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In this review we have considered a problem of the description of quenched{annealed uids

in the framework of the liquid{state replica methodology. A statistical mechanical fundamentals

of the theory are considered. Interesting developments and important results for the structure,

thermodynamics, and particularly, for phase transitions in these systems, already available in the

literature, are discussed. Our emphasis also is focused on the original contributions of the authors.

We discuss results for two{dimensional partly quenched models, for inhomogeneous systems and

chemically associating uids in disordered porous environment. Charged annealed uids adsorbed

in charged disordered matrices are investigated �nally. Mostly we consider the applications of the

replica type integral equations for all the systems mentioned above. However, a computer simulation

approach also is discussed and some original simulation data are given. In conclusion, we outline

the issues unsolved so far and discuss areas which seem promising for future developments.
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I. INTRODUCTION

Very recently the scienti�c interests of our research

group have turned on to the studies of quenched{

annealed uids. One can observe augmenting activity in

this area of the leading theoretical laboratories, which

have involved the groups of G. Stell and J. Given, of

E. D. Glandt and W. G. Madden, of M. L. Rosinberg

and E. Kierlik, and of P. Monson and R.D. Kaminsky,

among the others.

To our best knowledge, there has not been a compre-

hensive review of the theoretical studies of quenched{

annealed uid systems. Therefore, our intention in this

work is to cover, at least partially, the existing vacuum.

Evidently, it is impossible to discuss the state of art in

every detail in one paper. We will omit, for example, the

discussion of the fundamentals of the replica method for

lattice systems referring the reader to the monograph [1].

However, it is a real pleasure for us to present our contri-

bution to the Journal of Physical Studies, because it is

closely related to the area of interests of I. A. Vakarchuk

and Yu. K. Rudavskii, who both together with their

coworkers, have contributed much into the extension and

the application of the replica method for liquid magnetic

systems [2{5].

The structure of this review is as follows. First we make

a brief introduction (section I) referring to the most im-

portant developments as well as interesting experimen-

tal observations. In section II we present fundamental

relations of the liquid{state replica methodology. Those

include the de�nitions for the partition function and av-

eraged grand thermodynamic potential, for the uctua-

tions in the system and the correlation functions. Our

derivation has been developed in canonical and grand

canonical ensemble. In the second part of this section

the replica Ornstein{Zernike (OZ) equations and closure

approximations are discussed. We terminate the presen-

tation of theoretical background with derivation of ther-

modynamic properties of partly quenched systems.

In section III our presentation is focused on the most

important results obtained by di�erent authors in the

method of integral equations and in simulations for sim-

ple uids. Besides, we discuss our original results ob-

tained very recently for two{dimensional and three{

dimensional models of quenched{annealed uids. Every-

where, if possible, we make comparisons with computer

simulation results.

Section IV is dedicated to the development of the the-

ory of inhomogeneous partly quenched systems. The the-

ory involves the inhomogeneous, or the second order,

replica OZ equations and the Born{Green{Yvon equa-

tion for the density pro�le of adsorbed uid in disordered

media. Some computer simulation results also are given.

Then, in section V, we turn our attention to the prob-

lem of chemically associating systems adsorbed in dis-

ordered porous media. We present associative extension

of the replica OZ equations, discuss a set of approxi-

mations for them and the derivation of thermodynamic

properties. Some original results also are given. All pre-

vious developments concern uids without electrostatic

forces. However, the problem of charged uids adsorbed

in charged disordered matrices is of much interest for

basic and applied research.

Therefore, we proceed in section VI with the theory

of quenched{annealed charged systems which very re-

cently have become the subject of our research. Pecu-

liarities of the screening of Coulomb interactions in ad-
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sorbed charged uids restricted to charged obstacles is

discussed. In conclusion, we present a summarizing dis-

cussion and outline possible future studies that are of

interest in our opinion this area.

We would like, however, to start with a clear descrip-

tion of the subject of our work. We are interested in

quenched{annealed, or partly quenched, systems, i.e. in

those in which some degrees of freedom are quenched

(�xed) whereas the others are allowed to equilibrate.

This equilibration, evidently, occurs in the presence of

a subsystem of quenched variables. The ensemble aver-

ages corresponding to the expectation values of physical

quantities in fact represent double averages. Thermal av-

eraging must be performed with the quenched variables

kept �xed, and then averaging over a spectrum of values

of the quenched degrees of freedom must be done.

Continuum systems with quenched disorder include,

for example, porous and sintered porous materials, gels,

amorphous substances, glasses, engineering composites,

etc. Related to the subject of our presentation we would

like to recall that porous media include silica gels, poly-

mer organic gels and porous glasses, such as Vycor. To

have a better idea about the physical structure of porous

media we would deal with, it is worth mentioning that

Vycor has a porosity about 30% and consists of intercon-

necting pores of the radius � 30

�

A. In contrast to that

structure, gels may be thought as a network of inter-

connecting strands and are characterized by very high

porosities, in the range of 90{98%. Therefore, the be-

haviour of adsorbed uids in these two types of mate-

rials may di�er much. A more detailed description of

porous systems can be found in [6]. Experimental studies

of partly quenched systems have discovered their unusual

thermodynamic properties. It was shown that the liquid{

vapour transition and liquid{liquid separation are quite

di�erent in annealed and partly quenched systems [7{9].

A remarkable narrowing of the liquid{vapour coexistence

curve, in comparison with that for the bulk, has been ob-

served for

4

He in aerogel [8]. Besides, a phase separation

in a mixture at a temperature su�ciently below the crit-

ical temperature of the bulk mixture has been found [9].

Interesting recent experimental observations concerning

the formation of liquid crystalline phases in disordered

porous media have been discussed by F. Aliev [10].

Dynamic aspects of the behaviour of colloidal systems

in porous media also have been studied [11{13]. In par-

ticular, G. Viramontes{Gamboa et al. [11, 12], extend-

ing the experimental and simulative research in colloids

in the laboratory of M. Medina{Noyola, have performed

Brownian dynamics simulation to investigate tracer dif-

fusion in a colloidal suspension under the conditions that

one of the colloidal species is frozen. The works cited

above may be discussed in further detail, however, our

focus in this review is the theory, rather than the exper-

iment.

Theoretical studies of quenched{annealed systems

have been initiated with success by Madden and Glandt

[14, 15]; these authors have presented exact Mayer clus-

ter expansions for the correlation functions for the case

when the matrix, i.e. quenched species, subsystem is gen-

erated by a quench from an equilibrium distribution, as

well as for the case of arbitrary distribution of obsta-

cles. However, their integral equations for the correla-

tion functions appeared to be only approximate; it has

been demonstrated explicitly by Given and Stell [16].

By performing a detailed analysis of the cluster series

of Madden and Glandt, Given and Stell have derived

a correct set of equations and called them the replica

Ornstein{Zernike (ROZ) equations [16{18]. The closure

relations have been proposed for the ROZ equations and

tested by comparison with computer simulation data [19,

20]. However, thermodynamic properties of quenched{

annealed systems are much more di�cult to obtain both

from the theory and from simulations. This problem has

been addressed in [21{26], but still lacks complete solu-

tion. Majority of aforementioned studies, in their prac-

tical part, have restricted to adsorbed uids with only

repulsive interparticle forces, such that the question of

liquid{vapor transition had left out of question. Recently,

a mean �eld theory has been applied for uids with

square{well attraction [23]. On the other hand, Kierlik

et al. [26] have used optimized cluster expansions to in-

vestigate the phase diagram of Lennard{Jones uids ad-

sorbed in a hard sphere disordered matrix. In spite of

excellent theoretical analysis of the critical behaviour of

a uid in a disordered porous matrix of Pitard et al. [27],

much room remains for improvementof the theory for the

explanation of a speci�c shape liquid{vapor coexistence

curve and of a liquid{liquid equilibrium.Those have been

investigated by using grand canonical and Gibbs ensem-

ble Monte Carlo simulations for su�ciently simple mod-

els (see Refs. [28] and [29], respectively), such that the

theory must pass through severe tests. Actually the ap-

plication of Gibbs ensemble methodology, as well as of

isobaric ensemble, encounters very serious di�culties for

other models than that studied in [29]. In that work, the

volume changes of the simulative box have been unnec-

essary due to a special symmetry of the model.

There have been other promising lines along which the

theory of quenched{annealed systems have progressed re-

cently. One of them, worth to discuss in more detail, is

the adsorption of uids in the inhomogeneous, i.e. ge-

ometrically restricted, quenched media [30{32]. In this

area one encounters severe methodological and technical

di�culties. At the moment, a set of results has been ob-

tained at the level of a hard sphere type models adsorbed

in a slit{like pores with quenched distribution of a hard

sphere obstacles (Duda et al. [33] have made progress

in simulations of matrix{�lled cylindrical pores very re-

cently. However, the problem of phase transitions re-

mained out of question so far). The models and method-

ology available at present seem promising for the inves-

tigations of phase transformations in nonuniform partly

quenched systems with more sophisticated interactions.

Sophistication of interactions for another purpose, has

been attempted in a series of publications presented by

our group, in particular. Namely, the focus has been di-

rected on complex uid behaviour in a quenched environ-

ment. Vega and Padilla have considered chain uids in

their simulative study [34]. On the other hand, the phe-
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nomena of chemical association (chemical reactions) in

disordered porous materials have become our main con-

cern. It is an interesting subject both from practical, see

eg. [35, 36], and from theoretical point of view. The the-

ory developed byWertheim [37, 38] for directional chemi-

cal association, and generalized by Kalyuzhnyi and Stell

[39] for spherically symmetric �nite{range forces (both

for the bulk uids), provides a convenient basis to investi-

gate chemically associating quenched{annealed systems.

This extension of associating theory has been pioneered

in [40, 41] and later followed by several applications [42{

48]. We present below these important developments in

the framework of the associative ROZ equations in more

detail.

Our �nal focus in this review is on charged quen-

ched{annealed uid systems. Very recently Bratko,

Chakraborty and Chandler have addressed this problem

in [49{51]. A set of grand canonical computer simula-

tion results for in�nitely diluted adsorbed uid has been

presented and an attempt to describe them at the level

of Debye{H�uckel type theory of electrolyte solutions has

been undertaken [50]. On the other hand, we have consis-

tently considered the problem using the ROZ equations

for point ions and then for nonpoint charged particles

[52, 53]. The former case has been solved by us to per-

form renormalization of the ROZ equations in view of

a long{range Coulomb interactions. However, interesting

observations for the screening potentials of point ions in

an environment of �xed point charges distribution have

been obtained.

The theory of quenched{annealed uids is rapidly de-

veloping. In this review we have attempted to present

some of the problems already solved and to discuss only

some of the issues that need further study. undoubtedly

there remains much room for the theoretical develop-

ments. On the other hand accumulation of the theoretical

and simulative results is required for further progress. Of

particular importance are the issues related with phase

transitions in these systems. The studies of the models

with more sophisticated interactions than those involved

at present would be of much interest too.

II. REVIEW OF THE THEORETICAL

BACKGROUND

Let us consider the simplest model of quenched{

annealed system which consists of particles belonging to

two species: species 0 is quenched (matrix) and species 1

annealed, i.e. allowed to equilibrate between themselves

in the presence of 0 particles. We assume that the subsys-

tem composed of 0 particles has been a usual uid (one

can characterize it either by the density �

0

; or by the

value of the chemical potential �

0

) before quench. The

interparticle interaction u

00

(r) does not need to be speci-

�ed for the moment. Just it is assumed that the uid with

interaction u

00

(r) has reached an equilibrium at certain

temperature T

0

; and then the uid has been quenched

at this temperature. Thus the distribution of species 0

is any one from a set of con�gurations corresponding to

canonical or grand canonical ensemble). We denote the

interactions between annealed particles as u

11

(r); and

the "cross" uid{matrix interactions as u

10

(r):

We introduce the notation 0 and 1 for the vector of

coordinates of the quenched and annealed particles, re-

spectively. For the sake of methodologically clear pre-

sentation we restrict ourselves to the canonical ensemble

for the moment. The Helmholtz free energy of the partly

quenched system in question is given by [16{18, 21]

��A

PQ

= hlnZ

1

i

0

(1)

= Z

�1

0

Z

d0 exp(��

0

H

00

) lnZ

1

;

where �

0

= 1=kT

0

;

Z

1

=

R

d1 exp[��(H

10

+H

11

)];

Z

0

=

R

d0 exp(��

0

H

00

)

(2)

are usual expressions for the partition sums, H

ij

are the

Hamiltonians consisting of relevant pairwise interactions.

It is important to mention that the temperature of ob-

servation of annealed uid T (� = 1=kT ) does not neces-

sarily coincide with the temperature T

0

at which matrix

has been quenched.

The logarithm of the partition sum of annealed species

under the sign of integration in eq. (1) makes the ana-

lytical treatment di�cult. Therefore the replica method,

see, e.g. [1], is used, i.e. the following identity is exploited

lnZ =lim

s!0

(Z

s

� 1)=s �

d

ds

�

�

�

s!0

Z

s

; (3)

where in eq. (3) lim

s!0

(d=ds) has been denoted as

d

ds

j

s!0

; similar notation will be used below for the sake

of brevity. The free energy of the system given by eq. (1)

can be written then in the 'replicated' form

��A

PQ

= Z

�1

0

d

ds

�

�

�

s!0

Z

d0 (4)

� exp(��

0

H

00

)(d1) expf��

X

1�s

(H

(m)

10

+H

(m)

11

)g;

where the variables describing species 1 appear in s

copies or replicas according to the representation of the

logarithm in form of eq. (3). Our notation (d1) just indi-

cates that integration is performed over s sets of variables

for annealed particles coordinates.The form provided by

eq. (4) is much more convenient to apply, because it rep-

resents a limit, s ! 0; of the partition sum for an repli-

cated system by which we mean an equilibrium system

that is described by the following Hamiltonian

H =

X

i<j

u

00

(ij)+

X

1�m�s

X

i<j

u

m

10

(ij)
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+

X

1�m�s

X

1�n�s

X

i<j

u

mn

11

(ij): (5)

Here the superscripts serve as replica indices, they at-

tribute the coordinates of particles to a given replica but

do not alter interactions in the system

u

m

10

(ij) � u

10

(ij);

u

mn

11

(ij) � �

mn

u

11

(ij);

(6)

where �

mn

is the Kronecker symbol. However, the parti-

cles belonging to di�erent replicas do not interact. As a

result of the procedure in above the quenched{annealed

system has been 'transformed' into an equilibrium sys-

tem with nonadditive interactions which can be charac-

terized by the partition sum Z

rep

. It is worth mention-

ing that the s ! 0 limit of the partition function of the

replicated system yields Z

0

: Therefore equation (4) can

be rewritten in the form

��A

PQ

=

d

ds

�

�

�

s!0

lnZ

rep

=

d

ds

j

s!0

(��A

rep

(s)); (7)

which establishes the relation between the free energy of

the original partly quenched system and its replicated

counterpart [21]. Usually one does not need to bother

with the uctuations in the number of matrix particles.

The experiment is performed to investigate adsorption of

a uid in a matrix (at average density �

0

); i.e. in contact

with a reservoir that �xes the chemical potential [21].

However, if one focuses on the adsorption of a uid in

heterogenous matrices [30{32] and/or on the uctuations

in an adsorbed uid, it is inevitable to perform the devel-

opments similar to those in above in the grand canonical

ensemble. Moreover this derivation is of importance for

the formulation of the virial route to thermodynamics of

partially quenched systems. We include only a few basic

relations of this approach for better presentation.

By de�nition, an observable property of a partly

quenched system, f

PQ

; in the grand canonical ensemble

is obtained as

f

PQ

= hf(0)i

0

= (1=�

0

)

X

0�N

0

�1

(1=N

0

!)z

N

0

0

(8)

�

Z

d0f(N

0

;0) exp(��

0

H

00

);

where �

0

= 1=kT

0

; the angular brackets h:::i

0

denote an

average over the quenched degrees of freedom, i.e. over

the coordinates of matrix species; N

0

; z

0

and H

00

are the

average number, the activity of the matrix particles, and

the Hamiltonian of the matrix system, respectively. The

grand potential of this system is

�

0

=

X

0�N

0

�1

(1=N

0

!)z

N

0

0

Z

d0 exp(��

0

H

00

): (9)

According to eq. (8) the pressure in terms of the grand

canonical potential per unit volume is

�V P

PQ

� �V hP (0)i

0

= hln �

1

(0)i

0

: (10)

Using then the replica representation, one can easily ob-

tain

�V P

PQ

=

d

ds

j

s!0

ln�

rep

=

d

ds

�

�

�

s!0

�V P

rep

: (11)

In spite of simplicity and visual similarity of this equation

and of eq. (7), we would like to note that eq. (11) leads

to a nontrivial thermodynamics of a partially quenched

system in terms of the correlation functions, see e.g. [24]

for detailed discussion. Evidently. the principal route for

P

PQ

and to the virial theorem is to exploit thermo-

dynamics of the replicated system. However, a special

care must be taken because the V and s derivatives do

not commute. Moreover, the presence of two di�erent

temperatures requires attention in taking temperature

derivatives, setting those temperatures equal, if appro-

priate, only at the end of the calculations.

To de�ne the correlation functions of partly quenched

systems it is expedient to consider uctuations. There

are two types of uctuations: thermal uctuations for a

given con�guration of matrix species, and uctuations

induced by disorder. We characterize the average over

disorder of thermal uctuations by the variance

�

2

therm

= hhN

1

(q

N

0

)

2

i

th

i

d

(12)

� hhN

1

(q

N

0

)i

2

th

i

d

;

and the uctuations of the thermal average induced by

disorder by

�

2

disord

= hhN

1

(q

N

0

)i

2

th

i

d

(13)

� hhN

1

(q

N

0

)i

th

i

2

d

;

where h:::i

th

and h:::i

d

denote thermal and disorder aver-

aging, respectively. It is expected that the average den-

sity of uid particles in a matrix N

1

(q

N

0

)=V to be a

self{averaging quantity, i.e. �

disord

=N

1

! 0 in the ther-

modynamic limit.

In close relation with the uctuations one may intro-

duce the correlation functions. The pair density distribu-

tion function for uid particles �

11

(r

1

; r

2

) is de�ned as

the average over all realizations of the matrix structure

of the function �

11

(r

1

; r

2

;q

N

0

): One can de�ne then the

pair correlation function in a usual manner

�

1

(r

1

)�

1

(r

2

)h

11

(r

1

; r

2

) = �

11

(r

1

; r

2

) (14)

� �

1

(r

1

)�

1

(r

2

);
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in terms of averaged pair distribution function and the

density pro�les. The matrix is statistically homogeneous,

therefore the uid density is constant throughout the ma-

trix, �

1

(r) = �

1

; where �

1

= N

1

=V = hhN

1

(q

N

0

)i

th

i

d

=V:

The pair correlation function then depends only on the

distance between particles, i.e. h

11

(r

1

; r

2

) = h(j r

12

j):

On the other hand, the connected pair distri-

bution function for a given matrix con�guration

�

11;c

(r

1

; r

2

;q

N

0

);

�

11;c

(r

1

; r

2

;q

N

0

) = �

11

(r

1

; r

2

;q

N

0

) (15)

� �

1

(r

1

;q

N

0

)�

1

(r

2

;q

N

0

);

generates two additional correlation functions (those are

called the connected and blocking correlation functions)

(�

1

)

2

h

11;c

(r

1

; r

2

) = h�

11;c

(r

1

; r

2

;q

N

0

)i

d

= �

11

(r

1

; r

2

) � h�

1

(r

1

;q

N

0

)�

1

(r

2

;q

N

0

)i

d

;

(16)

and

(�

1

)

2

h

11;b

(r

1

; r

2

) = h�

1

(r

1

;q

N

0

)�

1

(r

2

;q

N

0

)i

d

(17)

� (�

1

)

2

;

such that h

11

(r

12

) = h

11;c

(r

12

) + h

11;b

(r

12

): The isother-

mal compressibility of adsorbed uid, �

1

, has been shown

in [21], is related to the averaged thermal average as fol-

lows

�

1

kT�

1

= �

2

therm

=N

1

: (18)

The one{particle density, �

1

(r

1

;q

N

0

); and the pair den-

sity, �

11

(r

1

; r

2

;q

N

0

); are normalized in the grand canon-

ical ensemble, as usual,

Z

dr

1

�

1

(r

1

;q

N

0

) = hN

1

(q

N

0

)i

th

; (19)

Z

dr

1

dr

2

�

11

(r

1

; r

2

;q

N

0

) = hN

1

(q

N

0

)

2

i

th

�hN

1

(q

N

0

)i

th

:

Then, performing a disorder average in eq. (19), and us-

ing eq. (18) we can obtain the following two relations for

the connected and blocking correlation functions

�

1

kT�

1

= �

2

therm

=N

1

= 1 + �

1

R

dr

12

h

11;c

(r

12

);

�

1

R

dr

12

h

11;b

(r

12

) = �

2

disord

=N

1

:

(20)

The former of these two relations is the compressibility

equation for the uid in the matrix. Its worth mentioning

that this expression is the only practical route, for the

moment, to calculate the uid pressure for the systems

in question.

We proceed with cluster series which yield the integral

equations. Evidently the correlation functions presented

above can be de�ned by their diagrammatic expansions.

In particular, the blocking correlation function, h

11;b

(r

12

)

is the subset of graphs of h

11

(r

12

) such that all paths be-

tween the uid root points 1 and 2 pass through at least

one matrix �

0

� �eld point. The direct correlation func-

tion c

11

is the sum of all graphs in h

11

with no nodal

points. The cluster expansions for the correlation func-

tions have been �rst obtained and analyzed in detail by

Madden and Glandt [14, 15]. However, the exact equa-

tions for the correlation functions, those have been called

the replica Ornstein{Zernike (ROZ) equations have been

derived by Given and Stell [16{18]. These equations have

the following form:

h

00

� c

00

= �

0

c

00


 h

00

; (21)

for the matrix{matrix correlations,

h

10

� c

10

= �

0

c

10


 h

00

+ �

1

c

11;c


 h

10

; (22)

for the uid{matrix correlations, and �nally two equa-

tions for the uid{uid correlations

h

11

� c

11

= �

0

c

10


 h

01

+ �

1

c

11;c


 h

11

(23)

+�

1

c

11;b


 h

11;c

;

h

11;c

� c

11;c

= �

1

c

11;c


 h

11;c

:

In all equations above we have omitted the dependen-

cies on r; the symbol 
 denotes convolution in r{space.

The symmetry of the correlation functions implies that

h

10

= h

01

; c

10

= c

01

: Similarly to the total pair cor-

relation functions above, the direct correlation function

of uid particles also has been presented as a sum of

the connected and blocking terms, c

11

= c

11;c

+ c

11;b

:

It is important to mention, that the equation for the

matrix structure decouples from the equations for the

uid{matrix and uid{uid structure. This appears be-

cause both these correlations do not have inuence on

the matrix structure.

To solve the replica OZ equations, they must be com-

pleted by the closure relations. Several closures have been

tested against computer simulations for various models

of uids adsorbed in disordered porous media. In par-

ticular, the standard Percus{Yevick (PY) and the hy-

pernetted chain approximations have been applied. The

equation (21) for the matrix correlations can be solved

using any approximation.However, it has been shown by

Given and Stell [16] that the PY closure for the uid{

uid correlations is not completely consistent with the

ROZ equation, the blocking e�ects of the matrix struc-

ture are neglected in this approximation, i.e. c

11;b

(r) = 0.

Therefore the PY approximationmay yield (and really it

happens for partly quenched models with hard core re-
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pulsion between species) su�ciently accurate results due

to mutual cancellation of inaccuracies in the description

of uid{matrix and uid{uid correlations on the back-

ground of neglected e�ect of the blocking direct corre-

lation function. Lomba et al. [19] have proposed replica

extensions for the reference PY and reference HNC clo-

sures, but have tested only the reference PY one, for a

simple model of adsorbed uid in a hard sphere disor-

dered matrix. Meroni et al. [20] have demonstrated that

the inclusion of the bridge diagrams contribution in the

parametrized form improves the accuracy of the com-

mon hypernetted chain closure. However, these authors

in their evaluation of the bridge diagrams term have used

a set of e�ective diameters which is di�cult to justify in

the limit s ! 0 for the number of replicas. We will dis-

cuss adequacy of closures in more detail, while presenting

the results for particular models.

Finally, in this part of the work we would like to dis-

cuss to some extent practical tools to obtain thermody-

namic properties of adsorbed uids. We have mentioned

in above, that the compressibility equation is the only

simple recipe, for the moment, to obtain the uid com-

pressibility and pressure. The reason is that the virial

equation is di�cult to implement, it has not been tested

for partly quenched systems. Still for the sake of com-

pleteness we present the virial equation in the form [21]

�P

1

� �

0

[@(�P

1

)=@�

0

] j

�

1
= �

1

(24)

+

2�

3

(�

0

)

2

�

3

0

lim

s!0

[dg

00

rep

(�

0

; s)=ds]

+

2�

3

(�

1

)

2

�

3

1

g

11

(�

1

) +

4�

3

�

0

�

1

�

3

01

g

01

(�

01

);

where �

01

= 0:5(�

0

+ �

1

); �

ii

= �

i

; and g

ij

(�

ij

) are the

contact values of the corresponding distribution func-

tions. The subscript rep corresponds to the replicated

system with s replicas. We must note that the second

term in the lhs and the �rst term in the rhs of this equa-

tion do not have exact representation. If one neglects the

contribution of the order �

0

(�

1

)

2

in both of these terms,

then [21]

lim

s!0

[dg

00

rep

(�

0

; s)=ds] = g

00

rep

(r; s)[W

00

rep

(r; s = 1) (25)

�W

00

rep

(r; s = 0)];

W

00

rep

(r; s) = ln g

00

rep

(r; s) + �U

00

(r);

�[@(�P

1

)=@�

0

] j

�

1
= ��

0

rep

(s = 1) � ��

0

rep

(s = 0):

where W

00

rep

(r; s) is the excess potential of mean force

for the replicated system. To use this virial equation one

needs to consider equilibrium ensembles made of either

matrix particles or a mixture of matrix and uid parti-

cles, in addition to terms involving the pair distribution

functions.

The equilibrium between the bulk uid and uid ad-

sorbed in disordered porous media must be discussed at

�xed chemical potential. Evaluation of the chemical po-

tential for adsorbed uid is a key issue for the adsorp-

tion isotherms, in studying phase diagram of adsorbed

uid, and for performing comparisons of the structure

of a uid in di�erent media. At present, one of popular

tools to obtain the chemical potentials have become an

approach proposed by Ford and Glandt in [22]. From the

detailed analysis of the cluster expansions these authors

have concluded that the derivative of the excess chemical

potential with respect to the uid density equals to the

connected part of the uid{uid direct correlation func-

tion (dcf). Then, it follows that the chemical potential

of a uid adsorbed in a disordered matrix, �

1

(�

1

; �

0

); is:

��

1

(�

0

; �

1

) = ��

1

id

(�

1

) + ��

1

ex

(�

0

; �

1

); (26)

where the ideal gas contribution is taken as ��

1

id

(�

1

) =

ln(�

1

�

3

1

); the excess term ��

1

ex

(�

0

; �

1

) is taken in the

form

��

1

ex

(�

0

; �

1

) = ��

1

ex

(�

0

; �

1

= 0) (27)

�

Z

�

1

0

d�

0

Z

dRc

11

c

(R; �

0

):

The second term in eq. (27) follows from the linear charg-

ing scheme applied in the functional relation between the

chemical potential and adsorbed uid density. The �rst

term in the excess chemical potential, ��

1

id

(�

0

; �

1

= 0); is

the excess chemical potential of a uid component at in�-

nite dilution in the mixture composed of matrix and uid

particles. The second term comes straightforwardly from

the ROZ equation. It is an integral along density path (to

a desired density) of the Fourier{transformed connected

part of the uid{uid dcf (at k = 0): The �rst term of

the excess chemical potential, ��

1

ex

(�

0

; �

1

= 0), is ap-

proximated using the theoretical Mansoori{Carnahan{

Starling{Leland equation of state for a mixture of hard

spheres [54]. One can easily obtain the free energy of this

mixture by integrating the equation of state and then by

di�erentiation the chemical potential follows.

However, we also need to discuss how the attractive

interactions between species can be treated. These in-

teractions comprise an intrinsic feature of the realistic

models for partially quenched uid systems. In partic-

ular, the model for adsorption of methane in xerosilica

gel of Kaminsky and Monson [55] is characterized by

very strong attraction between matrix obstacles and uid

species. The uid particles also interact so that attrac-

tion between them is present in the model. Moreover,

both types of attraction (the uid{matrix and uid{

uid) must be included to gain insight in the phase tran-

sitions in partly quenched media. The method of Ford

and Glandt to obtain the chemical potential does not

serve for this purpose unfortunately. It is well known

that the hypernetted chain closure possesses a line of

discontinuity of solutions while approaching the liquid{

vapor transition. However, this line cannot be attributed
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to the coexistence curve. On the other hand the PY clo-

sure also possesses its discontinuity line. Therefore one

cannot perform integration by density in eq. (27) along

path which can be of interest to study phase transitions.

The simplest tools to include the attractive interac-

tions between species have been proposed by Ford and

Glandt [23]. They have considered the mean �eld approx-

imation (MFA) for the model in which uid particles pos-

sess hard cores and, in addition, attract each other and

with matrix species via �nite ranged square{well poten-

tial [24], i.e.

U

11

(r) =

8

<

:

1; r < �

1

�"

ff

; �

1

< r < �

ff

�

1

0; r > �

ff

�

1

(28)

and

U

10

(r) =

8

<

:

1; r < �

10

�"

fm

; �

1

< r < �

fm

�

10

0; r > �

fm

�

10

(29)

where �

10

= 0:5(�

0

+ �

1

) and �

ij

describe the range of

attractive wells with the depths "

ij

:

For this model, equations (26) and (27) have been used

only to obtain the chemical potential of a reference sys-

tem (a hard sphere uid adsorbed in a hard sphere ma-

trix). In the mean �eld approximation the contribution of

square{well attractive forces into the chemical potential

of uid species is the following [24]

��

1

attr

(�

1

; �

0

) = �

4�

3

�

1

�

3

1

(�

3

ff

� 1)"

ff

(30)

�

4�

3

�

0

�

3

01

(�

3

fm

� 1)"

fm

:

Resulting isotherms, ��

1

(�

1

); permit to obtain com-

pletely the coexistence curve, if the Maxwell construc-

tion is used. However, this theoretical method of Ford

and Glandt, i.e. the MFA for partly quenched systems,

does not permit to gain insight into the inuence of uid{

uid and uid{matrix attraction separately on the coex-

istence of phases. Moreover, a simpli�ed treatment of at-

tractive forces does not permit to obtain a peculiar shape

of the liquid{vapor coexistence line observed in com-

puter experiment [28]. Kierlik et al. [26] have investigated

the model with Lennard{Jones attractive forces between

uid particles and have shown that the mean spherical

approximation (MSA) yields a qualitatively similar be-

havior to the MFA for adsorption isotherms, as expected.

It has been shown, however, that the optimized random

phase (ORPA) approximation (the MSA represents a

particular case of this theory), if supplemented by the

contribution of the second and third virial coe�cients,

yields the peculiar coexistence curve which is qualita-

tively similar to that observed in computer experiment

[28]. Many unsolved issues remain, if one decides to apply

the ORPA plus virial coe�cients theory. Much criticism

can appear. Nevertheless, this approach seems promis-

ing, at present, to develop thermodynamic description of

partly quenched uid systems with attractive forces.

We proceed with the description of the results which

follow from some original applications of the ROZ

methodology.

III. APPLICATIONS OF THE ROZ THEORY

FOR TWO{DIMENSIONAL AND

THREE{DIMENSIONAL MODELS OF PARTLY

QUENCHED SYSTEMS

A. Two{dimensional models for partly quenched

systems

First we would like to consider a simple model for

quenched{annealed uids and demonstrate the applica-

tions in practice of the theories presented above. Our

focus in this section is the model for a partly quenched

monomolecular adlayer, i.e. the adlayer which includes

a rigid subsystem of matrix particles and uid parti-

cles free to equilibrate in this environment. Our treat-

ment concerns a two{dimensional (2D) model of this

composite adlayer, because in many cases monomolec-

ular adlayers are very similar to 2D uids. On the other

hand, the model is of interest in developing the theory of

2D phase transitions in partly quenched systems. Some

of the results concerning 2D quenched{annealed models

have been recently presented in Refs. [56, 57].

We consider a 2D model for a simple uid adsorbed in

a disordered quenched environment. The model consists

of a hard disc uid and a hard disc matrix. As in pre-

vious studies of partly quenched systems the species su-

perscript '0' is for the matrix component and the species

superscript '1' is for the uid component. The matrix and

uid particles are considered at density �

0

and �

1

; respec-

tively. The diameters of the matrix and uid particles are

�

0

and �

1

, respectively. Actually, the monolayer deposi-

tion of the matrix species can be considered at a given

chemical potential. However, as the matrix is quenched,

it is su�cient for our purposes to �x its density. The

chemical potential of the adsorbed uid will be obtained

afterwards, using the solution of the 2D ROZ equations.

The model for matrix and uid species is de�ned as:

U

ij

(R) =

�

1; R < (�

i

+ �

j

)=2

0; R > (�

i

+ �

j

)=2

; (31)

where i; j, take values 0, 1. Obviously, all the distances

above are two{dimensional. We assume that the matrix

distribution can be prepared such to correspond to an

equilibrium distribution of discs.

We obtain the pair correlation function for matrix

species, h

00

(R); by solving eq. (21) for 2D case with

Percus{Yevick closure

c

00

(R) = [exp(��U

00

(R))� 1]y

00

(R); (32)
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where y

00

(R) is the cavity distribution function,

y

00

(R) = exp(�U

00

(R))[1 + h

00

(R)]: Here and in equa-

tions below we employ the numerical method of solu-

tion, by using either direct iterations or in some cases

the Labik{Malijevky{Vonka algorithm [58]. It is impor-

tant to mention that in contrast to the three{dimensional

cases, everywhere in 2D problems one must employ

Hankel{Bessel transforms [59].

Next we solve eqs. (22) and (23) for 2D model in ques-

tion. Two approximations have been used, namely the

PY closure,

c

10

(R) = [exp(��U

10

(R)) � 1]y

10

(R);

c

11

(R) = [exp(��U

11

(R)) � 1]y

11

(R);

c

11;b

(R) = 0;

(33)

where y

10

(r) and y

11

(r) are the corresponding cavity dis-

tribution functions, and the hypernetted chain approxi-

mation

c

10

(R) = exp[��U

10

(R) + 

10

(r)]� 1� 

10

(r);

c

11

(R) = exp[��U

11

(R) + 

11

(r)]� 1� 

11

(r);

c

11;b

(R) = exp[

11;b

(r)]� 1� 

11;b

(r);

(34)

where 

ij

is the general notation for h

ij

� c

ij

: Having

the solution of 2D ROZ equations available we proceed

with the evaluation of the chemical potential of adsorbed

uid. We apply eqs. (26) and (27) to obtain the chemical

potential. Note that the Hankel{transform is employed

in eq. (27) for the system in question.

In order to obtain the chemical potential of adsorbed

uid at in�nite dilution in the matrix of discs the follow-

ing procedure has been performed. The starting point is

the equation of state of Boublik for a mixture of hard

discs [60]. It reads

�P=� = 1=(1� �) + 

s

�=(1� �)

2

; (35)

where 

s

= (

P

x

i

�

i

)

2

=(

P

x

i

�

2

i

), x

i

is the molar fraction

of species i; � and � are the density and the packing frac-

tion of the system made of a uid component and matrix

particles. Integrating this equation by density yields the

free energy of the mixture. Then the chemical potential

of a uid component at in�nite dilution in the matrix is

obtained straightforwardly. It reads

��

1

ex

(�

0

; �

1

= 0) = �

0

=(1� �

0

) � ln(1� �

0

)+

(1� �

0

)

�2

(2� �

0

)�

0

�

1

;

(36)

where �

1

= �

2

1

=�

2

0

: We present some adsorption

isotherms for the model under study in �g. 1. Higher

matrix density lower adsorption, as expected. The e�ect

of approximation becomes more pronounced at high val-

ues for chemical potential, i.e. for high uid densities.

At low values of the chemical potential both approx-

imations involved, the PY and HNC, yield almost in-

distinguishable results. The HNC approximation yields

slightly lower adsorption for high values of the chemi-

cal potential. It is di�cult to discuss for the moment

the accuracy of each approximation quantitatively, in the

absence of the Grand Canonical Monte Carlo computer

simulation data for isotherms in question. However, the

PY approximation seems more con�dable, similarly to

the case of three-dimensional systems [22]. What kind of

helpful information one can extract from these adsorp-

tion isotherms? To answer this question we would like to

note that the comparisons of the uid structure in dif-

ferent matrices must be performed at given value of the

chemical potential. Moreover, these adsorption isotherms

can be used as a reference data for the development of

the adsorption isotherms for systems which may include

attractive and/or associative interactions between uid

particles as well as between them and matrix species.

Fig. 1. Adsorption isotherms of a hard disc uid in a disor-

dered hard disc matrices of di�erent density. The dashed and

solid lines follow from the HNC and PY approximation for

the connected direct correlation functions of uid species. The

curves from top to bottom are for �

0

�

2

0

= 0:01, �

0

�

2

0

= 0:3

and �

0

�

2

0

= 0:6. The matrix and uid discs are of equal di-

ameter.

Now we perform comparisons of the uid structure

in disordered matrix at intermediate density �

0

= 0:3

(�g. 2). The curves presented in that �gure follow from

the PY and HNC approximations. Besides, we have per-

formed canonical simulations for the uid density that

is taken as an input to solve the ROZ equations. In the

case of simulations thermal averages have been collected

for at least 10 independent matrix con�gurations. By in-

dependent we mean con�gurations that are su�ciently

distanced from each other during the productive part of

the simulative run. We observe that adsorbed uid is

quite structured, as a result of the spatial con�nement
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of pores. Especially the contact values of the distribu-

tion functions are higher that for the uid at the same

density in the bulk. The PY approximation is more suc-

cessful in the description of the structure, in comparison

with the HNC closure, especially at small interparticle

separations. In fact, we are evaluating the accuracy of

these closures to get an insight on the possibility to use

them for more sophisticated systems than hard discs. It

is of interest at the next step to include the attractive

interactions into our model.

Fig. 2. A comparison of the uid structure in terms of

the uid{uid (part a) and uid{matrix (part b) distribution

functions of discs from the ROZ{HNC and ROZ{PY theory

performed at �

0

�

2

0

= 0:3 and �

1

�

2

1

= 0:4: The matrix and

uid discs are of equal diameter. The nomenclature of the

lines is like in �g. 1. Solid circles correspond to the results of

Monte Carlo canonical simulations.

B. On the e�ects of attractive interactions

In this subsection we would like to discuss some re-

sults obtained for the model studied in the previous

paragraph but with attractive interactions included. We

assume that hard core uid particles interact between

themselves outside their core via square{well attractive

forces, i.e the model for U

11

(R) is de�ned by eq. (28),

but for 2D case. In a similar manner, the U

10

(R) inter-

action is chosen in the form given by eq. (29), but for 2D

case. The chemical potential of the reference systems, i.e.

of uid discs adsorbed in a hard disc matrix, has been

calculated using eqs. (26) and (27).

Fig. 3. Liquid{vapor coexistence curves for adsorbed uid

of discs with square{well attraction, like in �g. 3, in ma-

trices at di�erent density �

0

�

2

0

= 0:05, �

0

�

2

0

= 0:25 and

�

0

�

2

0

= 0:45 from up to down. The width the attractive po-

tential is �

ff

= �

fm

= 1:25 and T

�

= 1=�"

attr

: These results

are for the model �

0

= �

1

: The dotted line shows the co-

existence curve for the model �

1

= 0:9�

0

with square well

attraction like in the previous case, however, at matrix den-

sity �

0

�

2

0

= 0:25.

If the mean �eld approximation is used, the contribu-

tion from the attractive forces into the chemical potential

reads

��

1

attr

(�

1

; �

0

) = � ��

1

�

2

1

(�

2

ff

� 1)"

ff

(37)

� ��

0

�

2

01

(�

2

fm

� 1)"

fm

:

For high temperatures the adsorption isotherms have

been obtained monotonous. However, if the tempera-

ture lowers we observe that the adsorption isotherms

exhibit the behavior characteristic for liquid{gas tran-

sition. Applying then the Maxwell construction for these

isotherms, we obtain the coexistence curves for liquid{

vapor equilibrium in di�erent matrices. The results are
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presented in �g. 3. We conclude that higher matrix den-

sity stronger suppresses the critical temperature. The

critical density is less sensitive to the changes of ma-

trix density. It decreases, however, with increasing ma-

trix density. Actually, the coexistence curve shrinks with

increasing matrix density. As expected, our results for

the two{dimensional model are qualitatively similar to

those obtained by Ford and Glandt [23] in the case of

three{dimensional models with square{well attraction by

using the mean �eld approximation. It is interesting to

mention that the di�erence of diameters of uid and ma-

trix species may yield essential changes of the critical

temperature of the system. This result may be of in-

terest when studying the phase behavior of the mono-

layers of partly quenched systems. Nevertheless we plan

in the future work to involve more sophisticated tools,

than the mean �led approximation, to investigate two{

dimensional phase transitions.

C. Three{dimensional models

As an example of the application of ROZ equations for

three{dimensional models we consider some of the results

obtained in our recent study [61]. Namely, we have con-

sidered a model for a composite gel made of hard spheres

of di�erent diameters and have studied the adsorption of

a hard sphere uid in this matrix. The problem of ad-

sorption of uids in composite matrices is of importance

for practical reasons, besides basic science. Evidently, the

model is very simpli�ed in comparison with reality. How-

ever, we expect the model to be of interest as a reference

system to include a more sophisticated form of interpar-

ticle interactions.

We introduce, for the sake of convenience, species in-

dices 'a' and 'b' for the components of the matrix compo-

nent and species index 'f' for the uid component. The

matrix and uid particles at density �

m

; �

m

= �

a

+ �

b

;

and �

f

; respectively. The diameter of matrix and uid

particles is denoted by �

a

; �

b

and �

f

, respectively. Actu-

ally the preparation of the matrix species can be consid-

ered at given chemical potentials for both matrix com-

ponents. However, the matrix is quenched as a mixture

(i.e. not by subsequent quenching of its each component)

and it is su�cient for our purposes to �x the total ma-

trix density and the concentration of one component,

say x

a

= �

a

=�

m

. The chemical potential of adsorbed

uid will be obtained afterwards, from the solution of

the ROZ equations. Then we will be able to discuss the

adsorption isotherms for annealed species.

The model for matrix and uid species is de�ned as:

U

ij

(r) =

�

1; r < (�

i

+ �

j

)=2

0; r > (�

i

+ �

j

)=2

; (38)

where i; j, take values a; b, and f .

We assume that the matrix distribution can be pre-

pared such to correspond to an equilibrium distribution

of discs. Let us proceed to the ROZ equations. They read

[16{18]:

h

mn

� c

mn

=

X

i=a;b

c

mi


 �

i

h

in

(39)

for the matrix subsystem (the superscripts m;n take val-

ues a and b)

h

fa

� c

fa

=

X

i=a;b

c

fi


 �

i

h

ia

+ c

ff(1)


 �

f

h

fa

; (40)

h

fb

� c

fb

=

X

i=a;b

c

fi


 �

i

h

ib

+ c

ff(1)


 �

f

h

fb

; (41)

for the uid{matrix correlations. Equations (23) for

uid{uid correlations must be also modi�ed to include

both matrix components, it is straightforward to do

that and for the sake of brevity we omit to write down

these equations explicitly. We then solve the ROZ equa-

tions and calculate the adsorption isotherms according to

eqs. (26), (27). Just to derive the �rst contribution into

the excess chemical potential of a uid at in�nite dilu-

tion in a two{component matrix we apply the Mansoori{

Carnahan{Starling{Leland equation of state for three{

component mixture.

-4 -2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

 

 ρ
f

 βµ
f

Fig. 4. Adsorption isotherms of a hard sphere uid in

a disordered hard sphere matrix with the packing fraction

�

m

= 0:13; 0:26 and 0:39 (from left to the right). The matrix

is made of the particles with the diameter �

m

= 7�

f

(solid

lines) and �

m

= 3�

f

(dash{dotted lines).

We present adsorption isotherms for matrices at con-

stant value of packing fraction but made of di�erent par-

ticles with large diameter, �

m

= 7�

f

(similarly to the
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model of Kaminsky and Monson) and of smaller diame-

ter, �

m

= 3�

f

; in �g. 4. As expected, the adsorption of

a hard sphere uid is slightly larger in a matrix made

of large particles for all matrices in question. The di�er-

ence in adsorption increases for denser matrices. Should

the matrix be made of a mixture then the adsorption

isotherms will be located in the intermediate region be-

tween two limiting cases. Evidently the e�ect of diame-

ter of matrix particles is not substantial. However, in the

presence of attractive interactions the matrix composi-

tion may have serious inuence on the critical parame-

ters of the system. Of particular importance may be the

uid{matrix attractive interactions. They can promote

selective adsorption of uid species w.r.t. each of matrix

components and inuence then the coexistence curve.

2 4 6 8 10

1.0

1.5

2.0

 g
ff
(r

)

 r

Fig. 5. A comparison of the uid structure, at chemical

potential ��

f

= 0; in terms of the uid{uid distribution

functions in disordered matrices made of particles �

m

= 7�

f

(solid lines) and �

m

= 3�

f

(dash{dotted lines). The matri-

ces are considered at packing fraction �

m

= 0:13 and 0:39.

Upper curves correspond to a denser matrix whereas lower

curves correspond to a more dilute matrix.

Some examples of the structural properties, dependent

on the matrix particles diameter are shown in �g. 5. We

observe the following trends of behavior of the pair dis-

tribution functions. The contact value of the distribution

function depends on the matrix density. The uid is es-

sentially 'compressed' in comparison to the bulk uid at

the same density. At larger distances we observe rapid

degradation of correlations. The structures shown in this

�gure are very similar to those observed in the model of

adsorption of methane in xerosilica gel. This similarity

serves as the manifestation that excluded volume e�ects

are of primary importance on the structure of adsorbed

uids.

D. Adsorption of Lennard{Jones uid in model

xerosilica gel

It is of interest to discuss more complicated models of

adsorption of uids in disordered porous media. In this

subsection we turn our attention to Kaminsky and Mon-

son model of silica xerogel [55]. The model is su�ciently

realistic, however, remains computationally tractable us-

ing integral equations and simulations. In the case of ad-

sorption of a Lennard{Jones uid in xerosilica gel the

model is de�ned by the following interaction potentials:

U

ff

(r) = 4"[(�

f

=r)

12

� (�

f

=r)

6

];

U

mm

(r) =

�

1; r < 7:055�

f

0; r > 7:055�

f

;

U

fm

(r) =

�

1; r < 0:5� 7:055�

f

'(r); r > 0:5� 7:055�

f

;

(42)

where

'(r) =

16

3

��

s

�

7:055�

f

2

�

3

"

gs

h�

r

6

+

21

5

r

4

R

2

(43)

+ 3r

2

R

4

+

R

3

3

�

�

3

gs

(r

2

� R

2

)

�9

� �

6

gs

(r

2

� R

2

)

�3

i

;

with following set of parameters: R = 1:346nm; �

gs

=

0:33nm; �

s

= 44nm

�3

; "

gs

=k = 339K: The model un-

der consideration includes e�ects of con�nement due to

disordered porous media. Moreover it contains e�ects of

wetting of the surface of matrix particles by uid species.

The model is quite di�cult to treat using integral equa-

tions because of a high asymmetry of diameters of uid

and matrix species and due to strong attraction between

them. However, the model has been successfully investi-

gated in the framework of grand canonical Monte Carlo

simulations [28]. Page and Monson have obtained two

main conclusions.

The �rst of them concerns the behavior of Lennard{

Jones uid in a matrix like above with uid{matrix at-

traction switched o�. It has been shown that two transi-

tions between uid phases in the systems are present. One

of them can be associated with the vapor{liquid transi-

tion. As expected for the system under con�nement, the

coexistence region appears at lower temperatures com-

paring with the bulk, the critical density also is lower. In

general, the coexistence curve is narrower than for the

bulk uid. The second coexistence region occurs at low

temperature on the high density side of the vapor{liquid

coexistence region. It is to some extent analogous to a

predrying transition for a liquid in contact with a surface.

In the case when uid{matrix attractive forces are

present, i.e. in the model of Kaminsky and Monson, two

transitions also are observed. The larger coexistence re-

gion can be associated with liquid{vapor transition. The

coexistence curve is shifted to higher density than for the

bulk. The second coexistence region is associated with
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the wetting behavior of adsorbed uid. This transition

occurs on the low{density side of the vapor{liquid coex-

istence curve.

These results of computer simulations have become a

challenge for the theory of partly quenched systems. As

yet the most successful attempt to obtain the coexistence

curves like the described above has been undertaken by

Kierlik et al. [26]. The model with which these authors

have dealt with is simpler, in comparison with the one

considered in the simulative study [27]. Namely the uid

of Lennard{Jones particles, and with Lennard{Jones in-

teraction between uid and matrix particles, have been

considered to be adsorbed in an equilibrium con�gura-

tion of hard spheres. The simplifying assumption was

that diameters of both species are equal. The model of

randomly centered spheres, considered as a matrix, also

yields the coexistence curve of a speci�c shape [27].

The optimized random phase approximation (ORPA)

has been used to describe an equilibrium mixture of

s replicas of the adsorbed uid subsystem and matrix

species. Then a limit s ! 0 has been performed explic-

itly to yield the free energy of partly quenched system.

We do not present it explicitly referring to the original

paper [27]. Most importantly the ORPA term for the

free energy has been supplemented by the contribution

of the second and third virial coe�cient. In fact, these

additional contributions provide the appearance of two

phase transitions that seem qualitatively similar to those

observed in the simulative study. A disappointing fea-

ture of the results obtained is that the coexistence curve

is very sensitive to the approximations applied, the con-

vergence of the optimized cluster series is quite poor in

the region of densities of interest. These problem may

become even more severe for the model of adsorption of

Lennard{Jones uids in model xerosilica gel. Probably a

resummation of some terms in di�erent virial coe�cients

would be helpful. Our preliminary investigations of the

phase behavior of a one{component Yukawa uid show

that this may be promising [62]. Nevertheless, intensive

studies in this direction are required.

IV. THEORY OF PARTLY QUENCHED

INHOMOGENEOUS FLUIDS

To our best knowledge there was only one attempt

to consider inhomogeneous uids adsorbed in disordered

porous media [30] before our recent studies [31, 32]. Inho-

mogeneous Replica Ornstein{Zernike equations, comple-

mented by either Born{Green{Yvon (BGY), or Lovett{

Mou{Bu�{Wertheim (LMBW) equation for density pro-

�les, have been proposed to study adsorption of a uid

near a plane boundary of a disordered matrix, which has

been assumed uniform in a half{space [30]. However, the

theory has not been complemented by any numerical so-

lution. Our main goal is to consider a simple model for

adsorption of a simple uid in con�ned porous media

proposed by us recently and to solve it. In this section

we follow our works [31, 32].

First we are looking for the adsorption of a uid con-

sisting of particles of species m; in a slit{like pore of

the width H. The pore walls are chosen normal to the

z axis and the pore is centered at z = 0: Adsorption of

the uid m, i.e. the matrix, occurs at equilibrium with

its bulk counterpart at the chemical potential �

m

. The

matrix uid is then characterized by the density pro�le

�

m

(z) and by the inhomogeneous pair correlation func-

tion h

mm

(1; 2): The structure of that uid is considered

quenched at a state determined by �

m

, thus a con�ned

porous medium is formed.

Now, we would like to investigate adsorption of an-

other uid of species f in the pore �lled by the matrix.

The uid f; outside the pore has the chemical poten-

tial �

f

; at equilibrium the adsorbed uid f reaches the

density distribution �

f

(z). The pair distribution of f par-

ticles is characterized by the inhomogeneous correlation

function h

ff

(1; 2): The matrix and uid species are de-

noted by 0 and 1. We assume the simplest form of the

interactions between particles and between particles and

pore walls, choosing both species as hard spheres of unit

diameter,

U

ij

(r) =

�

1; r < 1

0; r > 1

; (44)

U (z) =

�

1; z < 0:5 j H � 1 j

0; otherwise

:

where i; j are species indices. The evaluation of the ma-

trix structure is irrelevant to the procedure below; it is

obtained using the second order Ornstein{Zernike (OZ2)

equation

h

00

(1; 2)� c

00

(1; 2) =

Z

d3�

0

(z

3

)c

00

(1; 3)h

00

(3; 2); (45)

supplemented by the LMBW equation for the density

pro�le (DP)

@ ln�

1

(z

1

)

@z

1

+

@�U (z

1

)

@z

1

=

Z

d2c

00

(1; 2)

@�

0

(z

2

)

@z

2

(46)

and the second order Percus{Yevick (PY2) closure

y

00

(1; 2) = 1+ h

00

(1; 2)� c

00

(1; 2): (47)

where y

00

(1; 2) is the inhomogeneous cavity distribu-

tion function. The solution of the problem comprising

eqs. (45){(47) yields �

0

(z) and h

00

(1; 2); such that the

one{particle cavity distribution function y

0

(z); y

0

(z) =

�

0

(z) exp[�U (z)]; outside the pore tends to its limiting

value, determined by the con�gurational chemical po-

tential, y

0

(z ! �1) = exp(��

0

): The IROZ equations

represent the essence of the procedure. They are [30, 31]
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h

10

(1; 2)� c

10

(1; 2) =

Z

d3�

0

(z

3

)c

10

(1; 3)h

00

(3; 2) +

Z

d3�

1

(z

3

)c

c;11

(1; 3)h

10

(3; 2); (48)

h

01

(1; 2)� c

01

(1; 2) =

Z

d3�

0

(z

3

)c

00

(1; 3)h

01

(3; 2) +

Z

d3�

1

(z

3

)c

01

(1; 3)h

c;11

(3; 2);

h

11

(1; 2)� c

11

(1; 2) =

Z

d3�

0

(z

3

)c

10

(1; 3)h

01

(3; 2) +

Z

d3�

1

(z

3

)c

c;11

(1; 3)h

11

(3; 2) +

Z

d3�

1

(z

3

)c

b;11

(1; 3)h

c;11

(3; 2);

h

c;11

(1; 2)� c

c;11

(1; 2) =

Z

d3�

1

(z

3

)c

c;11

(1; 3)h

c;11

(3; 2):

The uid{uid pair (h) and direct (c) correlation functions consist of the blocking and connected part, '

11

(1; 2) =

'

b;11

(1; 2) + '

c;11

(1; 2); where ' stands for h and c, as appropriate. Similarly to [30], the BGY equation is used to

relate the DPs with the pair functions,

@ ln�

1

(z

1

)

@z

1

+ �

@w(z

1

)

@z

1

= ��

Z

d2�

1

(z

2

)g

11

(1; 2)

@U

11

(12)

@z

2

; (49)

where g

11

(1; 2) = 1 + h

11

(1; 2); and the e�ective one{

body potential satis�es the relation,

@w(z

1

)

@z

1

=

@U (z

1

)

@z

1

+

Z

d2�

0

(z

2

)g

10

(1; 2)

@U

10

(12)

@z

2

; (50)

and where g

10

(1; 2) = 1 + h

10

(1; 2).

Finally, the closure relations for the inhomogeneous

pair functions must be chosen. The analysis of Stell and

Given [16{18] has shown that the hypernetted chain clo-

sure is consistent with the ROZ equations for uids in

homogeneous disordered matrices while the PY closure

belongs to a class of approximations used previously by

Madden and Glandt [14] and is not consistent in this re-

spect. The PY approximation for the uid{uid direct

correlation function presumes that its blocking part van-

ishes. It implies that c

b;11

(i; j) = 0, and

y

ij

(1; 2) = 1 + h

ij

(1; 2)� c

ij

(1; 2); (51)

for (i; j) = (1; 0) and (1; 1): On the other hand, the inho-

mogeneous, or second order, hypernetted chain (HNC2)

approximation reads

c

b;11

(i; j) = expfh

b;11

(i; j)� c

b;11

(i; j)g � 1 (52)

� fh

b;11

(i; j) � c

b;11

(i; j)g;

for the blocking term of the uid{uid function, and

y

ij

(1; 2) = expfh

ij

(1; 2)� c

ij

(1; 2)g; (53)

for (i; j) = (1; 0) and (1; 1).

In the numerical solution the matrix structure is eval-

uated form eqs. (45){(47). Then eqs. (48){(50) with

corresponding closure approximations are solved. De-

tails of the solution have been presented in [31, 32].

Briey, the numerical algorithm uses an expansion of

the two{particle functions into a Fourier{Bessel series.

The three{fold integrations are reduced then to sums

of one{dimensional integrations. In the case of hard{

sphere potentials, the BGY equation contains the delta{

function due to the derivative of the pair interactions.

Therefore the integral in eqs. (49) and (50) are one{

fold and contain the "contact" values of the functions

g

ij

(z

1

; z

2

;

p

R

2

+ z

2

12

= 1) for (i; j) = (1,0) and (1,1);

these values have been evaluated by interpolation. As is

often the case, the convergence of the numerical scheme

is more di�cult for the HNC2 closure than for the PY2

closure.

In order to test the theory, we have performed grand

canonical ensemble Monte Carlo (GCMC) simulations. A

rectangular simulative cell of dimensions XL � Y L �H

with periodic boundary conditions in the plane parallel

to the pore walls has been used. The simulations consist

of two steps. First, the grand canonical ensemble tech-

nique is used to �ll the pore with the hard sphere matrix.

After equilibration, a con�guration of matrix particles

whose number of particles corresponds to the average

number of particles at the given chemical potential is se-

lected and the second step of the simulations is started.

During this step, we perform grand canonical ensemble

simulations of the uid in a pore �lled with the matrix

species.

The simulations are repeated several times starting

from di�erent matrix con�gurations. We have found that

about 10 replicas of the matrix usually assures good

statistics for the determination of the local uid density.

However, the evaluation of the nonuniform pair distri-

bution functions requires much longer runs; at least 100

matrix replicas are needed to calculate the pair corre-

lation functions for particles parallel to the pore walls.
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However, even as many as 500 replicas do not ensure the

convergence of the simulative results for perpendicular

con�gurations.
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Fig. 6. Part a. A comparison of the simulated (GCMC)

and theoretical (ROZ2+BGY+HNC2 and PY2 approxima-

tions) density pro�les, �

1

(z), of an adsorbed uid and in a

disordered inhomogeneous matrix in a slit{like pore of the

width H=2. The chemical potential of the matrix particles is

��

0

=0.935. The curves labeled 1 and 2 are for the chemical

potential of uid species ��

1

= 0.935, and 5.8346, respec-

tively. The PY2, HNC2, and Monte Carlo results are given

by the solid and dashed lines, and the symbols, respectively.

The dotted line corresponds to the density pro�le of �xed ob-

stacles, �

0

(z). Part b. The HNC2 and GCMC results for the

density pro�les for the case of a wide pore, H=6. The chemical

potential of the matrix species is ��

0

=4.8147; the chemical

potential of the uid species is ��

1

= 3.1136 (lower curves

and symbols) and ��

1

=7.0026 (upper curve and symbols).

We present some of the results obtained for equal sized

hard{sphere uid and hard{sphere matrix in �gs. 6 and

7. In these �gures we show the density pro�les and pair

distribution functions of a uid adsorbed in a pore �lled

with quenched matrix. Figure 6 shows the density pro-

�les obtained for ��

0

= 0:935 (corresponding to the bulk

uid density �

0

�

3

0

= 0:25 when Carnahan{Starling equa-

tion of state is used) and H = 2�

0

(part a) and for

��

0

= 4:8147 (corresponding to the bulk density equal

to �

0

�

3

0

= 0:5) and for H = 6�

0

(part b).

Let us �rst analyze the results for H = 2�. At ��

0

=

0:935 the matrix density distribution, �

0

(z), in the entire

pore is almost uniform. Consequently, the distribution

of empty space throughout the pore is almost homoge-

neous. When the chemical potential of uid species, �

1

,

increases, the density of uid close to the pore walls in-

creases substantially, whereas in the pore center �

1

(z)

remains almost independent of �

1

. Both theories, HNC2

and PY2, yield similar results for the density pro�les and

both agree well with the GCMC data. However, some

discrepancies between the theory and simulations are ob-

served close to the walls in a narrow pore. The absence

of a large di�erence between the PY2 and HNC2 theories

indicates that blocking e�ects due to the presence of the

matrix are not essential.

We have also studied uid distribution in the pore

H = 6�

0

(�g. 6b) at ��

0

= 4:8147 and at two values

of ��

1

, namely at 3.1136 (�

1

�

3

1

= 0:4) and at 7.0026

(�

0

�

3

0

= 0:7; �g. 6b). In this pore, we observe layering

of the adsorbed uid at high values of the chemical po-

tential, ��

1

. The maxima of the density pro�le �

1

(z) oc-

cur at distances that correspond to the diameter of uid

particles. With an increase of the uid chemical poten-

tial, the pore �lling takes place primarily at pore walls,

but second{order maxima on the density pro�le �

1

(z)

are also observed. The theory reproduces the computer

simulation results quite well.

Let us show now the results obtained for inhomoge-

neous pair correlation functions. In �gs. 7a and 7b we

present the projections of the pair correlation functions

for particles parallel to the pore walls in the plane of

the closest approach to the walls, g

jj;w

ij

, and in the pore

center, g

jj;c

ij

for the pore width H = 3�

0

. We observe

that parallel correlations between the uid particles are

stronger in the pore center than at the pore walls. In con-

trast, the uid{matrix parallel correlations are slightly

stronger in the plane of the closest approach, due to the

higher value of the matrix density at the walls. The theo-

retical approximations (HNC2 and PY2) agree well with

the simulation data. The HNC2 approximation yields

slightly higher contact values for the pair correlation

functions at the contact than does the PY2 approxima-

tion.

The presence of pore{uid attractive forces changes

the distribution of the particles inside the pore. The sec-

ond series of our calculations has been performed for the

case when hard spheres of matrix and uid species inter-

act with the pore wall by a hard sphere potential with

an attractive tail

U

i

(z) =

(

1; z < 0:5 j H � �

i

j

�"

h

1

z

3

+

1

(H�z)

3

i

; otherwise:

(54)
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Obviously, for " = 0 this interaction reduces to the one

we have used above in this section. In our calculations

we have chosen �" = 3 and, similarly to previous devel-

opments, the diameters of matrix and uid species were

taken to be equal, �

0

= �

1

= 1.
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Fig. 7. Part a. A comparison of the uid{uid inhomoge-

neous pair distribution functions, g

11

(1; 2) obtained using the

HNC2 and PY2 approximations in the ROZ2+BGY equa-

tions, with GCMC results. The functions g

jj;w

11

(left panel)

and g

jj;c

11

(right panel) are for the uid particles in a paral-

lel con�guration in the plane of closest approach to the pore

walls and in the pore center. The HNC2 and PY2 results are

given by the solid and dashed lines, respectively. The GCMC

results are given as symbols. The uid and matrix particles

are of equal size. The chemical potentials of matrix and uid

species are ��

0

= 3:1136 and ��

1

= 8:3530 (�

0

�

3

0

= 0:75).

The pore width is H = 3�

0

. Part b. The same as in part

a, but for the uid{matrix inhomogeneous pair distribution

function.

Density pro�les for pore widths H = 3�

0

and H = 4�

0

are given in �gs. 8a and 8b, respectively. The uid pro-

�les have been evaluated from the solution of the HNC2

equation for ��

0

= 0:935 and ��

1

= 3:1136 (the system

I) and for ��

0

= 3:1136 and ��

1

= 8:3530 (the system

II). For comparison, the simulationvalues are also shown.

The average matrix density in the pore, computed from

the GCMC simulation values are 0.37 and 0.52 for the

systems I and II, respectively. The corresponding values

for average uid density in the pores are 0.18 and 0.13.

Thus, high matrix density lowers uid adsorption. The

results shown in �g. 8b correspond to those in �gs. 8a,

except that H = 4. The average matrix densities in the

pore are 0.36 and 0.51, respectively, for the systems I and

II, whereas for the same systems the average uid densi-

ties are 0.19 and 0.15, respectively. The agreement of the

calculated and simulated density pro�les is satisfactory

but not as good as was for the case of purely repulsive

interaction �" = 0, cf. �g. 6.
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Fig. 8. Density pro�les uid spheres in a slit{pore for which

H = 3�

0

(part a) and H = 4�

0

(part b) and with an attrac-

tive interaction between the spheres and the pore wall. The

curves give the HNC2 results and the points give the simu-

lation results, respectively. The lower curves are for system

I, whereas the upper curves are for system II (for the system

abbreviation see the text).
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The theory presented in this section is based on the

grand canonical ensemble description, that is perfectly

well{suited for the description of con�ned systems. Un-

doubtedly, in the case of attractive{repulsive interparti-

cle forces this kind of approach may yield unexpected and

rich structural and thermodynamic behavior in partly

quenched con�ned systems.

Now we proceed with the application of the ROZ

methodology for complex uids. In general complex u-

ids adsorption in disordered media has been studied

rarely [34]. Our intention is to develop the ROZ approach

for chemically associating uids.

V. THE ASSOCIATIVE EXTENSION OF THE

ROZ METHODOLOGY FOR PARTLY

QUENCHED CHEMICALLY ASSOCIATING

FLUIDS

A. A model for chemically associating uid in

disordered porous media

In this part of the work our main concern is to re-

view recent theoretical developments for partly quenched

chemically associating uids. We would like to consider

only few simple models for chemically associating uid

adsorbed in a disordered quenched environment. The ap-

plications which involve the ideas of chemical association

to generate matrix structure also have been studied [44].

The simplest model for associating uids adsorption is

designed to describe a dimerizing uid in a hard sphere

matrix. Similarly to the presentation above species su-

perscript '0' is for the matrix component and superscript

'1' is for the uid component. We reserve subscripts to

classify the bonding states in the theory of Wertheim for

chemical association [37, 38]. The matrix and uid parti-

cle densities are denoted as �

0

and �

1

; respectively. The

diameter of matrix and uid particles is by �

0

and �

1

,

respectively.

The model for a dimerizing uid is de�ned by the fol-

lowing potentials [63]

U

11

(12) = U

11

non

(r) + U

11

as

(x

12

); (55)

where the �rst and second terms denote the nonassocia-

tive and associative contribution into the uid{uid in-

teraction, respectively. The nonassociative term is chosen

in the form

U

11

non

(r) =

�

1; r < �

1

0; r > �

1

: (56)

The associative term in the uid{uid interaction has

the form [63]

U

11

as

(x) =

8

<

:

�"

as

; x < a

0; x > a

; (57)

where "

as

is the associative energy, a denotes the range

of associative interaction; x

12

=j r

12

+ d(#

1

) � d(#

2

) j;

where d(#

1

) denotes the position and orientation of the

attractive site on the surface of the repulsive core of

molecule 1.

The geometric parameters of associative interaction d,

a for a dimerizing model, must satisfy saturation con-

dition, namely, �

1

< 2d + a < �

1

+ (2 �

p

3)d; [63]. In

our theoretical treatment we have chosen slightly smaller

bonding length such that outer shell of the association

site coincides with the surface of a hard sphere, then two

spheres can form dimers while touching and also with

negligible degree of overlap.

The matrix{matrix and uid matrix interactions are

chosen using the model of additive hard spheres, i.e.

U

00

(r) =

�

1; r < �

0

0; r > �

0

(58)

and

U

10

(r) =

�

1; r < (�

0

+ �

1

)=2

0; r > (�

0

+ �

1

)=2

; (59)

respectively. Let us de�ne now the Mayer functions

f

00

(r) = exp[��U

00

(r)]� 1;

f

10

(r) = exp[��U

10

(r)]� 1;

f

11

non

(r) = exp[��U

11

non

(r)]� 1;

(60)

and the associative 'Mayer' function [37],

F

11

as

(12) = exp[��U

11

non

(r

12

)]fexp[��U

11

as

(x

12

)]� 1g: (61)

In the theory of Wertheim only its orientation{averaged form is needed

F

11

as

(r

12

) =

R

d#

1

d#

2

F

11

as

(12) =

8

<

:

0; r

12

< �

1

;

0; r

12

> 2d+ a;

1

24

exp(�"

as

)(a + 2d� r

12

)

2

(a� d+ 0:5r

12

)=d

2

r

12

; �

1

< r

12

< 2d+ a:

(62)
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These ingredients are necessary for the application of the

associative ROZ equations.

B. Associative Replica Ornstein{Zernike equations

and closure relations

Let us assume that the matrix distribution corre-

sponds to an equilibrium distribution of nonassociating

hard spheres. Extending then the ROZ equations for

nonassociating system to the case of associating uid we

obtain the associative ROZ equations. They read:

h

00

� c

00

= c

00


 �

0

h

00

; (63)

for the matrix subsystem,

h

10

�

� c

10

�

= c

10

�


 �

0

h

00

+

X

��

c

11(1)

��


 �

1

��

h

10

�

; (64)

for the uid{matrix correlations, and

h

11

��

� c

11

��

= c

10

�


 �

0

h

10

�

+

X

��

c

11(1)

��


 �

1

��

h

11

��

(65)

+

X

��

c

11(2)

��


 �

1

��

h

11(1)

��

;

h

11(1)

��

� c

11(1)

��

=

X

��

c

11(1)

��


 �

1

��

h

11(1)

�

; (66)

for uid{uid correlations. Here 
 denotes convolution

and r{dependencies are omitted for brevity. In eqs. (64){

(66) we have used standard decomposition of the pair and

direct uid{uid correlation functions into connected,

�

11(1)

��

; and blocking, �

11(2)

��

; parts (� stands for h and

c as appropriate) such that each function consists of two

terms: �

11

��

= �

11(1)

��

+ �

11(2)

��

: The correlation functions

which �gure out in eqs. (64){(66) are the partial correla-

tion functions similar to those in the theory of Wertheim

for chemical association [37, 38, 63].

In the case of dimerization, which we consider in the

present work, lower indices in the correlation functions

take the values '0' and '1', dependent on the bonding

state of a uid particle (it can be either free or partici-

pate in a dimer). The symmetry relations for the correla-

tion functions imply �

11

10

= �

11

01

; �

10

�

= �

01

�

: The matrix of

uid density in the case of dimerization has the following

form:

�

1

=

�

�

1

�

1

0

�

1

0

0

�

; (67)

where �

1

0

is the density of unbounded uid particles.

The partial pair correlation functions, h

11

��

; yield the

usual total pair correlation function (pcf) for uid species

via the following relation [63]

h

11

(r) = h

11

00

(r) + 2(�

1

0

=�

1

)h

11

10

(r) + (�

1

0

=�

1

)

2

h

11

11

(r):

(68)

In the similar manner, the total uid{matrix correlation

function is de�ned as

h

10

(r) = h

10

0

(r) + (�

1

0

=�

1

)h

10

1

(r): (69)

Worth mentioning that for the direct correlation func-

tion (dcf) we do not have similar relation, the partial

dcfs are just de�ned but not determined via Wertheim's

OZ equation; in our special case they are de�ned by the

AROZ equations. The AROZ equation must be supple-

mented by the self{consistency relation for uid density.

It reads [37, 63]

�

1

= �

1

0

+ (�

1

0

)

2

Z

drF

as

(r)y

11

00

(r); (70)

where y

11

00

(R) is the partial cavity distribution function

for unbounded uid species.

Let us now consider the closure relations for AROZ

equations. For the sake of convenience, let us introduce

the notation  = h � c. In this work the associative hy-

pernetted chain approximation (HNC) is used. In the ab-

sence of associative interactions it reduces to the HNC

closure, this is used to evaluate the matrix structure

c

00

(r) = [1 + f

00

(r)] exp[

00

(r)]� 1� 

00

(r): (71)

The HNC closures for uid{matrix and uid{uid corre-

lation functions are:

c

10

�

(r) = [1 + f

10

(r)] exp[

00

0

(r)][�

�;0

+ �

�;1



10

1

(r)]� �

�;0

� 

10

�

(r); (72)

where �

�;�

is the Kronecker symbol, and

c

11

��

(r) = [1 + f

11

non

(r)] exp[

11

00

(r)]f�

�;0

�

�;0

+ �

�;1

�

�;0



11

��

(r) (73)
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+ �

�;1

�

�;1

[(

11

10

(r))

2

+ 

11

��

(r)]g � �

�;0

�

�;0

� 

11

��

(r) + �

�;1

�

�;1

exp[

11

00

(r)]F

as

(r):

However, in the case of ROZ equations, in addition to these closures, we also must use the closure for the blocking

parts of the partial dcfs. The associative HNC closure for these functions reads

c

11(2)

��

(r) = exp[

11(2)

00

(r)]f�

�;0

�

�;0

+ �

�;1

�

�;0



11(2)

��

(r) (74)

+ �

�;1

�

�;1

[(

11(2)

10

(r))

2

+ 

11(2)

��

(r)]g � �

�;0

�

�;0

� 

11(2)

��

(r):

Finally the cavity distribution function in eq. (70) following from the associative HNC closure is

y

11

00

(r) = expfh

11

00

(r)� c

11

00

(r)g: (75)

Equations (63){(65) together with (70){(75) represent a complete associative ROZ{HNC problem for numerical

solution. In previous studies of nonassociating and associating uids in disordered porous media the Percus{Yevick

closure also has been applied. It has been shown successful in many cases. Therefore, we also apply the associative

Percus{Yevick closure for the system in question, however, only for the uid{uid and uid{matrix correlations,

because matrix structure is irrelevant. The associative Percus{Yevick closure reads

c

10

�

(r) = f

10

(r)y

10

�

(r); (76)

c

11

��

(r) = f

11

non

(r)y

11

��

(r) + (1� �

�;0

)(1 � �

�;0

)y

11

00

(r)F

as

(r);

c

11(2)

��

(r) = 0;

where

y

10

�

(r) = �

�0

+ h

10

�

(r)� c

10

�

(r);

y

11

��

(r) = �

�0

�

�0

+ h

11

��

(r) � c

11

��

(r):

The problem, either with the HNC or with the PY

closure, has been straightforwardly solved numerically by

direct iterations, only for high uid densities one needs to

take care about the convergency of the numerical scheme.

In particular, to describe the states close to complete

dimerization the association energy has been increased

gradually to avoid the problems of convergency.

However, the structural properties which straightfor-

wardly follow from the partial pair correlation functions

and from eqs. (68) and (69) is not the only objective of

our study. We intend to obtain thermodynamic proper-

ties as well. The easiest between them to obtain is the

isothermal compressibility [20{22]. However, a challenge

for the theory represent the adsorption isotherms, i.e. the

��

1

(�

1

) dependencies.

We apply the calculation algorithm similar to that pro-

posed by Ford and Glandt [22] for nonassociating uids

for the reference system which comprises a hard sphere

uid in a hard sphere matrix. The excess term is repre-

sented as a sum of two contributions

��

1

ex

(�

1

; �

0

) = ��

1(hs)

ex

(�

1

; �

0

) + ��

1(as)

ex

(�

1

; �

0

); (77)

where the �rst term corresponds to a reference system of

hard spheres adsorbed in a disordered hard sphere ma-

trix. It is obtained as discussed above.

The associative contribution into the chemical poten-

tial, ��

1(as)

ex

(�

1

; �

0

); is taken from the result of thermody-

namic perturbation theory applied to a pure associating

uid at the density �

1

[64]

��

1(as)

ex

(�

1

) = ln� �

1

2

(�� 1) (78)

+ �

1

(

@�

@�

1

)

�"

as

(1=�� 1=2);

where � is the fraction of unbounded uid particles. How-

ever, the e�ect of the matrix species is taken into ac-

count in this expression by using �(�

1

; �

0

) and (@�=@�

1

)

from the present solution of the ROZ{HNC equations for

associating uid adsorbed in a disordered matrix. One

would expect a higher accuracy of adsorption isotherms

obtained from eqs. (77), (78) for low and intermediate
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dimerization of adsorbed uid. It is essential to mention

that the linear 'charging' scheme is used only for the ref-

erence hard sphere uid which was shown to work su�-

ciently well [22]. The method presented here for chemi-

cally associating uids have been used by us already [43]

and seems reasonable. An analysis of the results for ad-

sorption isotherms following from presented equations is

given in the following section. Most important is to in-

vestigate equilibria for associating uids comparing their

properties in the bulk and in a disordered matrix.

C. Results

We present here some of our results. Those are pre-

sented in �gs. 9{11. We consider �rst a dimerizing uid

at association energy �"

as

= 14 and �"

as

= 16 adsorbed

in a disordered matrix with �

0

= 0:190986; �g. 9. With

this choice of the values for association energy, we ob-

serve that the fraction of unbounded particles decreases

with increasing chemical potential of adsorbed uid such

that for high values of ��

1

the uid becomes to be highly

dimerized, �g. 9b. From the adsorption isotherms pre-

sented in �g. 9a we conclude that both theoretical ap-

proaches yield qualitatively similar results. A discrep-

ancy between the TPT treatment and eq. (27) is larger

for a higher value of association energy ( �"

as

= 16).

Moreover, with increasing chemical potential of adsorbed

species, the di�erence between the results of both ap-

proaches slightly increases. We are convinced that the

adsorption isotherms are qualitatively correct. However,

it is di�cult to evaluate their accuracy at quantitative

level for the time being, due to the lack of computer

simulation results. Grand canonical simulations for the

adsorbed model associating uids of this study are non-

trivial. It follows from the results presented in �g. 9a that

the adsorption of a uid characterized by a higher asso-

ciation energy, �"

as

= 16, i.e. at a lower temperature, is

higher in comparison to a uid with �"

as

= 14; i.e. at

a higher temperature. Similar trends in the behavior of

adsorption isotherms with temperature, for a uid with

nonassociative attractive potential, have been observed

in the computer simulation study of Vega et al. [65].

In �g. 10 we present the adsorption isotherms for a

given uid (�"

as

= 14) in matrices of di�erent density,

�

0

= 10

�2

; 0:190986 and 0:3: As expected, the density of

adsorbed uid at a given chemical potential is lower in

a more dilute matrix, �g. 10a. On the other hand, at a

given value of the uid chemical potential, the fraction

of monomers is higher in a denser matrix , �g. 10b.

It is of interest to perform a comparison of the struc-

ture of a dimerizing uid at a given value of the chemical

potential in di�erent matrices. We have chosen a uid

with association energy, �"

as

= 14; and make compari-

son of its structure in terms of the distribution functions

(in the ROZ{HNC approximation), at the chemical po-

tential ��

1

= 1:0 in two matrices, namely with the den-

sity �

0

= 10

�2

and �

0

= 0:3 (�g. 11).

Fig. 9. The adsorption isotherms (part a) for a dimerizing

uid at �"

as

= 14 and at �"

as

= 16 in a disordered hard

sphere matrix with density �

0

= 0:190986 obtained using

the TPT estimate for the associative contribution (dashed

lines), and using the connected part of the total direct corre-

lation function (solid lines). The dependence of the fraction

of monomers, �

0

; for these adsorbed uids is shown in part b.

We observe that the contact value of g

11

(r) is higher

for the uid adsorbed in a dense matrix, �

0

= 0:3 than

in a dilute matrix; moreover the oscillations of g

11

(r)

are stronger in the former case. It seems that the uid

behavior is due to the spatial restrictions for uid par-

ticles arising in a dense matrix, in comparison with a

dilute one. In the case of dilute matrix the blocking term

of g

11

(r) is vanishing. The blocking contribution in the

case �

0

= 0:3 is large in the intracore region. For larger

distances it rapidly diminishes and does not play too
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serious role, as expected in absence of attractive uid{

matrix interactions, �g. 11b. The contact value for g

10

(r)

is substantially higher for the case of dense matrix com-

pared to the dilute one; trends for contact adsorption are

stronger in a dense matrix, evidently. In both matrices,

however, the uid{matrix correlations decay fast as can

be seen from �g. 11c.

Fig. 10. The adsorption isotherms (part a) and the frac-

tion of monomers for a dimerizing uid (part b) at �"

as

= 14

in the matrices with the density � = 0:01, 0.190986 and 0.3,

from left to right in part a and from bottom to top in part

b, respectively. The curves have been obtained using the con-

nected part of the total dcf with the ROZ{HNC approxima-

tion.

Fig. 11. A comparison of the structure of adsorbed dimer-

izing uid at the chemical potential ��

1

= 1:0 in matrices

with the density �

0

= 0:01 and �

0

= 0:3. The dashed and

solid lines are for a lower and higher density matrix, respec-

tively. The functions g

11

(r); g

11(b)

(r); g

10

(r) are given in parts

a, b, and c, respectively.
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D. Application of the 4 site model of an associating

uid to study its adsorption in disordered porous

media

Recently, we have investigated adsorption of the 4{site

model for associating uid in disordered hard sphere ma-

trix using the associative ROZ equations [48]. The model

is able to describe the formation of the network of bonds

which is believed mimics the topology of the hydrogen

bonding in water, in ammonia, in methanol, evidently,

in a simpli�ed manner. Moreover, the model intrinsi-

cally possesses liquid{vapor transition in contrast to the

models of dimerization or chain formation. The model

has been studied in the bulk conditions using thermo-

dynamic perturbation theory and computer simulations

[66{70], and near crystalline surface, in the framework of

a simpli�ed model of sticky sites [71]. We do not repeat

theoretical background in detail referring to our origi-

nal work [48] and aforementioned studies just cited. It

is our principal focus to discuss the liquid{vapor coexis-

tence curve of this model con�ned to disordered porous

media. It has obtained according to the procedure dis-

cussed above, i.e. the chemical potential is evaluated via

eqs. (75) and (76), then the Maxwell construction has

been used for subcritical isotherms. The model has been

solved using the associative PY approximation supple-

mented by the ideal network approximation [70, 71]. The

coexistence curve of the 4{site uid model adsorbed in

a hard sphere matrices is presented in �g. 12. Note that

the uid and matrix particles are assumed to have the

same diameter.

It is important to mention that the critical temper-

ature becomes lower for adsorbed uid w.r.t. the bulk

for few percent, even for su�ciently dense matrices. The

critical density is seriously inuenced by the presence

of the matrix. The critical density decreases. Moreover,

the coexistence envelope shrinks, if the matrix density in-

creases. Some of these features have been observed in the

experimental studies, however, for uids with nonasso-

ciative attraction. We are not aware of experiments and

computer experiments for associating uids adsorbed in

disordered matrices, unfortunately. It is of interest to

discuss the structure factor of adsorbed 4{site associa-

tive model. Particularly, a prepeak in the structure factor

observed at small wave vectors is often attributed to the

network formation. We present the structure factors of

adsorbed uid at ��

f

= �2:5 in �g. 13. The region of in-

termediate uid densities, at chosen value of the chemical

potential describes adsorption of the model at �"

as

= 12

in matrices with �

m

= 0:3 � 0:4: For these conditions

the structure factor is characterized by the presence of

the prepeak at small wave vectors. The height of the

prepeak is lower for the uid (at �xed chemical poten-

tial) in a denser matrices. In a high density matrix ad-

sorbed density is lower, and for the wave vectors that

have corresponded in the previous case to the prepeak,

one observes a minimum of the structure factor. A more

detailed discussion of this and related issues under the

conditions of �xed chemical potential of adsorbed uid

one can �nd in Ref. [48]. Our expectation is that the

model with four attractive sites is of interest to investi-

gate further in combination with the model for adsorp-

tion of uids in xerosilica gel of Kaminsky and Monson

[53].

Fig. 12. Portions of the ROZ{PY coexistence envelopes,

T=T

c

bulk

versus uid density, for the 4{site associating uid in

a disordered hard sphere matrix at density �

m

= 0 (solid line),

�

m

= 0:1 (dotted line); �

m

= 0:3 (dashed line), �

m

= 0:45

(long{dashed line). Temperature corresponds to 1=�"

as

:

Fig. 13. The structure factor of adsorbed uid with

�"

as

= 12 at the chemical potential ��

f

= �2:5: The uid

is adsorbed in disordered matrix at �

m

= 0:1; 0:3, and

0:45 (dashed, short{dashed and solid lines, respectively). The

curves follow from ROZ{PY approximation.
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VI. THE ROZ THEORY FOR PARTLY

QUENCHED SYSTEMS WITH ELECTROSTATIC

INTERACTIONS

A. General considerations

It is of special interest for many applications to con-

sider adsorption of uids in matrices in the framework

of models which include electrostatic forces. These sys-

tems are relevant, for example, to colloidal chemistry. On

the other hand, electrodes made of specially treated car-

bon particles and impregnated by electrolyte solutions

are very promising for practical applications. Only few

attempts has been undertaken to solve models with elec-

trostatic forces, those have been restricted, however, to

Coulomb interactions. We would like to mention in ad-

vance, that it is clear, at present, how to obtain the

structural properties of ionic uids adsorbed in disor-

dered charged matrices. Thermodynamics of these sys-

tems, and, in particular, peculiarities of phase transi-

tions, is the issue which is practically unsolved, in spite

of great importance. This part of our review is based on

our recent works [52, 53].

It is well{known that to solve numerically integral

equations for models with Coulomb interaction is dif-

�cult [72, 73]. One needs to develop a renormalization

scheme for the long{range terms of ion{ion correlations.

Here we must do that for ROZ equations.

We consider a partly quenched mixture consisting of

two ionic uids of point{like particles. Each of the u-

ids contains a neutral combination of positively and

negatively charged ions. One of the uids describes a

quenched charged system. It is equilibrated at temper-

ature T

0

in a medium with dielectric constant "

0

: The

quenched and uid components are denoted by super-

scripts 0 and 1, respectively. An ionic uid adsorbed in

this quenched matrix is investigated at temperature T

1

in a medium with dielectric constant "

1

: Depending on

the conditions of matrix preparation and on the condi-

tions of observation, the parameter "

1

T

1

can be either

smaller than "

0

T

0

, equal to, or larger than "

0

T

0

.

The charges of matrix ions are ez

0

+

=j ez

0

�

j= ez

0

;

and the density of the matrix subsystem is �

0

(�

0

+

=

�

0

�

= �

0

=2). We de�ne the functions �

mn

ij

(r) describing

the interactions between particles. In particular, the in-

teractions between matrix ions are given as

�

00

ij

(r) = �U

00

ij

(r)="

0

kT

0

= �e

2

z

0

i

z

0

j

="

0

kT

0

r; (79)

where i and j take values `+' and `�'.

The electrolyte solution is modelled as a two{

component, electroneutral system of point ions with

charges ez

1

+

=j ez

1

�

j= ez

1

: The density of the uid is

�

1

(�

1

+

= �

1

�

= �

1

=2): The uid{uid and uid{matrix

Coulomb interactions are

�

11

ij

(r) = �U

11

ij

(r)="

1

kT

1

= �e

2

z

1

i

z

1

j

="

1

kT

1

r; (80)

and

�

10

ij

(r) = �U

10

ij

(r)="

1

kT

1

= �e

2

z

1

i

z

0

j

="

1

kT

1

r: (81)

In addition, it is convenient to de�ne the Bjerrum length

parameter L

b

= e

2

(z

1

)

2

="

r

"

1

kT

1

(where "

r

is the uni-

versal dielectric constant) and the so{called quenching

parameter, de�ned as Q = "

0

T

0

="

1

T

1

.

B. Elements of theoretical procedure and some

results

The correlation functions of the partly quenched sys-

tem satisfy a set of replica Ornstein{Zernike equations

(21){(23). Each of them is 2x2 matrix equation for the

model in question. Similarly to previous studies of ionic

systems, see eg. [72, 73], we denote the long{range terms

of the pair correlation functions in ROZ equations by

q

ij

: Here we apply a linearized theory and assume that

the long{range terms of the direct correlation functions

are equal to the Coulomb potentials �

ij

; which are given

by eqs. (79){(81). This assumption represents the mean

spherical approximation for the model in question. Most

importantly, �

12

ij

(r) = 0; as mentioned before, the par-

ticles from di�erent replicas do not interact. However,

q

12

ij

(r) 6= 0, these functions describe screening e�ects of

the ion{ion interactions between ions from di�erent repli-

cas mediated by the presence of charged obstacles, i.e.

via the matrix. The functions q

12

ij

(r) need to be obtained

to apply them for proper renormalization of the ROZ

equations for systems made of non{point ions.

The equation determining matrix structure is

q

00

��

00

= �

0

�

00


 q

00

; (82)

where �

0

is 2x2 diagonal matrix with diagonal elements

�

0

+

= �

0

�

= �

0

=2: We next perform the calculations us-

ing the ROZ equations for the uid{matrix and uid{

uid correlations. By restricting analysis to the symmet-

ric case, i.e. to 1{1 electrolytes adsorbed in 1{1 charged

matrix, we can simplify the problem, taking advantage of

the symmetry of the correlation functions. The equations

for q

10

; q

11

and q

12

read:

q

10

��

10

= �

0

�

10


 q

00

+ �

1

�

11


 q

10

; (83)

q

11

��

11

= �

0

�

10


 q

10

+ �

1

�

11


 q

11

;

q

12

= �

0

�

10


 q

10

+ �

1

�

11


 q

12

:

The matrix �

1

is 2x2 diagonal matrix with diagonal el-

ements �

1

+

= �

1

�

= �

1

=2: Equations (82) and (83) can

be readily solved to obtain Fourier{transforms of the

screened potentials.

The expressions for the screened potentials in Carte-

sian space are obtained then straightforwardly:
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�

q

00

++

(r) q

00

+�

(r)

q

00

+�

(r) q

00

��

(r)

�

= L

b

=Q

�

�1 1

1 �1

�

exp(��

0

r)=r;

�

q

10

++

(r) q

10

+�

(r)

q

10

+�

(r) q

10

��

(r)

�

=

1

Q

[�

2

1

=(�

2

0

� (�

2

1

)]L

b

(

�

0

�

1

)

�

�1 1

1 �1

�

h

exp(��

0

r)=r �

�

�

2

1

�

2

0

�

exp(��

1

r)=r

i

;

(84)

for the interactions between matrix ions and for the interactions between uid and matrix ions, respectively. Here

�

0

= (4��

0

L

b

=Q)

1=2

and �

1

= (4��

1

L

b

)

1=2

are the reciprocal Debye{H�uckel radii of screening for the matrix and

uid ionic subsystem, respectively. For the correlations between uid ions we have

�

q

11

++

(r) q

11

+�

(r)

q

11

+�

(r) q

11

��

(r)

�

= L

b

�

�1 1

1 �1

�

exp(��

1

r)=r +

�

q

12

++

(r) q

12

+�

(r)

q

12

+�

(r) q

12

��

(r)

�

; (85)

where the blocking contributions are the following

�

q

12

++

(r) q

12

+�

(r)

q

12

+�

(r) q

12

��

(r)

�

= L

b

Q[�

4

0

=(�

2

0

� �

2

1

)

2

]fexp(��

0

r)=r (86)

� [exp(��

1

r)=r][1� (1� �

2

1

=�

2

0

)�

1

r=2]g

�

�1 1

1 �1

�

;

Fig. 14. The screened potentials of uid ion{ion interac-

tions, q

11

+�

(r) and q

11

++

(r) (solid lines) and blocking parts of

the screened potentials, q

12

+�

(r) and q

12

++

(r) (dashed lines),

at the matrix concentration c

0

= 0:425M and at the uid

concentration c

1

= 6:8325� 10

�5

M:

It is evident that under certain conditions, unusual shape

of q

11

ij

(r) functions may be expected. This is a result of

the blocking term contribution. Some rearrangement of

terms is necessary for the case where �

1

= �

0

; but no

peculiar behavior is observed under these conditions. It

is worth emphasizing that our result for q

11

ij

(r) general-

izes the expression obtained by Bratko and Chakraborty

for in�nite dilution of uid particles, see eq. (19) of Ref.

[50]. The q

11

ij

(r) functions coincide with their result for

�

1

! 0:

Let us discuss some of the results obtained so far. We

present the screened potentials of Coulomb interaction

between point ions in the quenched matrix of point{like

ions in �gs. 14 and 15. We also give the blocking con-

tributions into the screened potentials in these �gures.

Let us comment the curves obtained. In �g. 14 we ob-

serve that at the matrix concentration c

0

= 0:425M and

at the uid concentration c

1

= 6:8325� 10

�5

M for the

system with quenching parameter, Q = 1:2; the blocking

term makes large e�ect on the behavior of the screened

potentials of uid ions. This e�ect yields that at small in-

terparticle separations like{charged ions repel each other,

however, at large separations net attraction is observed.

The blocking terms are of much longer range than the

screened potentials. The crossing point which can be seen

in this �gure lies approximately at the same distance as

obtained Bratko and Chakraborty using computer sim-

ulations [50] for the same conditions.

In �g. 15 we show the results which demonstrate the

e�ect of quenching parameter on the screening of inter-

actions between uid ions. Here two values of quenching

parameter have been examined, Q = 0:7 and Q = 1:7

at a matrix concentration c

0

= 1M and at uid con-

centration c

1

= 0:75 � 10

�2

M: It follows from the re-
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sults presented that at small interparticle distances the

blocking e�ect is larger for Q = 1:7 than for Q = 0:7:

Prequenching conditions provide that at Q = 1:7 we ob-

serve two points of crossing of the screened potentials

and no crossing points can be seen at Q = 0:7: These

results qualitatively coincide with computer simulation

data [50]. With the screened potentials available it is

straightforward to solve the problem of renormalization

of the ROZ equations for any system of nonpoint ions.

Fig. 15. The screened potentials of uid ion{ion interac-

tions, q

11

+�

(r) and q

11

++

(r) (part a) and blocking parts of the

screened potentials, q

12

+�

(r) and q

12

++

(r) (part b) at di�erent

values of the quenching parameter. The solid and dashed lines

correspond to Q = 0:7 and Q = 1:7, respectively.

VII. CONCLUSIONS

In conclusion we have presented a review of some re-

cent developments in the theory of partly quenched uid

systems. Our main focus has been on the applications

of the replica Ornstein{Zernike equations for these sys-

tems. Several extensions have been discussed. Particu-

larly we have considered recently developed inhomoge-

neous replica OZ equations and associative replica OZ

equations. These approaches have been only pioneered

and are quite far to be complete.

The structural properties of various systems are suf-

�ciently straightforwardly obtained from integral equa-

tions. However, thermodynamics is much more di�cult

to obtain. Of particular importance, and far from being

solved, are the issues related with phase transitions in

partly quenched systems, even for simple models with

attractive interactions. We would like to mention inter-

esting possibilities which arise due to the inhomogeneous

replica OZ equations to study phase transitions in pores,

in membranes made of disordered and random matrices.

On the other hand it would be of interest to answer the

question concerning the inuence of association between

uid particles and/or with matrix obstacles on the phase

diagram of Lennard{Jones uid in model xerosilica gel

and aerogels.

More sophisticated models, especially with long{range

electrostatic forces await their turn to be studied. Phase

transitions in Coulombic systems con�ned to disordered

media is one of challenges for the theory. Charged col-

loids adsorbed in charged media represent one more in-

teresting subject. On the other hand important applica-

tions may be expected from the relevant developments

for dipolar con�ned uids. Even without inclusion of

long{range forces many models remain out of question.

Very recently we have undertaken studies of quenched{

annealed uids in which matrix particles are permeable

for uid species [74]. There appear possibilities to involve

modelling close to the models of biological membranes

into the integral equations theory and computer simula-

tions [75].

One can expect further progress not only along the line

of studies involving integral equations. Computer simu-

lations have already shown their ability to perform with

success in this area of research. On the theoretical side

we are not aware of the developments via a density func-

tional theory for con�ned systems but Refs. [76, 77]. Of

particular importance seems to be the methodology pro-

posed in [77], because the problem of crystallization of

uids in disordered media is of principal interest and can

be studied by these tools. Much future work is needed,

however, to solve these problems.
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ZASTOSUVANN� METODU REPL�K DO OPISU STRUKTURI � TERMODINAM�KI

FL�ÕD�V U NEVPOR�DKOVANIH ADSORBENTAH

O. P�z�o

1

, S. Sokolovsk�

2

1

�nstitut hem�Ý Nac�onal~nogo Un�versitetu Meksiki,

Ko�oakan, 04510, Meh�ko, Federal~ni� okrug, Meksika

2

V�dd�l model�vann� f�ziko{hem�qnih proces�v,

Un�versitet Mar�Ý K�r�{Sklodovs~koÝ, 200{31, L�bl�n, Pol~wa

U c~omu ogl�d� rozgl�nuto problemu opisu zamoro�enih{v�dpalenih sistem, tobto fl�Ýd�v u nevpo-

r�dkovanih matric�h �z f�ksovano� konf��urac�� qastinok. Vikoristano metod repl�k u teor�Ý r�din.

Obgovoreno osnovi statistiqnoÝ mehan�ki cih sistem. Vikladeno teoretiqn� rezul~tati � qislov� dan� dl�

strukturi, termodinam�ki � fazovih perehod�v u cih sistemah. Osoblivu uvagu prid�leno ori��nal~nim

rezul~tatam avtor�v. Obgovoreno dvovim�rn� model� ta hem�qno rea�u�q� plini u m�kroporistih seredo-

viwah. Naprik�nc� rozgl�nuto problemu opisu adsorbc�Ý zar�d�enih fl�Ýd�v u zar�d�enih matric�h. U

b�l~xost� vipadk�v mi zoseredilis~ na �nte�ral~nihr�vn�nn�h tipu repl�ki. Tako�obgovoreno rezul~tati

komp'�ternoÝsimul�c�Ý cih sistem.Korotko diskutut~s� mo�liv�st~ rozvitku teor�Ý dl� novih va�livih

zadaq.
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