d

� �) and ("

p

� �), �

is the chemical potential. Finally, U

d

represents the on{

site Coulomb repulsion between Cu holes. The bonding

orbital p

k�

, hybridizing with the d

k�

; orbital is given by

the following combination of p

xk�

and p

yk�

orbitals:

p

k�

=

�

�i




k

x




k

p

xk�

+ i




k

y




k

p

yk�

�

; (4)

where 


k

�

= sin(k

�

=2); (� = x; y). The p{d mixing po-

tential is given by

V

2

k

= 2V

2

(2� cos k

x

� cos k

y

) = �2V 
(k); (5)

where V is the p{d hybridization. In the following calcu-

lation, we put V = 1.

By considering the atomic part of the Hamiltonian (1)

as the unperturbed Hamiltonian and H

1

as the pertur-

bation part, we determine the �nite temperature Green

functions for p and d operators through the standard

S�matrix perturbative formula

G

��

(i � j; �

1

� �

2

) = �

D

T

�

c

�

i�

(�

1

)c

�y

i�

(�

2

)S(�)

E

0

hS(�)i

0

; (6)

where the subscript (�; �) represents either p{ or d{hole

indices. The unperturbed atomic single{particle Green

functions G

(0)

pp

and G

(0)

dd

are given by:

G

(0)

pp

(i!

�

) =

1

i!

�

� ("

p

� �)

(7)

and

G

(0)

dd

(i!

�

) =

h1� n

d

��

i

0

i!

�

� ("

d

� �)

+

hn

d

��

i

0

i!

�

� ("

d

+ U � �)

; (8)

where !

�

are the fermion Matsubara frequencies at the

temperature T and hn

d

��

i

0

is the average number of parti-

cles in the d{atomic orbital. In calculating the full Green

functions (6), since H

0

does not mix di�erent holes, the

thermal averages appearing in the expansion can be ex-

pressed as products of p{ and d{averages, separately.

While the p{averages may be evaluated by using the con-

ventional Wick decoupling procedure, the presence of the

Coulomb interaction term (U

d

) in H

0

prevents the appli-

cation of it to the d{averages. For this reason, one can

apply a nonstandard diagrammatic expansion, analogous

to that developed by Metzner [5] for the one{band Hub-

bard model. Within this approach, the simplest approx-

imation consists in decoupling the d{averages of four or

more fermionic operators in products of local pair aver-

ages, or equivalently, in taking into account only the one{

particle cumulants. Diagrammatically, one obtains the

chain{like diagrams which can be summed up by means

of a Dyson{like equation leading for G

(1)

pp

; G

(1)

dd

; G

(1)

pd

to

the following expressions at the �rst{order in the cumu-

lant expansion [6]:

G

(1)

pp

(k; i!

�

) =

G

(0)

pp

(i!

�

)

1� V

2

k

G

(0)

pp

(i!

�

)G

(0)

dd

(i!

�

)

; (9)

G

(1)

dd

(k; i!

�

) =

G

(0)

dd

(i!

�

)

1� V

2

k

G

(0)

pp

(i!

�

)G

(0)

dd

(i!

�

)

: (10)

The average number of particles in both p{ and d{ or-

bitals is determined together with the chemical potential

in a self{consistent way.

Next, we de�ne the charge susceptibility �

��

c

(q; i!

�

),

as

�

��

c

(q; i!

�

) =

1

N

Z

�

0

d� e

i!

�

�

hT

�

[ �n

�

q

(� )�n

�

�q

(0)]i;

(11)

where N is the number of cells and �n

q

is given by

�n

q

= n

q

(� )� hn

q

i; (12)

with n

q

=

P

k;�

c

y

k+q�

c

k�

:

The equation (11) can be recast into

�

��

c

(q; i!

�

) = 2

h

�

��

""

(q; i!

�

) + �

��

"#

(q; i!

�

)

i

; (13)

where �

��

��

0

(q; i!

�

) is the generalized susceptibility in the

\particle{hole" channel de�ned as

�

��

��

0

(q; i!

�

) =

1

N

Z

�

0

d� e

i!

�

�

hT

�

X

k

c

�y

k+q�

(� )c

�

k�

(� )

�

X

p

c

�y

p+q�

0

(0)c

�

p�

0

(0)i

conn

; (14)

where the superscript \conn" denotes the operation to

take into account only the connected diagrams. The to-

tal susceptibility will be obtained by summing up the

four contributions �

pp

��

0

; �

dd

��

0

; �

dp

��

0

; and �

pd

��

0

. The gen-

eralized susceptibility contains two terms: the Hartree{

Fock's, expressed in terms of the single{particle propa-

237



R. CITRO, M. MARINARO

gators and the \irreducible" part containing the vertex

correction. Taking into account expressions (9) and (10)

for the one{particle Green functions, the following ana-

lytic expression corresponds to the Hartree{Fock terms

�

(1)��

""

(q; i!

�

) = ��

�1

X




�

e

i


�

"

Z

d

2

k

(2�)

2

G

(1)

"��

(k+ q; i!

�

+ i


�

)� G

(1)

"��

(k; i


�

): (15)

In calculating the irreducible part of �

��

��

0

, we �rst introduce the d{vertex function

�

��

0

(q; i!

�

) =

X

k

Z

�

0

d� e

i!

�

�

hT

�

(d

y

k+q�

(� )d

k�

(� )d

y

k+q�

(0)d

k�

(0))i

conn

(16)

that can be determined approximately from the Bethe{Salpeter equation

�

��

0

(q; i!

�

) = �

(0)

��

0

(i!

�

) +

X

�

00

�

(0)

��

00

(i!

�

)�
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�

00

(q; i!

�

)�

�

00

�

0

(q; i!

�

); (17)

where �

(0)

��

0

(i!

�

) is the atomic irreducible vertex function of four d operators (i.e. a two{particle cumulant for the

d{holes) �

�

(0)

��

0

(i!

�

) =

Z

�

0

d� e

i!

�

�

hT

�

(d

y

i�

(� )d

i�

(� )d

y

i�

0

(0)d

i�

0

(0))i

irr

0

; (18)

in which the average is performed with respect to the atomic Hamiltonian and �

pp

�

(q; i!

�

) is the polarization insertion

�

pp

�

(q; i!

�

) = ��

�1

X




�

e

i


�

"

Z

d

2

k

(2�)

2

V

2

(k + q)G

(1)
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(k+ q; i!

�

+ i


�

)

�V

2

(k)G

(1)

�pp

(k; i


�

): (19)

In terms of Eq. (16) we obtain for �

(2)��

��

0

(q; i!

�

) the following expression

�

(2)dd

��

0

(q; i!

�

) = �

��

0

(q; i!

�

)

h

1 +

~

�

pd

�

0

(q; i!

�

)

i

2

; (20)

�

(2)pp

��

0

(q; i!

�

) = �

��

0

(q; i!

�

)

~

�

pp2

�

0

(q; i!

�

); (21)

�

(2)pd

��

0

(q; i!

�

) = �

(2)dp

��

0

(q; i!

�

) = �

��

0

(q; i!

�

)

~

�

pp

�

0

(q; i!

�

)

h

1 +

~

�

pd

�

0

(q; i!

�

)

i

; (22)

where

~

�

��

�

(q; i!

�

) = ��

�1
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�

e

i


�

"

Z

d

2

k

(2�)

2

V (k+ q)G

(1)��
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(k + q; i!

�

+ i


�

)

�V (k)G

(1)��

�

(k; i


�

): (23)
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The superscript

(2)

indicates that we are taking into account the two-particle cumulants contained in the irreducible

part. Combining Eq. (13) with the explicit expressions of �

��

��

0

(q; i!

�

) = �

(1)��

��

0

(q; i!

�

) + �

(2)��

��

0

(q; i!

�

), from Eqs.

(15) and (20){(22), we obtain �

c

(q; i!

�

) in the form

�

c

(q; i!

�

) = �2�

�1

X

��

X




�

e

i


�

"

Z

d

2

k

(2�)

2

G

(1)��

"

(k+ q; i!

�

+ i


�

)� G

(1)��

"

(k; i


�

)

+2(�

""

+ �

"#

)(q; i!

�

)

h

1 +

~

�

pd

"

(q; i!

�

) +

~

�

pp

"

(q; i!

�

)

i

2

: (24)

III. RESULTS

In this section we investigate, �rst, the dependence

on x of the charge susceptibility in the static and uni-

form limit, �

c

(0; 0): The results are shown in Fig. 1 for

T = 100K, "

d

=V = �1 and "

p

=V = 0 and U

d

=V = 5:

As the system is doped away from half{�lling (x = 0)

the susceptibility increases and reaches its maximum at

x

c

' 0:26, then decreases. The dependence of the charge

susceptibility on x can be explained according to a Van{

Hove scenario.

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

0 0.1 0.2 0.3 0.4 0.5

x

�

c

[V

�1

] T=100K

Fig. 1. �

c

(0; 0) as a function of x, for T = 100K,

U

d

=V = 5, "

d

=V = �1 and "

p

=V = 0.

Since at low temperature �

c

re
ects the thermal av-

erage of the density of states at the Fermi level N (E

F

);

the presence of the maximumin �

c

for the critical doping

of x

c

can be related to the fact that, upon doping with

holes, the Fermi level approaches the Van Hove singular-

ity (VHS) arising from the nearest{neighbor hybridiza-

tion term, and for the choice of the parameters that we

have considered lies on it at x = x

c

[6]. Interpretation of

many experimental results for LSCO and YBCO [7]{ [8]

in terms of a sharp feature in the density of states, consis-

tent with photoemission spectroscopy data on cuprates

[9], have been advanced in numerous works [10,12]. To

have a better understanding of the change of �

c

with

doping, in Fig. 2 (a), (b) we report �

c

(T ) versus tem-

perature for di�erent values of the doping x. As shown,

upon doping with holes �

c

(T ) increases with doping till

the critical value x

c

(' 0:26) and then behaves reversely

for x > 0:26.

a
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10.0

11.0
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T[K]

0:26

0:24

0:22

0:20

0:18

(a)

�

c

[V

�1

]

b

7.0

8.0

9.0

10.0

11.0

12.0

0 50 100 150 200 250 300

T[K]

0:26

0:28

0:32

0:3

(b)

�

c

[V

�1

]

Fig. 2. (a){(b): �

c

(0; 0) as a function of T for (a) x < x

c

and (b) x > x

c

with the other parameters as in Fig. 1.

For x 6= x

c

= 0:26 the VHS is not on the Fermi{level

and then its contribution to the charge{susceptibility de-

creases as the temperature is lowered. As for the tem-

perature dependence of �

c

; we �nd the maximum at a

certain temperature T

m

that moves to lower tempera-

tures at the increasing value of the doping for x < x

c

,

while opposite behaviour is observed for x > x

c

: We

would like to stress that the same kind of behaviour is

evinced for the spin susceptibility [6], we only �nd that
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the amplitude of the charge 
uctuations is one order of

magnitude smaller as compared with the spin{one. This

means that in the range of the parameters considered,

the system is more instable with respect to the spin 
uc-

tuations. A probe of the electronic correlations e�ects

and the metallic or insulating character of the system

is obtained by considering di�erent values of U

d

=V . In

Fig. 3 the charge susceptibility is plotted as a function

of the doping for the same values of the parameters as

in Fig. 1, but U

d

=V = 0 and U

d

=V = 5: For U

d

=V = 0

the VHS falls at the Fermi level at half{�lling, conse-

quently, �

c

(0; 0) as x approaches zero. In the interacting

case (U

d

=V = 5) �

c

(0; 0) shows a maximum at a crit-

ical value of the doping x = x

c

' 0:26 still due to a

VHS in the density of states, and turns to decrease near

half{�lling.
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0 0.1 0.2 0.3 0.4 0.5

x

�

c

[V

�1

]

U

d

=V = 0

U

d

=V = 5

3

3

3

3

3

3

3

3

3

3

3

+

+

+

+

+

+

+

+

+

Fig. 3. �

c

(0; 0) as a function of x for U

d

=V = 0 and 5 and

the other parameters as in Fig. 1.

A large suppression of �

c

near half{�lling is due to the

vertex corrections which are not included in the Random

Phase Approximation (RPA) and properly describes the

MIT approaching. This behaviour can be considered as a

precursor of the formation of the Mott{Hubbard gap at

x = 0. Our results are consistent with those of the QMC

simulations by A.Moreo et al. [2] and the perturbation

study of the 2DHM by T. Hotta and S. Fujimoto, but not

with the assertion by N. Furukawa and M. Imada [4] that

the charge susceptibility diverges in the vicinity of half{

�lling. According to Ref. [4] this divergence re
ects the

realization of some non{Fermi liquid state in the metallic

phase near the MIT. In conclusion, our results seem to

support the possibility of a smooth transition from the

Fermi liquid state to the Mott{insulating phase as x ap-

proaches zero. The same conclusion was reached in the

study of the in�nite{dimensional Hubbard model [11].

IV. CONCLUSIONS

We have investigated the doping and the temperature

dependence of the charge susceptibility in the p{dmodel,

by using a Bethe{Salpeter equation in a generalized cu-

mulant expansion. Our results for the charge susceptibil-

ity as a function of the doping show that: a) it has the

maximum at the critical value of the doping x

c

; b) as a

function of the temperature it increases with the doping

for x < x

c

, and behaves reversely for x > x

c

due to the

Fermi level lying very close to VHS; c) in the interacting

case the charge susceptibility is much suppressed due to

the correlations e�ect in the vicinity of half{�lling. This

suppression indicates a precursor of the formation of the

Mott{Hubbard gap.

In conclusion, in the framework of the p{d model a

VHS scenario well reproduces some of the \unusual"

properties observed in the normal state of the HTSC.

Besides, smooth behaviour of the charge susceptibility

near the MIT is obtained as half{�lling is approached.
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