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The approach which provides for the analytical expressions for the elastic and inelastic scatter-

ing and dissociation{into{two and {three{parts di�erential cross{sections of deuterons and three{

nucleon{particles is developed. The dissociation cross{sections are the oscillating functions of the

scattering angle of the projectile center{of{mass. The analysis of experimental data on the elastic

and inelastic scattering of deuterons and

3

He{nuclei by heavy nuclei at intermediate energies is

performed. The results of calculations are in good agreement with the measured di�erential cross{

sections for all the target nuclei considered.
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I. INTRODUCTION

Deuterons,

3

H and

3

He are the simplest composite

weakly bound nuclear particles. Therefore, these light

nuclei are easily broken up into two and three parts in

the �eld of heavy nuclei, which leads to a greater variety

of �nal channels than in point particle scattering.

The experimental data on elastic scattering of light

nuclei by the nuclei at intermediate energies are usually

analyzed with the help of complex optical potential [1]{

[3]. The simplest Saxon{Woods optical potential contains

six parameters (three for the real part and three for the

imaginary one). The data obtained this way provides im-

portant information about the nuclear structure and the

absorptive and refractive properties of nuclear matter

with respect to the projectiles. However, this approach

has a de�ciency in that the inner structure of compos-

ite nuclei is not taken into account in the conventional

optical model.

The alternative method of analyzing the experimen-

tal data of the intermediate energy particles elastically

scattered by nuclei is based on the use of the theory of

di�raction interaction of light nuclei with heavy nuclei.

In such an approach the projectile inner structure is con-

sidered, while the heavy target nucleus is treated as the

structureless matter with de�nite absorptive and refrac-

tive properties, similarly to the optical model.

The di�erential cross{sections of di�raction light nu-

clei elastic scattering are determined by the radii of col-

liding particles (the e�ective interaction radius), the tar-

get nucleus surface di�useness value and the nuclear sur-

face refraction coe�cient. This means that such cross{

sections are determined by the geometric characteristics

of the collision conditioned by the quasiclassic character

of the considered processes.

Di�raction theory makes it possible to derive a simple

expression for the di�erential cross{section of the elas-

tic scattering of complex particles by the nuclei in the

approximation where the linear size of the projectile is

small as compared with the one for the target nucleus.

In this approach the inner structure of light composite

particle is taken into consideration and the cross{section

contains only three �tting parameters, twice as less as for

the cross section in the optical model. Although the con-

sidered approach is valid only for the heaviest nuclei, in

fact it appears suitable also for analyzing the scattering

of composite particles by medium weight target nuclei.

Fig. 1. The ratio of the elastic scattering di�erential

cross{section for 110 MeV deuterons on

208

Pb (R = 7:9 fm,

d = 0:55 fm,  = 0:12) to the Rutherford one, as a function of

the scattering angle � (deg.). Curve 1 shows the interference

between the Coulomb elastic scattering and the nuclear one.

Curve 2 is for pure Coulomb elastic scattering. Curve 3 is for

pure nuclear elastic scattering. Curve 4 is the optical model

calculations taken from [3].
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The di�raction approach was applied to the deuteron{

nucleus interaction in [4]{ [6]. In [7] the general di�rac-

tion theory was built. This theory was extended on the

case of interaction between three{nucleon{particles and

nuclei [8]. The three{nucleon{particle|nuclei interac-

tion was analyzed in [9] on the basis of the di�raction

model in the R

t

� R approximation (R

t

is the radius

of three{nucleon{particle and R is the nuclear radius)

where the pro�le functions were expanded into a series.

The role of the nuclear surface di�useness consideration

in deuteron{nucleus elastic and inelastic scattering was

clari�ed in [10].

Therefore, it appears valuable to develop the general

di�raction approach which could enable to obtain closed{

form expressions for the elastic and inelastic scattering

and dissociation{into{two and {three{parts cross sec-

tions for the two{ and three{nucleon{particle{nuclei in-

teraction at intermediate energies with the allowance for

the Coulomb interaction, the inner structure of the pro-

jectile, the nuclear surface di�useness and the nuclear

matter refraction.

II. AMPLITUDE OF THE

DEUTERON{NUCLEUS INTERACTION

In this section we calculate the amplitude of the

deuteron{nucleus scattering with the excitation of low

lying vibrational states of nuclei with the allowance for

the Coulomb interaction, the inner deuteron structure,

the �nite values of nuclear surface di�useness and sur-

face refraction, with neglect of spins and isospins of the

nucleons.

The amplitude of the deuteron{nucleus interaction is

de�ned by formula [7]

F (q) =

Z

d

3

r'

�

f

(r)F (q; s)'

0

(r); (1)

where r = r

p

� r

n

is the distance between the nucleons

in the deuteron; r

n

and r

p

are the neutron and proton

radius{vectors; s is the projection of the vector r on the

plane perpendicular to the incident deuteron beam di-

rection (z { axis); q is the momentum transfer of the

deuteron center{of{mass; '

0

(r) is the deuteron ground{

state wavefunction; '

f

(r) is the wavefunction of the re-

lated motion of the nucleons, the deuteron was consisted,

in the �nal state. The amplitude F (q; s) is equal to

F (q; s) =

iK

2�

Z

d

2

b exp (iqb) (2)

� [1� exp [2i� (b; s)]] ;

where K is the projectile wavevector; b = (b

n

+ b

p

)=2

is the impact parameter of the deuteron center{of{mass

(we consider the neutron and proton masses to be equal);

b

n

and b

p

are the neutron and proton impact param-

eters; �(b; s) is the scattering phase of deuteron. The

deuteron scattering phase has the form

�(b; s) = �

n

(b

n

) + �

p

(b

p

) + �

p

(b

p

); (3)

where b

n;p

= b�s=2, �

n;p

(b

n;p

) are the nuclear parts of

the neutron and proton scattering phases; �

p

(b

p

) is the

Coulomb part of the proton scattering phase.

Fig. 2. The inelastic scattering di�erential cross{section

(mb=sr) with the excitation of the �rst 2

+

state (the up-

per �gure) and the ratio of the elastic scattering di�eren-

tial cross{section to the Rutherford one (the lower �gure)

for the 80 MeV deuterons on the

68

Zn{nuclei (R = 5:7 fm,

d = 0:60 fm,  = 0:18, �

2

= 0:25). Curves 1 show the inter-

ference between the Coulomb scattering and the nuclear one.

Curve 2 is for pure Coulomb scattering. Curves 3 are for pure

nuclear scattering. Experimental data are taken from [20].

The amplitude F (q; s) can be presented [11] as a sum

of the Coulomb F

C

(q; s) and the nuclear scattering am-

plitudes distorted by the Coulomb interaction F

N

(q; s):

F (q; s) = F

C

(q; s) + F

N

(q; s); (4)

F

C

(q; s) = 2f

C

�

K

2

; q

�

exp (iqs=2) ; (5)

F

N

(q; s) =

iK

2�

Z

d

2

b exp (iqb+ 2i�

p

(b

p

)) (6)

� [1� exp (2i(�

n

(b

n

) + �

p

(b

p

)))] ;

f

C

�

K

2

; q

�

= �KR

2

n�(1 + in)

�(1� in)

exp(�2in ln(q=K))

(qR)

2

;

(7)
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exp(2i�

p

(b

p

)) =

�(1 +Kb=2 + in)

�(1 +Kb=2� in)

; (8)

where n =

2MZe

2

�h

2

K

is the Coulomb parameter of the

deuteron's proton; M is the nucleon mass; Ze

2

is the

nucleus charge.

The neutron and proton pro�le functions !

n;p

(b

n;p

)

are introduced by the correlations

!

n;p

(b

n;p

) = 1� exp(2i�

n;p

(b

n;p

)): (9)

Therefore, the amplitude F

N

(q; s) has the form

F

N

(q; s) =

iK

2�

Z

d

2

b exp (iqb + 2i�

p

(b

p

))

� !

d

(b; s); (10)

!

d

(b; s) = !

n

(b

n

) + !

p

(b

p

)� !

n

(b

n

)!

p

(b

p

): (11)

The magnitudes !

n;p

(b

n;p

) can be chosen as [12]

!

n

(b

n

) = !

p

(b

p

) = !(b) =

�

1 + exp

�

b� R

d

+ i

��

�1

;

(12)

where d is the nuclear surface di�useness value (d� R);

 characterizes the refraction of the scattered wave on the

nuclear edge. The nucleon{nucleus pro�le functions in

the form (12) enables one to explain the nucleon{nucleus

interaction at intermediate energies [13].

Further calculations will be accomplished in the R

d

�

R approximation, where R

d

is the deuteron radius. We

shall assume that the shape of the nucleus in the excited

state is described by the expression

R(#;  ) = R

8

<

:

1 +

X

l;m

�

l;m

Y

l;m

(#;  )

9

=

;

; (13)

where R is the radius of the spherical nucleus of the same

volume,�

l;m

are the nuclear deformation parameters and

Y

l;m

(#;  ) are the spherical functions.

The projection of the nucleus on the plane perpendicu-

lar to the direction of the incident deuteron beam within

the accuracy up to the linear terms over the nuclear de-

formation parameters �

l;m

is given by the formula

R

�

�

2

;  

�

= R

8

<

:

1 +

X

l;m

�

l;m

Y

l;m

�

�

2

;  

�

9

=

;

: (14)

Considering the deformation parameters as small val-

ues we expand the pro�le function !(b) within the accu-

racy up to linear terms in �

l;m

:

!(b) =

8

<

:

1 +

X

l;m

�

l;m

Y

l;m

�

�

2

;  

�

R

@

@R

9

=

;

!

0

(b); (15)

where !

0

(b) is de�ned by formula (12).

Substituting (15) into formula (11) and then expand-

ing !

d

(b; s) within the accuracy up to the linear terms

in �

l;m

, we �nd

!

d

(b; s) =

8

<

:

1 +

X

l;m

�

l;m

Y

l;m

�

�

2

;  

�

R

@

@R

9

=

;

!

(d)

(b; s);

(16)

where !

(d)

(b; s) is de�ned by the formula (11).

The deuteron{nucleus pro�le function !

(d)

(b; s) can

be represented in the form

!

(d)

(b; s) =

�

1 + d

@

@R

�

!

1

(b; s) + !

2

(b; s);

!

1

(b; s) =

1

2

�

!

n

(b

n

) + !

p

(b

p

)

�

;

!

2

(b; s) =

1

2

�

!

n

(b

n

) � !

p

(b

p

)

�

2

;

(17)

where it is noted that for the pro�le function (12) the

following relation is valid:

!

2

(b) =

�

1� d

@

@R

�

!(b): (18)

Therefore, amplitude (10) is equal to

F

N

(q; s) = F

0

(q; s) +

X

l;m

�

l;m

Y

l;m

�

�

2

; 0

�

R

@

@R

F

m

(q; s);

(19)

F

j

(q; s) =

�

1 + d

@

@R

�

F

(1)

j

(q; s) + F

(2)

j

(q; s); (20)

F

(1)

j

(q; s) =

1

2

h

exp

�

i

qs

2

�

+ exp

�

�i

qs

2

�i

f

j

(q); (21)
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F

(2)

j

(q; s) =

iK

2�

R

d

2

b exp

�

iqb + 2i�

p

(b

p

)

+im �

j;m

�

!

2

(b; s);

(22)

where j = 0;m; �

i;j

= 0 if i 6= j and �

i;j

= 1 if i = j.

The amplitude of nucleon{nucleus interaction has the

form

f

j

(q) =

iK

2�

R

d

2

b exp

�

iqb+ 2i�

p

(b)

+im �

j;m

�

!

0

(b);

(23)

where b

p

in the Coulomb phase is replaced by b in the

R

d

� R approximation.

As the amplitudes F

(2)

j

(q; s) turn into zero for the

point deuteron F

(2)

j

(q; 0) = 0 , i.e. they are proportional

to R

d

, they should be calculated by the formula

F

(2)

j

(q; s) = �(q)

h

F

(2)

j

(q; s)

i

d=0

; (24)

where the damping factor �(q) is equal to [14]

�(q) =

�qd

sinh(�qd)

: (25)

The amplitudes F

(2)

j

(q; s) can be estimated in the fol-

lowing way. When d=0, the neutron and proton pro�le

functions are equal to: !

n;p

(b < R) = 1, !

n;p

(b > R) = 0.

So far as the deuteron ground{state wavefunction de-

creases rapidly when the distance between the neutron

and the proton increases, the absolute values of the

impact parameters b

n;p

can be expanded into a series

within the accuracy up to the linear in s terms: b

n;p

=

b� (s=2) cos', where ' is the angle between the vectors

b and s. Since b � R and jsj � R

d

, this decomposition is

equivalent to the R

d

� R approximation. Therefore, the

pro�le functions !

n;p

(b

n;p

) can be presented in the form:

!

n;p

(b

n;p

) = 1, when b < R� (s=2) cos', !

n;p

(b

n;p

) = 0

when b > R� (s=2) cos'.

As the amplitudes F

(2)

j

(q; s) contain the combinations

[!

n

(b

n

)� !

p

(b

p

)]

2

we have to �nd the modulus of di�er-

ence between the neutron and proton pro�le functions:

j!

n

(b

n

)� !

p

(b

p

)j =

8

<

:

0; b < R

�

(s; ')

1; R

�

(s; ') � b � R

+

(s; ')

0; b > R

+

(s; ')

9

=

;

;

(26)

where the notations introduced are R

�

(s; ') = R �

(s=2) jcos'j. Thus, the magnitude j!

n

(b

n

)� !

p

(b

p

)j is

a step the width of which is determined by the deuteron

radius R

d

.

Fig. 3. The di�erential cross{section (b=sr) of the 80MeV

deuterons dissociated without (the upper �gure) and with

the excitation of the �rst 2

+

state (the lower �gure) of the

68

Zn{nuclei (R = 5:7 fm, d = 0:60 fm,  = 0.18, �

2

= 0:25).

Curve 1 shows the interference between the Coulomb disso-

ciation and the nuclear one. Curve 2 is for pure Coulomb

dissociation. Curve 3 is for pure nuclear dissociation.

Integrating in formulae (22) with the allowance for

(24), (26) and expanding the derived expressions up to

the linear in s terms, we �nd

F

(2)

j

(q; s) = iKR

2

�(q)

s jcos'j

2R

J

jjj

(qR) exp(2i�

p

(R)):

(27)

Within the accuracy of up to the linear terms in s=R,

amplitudes (20) are equal to

F

j

(q; s) =

1

2

h

exp

�

i

qs

2

�

+ exp

�

�i

qs

2

�i

�

1 + d

@

@R

�

f

j

(q)

+ iKR

2

�(q)

s jcos'j

2R

J

jjj

(qR) exp (2i�

p

(R)) : (28)

So far as the inelastic interaction of deuterons with the excitation of the low lying vibrational levels of the nucleus
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has the surface character and the Coulomb phase slightly changes on the nucleus edge, the Coulomb phase in the

expression for F

m

(q; s) can be treated as constant [15], [16].

Now amplitude (1) acquires the form

F (q) = F

e

(q) +

X

l;m

�

l;m

Y

l;m

�

�

2

; 0

�

F

m

(q); (29)

F

e

(q) = 2f

C

�

K

2

; q

�

S

�

q

2

�

+

1

2

h

S

�

q

2

�

+ S

�

�

q

2

�i

�

1 + d

@

@R

�

f

0

(q)

+ iKR

2

p�(q)J

0

(qR) exp (2i�

p

(R)) ;

F

m

(q) =

1

2

h

S

�

q

2

�

+ S

�

�

q

2

�i

R

@

@R

�

1 + d

@

@R

�

f

m

(q)

+ iKR

2

p�(q)

�

qRJ

jmj�1

(qR) � (jmj � 1)J

jmj

(qR)

�

exp (2i�

p

(R)) : (30)

S(q) =

Z

d

3

r exp(iqs)'

�

f

(r)'

0

(r); Q = 2

Z

d

3

rs jcos'j'

�

f

(r)'

0

(r); p = Q=(4R): (31)

III. DIFFERENTIAL CROSS{SECTIONS OF THE

DEUTERON{NUCLEUS INTERACTION

We choose the deuteron ground{state wavefunction in

the form

'

0

(r) =

r

�

2�

exp(��r)

r

; (32)

where � =

p

m�=�h, � is the deuteron binding energy,

� = 0:232fm

�1

(R

d

= 1=2�).

Wavefunction (32) is normalized to unity and corre-

sponds to the zero{value nuclear force range assumption

(the D | wave admixture to the deuteron ground{state

is neglected).

If the deuteron dissociation takes place, the related

motion of the neutron and proton released from the

deuteron dissociation is described by the wavefunction

(the zero{value nuclear force assumption is assumed)

'

f

(r) = exp(ifr) +

1

if � �

exp(�ifr)

r

; (33)

where f = (k

p

� k

n

) =2 is the neutron{proton related

motion wavevector, k

n

and k

p

are the neutron and pro-

ton wavevectors in the �nal state. The wavefunctions

(32) and (33) are orthogonal and make a complete set

of functions.

Applying the wavefunction (32) as '

f

(r) and calculat-

ing the integral in formulae (31), we �nd

S

e

(q) =

1

qR

d

arctan (qR

d

) ; Q

e

= R

d

: (34)

Fig. 4. The ratio of the elastic scattering di�erential

cross{section for the 130 MeV

3

He{nuclei on

90

Zr (a),

120

Sn

(b) and

208

Pb (c) nuclei, to the Rutherford one, as a function

of the scattering angle � (deg.). Solid lines are for the com-

posed

3

He{nuclei, while dashed lines are for the quasipoint

3

He{nuclei. Experimental data are taken from [1].

Calculating the integral in formula (31) with wave-
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function (33) taken as '

f

(r); we obtain

S

d

(q; f ) =

p

8��

�

1

�

2

+ (q� f )

2

+

f + i�

2q(�

2

+ f

2

)

ln

f � q + i�

f + q + i�

�

;

Q

d

(f ) =

4

p

2��

P (�

2

+ f

2

)

2

�

P

2

� f

2

x

�

1

2

P (�+ if)

�

;

P

2

= �

2

+ f

2

� f

2

x

;

(35)

where f

x

= f

?

cos �, f

?

is the projection of the vector

f on the plane perpendicular to the incident deuteron

beam direction, and � is the angle between the vectors

q and f

?

.

The di�erential cross{sections of elastic scattering and

inelastic scattering with the excitation of one{phonon vi-

brational states with spin I in even{even nuclei are given

as

d�

e

d


=

�

�

F

e

(q)

�

�

2

;

d�(0! I)

d


=

j�

I

j

2

2I + 1

I

X

m=�I

�

�

�

�

Y

I;m

�

�

2

; 0

�

F

m

(q)

�

�

�

�

2

;

(36)

where the dynamical deformation parameter �

I

has the

form �

I

=

p

2I + 1 hlmj�

l;m

j00i, the scattering angle �

of the neutron{proton center{of{mass is related to the

momentum transfer by the correlation q = 2K sin(�=2)

and the amplitudes F

e

(q) and F

m

(q) are de�ned by for-

mulae (30), (34). The di�erential cross sections of the

deuteron dissociation and the deuteron dissociation with

the excitation of one{phonon vibrational states with spin

I in even{even nuclei are equal to:

d�

d

d


= jF

e

(q; f )j

2

d

3

f

(2�)

3

;

d�

d

(0! I)

d


=

j�

I

j

2

2I + 1

I

X

m=�I

�

�

�

�

Y

I;m

�

�

2

; 0

�

F

m

(q; f )

�

�

�

�

2

d

3

f

(2�)

3

;

(37)

where the amplitudes F

0

(q; f ) and F

m

(q; f ) are de�ned

by formulae (30), (35).

The angular distributions of the neutron{proton

center{of{mass, released in the deuteron dissociation

and in the deuteron dissociation with the excitation

of vibrational states of target{nucleus, can be obtained

the following way. Cross{sections (37) with amplitude

(1), integrated over the vector f using the completeness

condition of the neutron{proton system wavefunctions

'

0

(r)'

�

0

(r

0

)+

R

d

3

f

(2�)

3

'

f

(r)'

�

f

(r

0

) = � (r� r

0

), have the

form

d�

d

d


=

Z

d

3

rjF (q; s)j

2

j'

0

(r)j

2

�

�

�

�

�

Z

d

3

rF (q; s)j'

0

(r)j

2

�

�

�

�

2

;

d�

d

(0! I)

d


=

j�

I

j

2

2I + 1

I

X

m=�I

�

�

�

Y

I;m

�

�

2

; 0

�

�

�

�

2

�

(

Z

d

3

r jF

m

(q; s)j

2

j'

0

(r)j

2

�

�

�

�

�

Z

d

3

rF

m

(q; s) j'

0

(r)j

2

�

�

�

�

2

)

: (38)

Integrating in formulae (38) with the allowance for (4), (5), (19), (28), we �nd

d�

d

d


= 4

h

1� S

2

�

q

2

�i

�

�

�

�

f

C

�
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2

; q

�

�

�

�

�

2

+

1

2

�

1 + S (q)�

1

2

h

S

�

q

2

�

+ S

�

�

q

2

�i

2

�

�

�

�

�

�

�

1 + d

@

@R

�

f

0

(q)

�

�

�

�

2

+

5

48

K

2

R

2

R

2

d

�

2

(q) J

2

0

(qR)

+ 2

n

1 + S (q) � S

�

q

2

� h

S

�

q

2

�

+ S

�

�

q

2

�io

Re

�

f

C

�

K

2

; q

��

1 + d

@

@R

�

f

�

0

(q)

�
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� KRR

d

� (q) [1� S (q)] Im

�

f

�

C

�

K

2

; q

�

exp [2i�

p

(R)]

�

�

1

2

KRR

d

� (q)

�

1�

1

2

h

S

�

q

2

�

+ S

�

�

q

2

�i

�

Im

�

exp [2i�

p

(R)]

�

1 + d

@

@R

�

f

�

0

(q)

�

; (39)
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d
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=
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I
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2
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I

X
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�

�

�

Y

I;m

�

�

2

; 0

�
�

�

�

2

�
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(q) ;

�

m
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1

2

�
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1

2

h

S

�

q

2

�

+ S

�

�

q

2
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2

�

�

�

�

�

R
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�

1 + d

@

@R

�

f

m

(q)

�

�

�

�

2

+

5

48

K

2

R

2

R

2

d

�

2

(q)

�

qRJ

jmj�1

(qR)� (jmj � 1) J

jmj

(qR)

�

2

�

1

2

KRR

d

� (q)

�

1�

1

2

h

S

�

q

2

�

+ S

�

�

q

2

�i

�

�

qRJ

jmj�1

(qR)� (jmj � 1) J

jmj
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�

� Im
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exp [2i�

p
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@

@R

�

1 + d

@

@R

�

f

�

m

(q)

�

: (40)

Expressions (39), (40) are allowed to contain the

squared terms over the small values R

d

=R that guaran-

tees the positivity of the cross{sections in the vicinities

of minima.

Figure 1 shows the di�erential cross{section of the

110MeV deuterons elastically scattered by the

208

Pb{

nuclei. Figure 2 shows the di�erential cross{sections of

the 80 MeV deuterons scattered elastically and inelasti-

cally with the excitation of the �rst 2

+

state in the

68

Zn{

nuclei. The di�erential cross{sections of the 80 MeV

deuteron dissociation with and without the excitation

of the �rst 2

+

state in the

68

Zn{nuclei are presented on

�gure 3.

IV. AMPLITUDE OF THE

THREE{NUCLEON{PARTICLE|NUCLEUS

INTERACTION

So far as the

3

H{nucleus contains only one charged

nucleon it is convenient to calculate the amplitude of the

3

H{nucleus scattering with the excitation of low lying

vibrational states of nuclei with the allowance for the

Coulomb interaction, the inner structure of

3

H{nucleus,

the �nite values of nuclear surface di�useness and sur-

face refraction, with neglect of spins and isospins of the

nucleons.

The amplitude of the

3

H{nucleus{nucleus interaction

is de�ned by formula [9]

F (q) =

Z

d

3

�d

3

r	

�

f

(�; r)F (q;w; s)	

0

(�; r); (41)

where � = r

n2

�

1

2

( r

n1

+ r

p

) and r = r

p

� r

n1

are

the coordinates of Jacoby; r

n1

, r

n2

and r

p

are the nu-

cleon radius{vectors; w and s are the projections of the

vectors � and r on the plane perpendicular to the in-

cident

3

H{beam direction (z{axis); q is the momentum

transfer of the

3

H{nucleus center{of{mass; 	

0

(�; r) is

the

3

H{nucleus ground{state wavefunction; 	

f

(�; r) is

the wavefunction of the related motion of the nucleons,

which

3

H{nucleus was consisted of, in the �nal state.

The amplitude F (q;w; s) is equal to

F (q;w; s) =

iK

2�

Z

d

2

b exp (iqb)

� [1� exp [2i� (b;w; s)]] ; (42)

where K is the projectile wavevector; b = (b

n1

+ b

n2

+

b

p

)=3 is the impact parameter of the

3

H{nucleus center{

of{mass;b

n1

, b

n2

and b

p

are the nucleon impact parame-

ters; �(b;w; s) is the scattering phase of the

3

H{nucleus.

The

3

H{nucleus scattering phase has the form

�(b;w; s) = �

n1

(b

n1

) + �

n2

(b

n2

) + �

p

(b

p

) + �

p

(b

p

);

(43)

where b

n1;p

= b � w=3 � s=2, b

n2

= b + 2w=3,

�

n1;n2;p

(b

n1;n2;p

) are the nuclear parts of the nucleon
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scattering phase; �

p

(b

p

) is the Coulomb part of the

3

H{

nucleus' proton scattering phase.

Fig. 5. The same as on Fig. 4 but for 217 MeV. Experi-

mental data are taken from [2].

The amplitude F (q;w; s) can be presented as a sum

of the Coulomb scattering amplitudeF

C

(q;w; s) and the

nuclear scattering amplitude distorted by the Coulomb

interaction F

N

(q;w; s):

F (q;w; s) = F

C

(q;w; s) + F

N

(q;w; s); (44)

F

C

(q;w; s) = 3f

C

�

K

3

; q

�

exp (iqw=3 + iqs=2) ; (45)

F

N

(q;w; s) =

iK

2�

Z

d

2

b exp (iqb+ 2i�

p

(b

p

))

� [1� exp (2i(�

n1

(b

n1

) + �

n2

(b

n2

) + �

p

(b

p

)))] ; (46)

f

C

�

K

3

; q

�

= �

2

3

KR

2

n�(1 + in)

�(1� in)

�

exp(�2in ln(3q=2K))

(qR)

2

; (47)

exp(2i�

p

(b

p

)) =

�(1 +Kb=3 + in)

�(1 +Kb=3� in)

; (48)

where n =

3MZe

2

�h

2

K

is the Coulomb parameter of the

3

H{

nucleus proton;M is the nucleon mass;Ze

2

is the nucleus

charge.

The nucleon pro�le functions !

n1;n2;p

(b

n1;n2;p

) are in-

troduced by the correlations

!

n1;n2;p

(b

n1;n2;p

) = 1� exp (2i�

n1;n2;p

(b

n1;n2;p

)) : (49)

Therefore, the amplitude F

N

(q;w; s) acquires the form

F

N

(q;w; s) =

iK

2�

Z

d

2

b exp (iqb+ 2i�

p

(b

p

))!

t

(b;w; s); (50)

where the pro�le function !

t

(b;w; s) that describes the interaction between the

3

H{nucleus and the nucleus is

equal to

!

t

(b;w; s) = !

n1

(b

n1

) + !

n2

(b

n2

) + !

p

(b

p

)� !

n1

(b

n1

)!

p

(b

p

)

�!

n2

(b
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)!

p

(b

p

) � !
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(b
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)!

n2

(b

n2

) + !

n1

(b

n1

)!

n2

(b

n2

)!

p

(b

p

): (51)

The magnitudes !

n1;n2;p

(b

n1;n2;p

) are equal to (12). Using formulae (13){(15), we �nd

!

t

(b;w; s) =

8

<

:

1 +

X

l;m

�

l;m

Y

l;m

�

�

2

;  

�

R

@

@R

9

=

;

!

(t)

(b;w; s); (52)

where !

(t)

(b;w; s) is de�ned by formula (51).

The

3

H{nucleus pro�le function !

(t)

(b;w; s) can be represented in the form

!

(t)

(b;w; s) =

�

1 +

3

2

d

@

@R

+

1

2

d

2

@

2

@R

2

�

!

1

(b;w; s) + !

2

(b;w; s);
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!
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;
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1

2

�

1�

1

3

�

!

n1

(b

n1

) + !
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�
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�

2

+

�

!

n1

(b

n1

)� !
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(b

n2

)

�

2

�

: (53)

After the calculations similar to the ones presented in

section II amplitude (41) acquires the form

F (q) = F

e

(q) +

X

l;m

�

l;m

Y

l;m

�

�

2

; 0

�

F

m

(q); (54)
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(q)
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fS
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p
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F
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1
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�

S

1

(q) + S

2

(q) + S

3
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�

R
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@R

f

(N)

m

(q)
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�
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�

exp
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p

(R)

�

; (55)

where f

(N)

j

(q) =

�

1 +

3

2

d

@

@R

+

1

2

d

2
@

2

@R

2

�

f

j

(q) and the

notations introduced are

S
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(q) =

Z

d

3

�d

3
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i

qw

3

�i

qs
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�

f

(�; r)	

0

(�; r);

S

3

(q) =

Z

d

3

�d

3

re

�i

2qw

3

	

�

f

(�; r)	

0

(�; r);

p =

Z

d

3

�d

3

rp (�; r)	

�

f

(�; r)	

0

(�; r);

p(�; r) = Q

1

(�; r) +Q

2

(�; r);

Q

1

(�; r) = � cos �

1

+

1

2

rj cos �

2

j;

1

2

r jcos �

2

j < � cos �

1

;

Q

2

(�; r) = r jcos �

2

j ;

1

2

r jcos �

2

j > � cos �

1

: (56)

The values of �, �

1

and �

2

are contained in the intervals:

0 � � � 1, 0 � �

1

� �=2 and 0 � �

2

� �:

Fig. 6. The inelastic scattering di�erential cross{section

(mb=sr) with the excitation of the �rst 2

+

state (the up-

per �gure) and the ratio of the elastic scattering di�eren-

tial cross{section to the Rutherford one (the lower �gure)

for the 165 MeV

3

H{nuclei on the

68

Zn{nuclei (R = 5:7 fm,

d = 0:60 fm,  = 0:18, �

2

= 0:25). Curves 1 show the inter-

ference between the Coulomb scattering and the nuclear one.

Curve 2 is for pure Coulomb scattering. Curves 3 are for pure

nuclear scattering.

V. DIFFERENTIAL CROSS{SECTIONS OF

THREE{NUCLEON{PARTICLE{NUCLEUS

INTERACTION

A complete set of the orthonormalized three{nucleon{

nucleus wavefunctions will be chosen in the form [8], [17]:

	

0

(�; r) =  

0

(�)'

0

(r); (57)

	

u

(�; r) =  

u

(�)'

0

(r); (58)

	

u;f

(�; r) =  

u

(�)'

f

(r); (59)

 

0

(�) =

r

�

2�

exp(���)

�

; (60)
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u

(�) = exp(iu�) +

1

iu� �

exp(�iu�)

�

; (61)

where u = (2k

n2

� k

d

) =3 and f = (k

p

� k

n1

) =2 are

the deuteron{neutron and deuteron's neutron{proton re-

lated motion wavevectors; k

d

= k

n1

+ k

p

is the released

deuteron wavevector; k

n1

, k

n2

and k

p

are the nucleon

wavevectors in the �nal state; '

0

(r) and '

f

(r) are de�ned

by (32), (33); � = 0:420fm

�1

. The wavefunctions (57){

(59) correspond to the zero{value nuclear force range as-

sumption (the D | wave admixture to the ground{state

is neglected) and, besides the ground state, describe the

dissociation of three{nucleon{nucleus into two and three

parts.

Taking into account that the variables are separated

in the wavefunctions (57){(59), the amplitudes (55) can

be rewritten as

F

e

(q) = 3f

C

�

K

3

; q

�

G

1

(q=3)G

2

(q=2)

+

1

3

�

2G

1

(q=3)G

2

(q=2) + G

1

(2q=3)

�

f

(N)

0

(q)

+ iKR�(q)pJ

0

(qR) exp

�

2i�

p

(R)

�

; (62)

F

m

(q) =

1

3

�

2G

1

(q=3)G

2

(q=2)

+ G

1

(2q=3)

�

R

@

@R

f
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m
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+ iKR�(q)p

�

qRJ

jmj�1

(qR)

� (jmj � 1)J

jmj

(qR)

�

exp (2i�

p

(R)) : (63)

G
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(q) =

Z

d

3

�e

iqw

 

�

f
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0

(�);

G

2

(q) =

Z

d

3

re

iqs

'

�

f

(r)'

0

(r): (64)

The elastically and inelastically scattered amplitudes

are de�ned by the magnitudesG

1

(q) ,G

2

(q) and p where

the wavefunction (57) should be taken as 	

f

(�; r):

G

1

(q) =

1

qR

1

arctan (qR

1

) ;

G

2

(q) =

1

qR

2
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2

) ;
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=
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; R
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=
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+
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2
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�

1 +

R

2
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ln(1 +

2R

1

R

2

)

�

(65)

The di�erential cross{sections of the

3

H{nucleus elas-

tic scattering and inelastic scattering with the excita-

tion of one{phonon vibrational states with spin I in

even{even nuclei are given by formulae (36). The dif-

ferential cross{sections of the

3

H{nucleus dissociation

into the deuteron and neutron are de�ned by formulae

(37) where we substitute f ! u. Finally, the di�eren-

tial cross{sections of the

3

H{nucleus dissociation into the

proton and two neutrons have the form

d�

(t;npn)

d


= jF

0

(q;u; f )j
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d
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3
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;
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=
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�
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�

�
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3
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3

d

3

f

(2�)

3

: (66)

The angular distributions of the deuteron{neutron and neutron{proton{neutron systems center{of{masses, released

in the

3

H{nuclei dissociation are obtained with the help of completeness conditions for the functions (57){(59):
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�
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p
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=
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�
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=
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+
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�
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: (70)

Composed

3

He{nucleus Quasipoint

3

He{nucleus

Nucleus E,MeV R,fm r

0

,fm d,fm  R,fm r

0

,fm d,fm 

90

Zr 130 6.3 1.41 .60 .20 6.45 1.44 .55 .45

217 6.2 1.38 .65 -.3 6.30 1.41 .55 .15

120

Sn 130 7.1 1.44 .70 .20 7.10 1.44 .70 .50

217 6.9 1.40 .60 .10 7.00 1.42 .55 .40

208

Pb 130 8.2 1.38 .60 .00 8.20 1.38 .60 .50

217 8.0 1.35 .65 .20 8.00 1.35 .60 .60

Table. The di�raction model parameters for the

3

He{nuclei{nuclei elastic scattering di�erential cross{section (R = r

0

A

1=3

).

Placing the charge of the

3

He{nucleus in its center{of{

mass, we have carried out the analyses of experimental

data on the elastic scattering of the 130 and 217 MeV

3

He{nuclei on

90

Zr,

120

Sn and

208

Pb nuclei (�gures 4, 5

and table).

Figure 6 shows the di�erential cross{section of the

165 MeV

3

H{nuclei scattered elastically and inelastically

with the excitation of the �rst 2

+

state in the

68

Zn{

nuclei. The di�erential cross{sections of the 165 MeV

3

H{nuclei dissociation{into{two and {three{parts with

and without excitation of the �rst 2

+

state in the

68

Zn{

nuclei are presented on �gures 7, 8.

VI. ANALYSIS OF EXPERIMENTAL DATA

In [1]{ [3] the complex optical potential with six �tting

parameters was used to analyze the di�erential cross{

sections of the elastic scattering of the

3

He{nuclei by the

90

Zr,

120

Sn and

208

Pb nuclei at 130 and 217 MeV and

deuterons by the

208

Pb nuclei at 110 MeV. The optical

model has enabled to obtain good agreement between the

calculated and measured di�erential cross{sections. The

results of the analysis have shown large depth of the real

part of the potential V as compared to the imaginary one

W : V=W � 8:4 for 110 MeV deuterons, V=W � 4�5 for

130 MeV and V=W � 2�3 for the 217 MeV

3

He{nuclei.

In other words, the optical potential in the considered

case has a strong refraction and relatively small absorp-

tion. In the energy region under study this points on the

existence of substantial non{di�raction e�ects the role

of which increases noticeably with the increase of the

scattering angle.

The di�raction model is known to describe the exper-

imental data well when the absorption is large and the

refraction is small. Unfortunately, this kind of experi-

mental data is not available in literature now. In spite

of that, as is seen from �gures 1, 2, 4, 5 and the Table,

the di�raction method developed by us, being a small

scattering angle approach and having only three �tting
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parameters, explains the given data well enough. We em-

phasize that in our approach the di�raction theory en-

ables us to obtain the closed{form expressions for the

di�erential cross{sections.

Fig. 7. The di�erential cross{section (b=sr) of the 165 MeV

3

H{nuclei dissociated into two parts without (the upper �g-

ure) and with the excitation of the �rst 2

+

state (the lower

�gure) of the

68

Zn{nuclei (R = 5:7 fm, d = 0:60 fm,

 = 0:18, �

2

= 0:25) as a function of the deuteron{neutron

center{of{mass scattering angle � (deg.). Curve 1 shows the

interference between the Coulomb dissociation and the nu-

clear one. Curve 2 is for pure Coulomb dissociation. Curve 3

is for pure nuclear dissociation.

The quasipoint{projectile assumption for the

3

He{

nucleus (assuming that the nucleons comprising the

3

He{

nucleus are placed in its center of mass) leads to greater

values of R for

90

Zr as compared with the case where the

3

He inner structure is considered. The values of R for

the heavier nuclei remain almost the same. The values

of d slightly decrease. The refraction parameter  sub-

stantially increases for the quasipoint{

3

He{nucleus. This

fact is not surprising if we bear in mind that the optical

model which does not consider the inner structure of the

projectile points on large refraction too.

The di�erential cross{section of the inelastic deuteron

and the

3

H{nucleus scattering with excitation of low ly-

ing vibrational states of nuclei obeys the di�raction rule

of phases [18], [19]: this cross section oscillates in phase

with the cross{section of elastic scattering if I is odd,

and out of phase if I is even (�gures 2, 6). Figures 3, 7, 8

show that the same rule is valid for the cross{sections of

the deuteron and

3

H{nucleus dissociation{into{two and

{three{parts with and without the excitation of low lying

vibrational states of nuclei.

Fig. 8. The di�erential cross{section (b=sr) of the 165 MeV

3

H{nuclei dissociated into three parts without (the upper �g-

ure) and with the excitation of the �rst 2

+

state (the lower

�gure) of the

68

Zn{nuclei (R = 5:7 fm, d = 0:60 fm,  = 0:18,

�

2

= 0:25) as a function of the neutron{proton{neutron cen-

ter{of{mass scattering angle � (deg.). Curve 1 shows the in-

terference between the Coulomb dissociation and the nuclear

one. Curve 2 is for pure Coulomb dissociation. Curve 3 is for

pure nuclear dissociation.

The di�erential cross{sections of the deuteron and the

3

H{nucleus dissociation{into{two and {three{parts are

the oscillating functions of the scattering angle (momen-

tum transfer) of the center{of{masses (�gures 3, 7, 8).

Figures 2, 3, 6{8 show that the cross{sections of elastic

scattering and dissociation oscillate in phase proving the

quasielastic character of the dissociation processes. The

Coulomb interaction consideration exerts a substantial

inuence on the values of elastic scattering and dissoci-

ation cross{sections (�gures 1{3, 6{8). Taking into ac-

count the Coulomb interaction is especially important in

calculating the deuteron and

3

H{nucleus dissociation{

into{two and {three{parts where the Coulomb dissocia-

tion predominates in the region of small scattering angles

of the released nucleon system center{of{mass.

Therefore, the many{nucleon{particle inner structure

consideration allows to obtain the realistic values for �t-

ting parameters on the basis of the di�raction analysis

of experimental data. The detailed experiments on the

elastic scattering of complex nuclei by di�erent nuclei

at di�erent energies and further theoretical analysis will

give more precise information about the mechanisms of

interaction of the colliding particles and their inner struc-

ture.
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DIFRAKC��NA VZA�MOD�� DE�TRON�V � TRINUKLONNIH �DER

Z VA�KIMI �DRAMI
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1
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2
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vul. Qernixevs~kogo, 28, a/s 8812, Hark�v, 310002, UkraÝna,

tel. (0572) 40{42{82, e{mail: ipct@pem.kharkov.ua

Rozrobleno novi� difrakc��ni� p�dh�d, �ki� dozvoliv d�stati anal�tiqn� virazi dl� diferenc��l~nih

perer�z�v pru�nogo � nepru�nogo rozs��nn� ta rozweplenn� na dv� ta tri qastini dvo{ � trinuklonnih

�der va�kimi �drami.Diferenc��l~n� perer�zi rozweplenn� vi�vl��t~s� oscil��qimifunkc��mi kuta

vil~otu centra mas qastinok, wo nal�ta�t~. Provedeno anal�z eksperimental~nih danih z pru�nogo �

nepru�nogo rozs��nn� de�tron�v � �der

3

He prom��nih ener��� va�kimi �drami. Rezul~tati rozrahunk�v

dobre uzgod�u�t~s� z eksperimental~nimi danimi dl� vs�h vikoristanih �der{m�xene�.
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