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The approach which provides for the analytical expressions for the elastic and inelastic scatter-
ing and dissociation—-into—two and —three—parts differential cross—sections of deuterons and three—

nucleon—particles is developed. The dissociation cross—sections are the oscillating functions of the

scattering angle of the projectile center—of-mass. The analysis of experimental data on the elastic

and inelastic scattering of deuterons and ?He-nuclei by heavy nuclei at intermediate energies is

performed. The results of calculations are in good agreement with the measured differential cross—

sections for all the target nuclei considered.
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I. INTRODUCTION

Deuterons, ®H and 2He are the simplest composite
weakly bound nuclear particles. Therefore, these light
nuclei are easily broken up into two and three parts in
the field of heavy nuclei, which leads to a greater variety
of final channels than in point particle scattering.

The experimental data on elastic scattering of light
nuclei by the nuclei at intermediate energies are usually
analyzed with the help of complex optical potential [1]-
[3]. The simplest Saxon—Woods optical potential contains
six parameters (three for the real part and three for the
imaginary one). The data obtained this way provides im-
portant information about the nuclear structure and the
absorptive and refractive properties of nuclear matter
with respect to the projectiles. However, this approach
has a deficiency in that the inner structure of compos-
ite nuclei is not taken into account in the conventional
optical model.

The alternative method of analyzing the experimen-
tal data of the intermediate energy particles elastically
scattered by nuclei is based on the use of the theory of
diffraction interaction of light nuclei with heavy nuclei.
In such an approach the projectile inner structure is con-
sidered, while the heavy target nucleus is treated as the
structureless matter with definite absorptive and refrac-
tive properties, similarly to the optical model.

The differential cross—sections of diffraction light nu-
clei elastic scattering are determined by the radii of col-
liding particles (the effective interaction radius), the tar-
get nucleus surface diffuseness value and the nuclear sur-
face refraction coefficient. This means that such cross—
sections are determined by the geometric characteristics
of the collision conditioned by the quasiclassic character
of the considered processes.

Diffraction theory makes it possible to derive a simple

expression for the differential cross—section of the elas-
tic scattering of complex particles by the nuclei in the
approximation where the linear size of the projectile is
small as compared with the one for the target nucleus.
In this approach the inner structure of light composite
particle is taken into consideration and the cross—section
contains only three fitting parameters, twice as less as for
the cross section in the optical model. Although the con-
sidered approach 1s valid only for the heaviest nuclei, in
fact 1t appears suitable also for analyzing the scattering
of composite particles by medium weight target nuclei.

Fig. 1. The ratio of the elastic scattering differential
cross—section for 110 MeV deuterons on 2°®Pb (R=7.9 fm,
d = 0.55 fm, v = 0.12) to the Rutherford one, as a function of
the scattering angle 8 (deg.). Curve 1 shows the interference
between the Coulomb elastic scattering and the nuclear one.
Curve 2 is for pure Coulomb elastic scattering. Curve 3 is for
pure nuclear elastic scattering. Curve 4 is the optical model
calculations taken from [3].
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The diffraction approach was applied to the deuteron—
nucleus interaction in [4]- [6]. In [7] the general diffrac-
tion theory was built. This theory was extended on the
case of interaction between three—nucleon—particles and
nuclei [8]. The three-nucleon—particle—nuclei interac-
tion was analyzed in [9] on the basis of the diffraction
model in the R, < R approximation (R; is the radius
of three—nucleon-particle and R is the nuclear radius)
where the profile functions were expanded into a series.
The role of the nuclear surface diffuseness consideration
in deuteron—nucleus elastic and inelastic scattering was
clarified in [10].

Therefore, 1t appears valuable to develop the general
diffraction approach which could enable to obtain closed—
form expressions for the elastic and inelastic scattering
and dissociation—into—two and —three—parts cross sec-
tions for the two— and three—nucleon—particle—nuclei in-
teraction at intermediate energies with the allowance for
the Coulomb interaction, the inner structure of the pro-
jectile, the nuclear surface diffuseness and the nuclear
matter refraction.

1I. AMPLITUDE OF THE
DEUTERON-NUCLEUS INTERACTION

In this section we calculate the amplitude of the
deuteron—nucleus scattering with the excitation of low
lying vibrational states of nuclei with the allowance for
the Coulomb interaction, the inner deuteron structure,
the finite values of nuclear surface diffuseness and sur-
face refraction, with neglect of spins and isospins of the
nucleons.

The amplitude of the deuteron—nucleus interaction is

defined by formula [7]

mm:/%@@W@@ww, (1)

where r = r, — r,, is the distance between the nucleons
in the deuteron; r, and rp are the neutron and proton
radius—vectors; s 1s the projection of the vector r on the
plane perpendicular to the incident deuteron beam di-
rection (z — axis); q is the momentum transfer of the
deuteron center—of-mass; ¢q(r) is the deuteron ground-
state wavefunction; ¢(r) is the wavefunction of the re-
lated motion of the nucleons, the deuteron was consisted,
in the final state. The amplitude F'(q,s) is equal to

K

F(a,s) = g/dzbexp(iqb) (2)
x [1—exp [2ix (b, s)]],

where K is the projectile wavevector; b = (b, + b,)/2
1s the impact parameter of the deuteron center—of-mass
(we consider the neutron and proton masses to be equal);
b, and b, are the neutron and proton impact param-
eters; x(b,s) is the scattering phase of deuteron. The
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deuteron scattering phase has the form

x(b,s) = xn(bn) + xp(bp) + op(by), (3)

where b, , = b=+s8/2, x5 »(bn p) are the nuclear parts of
the neutron and proton scattering phases; o,(b,) is the
Coulomb part of the proton scattering phase.

—
@]
T
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Fig. 2. The inelastic scattering differential cross—section
(mb/sr) with the excitation of the first 27 state (the up-
per figure) and the ratio of the elastic scattering differen-
tial cross—section to the Rutherford one (the lower figure)
for the 80 MeV deuterons on the ®®Zn-nuclei (R = 5.7 fm,
d =0.60 fm, v = 0.18, 2 = 0.25). Curves 1 show the inter-
ference between the Coulomb scattering and the nuclear one.
Curve 2 is for pure Coulomb scattering. Curves 3 are for pure
nuclear scattering. Experimental data are taken from [20].

The amplitude F(q,s) can be presented [11] as a sum
of the Coulomb F(q,s) and the nuclear scattering am-
plitudes distorted by the Coulomb interaction Fy(q,s):

F(q,S)IF(;(q,S)—I—FN(q,S), (4)

K

Fe(as) =21c (o) ewlias, 0)

K

Frn(q,s) = o / d*bexp (iqb + 2io,(b,)) (6)

x [1 = exp (2i(xn(bn) + xp(bp)))],

K N\ onl(1+in) exp(—2inln(q/K))
Je (5,(]) =—-KR T = in) e ’

(7)
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exp(2ioy(by)) = ?8 i ?:IIZ;; i_ zz; ’ )

2MZe?
R2K
deuteron’s proton; M is the nucleon mass; Ze? is the
nucleus charge.

The neutron and proton profile functions wy, »(b, )

are introduced by the correlations

where n =

is the Coulomb parameter of the

wn,p(bn p) =1 = exp(2ixn,p(bn,p)). (9)
Therefore, the amplitude Fi(q, s) has the form

1K . .
Fn(q,s) = 5 / d*bexp (igb + 2ic,(b,))

x wq(b,s), (10)

wi(b,s) = wn(bn) +wp(by) —wa(bn)wp(by).  (11)

The magnitudes wy, p(b, ) can be chosen as [12]

wn(bn) = w(by) = w(b) = [1 Fexp (I’_TR + W)] o

(12)

where d is the nuclear surface diffuseness value (d < R);
~ characterizes the refraction of the scattered wave on the
nuclear edge. The nucleon—nucleus profile functions in
the form (12) enables one to explain the nucleon—nucleus
interaction at intermediate energies [13].

Further calculations will be accomplished in the Ry <
R approximation, where Ry is the deuteron radius. We
shall assume that the shape of the nucleus in the excited
state 1s described by the expression

R(ﬁ,’l/)) =R 1+Zal,mYl,m(ﬁa’¢)) 3 (13)

l,m

where R is the radius of the spherical nucleus of the same
volume, o ,,, are the nuclear deformation parameters and
Yi m (¥, 1)) are the spherical functions.

The projection of the nucleus on the plane perpendicu-
lar to the direction of the incident deuteron beam within
the accuracy up to the linear terms over the nuclear de-
formation parameters oy ., is given by the formula

w(3o)=nfieSun (Go)} oo
Im

Considering the deformation parameters as small val-
ues we expand the profile function w(b) within the accu-

racy up to linear terms in ayq p,:

wb) =1+ aumYim (gﬂ/)) R% wo(b), (15)

l,m

where wy(b) is defined by formula (12).

Substituting (15) into formula (11) and then expand-
ing wq(b, s) within the accuracy up to the linear terms
in aq,m, we find

0
(.dd(b, S) = 1+ Zal,mYl,m (ga 1/)) Rﬁ w(d) (ba S)a

l,m

(16)

where w(?) (b, s) is defined by the formula (11).

The deuteron—nucleus profile function w(® (b,s) can
be represented in the form

0
WD (b,s) = (1 + dﬁ) wi(b,s) + wa(b,s),

1(b5) = Hn )+ 0y 0,)]
(1)

[T

) =) |

where it is noted that for the profile function (12) the
following relation is valid:

wi(b) = (1 — d%) w(b). (18)

Therefore, amplitude (10) is equal to

0
FN(qa S) = Fo(qa S) + Zal,mYl,m (ga 0) RﬁFm(qa S)a

l,m

(19)

d
Pl = (1445 ) 109+ 17, @
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Fj(z)(q’ s) = % fdzb €XpP (qu —|— QiUp(bp)

(22)
—|—im1/)(5jym) wa(b,s),

where j =0,m;d; ; =0if ¢ # jand d;; =11if i =j.
The amplitude of nucleon—nucleus interaction has the
form

fila) = %fdzb exp (iqb + 2io,(b)
(23)
—|—im1/)5jym)wo(b),

where b, in the Coulomb phase is replaced by b in the
R4 <« R approximation.

As the amplitudes Fj(z)(q, ) turn into zero for the
point deuteron F»(Z)(q, 0) = 0, i.e. they are proportional

to Ry, they should be calculated by the formula

Fjgz)(Q, s) = ®(q) [FJ'(Z)(q’ s)} =0’ )

where the damping factor ®(g¢) is equal to [14]

wqd

®(q) = Sinh(rqd)’ (25)

The amplitudes Fj(z)(q, s) can be estimated in the fol-
lowing way. When d=0, the neutron and proton profile
functions are equal to: wy, ,(b < R) = 1, wy, »(b > R) = 0.

So far as the deuteron ground-state wavefunction de-
creases rapidly when the distance between the neutron
and the proton increases, the absolute values of the
impact parameters b, , can be expanded into a series
within the accuracy up to the linear in s terms: b, , =
b=+ (s/2) cos g, where ¢ is the angle between the vectors
b and s. Since b ~ R and |s| ~ Ry, this decomposition is
equivalent to the R; <« R approximation. Therefore, the
profile functions wy, ,(by p) can be presented in the form:
Wnp(bnp) =1, when b < RF (s/2) cos @, wn p(bnp) =0
when b > R (s/2) cos .

As the amplitudes Fj(z)(q, s) contain the combinations

[wn(bn) — wp(bp)]2 we have to find the modulus of differ-
ence between the neutron and proton profile functions:

0,6 < R_(s,%)
1,R_(5,§0)§b§R+(5,§0) ’
Oab > R+(S,g0)

|wn (bn) — wp(by)] =

where the notations introduced are Ryi(s,¢) = R =+
(s/2) |cos¢|. Thus, the magnitude |w,(bn) — wp(by)] is
a step the width of which 1s determined by the deuteron
radius Rg.

- N

=3
107 F 0—-2+)
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Fig. 3. The differential cross—section (b/sr) of the 80MeV
deuterons dissociated without (the upper figure) and with
the excitation of the first 2% state (the lower figure) of the
% Zn-nuclei (R = 5.7 fm, d = 0.60 fm, v = 0.18, f> = 0.25).
Curve 1 shows the interference between the Coulomb disso-
ciation and the nuclear one. Curve 2 is for pure Coulomb
dissociation. Curve 3 is for pure nuclear dissociation.

Integrating in formulae (22) with the allowance for
(24), (26) and expanding the derived expressions up to
the linear in s terms, we find

s |cos ¢

2R

Fj(z)(q, s) = iKR*®(q) Jij1(¢R) exp(2io, (R)).

(27)

Within the accuracy of up to the linear terms in s/R,
amplitudes (20) are equal to

() = o (1) ono (1) (14 477) 50

K R%®
+ K (q) 3R

s |cos |

J1j1(¢R) exp (2iop(R)) - (28)

So far as the inelastic interaction of deuterons with the excitation of the low lying vibrational levels of the nucleus
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has the surface character and the Coulomb phase slightly changes on the nucleus edge, the Coulomb phase in the
expression for Fp,(q,s) can be treated as constant [15], [16].

Now amplitude (1) acquires the form

Fla) = Fu(a) + Y _otmYim (50) Fla), (29)

=2t (S.0) 5 (2) 1[5 (2) 05 (2] (140

+iK R*p®(q)Jo(q R) exp (2icp (R))

poi =45 () +5 (D) gy

(1 + d%) fmla)

2 2 OR
+ iKR*p®(q) (qRJjm)—1(aR) — (|m| — 1)Jjm|(qR)) exp (2i0, (R)) . (30)
S(@) = [ Presplias)e (0)eo(e),Q = 2 [ s foos | o} ()eolo). p = Q/(4R) @1

III. DIFFERENTIAL CROSS-SECTIONS OF THE
DEUTERON-NUCLEUS INTERACTION

We choose the deuteron ground-state wavefunction in

‘he fOI'Hl
" 27 T ’

where o = /me/h, € is the deuteron binding energy,
a=0232fm™! (R = 1/20a).

Wavefunction (32) is normalized to unity and corre-
sponds to the zero—value nuclear force range assumption
(the D — wave admixture to the deuteron ground-state
is neglected).

If the deuteron dissociation takes place, the related
motion of the neutron and proton released from the
deuteron dissociation 1s described by the wavefunction
(the zero—value nuclear force assumption is assumed)

1 exp(—ifr)
if —a r ’

pr(r) = exp(ifr) + (33)

where f = (k, — k,) /2 is the neutron-proton related
motion wavevector, k, and k, are the neutron and pro-
ton wavevectors in the final state. The wavefunctions
(32) and (33) are orthogonal and make a complete set
of functions.

Applying the wavefunction (32) as ¢ (r) and calculat-
ing the integral in formulae (31), we find

1
Se(q) = E arctan (¢Rq) , Qe = Rq. (34)

10 20

Fig. 4. The ratio of the elastic scattering differential
cross—section for the 130 MeV ®He-nuclei on *°Zr (a), *°Sn
(b) and ?°®Pb (c) nuclei, to the Rutherford one, as a function
of the scattering angle 6 (deg.). Solid lines are for the com-
posed *He-nuclei, while dashed lines are for the quasipoint
#He-nuclei. Experimental data are taken from [1].

Calculating the integral in formula (31) with wave-
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function (33) taken as ¢y (r), we obtain

1
Sa(q.f) Iv8ﬂa{m
f+ia N f—q—l—ia}
2q(a® + f?) f+q+ia

Qu(f) = — Y22 fs—lpm+4ﬁ}

Pla?+ )2 2 (35)

PPzt 4 o g2,

where f, = f1 cos 3, f| is the projection of the vector
f on the plane perpendicular to the incident deuteron
beam direction, and [ is the angle between the vectors
qand f; .

The differential cross—sections of elastic scattering and
inelastic scattering with the excitation of one—phonon vi-
brational states with spin / in even—even nuclei are given
as

do. 2
a0 = |Fe(q)| )
(36)
do(0 1) |181]* < m ’
a0 _21+1m;IY“” 5 0) Fml@)]

dO’d

dad(0—>1 |ﬁ[

dQ 2[+IZ‘Y ( )‘

X {/dSrlFm(q, s)I” Lo (v — ‘/dSrFm(q, ) leo(x)”

o= [ertasFleml - | [ @rrasiamr]

where the dynamical deformation parameter 8; has the
form fr = /21 + 1{lm| &, |00), the scattering angle &
of the neutron—proton center—of-mass is related to the
momentum transfer by the correlation ¢ = 2K sin(6/2)
and the amplitudes Fe(q) and Fy,(q) are defined by for-
mulae (30), (34). The differential cross sections of the
deuteron dissociation and the deuteron dissociation with
the excitation of one—phonon vibrational states with spin
I in even—even nuclei are equal to:

dog &Pf
E_|F€( )|2( 71_)3a

dog(0 = 1) 1817 < P dPf
aQ 21+1m§; Yim (_ 0) m(a.f) (2r)3’
(37)

where the amplitudes Fy(q,f) and Fi,(q,f) are defined
by formulae (30), (35).

The angular distributions of the neutron—proton
center—of-mass, released in the deuteron dissociation
and in the deuteron dissociation with the excitation
of vibrational states of target-nucleus, can be obtained
the following way. Cross-sections (37) with amplitude
(1), integrated over the vector f using the completeness
condition of the neutron proton system wavefunctions

—|—f r)pp (r') = 6 (r — '), have the

form

2

2} . (38)

Integrating in formulae (38) with the allowance for (4), (5), (19), (28), we find

2

o e (5
O+m—)hﬁ2

5
48

—I-%{I—I—S(q)—

3153+ (5]}

—K?R?*R3®% (¢) JZ (¢R)

+2{1+50) -5 (L) [s(2) +5(-2)]} re [fc( ,q) <1+d—)fo()]
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K
2#]

)

— KRR4® (q)[1 — S (¢)] Im [fé (

exp [zw,,(R)]]

1. 1 q q . 0 N
~ SKRR4® (g) {1 -3 [S (5) +5 (_5)} } Im [exp [2i0, (R)] (1 + dﬁ) 1 (q)] , (39)
dog (0= 1) _ |81]* & IRNE
Q) 27+ 1 ZI‘ Lm (5’0)‘ om (4),
1 1 q E d d ’
om (q) = 5{1+S(q) -5 [S (5) +S(—§)} HRﬁ <1+dﬁ S (9)
5 2
+ g KRR (0) [gR i1 (4 R) = (Im] = 1) Jpm| (gR)]
1. 1 q q
~ S KRR (q) {1 -5 [5(¢)+s (—5)}} (4R imi-1 (aR) = (] = 1) Jjm (4R)]
x Im [exp [2io, (R)] R% (1 + d%) o (q)] . (40)
I
Expressions (39), (40) are allowed to contain the Flq) = /d3 Bru F N 41
squared terms over the small values Rq/R that guaran- (@ pd"r ¥ (p.x) Fa, w,8)¥olp, ), (1)
tees the positivity of the cross—sections in the vicinities
of minima. where p = 1,2 — %( rpi+ rp) and ¥ = r, — ryy are

Figure 1 shows the differential cross—section of the
110MeV deuterons elastically scattered by the 2°®Pb—
nuclei. Figure 2 shows the differential cross—sections of
the 80 MeV deuterons scattered elastically and inelasti-
cally with the excitation of the first 2% state in the 58Zn—
nuclei. The differential cross—sections of the 80 MeV
deuteron dissociation with and without the excitation
of the first 2% state in the ®8Zn-nuclei are presented on

figure 3.

IV. AMPLITUDE OF THE
THREE-NUCLEON-PARTICLE—NUCLEUS
INTERACTION

So far as the 3H-nucleus contains only one charged
nucleon it is convenient to calculate the amplitude of the
3H-nucleus scattering with the excitation of low lying
vibrational states of nuclei with the allowance for the
Coulomb interaction, the inner structure of 3H-nucleus,
the finite values of nuclear surface diffuseness and sur-
face refraction, with neglect of spins and isospins of the
nucleons.

The amplitude of the 3H-nucleus—nucleus interaction

is defined by formula [9]

the coordinates of Jacoby; r,1, ry2 and rp are the nu-
cleon radius—vectors; w and s are the projections of the
vectors p and r on the plane perpendicular to the in-
cident 3H-beam direction (z-axis); q is the momentum
transfer of the H-nucleus center—of-mass; ¥o(p,r) is
the 3H-nucleus ground-state wavefunction; ¥;(p,r) is
the wavefunction of the related motion of the nucleons,
which *H-nucleus was consisted of, in the final state.
The amplitude F(q,w,s) is equal to

1K
F(q,w,s) = 5

/ d?bexp (igb)

x [1 —exp [2ix (b, w,s)]], (42)

where K is the projectile wavevector; b = (bpy + bpa +

b,,)/3 is the impact parameter of the *H-nucleus center—

of-mass; by 1, bys and by, are the nucleon impact parame-

ters; x(b, w,s) is the scattering phase of the H-nucleus.
The 3H-nucleus scattering phase has the form

x(b,w,s) = Xn1(bn1) + Xn2(bn2) + xp(bp) + 0, (by),
(43)

where bp1, = b — w/3 £ 8/2, b,y = b + 2w/3,

Xn1,n2,p(bPnin2p) are the nuclear parts of the nucleon
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scattering phase; o, (b,) is the Coulomb part of the H-
nucleus’ proton scattering phase.

10 20 )

Fig. 5. The same as on Fig. 4 but for 217 MeV. Experi-
mental data are taken from [2].

The amplitude F(q,w,s) can be presented as a sum
of the Coulomb scattering amplitude Fe(q, w, s) and the
nuclear scattering amplitude distorted by the Coulomb
interaction Fiy(q,w,s):

Fe(q,w,s) =3fc (%,q) exp (iqw/3 +iqs/2), (45)

| K . .
Fn(q,w,s) = %/dzbexp (igb + 2i0,(by))

x [1—exp (2i(Xn1(bn1) + xn2(bn2) + xp(bp)))],  (46)

E N\ _ 2. ,nl(1+in)
fc<3’q) = 3Ny

exp(—2inIn(3¢/2K))
(4R)? ’

(47)

™

3M Ze?

RZK
nucleus proton; M is the nucleon mass; Ze? is the nucleus
charge.

where n = is the Coulomb parameter of the SH-

The nucleon profile functions wp1 n2,p(bn1n2,p) are in-
troduced by the correlations

F(qa w, S) = FC(qa w, S) + FN(qa w, S)a (44) wnl,n2,p(bn1,n2,p) =1- €Xp (Qanl,HZ,p(bnl,HZ,p)) . (49)

Therefore, the amplitude Fy(q, w,s) acquires the form

K . .
Fn(q,w,s) = %/dzbexp (igb + 2io,(by)) we(b, w, s), (50)

where the profile function w¢(b, w,s) that describes the interaction between the ®H-nucleus and the nucleus is
equal to

wi (b, w,8) = wp1(bn1) +wna(bpz) + wp(by) — wni(bni)wp(by)

_wn2(bn2)wp (bp) - wnl(bnl)wrﬂ(brﬂ) + wnl(bnl)wn2(bn2)wp (bp) (51)

The magnitudes wn1,n2,p(bn1n2,p) are equal to (12). Using formulae (13)—(15), we find

wi(b,w,s) =<1+ Zal,mYl,m (g,’l/)) Ri

(t)
3R w'(b,w,s), (52)

l,m

where w()(b, w, s) is defined by formula (51).

The 3H-nucleus profile function w(t)(b, w,s) can be represented in the form

W (b, w,s) = (1 4 %di +

1., 0
dZ
2 0R

3 ﬁ) wi(b,w,s) + wa(b,w,s),
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wi(b,w,s) = [wm(bm) + wna(bn2) + wp(bp)] :

| —

wa(b,w,s) = %{1 - %[Wnl(bnl) + wn2(bn2) + ""p(bp)]}
. { [wnl(bnl) - wp(bp)]z + [w”2(b”2) - wp(bp)]z
—I-[wm(bm) —wnz(bnz)]2}~ (53)

After the calculations similar to the ones presented in
section IT amplitude (41) acquires the form

F(q) = Fe(q) + Zal,mYl,m (g’ 0) Fm(q)a (54)

F.(q) = 3fc (9) S1 (a)
+ g {81 (@) + S (@) + S5 (@)} £ (@)

+ iR Rp®(g)Jo(¢R) exp (2i0y (R))

Fn(a) = %{Sl (@) + Sa() + Ss(q)}R%f&N) (a)
+ iKR®(q)p (qRJ|m| _1(¢R)

~ (lm| - 1>J|m|<qR>) exp(2ioy(R),  (55)

where f](N)(q) = (1 + %d% + %dzaf’_];) fi(q) and the

notations introduced are

Susla) = [ Epdre THE W (o) 0o(p.x),
Ss(q) = /dSpdST&‘_iquw\If;(p,T)\Ifo(p,l‘),
pz/d?’pd?’rp(p, r) % (p, r)¥y(p, r);

p(p,r) = Qi(p,r) + Q2(p,x),

1
Qi(p,xr) = pcost + §r|c0592|;

1
3" |cos 02| < pcos by,

1
Q2 (p,r) :r|cos€2|;§r|cosﬁz| > pcosf. (56)

The values of p, 1 and ; are contained in the intervals:
0<p<0,0<0 <7/2and 0< by <.

0—2%)

10 20 o

Fig. 6. The inelastic scattering differential cross—section
(mb/sr) with the excitation of the first 27 state (the up-
per figure) and the ratio of the elastic scattering differen-
tial cross—section to the Rutherford one (the lower figure)
for the 165 MeV *H-nuclei on the *®Zn-nuclei (R =5.7 fm,
d = 0.60 fm, v = 0.18, 2 = 0.25). Curves 1 show the inter-
ference between the Coulomb scattering and the nuclear one.
Curve 2 is for pure Coulomb scattering. Curves 3 are for pure
nuclear scattering.

V. DIFFERENTIAL CROSS-SECTIONS OF
THREE-NUCLEON-PARTICLE-NUCLEUS
INTERACTION

A complete set of the orthonormalized three—nucleon—
nucleus wavefunctions will be chosen in the form [8], [17]:

Wol,x) = volp)polr). 57
Walpor) = alo)polr), (59
Warlp,r) = valo)eelr), (59
bolp) = | e 220 (o0
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u(p) = exp(iup) + - 1_ - eXP(;luP) ’

(61)

where u = (2knz —ka) /3 and £ = (kp — k,1) /2 are
the deuteron—neutron and deuteron’s neutron—proton re-
lated motion wavevectors; kg = ky,1 + k, is the released
deuteron wavevector; ky1, k,2 and k, are the nucleon
wavevectors in the final state; ¢o(r) and ¢f (r) are defined

by (32), (33); A = 0.420fm~!. The wavefunctions (57)-

(59) correspond to the zero—value nuclear force range as-
sumption (the D — wave admixture to the ground-state
is neglected) and, besides the ground state, describe the
dissociation of three—nucleon—nucleus into two and three
parts.

Taking into account that the variables are separated
in the wavefunctions (57)—(59), the amplitudes (55) can
be rewritten as

Fo) =31 (400) G a3 Ga a/2)

+ {26 ) Gl + 61 a1V )

+ i K R®(q)pJo(gR) exp(2io,(R)), (62)

Fola) = {261 4/3) G 0/
+ Gy (%/3)}}%%&”@
+ iKR®(q)p (qRJ|m|_1(qR)

~ (m] - 1>J|m|<qR>) exp (2ioy(R) . (63)

G (q) = / & pe' v () ol p),

G (q) = / Bre® g (x)po(r). (64)

The elastically and inelastically scattered amplitudes
are defined by the magnitudes G; (¢) , G2 (¢) and p where
the wavefunction (57) should be taken as ¥ (p,r):

1
Gi(g) = A arctan (¢Ry),

1
Ga(q) = i arctan (¢Ra),

R AR R
[1+ (1 + —2)]
R

14+ —=1In(14 =2

Ry R 2Ry )
4R R

The differential cross—sections of the H-nucleus elas-
tic scattering and inelastic scattering with the excita-
tion of one—phonon vibrational states with spin [ in
even—even nuclei are given by formulae (36). The dif-
ferential cross—sections of the 3H-nucleus dissociation
into the deuteron and neutron are defined by formulae
(37) where we substitute f — u. Finally, the differen-
tial cross—sections of the 3H-nucleus dissociation into the
proton and two neutrons have the form

dotnpn) L P &
| Fy(qu ) —L LT
do ) (0 1) _ |8’ > Pu &Pf
m(q,u, ~
a9 REIEE Z [Yim (5:0) Pnla w0 (2m)® (2n)° (69)

The angular distributions of the deuteron—neutron and neutron—proton—neutron systems center—of-masses, released
in the 3H-nuclei dissociation are obtained with the help of completeness conditions for the functions (57)-(59):

0 D) e W + Dola) |1 @) + Dol e (0 fe (o)
dQ) 0 ° 0 ¢
~KR® (¢) pJo(aR) | Da(@)ImfZ () exp (2i0y(R)) + Ds (@) Im ;™
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(q)" exp (2io,(R))| K*R*®? (¢) p1J2(¢R),
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dot47) (0 — 1) EAR .
d((Z 21+1Z ‘Y“”(_ 0)‘ o™ (4)

2

alh4) (q) = Da(q) ‘R%fﬂ) (@)| — KR® () pDs(q) (4R -1 (aR) = (Im] = 1)Jjn (¢ R))

x Tmexp (2io,(R)) R%f&m ()" + K2R*®* (g) pr (¢Rpm 1 (aR) = (Im| = 1)y ()",

dQ)

=Ti(9)|fe (¢)) + To(q {‘fo q‘ +9RefN) (Q)*fc(Q)}

— KR @) phlaR) Ty m {372 0+ 8 ()"}

x exp (2io,(R)) + K?R*®* (q) pa J2 (qR),

Aot (0 1) 5] < N
_ ~ (t,npn)
- = ;I\yf,m(2,0)\ otnem) (g)

— KR® (q) pT3(q) (4R i -1(4R) = (Im] = 1)Jjm) (¢R))

0
oA 0) = Tole) | R 0

x Imexp (2ic,(R)) R%f}nm (9)" + K?R*®% (q) p2 (¢RJjm|-1(qR) — (|Im| — 1)J|m|(qR))2 ,

Di(g) = 9G3 (¢/2) [1 = G (4/3)],
Daa) = 5 {1463 (4/2) +1G2 (4/2) G1 () ~ 262 (4/2) G (4/3) + G a3}

Ds(q) = 2G2(q/2){2G2 (q/2) + G1 (q) — G1(q/3)[2G2 (¢/2) G1 (¢/3) + G1 (2¢/3)]},

Da(q) = 6G2(q/2) [1 = G1(¢/3)],

Ds(q) = g {1+2G2(¢/2) = 2G5 (¢/2) G1 (4/3) = G1 (29/3)}

R? BR? 13R.R, R_2[3R1 1]1< R2)+5R§’1< 231)

=2 2% 14 -2 14 =
PL="96 " 12 8 2 |’ T3 Yo ) Toem TR,

(68)

455



YU. A. BEREZHNOY, V. YU. KORDA

R3 2Ry
+ + 69
16 Ry /1 / GE+Q) 5-1- <) [ (5 C)] (69)
Ti(g) = 9[1 = G3(a/2)] [1 - GF (4/3)],
Toq) = 5 [1 - G1(a/3)] [1+ Ga (9) — 2G5 (¢/2)],
4
Ts(q) = 5 [1 = G2 (¢/2)][1 = G1 (a/3)],
pzzﬁ ﬁ_BRle_R_% 3R1+1 n 1_1_& +7R n 2R1
32 4 48 2 | Ra 3 2Ry 96 Ry Rz
R3 /°° dé /°° d¢ [ 2R, ]
— — ———In|l14+ —(£+¢
6K ), ) TETQ , erd
- 14+ —(+ 70
o | &) @ergh 1t o]+ (70
Composed *He—nucleus [Quasipoint *He-nucleus

Nucleus|E,MeV R, fm|rg,fm|d,fm| ~ [R,fm|rg,fm|d,fm| =~

Ny 130 | 6.3 | 1.41]| .60 | .20 |6.45|1.44| .55 | .45

217 | 6.2 |1.38] 65| -3 [6.30|1.41| .55 | .15

208p | 130 [ 7.1]144| .70 .20 [7.10]1.44|.70 | .50

217 | 6.9 |1.40| .60 | .10 |7.00|1.42| .55 | .40

2U8ph | 130 [ 82 [1.38].60| .00 [8.20]1.38] .60 | .50

217 | 8.0 |1.35| .65 | .20 |8.00]1.35| .60 | .60

Table. The diffraction model parameters for the 3He-nuclei-nuclei elastic scattering differential cross—section (R =1y Al 3).

Placing the charge of the 3He-nucleus in its center—of—
mass, we have carried out the analyses of experimental
data on the elastic scattering of the 130 and 217 MeV
3He-nuclei on ?°Zr,12°Sn and 2°®Pb nuclei (figures 4, 5
and table).

Figure 6 shows the differential cross—section of the
165 MeV 3H-nuclei scattered elastically and inelastically
with the excitation of the first 21 state in the ®3Zn-
nuclei. The differential cross—sections of the 165 MeV
3H-nuclei dissociation-into—two and —three—parts with
and without excitation of the first 2% state in the %3Zn—
nuclei are presented on figures 7, 8.

VI. ANALYSIS OF EXPERIMENTAL DATA

In [1]- [3] the complex optical potential with six fitting
parameters was used to analyze the differential cross—
sections of the elastic scattering of the 3He—nuclei by the
90Zr, 1206n and 2°%Pb nuclei at 130 and 217 MeV and
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deuterons by the 2°®Pb nuclei at 110 MeV. The optical
model has enabled to obtain good agreement between the
calculated and measured differential cross—sections. The
results of the analysis have shown large depth of the real
part of the potential V' as compared to the imaginary one
W: V/W = 84 for 110 MeV deuterons, V/W & 4 +5 for
130 MeV and V/W ~ 2+ 3 for the 217 MeV *He-nuclei.
In other words, the optical potential in the considered
case has a strong refraction and relatively small absorp-
tion. In the energy region under study this points on the
existence of substantial non—diffraction effects the role
of which increases noticeably with the increase of the
scattering angle.

The diffraction model is known to describe the exper-
imental data well when the absorption is large and the
refraction 1s small. Unfortunately, this kind of experi-
mental data is not available in literature now. In spite
of that, as is seen from figures 1, 2, 4, 5 and the Table,
the diffraction method developed by us, being a small
scattering angle approach and having only three fitting
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parameters, explains the given data well enough. We em-
phasize that in our approach the diffraction theory en-
ables us to obtain the closed—form expressions for the
differential cross—sections.

do 4
dQ

Fig. 7. The differential cross—section (b/sr) of the 165 MeV
*H-nuclei dissociated into two parts without (the upper fig-
ure) and with the excitation of the first 27 state (the lower
figure) of the ®®Zn-nuclei (R = 5.7 fm, d = 0.60 fm,
v = 0.18, B2 = 0.25) as a function of the deuteron-neutron
center—of—mass scattering angle 6 (deg.). Curve 1 shows the
interference between the Coulomb dissociation and the nu-
clear one. Curve 2 is for pure Coulomb dissociation. Curve 3
is for pure nuclear dissociation.

The quasipoint-projectile assumption for the He—
nucleus (assuming that the nucleons comprising the 3He—
nucleus are placed in its center of mass) leads to greater
values of R for °°Zr as compared with the case where the
3He inner structure is considered. The values of R for
the heavier nuclei remain almost the same. The values
of d slightly decrease. The refraction parameter ~ sub-
stantially increases for the quasipoint—>He-nucleus. This
fact 1s not surprising if we bear in mind that the optical
model which does not consider the inner structure of the
projectile points on large refraction too.

The differential cross—section of the inelastic deuteron
and the H-nucleus scattering with excitation of low ly-
ing vibrational states of nuclei obeys the diffraction rule
of phases [18], [19]: this cross section oscillates in phase
with the cross—section of elastic scattering if 7 is odd,
and out of phase if T is even (figures 2, 6). Figures 3, 7, 8
show that the same rule is valid for the cross—sections of
the deuteron and 3H-nucleus dissociation-into—two and
—three—parts with and without the excitation of low lying
vibrational states of nuclei.

do 4
dQ

do,

sin |-
dQ

=3

107 F

107 kE

Fig. 8. The differential cross—section (b/sr) of the 165 MeV
*H-nuclei dissociated into three parts without (the upper fig-
ure) and with the excitation of the first 2% state (the lower
figure) of the ®Zn-nuclei (R = 5.7 fm, d = 0.60 fm, v = 0.18,
(32 = 0.25) as a function of the neutron-proton-neutron cen-
ter—of-mass scattering angle 6 (deg.). Curve 1 shows the in-
terference between the Coulomb dissociation and the nuclear
one. Curve 2 is for pure Coulomb dissociation. Curve 3 is for
pure nuclear dissociation.

The differential cross—sections of the deuteron and the
3H-nucleus dissociation-into-two and —three-parts are
the oscillating functions of the scattering angle (momen-
tum transfer) of the center—of-masses (figures 3, 7, 8).
Figures 2, 3, 6-8 show that the cross—sections of elastic
scattering and dissociation oscillate in phase proving the
quasielastic character of the dissociation processes. The
Coulomb interaction consideration exerts a substantial
influence on the values of elastic scattering and dissoci-
ation cross—sections (figures 1-3, 6-8). Taking into ac-
count the Coulomb interaction is especially important in
calculating the deuteron and 3H-nucleus dissociation—
into—two and —three—parts where the Coulomb dissocia-
tion predominates in the region of small scattering angles
of the released nucleon system center—of-mass.

Therefore, the many—nucleon—particle inner structure
consideration allows to obtain the realistic values for fit-
ting parameters on the basis of the diffraction analysis
of experimental data. The detailed experiments on the
elastic scattering of complex nuclei by different nuclei
at different energies and further theoretical analysis will
give more precise information about the mechanisms of
interaction of the colliding particles and their inner struc-
ture.

VII. ACKNOWLEDGMENT

The research described in this publication was sup-
ported, in part, by the State Fund of Fundamental Re-
searches of Ukraine under Grant No. 2.4/416.

457



YU. A. BEREZHNOY, V. YU. KORDA

[1] N. Willis, I. Brissand, Y. Le Bornec, B. Taticheff,
G. Duhamel, Nucl. Phys. A 204, 454 (1973).

[2] A. Djaloeis, J.-P. Didelez, A. Golonsky, W. Oelert, Nucl.
Phys. A 306, 221 (1978).

[3] A. C. Betker, C. A. Gagliardi, D. R. Semon, R. E. Trib-
ble, H. M. Xu, A. F. Zaruba, Phys. Rev. C 48, 2085
(1993).

[4] R. J. Glauber, Phys. Rev. 99, 1515 (1955).

[5] R. J. Glauber, Phys. Rev. 100, 241 (1955).

[6] V. Franco, R. J. Glauber, Phys. Rev. 142, 1195 (1966).

[7] A. 1. Akhiezer, A. G. Sitenko, Phys. Rev. 106, 1236

(1957).
[8] Yu. A. Berezhnoy, A. P. Soznik, Sov. J. Nucl. Phys. 9,
760 (1969).
[9] Yu. A. Berezhnoy, A. P. Soznik, Sov. J. Nucl. Phys. 29,
350 (1979).
[10] Yu. A. Berezhnoy, V. Yu. Korda, Int. J. Mod. Phys. E
3, 149 (1994).

[11] G. Faldt, Phys. Rev. D 2, 846 (1970).

[12] T. E. O. Ericson, in Preludes in Theoretical Physics,
edited by A. de Shalit, H. Feshbach, L. van Hove (North-
Holland, Amsterdam, 1965) p. 321.

[13] W. E. Frahn, Diffractive Processes in Nuclear Physics
(Clarendon Press, Oxford, 1985).

[14] W. E. Frahn, R. H. Venter, Ann. Phys. (Paris) 24, 243
(1963).

[15] W. E. Bassiches, A. Dar, Ann. Phys. (Paris) 36, 130
(1966).

[16] S. Varma, A. Dar, Ann. Phys. (Paris) 39, 435 (1966).

[17] J. M. Knight, J. S. O’Connel, F. Prats, Phys. Rev. 164,
1354 (1967).

[18] J. S. Blair, Phys. Rev. 115, 928 (1959).

[19] N. Austern, J. S. Blair, Ann. Phys. (Paris) 33, 15 (1965).

[20] G. Duhamel, L. Marcus, H. Langevin-Joliot, J. P. Di-
delez, P. Narboni, C. Stephan, Nucl. Phys. A 174, 485
(1971).

ﬂM@PAKHIﬁHA B3A€MOIII ,ZI;EfITPOHIB I TPUHY KJIOHHUX S IEP
3 BAKKMMU I IPAMN

IO. A. Bepesxuoit!, B. 10. Kopaa?
! Xapriscoxutl dep ocasnuil ynisepcumem, na. Ceobodu, 4, Xapxie, 310077, Yxpaina,
mea. (0572) 35-16-83, e-mail: berezhnoy@pem.kharkov.ua
2 Hayxoso—mesninnutl yenmp eaexmpopizuvrol 06podru,
Hayionaavnoi axademit nayx Vxpainu,
eya. Yepnuwescwvrozo, 28, a/c 8812, Xapxis, 310002, YVxpaina,
mea. (0572) 40-42-82, e-mail: ipct@pem.kharkov.ua

Pospobiaerno Hopuit mudppakini fiHuii M axia, SKUH JO3BOJUB JICTATH aHAJITHYHI BUPA3n a5 dudbe peHI AT bHIX
Mepepi3iB TPy 3KHOTO I HENPY JKHOTO PO3CIAHHS Ta PO3MIETIIEHHS Ha Bl Ta TPU YACTUHU ABO— I TPUHYKJIOHHUX
siAep BaKKUMU AnpaMu. udpepeHIATbHI e pepisn po3meIIeHHs BUSIBISAIOTHCS OCIMIIOIOUNMI DY HKITAMHI Ky Ta,
BUJIBOTY IEHTPA MAC YaCTHHOK, IO HAJITaloTh. [IpoBeZeHO aHAMdi3 eKCIepUMEHTAJIbHUX TaHUX 3 IPY IKHOTO 1
HeIpy *KHOTO po3cisiHua mefiTponis i smxep *He mpoMiskHuX eHepIiil Ba KKEMH SIpaMil. Pe3yIbTaTi po3paxyHKIB
A0Bpe y3TOMKY IOThCA 3 €KCIIEPUMEHTAIBHUMU JAHUMU I BCIX BUKOPUCTAHUX 1€ p—MilieHe .

458



