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The properties of the hydrogen bond are investigated on the basis of the simplest object with

hydrogen bond, the ionic complex O{H{O. The electron energy spectrum of the O{H{O complex is

obtained. The formation of the two{minima adiabatic proton potential as a function of the hydrogen

bond length R

OO

, R

OH

distance, electron number N in complex is investigated. The electron density

maps and the distribution of the electron charge along the complex axis are obtained. We have also

studied the change of the electron charge density and the occupancy of the atomic orbitals of the

initial basis connected with proton shift along the hydrogen bond.
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I. INTRODUCTION

There are many papers devoted to the investigation

of the hydrogen bond systems including review papers

shedding some light on the nature of the hydrogen bond

[1{5]. The main subjects are the study of the electron

structure, optimum geometry, investigation of the adia-

batic potentials for the proton, vibrational spectra, pro-

ton transfer. Nevertheless, the problem of the formation

of adiabatic potential for the proton calls for a more

detailed study. For example the role of the Coulomb

components of the interaction between excessive charges,

which appear during the displacement of ions and elec-

tron redistribution, are not su�ciently studied. In pa-

per [6] the authors propose new model in which a strong

coupling between the protons and distortion of the struc-

tural units, connected by the hydrogen bonds (for exam-

ple, PO

4

tetrahedrons in KH

2

PO

4

crystal) is assumed

and the interaction between protons is disregarded. It is

supposed there that the distortion of tetrahedron is pro-

portional to its electric dipole moment.One should try to

extend such models, as not only dipole moment on the

edge structure units changes with the proton motions

along hydrogen bond, but the charge value is changed

also.

The data, obtained recently while investigating com-

plexes with the hydrogen bonds fMA

2

XgY

2

, (where

M=Pt, Pd or Ni; X=Cl, Br or J; Y=Br

�

, ClO

�

4

; A{

ligand molecule) shows us the importance of the consid-

eration of the electron charge redistribution which ac-

companies proton shifts on the bond [7]. In this case

it was established that additional electron charges (at

some conditions they form the charge{ordered state) are

inducted on the ions M depending on the location of

protons on N � H � Y . Electron redistribution, how-

ever, plays on important role at the formation of locally

anharmonic potentials in the lattice. This conclusion fol-

lows from the investigations, performed in the frames of

the cluster approach with consideration of the electron{

vibrational interactions (see [8, 9]).

The development of rather simple models, that de-

scribes such a situation, calls for a more detailed study

of the phenomena connected with the electron transfer

on the hydrogen bonds. In the present paper this prob-

lem is analyzed on the basis of the quantum{chemical

calculations.

We consider the ionic complex O{H{O (further on re-

ferred to as A � B � A

0

). The Hamiltonian of such a

complex has the following form:

H(r; R) =

X

i

(�

�h

2

2m

�

i

) +

X

i<j

e

2

jr

i

� r

j

j

+

X

i;n

U (r

i

�R

n

)

+

X

n

(�

�h

2

2M

n

�

n

) +

X

m;n

0

W (R

m

�R

n

) ; (1)

where r

i

, R

m

| electron and ion coordinates.

The �rst three terms form the electron part of the

Hamiltonian; the last two describe the ionic subsystem;

U (r

i

�R

n

) =

e

2

Z

el

jr

i

�R

n

j

; (2)

W (R

m

�R

n

) =

e

2

Z

ion

jR

m

�R

n

j

;

here Z

el

and Z

ion

are the e�ective ion charges (excluding

valence electrons) used for the description of the inter-

action between them and other electrons or ions respec-

tively.

In the present paper we calculate the electron spec-

trum of the O{H{O cluster with taking into account the

electron transfer, Coulomb and exchange interactions.

The formation of the adiabatic proton potential as a

function of the hydrogen bond length R

OO

, R

OH

dis-

tance, electron number in the cluster N is investigated.
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The electron density pictures and distribution of the elec-

tron charge along the complex axis is obtained. We inves-

tigate also a change of the electron charge density with

the proton shift along the bond.

II. INITIAL BASIS OF ELECTRON WAVE

FUNCTIONS AND ITS ORTHOGONALIZATION.

In our model approach we take into consideration the

minimum basis of electron wave functions consisting of

the three valence atomic orbitals. The 2p{functions of

the oxygen ions (f 

a

(r�R

a

)g, f 

a

0

(r�R

a

0

)g), directed

along the hydrogen bond and 1s{function of the hydro-

gen atom (f 

b

(r�R

b

)g) are taken into account.

Using the sp

3

orbitals on the oxygen ions as the basis

surely will be more correct, however, we suppose, that

the error caused by our simple approximation, can be

minimized by the appropriate choice of the Z

el

and Z

ion

parameters. The basis functions are the solutions of the

Schr�odinger equations

"

X

i

(�

�h

2

2m

�

i

) + U (r

i

�R

s

)

#

 

s

(r

i

) = E

s

 

s

(r

i

) (3)

(here s = a; b; a

0

).

At �rst the orthogonalization of the functions  

a

and

 

a

0

is performed:

~

 

a

= N

1

( 

a

+  

a

0

); N

1

=

1

p

2(1+S

aa

0

)

; (4)

~

 

a

0

= N

2

( 

a

�  

a

0

); N

2

=

1

p

2(1�S

aa

0

)

:

Here S

aa

0

=

R

 

�

a

(r) 

a

0

(r)dr| overlap integral of the

initial atomic function.

The transformation of the vector 45

o

rotation type is

used for the symmetrization of the new basis:

'

a

(r) =

1

p

2

(

~

 

a

+

~

 

a

0

) = � (r �R

a

) + � (r �R

a

0

) ; (5)

'

a

0

(r) =

1

p

2

(

~

 

a

�

~

 

a

0

) = � (r �R

a

) + � (r �R

a

0

) :

Here

� =

1

2

p

(1 + S

aa

0

)

+

1

2

p

(1� S

aa

0

)

; (6)

� =

1

2

p

(1 + S

aa

0

)

�

1

2

p

(1� S

aa

0

)

:

Orthogonalizing the third function to the �rst and the

second ones gives:

'

b

= � 

b

(r�R

b

) + �

a

'

a

+ �

a

0

'

a

0

(7)

= � (r �R

b

) + (�

a

� + �

a

0

�) (r �R

a

)

+ (�

a

0

� + �

a

�) (r �R

a

0

) :

Here the following notations are introduced:

� =

s

1� S

2

aa

0

1� S

2

aa

0

� S

2

ba

� S

2

ba

0

+ S

ba

S

ba

0

S

aa

0

;

�

a

= �(S

ba

� + S

ba

0

�)� ; (8)

�

a

0

= �(S

ba

� + S

ba

0

�)� :

The functions f '

a

,'

b

,'

0

a

g form an orthogonalized

and normalized basis of states.

III. ELECTRON SPECTRA OF O{H{O

CLUSTER.

Electron part of the Hamiltonian (1) in secondary

quantization representation on the f'

l

(r)g basis has the

following form:

H

el

(R) =

X

i;j;�

t

i;j

c

y

i;�

c

j;�

(9)

+

1

2

X

i;j;k;l

X

�;�

0

hijj

e

2

jr

1

� r

2

j

jklic

y

i;�

c

y

j;�

0

c

l;�

0

c

k;�

:

Here

t

ij

= hij �

�h

2

2m

�+

X

m

U (r�R

m

)jji =

=

Z

'

�

i

(r)(�

�h

2

2m

�+

X

m

U (r�R

m

))'

j

(r)dr ; (10)

hijj:::jkli � hijj

e

2

jr

1

� r

2

j

jkli =

Z

'

�

i

(r

1

)'

�

j

(r

2

)

e

2

jr

1

� r

2

j

'

k

(r

1

)'

l

(r

2

)dr

1

dr

2

:

Further on the following notations for the matrix ele-

ments are used:

�

1

= t

aa

; �

2

= t

bb

; �

3

= t

a

0

a

0

; t = t

ab

; t

0

= t

a

0

b

;
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U = haaj:::jaai; U

0

= hbbj:::jbbi;

� = haaj:::jabi; �

1

= hbbj:::jbai;

�

0

= ha

0

a

0

j:::ja

0

bi; �

0

1

= hbbj:::jba

0

i; (11)

�

a

= haa

0

j:::jaai= ha

0

a

0

j:::ja

0

ai;

L

1

= haa

0

j:::jabi; L

0

1

= ha

0

aj:::ja

0

bi; L

2

= hba

0

j:::jbai;

L

3

= haaj:::ja

0

bi; L

0

3

= ha

0

a

0

j:::jabi; L

4

= hbbj:::jaa

0

i;

K = habj:::jabi; K

0

= ha

0

bj:::ja

0

bi; V = haa

0

j:::jaa

0

i;

Q = haaj:::jbbi; Q

0

= ha

0

a

0

j:::jbbi; Q

a

= haaj:::ja

0

a

0

i ;

that describe, correspondingly, the energy of the local-

ized levels, electron transfer (t

ss

, t

ab

, t

a

0

b

), single{center

Coulomb interaction between an electron of the Hubbard

type (U and U

0

), correlated electron transfer (�, �

1

, �

0

,

�

0

1

, �

a

, L

i

, L

0

i

), two{centers Coulomb interactions (K,

K

0

, V ) and exchange interactions (Q, Q

0

,Q

a

).

Let us go to the basis of the electron states in the oc-

cupation number representation jn

a"

n

a#

n

b"

n

b#

n

a

0

"

n

a

0

#

i,

which includes 64 states:

jpi jpi jpi

j000000i j1i j111000i j23i j111001i j45i

j100000i j2i j110100i j24i j110110i j46i

j010000i j3i j110010i j25i j110101i j47i

j001000i j4i j110001i j26i j110011i j48i

j000100i j5i j101100i j27i j101110i j49i

j000010i j6i j101010i j28i j101101i j50i

j000001i j7i j101001i j29i j101011i j51i

j110000i j8i j100110i j30i j100111i j52i

j101000i j9i j100101i j31i j011110i j53i

j100100i j10i j100011i j32i j011101i j54i

j100010i j11i j011100i j33i j011011i j55i

j100001i j12i j011010i j34i j010111i j56i

j011000i j13i j011001i j35i j001111i j57i

j010100i j14i j010110i j36i j111110i j58i

j010010i j15i j010101i j37i j111101i j59i

j010001i j16i j010011i j38i j111011i j60i

j001100i j17i j001110i j39i j110111i j61i

j001010i j18i j001101i j40i j101111i j62i

j001001i j19i j001011i j41i j011111i j63i

j000110i j20i j000111i j42i j111111i j64i

j000101i j21i j111100i j43i

j000011i j22i j111010i j44i

(12)

Matrix H

ij

(R) on this basis consists of independent

blocks each of them corresponding to a certain number

of electrons N . It may be seen using the accepted con-

ceptions of valency that the most probable number of

electrons on such an O{H{O cluster (in its three valent

states that compose the initial basis and organise the

hydrogen bond) is close to four.

The realization of other values of N is also possible

when the electron transfer between the ions or ion groups

participating in forming di�erent hydrogen bonds is tak-

ing place.

In the present paper the cases N = 3, N = 4, N = 5

are analyzed.

For the N = 4 case the corresponding basis of states

includes 15 states. Matrix H

ij

(R) of (15�15) size con-

sists of three blocks: (3�3) | summary spin projection

S

z

= +1; (3�3) | summary spin projection S

z

= �1;

(9�9) | summary spin projection S

z

= 0. The most

energetically advantageous case S

z

= 0 is realised on the

states j43i, j45i, j46i, j48i, j50i, j52i, j53i, j55i and j57i

For the N = 3 case matrixH

ij

(R) of (20�20) size con-

sists of four blocks: (1�1) | summary spin projection

S

z

= �3=2; (1�1) | summary spin projection S

z

=

+3=2; (9�9) | summary spin projection S

z

= +1=2;

(9�9) | summary spin projection S

z

= �1=2. Cases

with the opposite spin are equivalent. The S

z

= 1=2

case is realised on the states j23i, j25i, j27i, j29i, j30i,

j32i, j34i, j39i and j41i.

For the N = 5 case matrix H

ij

(R) of (6�6) size con-

sists of two blocks:

(3�3) | summary spin projection S

z

= +1=2; (3�3)

| summary spin projection S

z

= �1=2. S

z

= 1=2 case

is realised on the states j58i, j60i and j62i.

The components of matrix H

ij

(R) blocks correspond-

ing to the above mentioned states are given in Ap-

pendix 1.

Matrix elements H

ij

(R) are formed by the matrix

elements (10) on the orthogonalized basis of functions

'

l

(r), which in turn are linear combinations of the cor-

responding matrix elements built on the initial basis of

the atomic functions  

m

(r). Analytical expressions ob-

tained for some of them are given in Appendix 2. A gen-

eral scheme of calculations is described and formulae for

the evaluation of exchange integrals are also presented

there. For the rest of the matrix elements numerical eval-

uation was performed (including evaluation of 3{center

integrals) on the basis of the atomic functions  

m

(r).
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Fig. 1. Dependence of the energy spectrum of the system

(eV) on R

OH

distance (A) at the following values of parame-

ters: N = 4, R

OO

= 2:40, Z

el

= 0:5, Z

ion

= 4:5.

Fig. 2. The lowest level of the system energy spectrum (the

proton adiabatic potential) as a function of the R

OH

distance

at N = 4 (Z

el

= 0:5, Z

ion

= 4:5) at di�erent values of the

bond length:

a) R

OO

= 2:36A c) R

OO

= 2:40A

b) R

OO

= 2:38A d) R

OO

= 2:44A

Fig. 3. The lowest level of the energy spectrum of the sys-

tem (proton adiabatic potential) as a function of the R

OH

distance at N = 3 (Z

el

= 0:5, Z

ion

= 4:5) at di�erent values

of the bond length:

a) R

OO

= 2:33A c) R

OO

= 2:37A

b) R

OO

= 2:35A d) R

OO

= 2:40A

Fig. 4. The lowest level of the energy spectrum of the sys-

tem (proton adiabatic potential) as a function of the R

OH

distance at N = 5 (Z

el

= 0:5, Z

ion

= 4:5) at di�erent values

of the bond length:

a) R

OO

= 2:30A c) R

OO

= 2:34A

b) R

OO

= 2:32A d) R

OO

= 2:36A

Fig. 5. Dependence of the critical value R

cr

OO

on the elec-

tron number on the complex.

For the numerical calculations the methods of Monte{

Carlo type for multi{dimensional integrals are used. The

error of evaluation was not more than 4%.

A matrix of the Hamiltonian was diagonalized, its

eigenvalues �

i

and eigenvectors were found.

The eigenvalues of the Hamiltonian of the electron sub-

system (where the ion{electron and the electron{electron

interactions were considered) were added by the energy

of the ion{ion interaction (excluding oxygen{oxygen in-

teraction), the result spectrum for the given values of

distance R

OO

is presented as a dependence on the R

OH

distance (see �g. 1).

The lowest level from this spectrum is presented in

more details on �g. 2. It may be seen, that at bond length

smaller than some critical value, we have a potential with

one central minimum,which at the increasing of the com-

plex length transforms into a double{well potential. This

fact shows us the existence of two equilibrium states of

the system, di�erent in the shift of the central ion in op-

posite directions along the complex axis. At some values

of the e�ective charges Z

el

and Z

ion

we can obtain pa-

rameters of the proton potential on the hydrogen bond

known from the experiments. Optimum Z values are dif-
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ferent for di�erent numbers of electrons on the cluster O{

H{O. The results of calculations are especially sensitive

to the di�erence �Z = Z

ion

� Z

el

. The optimal values

for the model parameters are 2:0 � � � 2:1; �Z = 4:0

(N = 4); �Z = 4:3 (N = 3); �Z = 5:0 (N = 5). For the

values of e�ective parameters used while plotting graphs

given on �g. 1 and 2 the critical value of the hydrogen

bond length is R

cr

OO

= 2:36A which is in accordance with

the data known from literature (see [5, 10]) for the cluster

(O

2

H

5

)

+

.

Similar graphs, obtained for cases N = 3 and N = 5

at the same values of the e�ective charges Z

ion

and Z

el

are given on �g. 3 and 4. The shapes of dependences of

the lowest energy levels versus R

OH

qualitatively remains

the same, as in the case of N = 4, however, quantitative

changes take place; R

cr

OO

is equal now 2:33A and 2:30A

correspondingly. The dependence of the critical length of

the hydrogen bond R

cr

OO

on the number of the electrons

on the cluster O{H{O is presented on �g. 5.

At increasing of the hydrogen bond length the height

of the potential barrier also increases as well as the �

value | the distance between positions of minima of

the proton potential on the bond. The obtained rela-

tion between the � parameter and the R

OO

distance for

di�erent numbers of electrons on the cluster O{H{O is

presented on �g. 6. This dependence becomes stronger

when R! R

cr

OO

, which is in agreement with results the

known from literature (see for example [11]), good quan-

titative correlations also take place. It should be noted

that the ratio �R

HH

=�R

OO

at R

OO

� R

cr

OO

is weakly

sensitive to the change of the number of electrons on the

bond.

IV. ELECTRON DENSITY DISTRIBUTION

Using the eigenvectors of the Hamiltonian, correspond-

ing, in particular, to the lowest eigenvalue �

min

, the dis-

tribution of the electron density can be obtained. The

states of the basis of the diagonalized Hamiltonian are

linearly expressed by the states of the previous basis

j

~

ii =

X

j

�

ij

jji ; (13)

then the density of electron charge in the j

~

ii state

should be

~�

i

(r) =

X

j

�

2

ij

�

j

(r) : (14)

The density of electron charge in the initial state �

j

(r),

built on the basis of the wave functions f'

1

(r), '

2

(r),

'

3

(r)g can be expressed as

�

j

(r) =

3

X

i

n

i

(j)j'

i

(r)j

2

; (15)

here n

i

(j) | occupation of the '

i

(r) orbital in the j ini-

tial state. For the N = 4 case density distribution in the

plane, in a which complex axis is located, is presented at

�g. 7a and 7b (for the proton located in one of the pots

and in the middle of the bond correspondingly).

However, more informational is the distribution of

electron density along the complex axis as a result of

the integration of the space distribution over the planes,

perpendicular to the complex axis, (see �g. 8a and 8b).

The di�erence between the curves shows to us the redis-

tribution of the electron density with the proton shifts

from the central position.

On the basis of the electron density distribution in

space the atomic orbitals occupations were calculated us-

ing the method of minimal squares. If f(x) is obtained

earlier electron distribution; and F (x) =

P

i

n

i

 

2

i

(x) is

some helper function (coe�cients n

i

are occupations),

then n

i

are found from the condition of the minimum of

Fig. 6. Dependence of the distance between hydrogen potential minima � on the complex length R

OO

.
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Fig. 7. Total electron density distribution in the plane containing a complex axis at di�erent positions of the proton: a) in

the left pot of the e�ective potential; b) in the middle of the bond. N = 4, Z

el

= 0:5, Z

ion

= 4:5, R = 2:40A

Fig. 8. Linear electron density distribution along the complex axis at di�erent positions of the proton: a) in the left pot

of the e�ective potential; b) in the middle of the bond; c) change of electron density with the proton shifts from the central

position (versus the value of the R

OH

distance). N = 4, Z

el

= 0:5, Z

ion

= 4:5, R = 2:40A
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Fig. 9. Orbital occupation versus the R

OH

distance

(N = 4, Z

el

= 0:5, Z

ion

= 4:5, R = 2:40A). O

0

corresponds

to the right oxygen ion.

�

2

=

R

(f(x)�F (x)) 

2

i

(x). Solving the equation

@�

2

@n

i

= 0

we obtain orbital occupations (see �g. 9) as dependences

on the R

OH

distance.

A change of the occupation of the 2p oxygen orbitals at

the shift of the proton from one minimum into another

is rather signi�cant and approach to 0.2 e. This value

corresponds to a change of the occupation of the 2P

z

oxygen orbitals point along the H{bond in the complexes

(O

2

H

3

)

�

, (O

2

H

5

)

+

, (CH

3

OH)

2

H

+

[10]. In general, pro-

ton shift on the bond is accompanied by increasing the

summary electron density at the regions to where the

proton is moved (see �g. 7, 8); however, the occupancy

of the 2p{orbitals of the corresponding oxygen ion is de-

creased. The occupancy of the 1s{orbitals of hydrogen

ion changes weakly and possesses maximum at the lo-

cation of proton in the middle of the bond (see �g. 9).

The obtained results are in agreement with the experi-

mentally obtained change of the electron charge density

with the displacement of halogen ions and protons in

halogen{bridged metal complexes and may con�rm the

applicability of the model of electron{proton correlation

in a system with the hydrogen bonds [12].

V. CONCLUSIONS

A lot of papers were devoted to the calculation of elec-

tron spectrum and adiabatic potential of the proton on

the bond for di�erent structures with hydrogen bonds.

Our goal was to concentrate more on the investigation of

the electron density change caused by the ion shifts, in

particular, by hydrogen motion on the bond. Similar cal-

culations for the cluster with few hydrogen bonds will al-

low us to investigate the connection between the electron

density change and proton{proton short{range interac-

tions. Describing the system with hydrogen bonds using

di�erent models one should take into account such in-

teractions. Until now these correlations were postulated

and their nature was not su�ciently clear. The role of

the electron subsystem there is evidently special because

electron redistribution caused by the proton shifts be-

tween equilibrium positions on the neighbouring bonds

lead to the additional interactions. That is why the study

of electron density change with proton shifts is impor-

tant.

A more detailed study of this problem will provide an

opportunity to formulate more real models for the de-

scription of such objects.
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APPENDIX 1. MATRIX BLOCKS

CORRESPONDING TO THE EXAMINED

CASES.

Case N=3:

H(23; 23) = 2�

1

+ �

2

+ 2K �Q+ U ;

H(23; 25) = 2L

1

� L

3

+ t

0

;

H(23; 27) = �� ��

1

� t ;

H(23; 29) = �L

2

��

a

� t

aa

0

;

H(23; 30) = L

4

;

H(23; 32) = �L

0

3

;

H(23; 34) = L

2

� L

4

+�

a

+ t

aa

0

;

H(23; 39) = �L

3

;

H(23; 41) = Q

a

;

H(25; 25) = 2�

1

+ �

3

�Q

a

+ U + 2V ;

H(25; 27) = �L

4

;

H(25; 29) = �L

0

3

;

H(25; 30) = L

0

1

+ �+ t ;

H(25; 32) = �2�

a

� t

aa

0

;

H(25; 34) = �L

0

1

+ L

0

3

� �� t ;

H(25; 39) = Q ;

H(25; 41) = �L

3

;

H(27; 27) = �

1

+ 2�

2

+ 2K �Q+ U

0

;

H(27; 29) = L

1

+ �

0

1

+ t

0

;

H(27; 30) = �L

1

+ L

3

� �

0

1

� t

0

;

H(27; 32) = Q

0

;

H(27; 34) = �L

3

;
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H(27; 39) = 2L

2

� L

4

+ t

aa

0

;

H(27; 41) = �L

0

3

;

H(29; 29) = �

1

+ �

2

+ �

3

+K +K

0

� Q+ V ;

H(29; 30) = �Q

0

;

H(29; 32) = L

1

� L

3

+ �

0

+ t

0

;

H(29; 34) = �Q

a

;

H(29; 39) = L

0

3

;

H(29; 41) = �L

2

+ L

4

� �

a

� t

aa

0

;

H(30; 30) = �

1

+ �

2

+ �

3

+K +K

0

� Q

a

+ V ;

H(30; 32) = �L

1

��

0

� t

0

;

H(30; 34) = �Q ;

H(30; 39) = L

0

1

� L

0

3

+ �

1

+ t ;

H(30; 41) = �L

4

;

H(32; 32) = �

1

+ 2�

3

� Q

a

+ U + 2V ;

H(32; 34) = L

3

;

H(32; 39) = �L

4

;

H(32; 41) = 2L

0

1

� L

0

3

+ t ;

H(34; 34) = �

1

+ �

2

+ �

3

+K +K

0

� Q

0

+ V ;

H(34; 39) = �L

0

1

��

1

� t ;

H(34; 41) = L

2

+�

a

+ t

aa

0

;

H(39; 39) = 2�

2

+ �

3

+ 2K

0

� Q

0

+ U

0

;

H(39; 41) = ��

0

��

0

1

� t

0

;

H(41; 41) = �

2

+ 2�

3

+ 2K

0

� Q

0

+ U :

Case N=4:

H(43; 43) = 2�

1

+ 2�

2

+ 4K � 2Q+ U + U

0

;

H(43; 45) = 2L

1

� L

3

+ �

0

1

+ t

0

;

H(43; 46) = �2L

1

+ L

3

��

0

1

� t

0

;

H(43; 48) = Q

0

;

H(43; 50) = 2L

2

� L

4

+ �

a

+ t

aa

0

;

H(43; 52) = �L

0

3

;

H(43; 53) = �2L

2

+ L

4

��

a

� t

aa

0

;

H(43; 55) = L

0

3

;

H(43; 57) = Q

a

;

H(45; 45) = 2�

1

+ �

2

+ �

3

+ 2K +K

0

�Q

� Q

a

+ U + 2V ;

H(45; 46) = �Q

0

;

H(45; 48) = 2L

1

� L

3

+�

0

+ t

0

;

H(45; 50) = �L

0

1

+ L

0

3

� �� �

1

� t ;

H(45; 52) = L

4

;

H(45; 53) = �L

0

3

;

H(45; 55) = L

2

� L

4

+ 2�

a

+ t

aa

0

;

H(45; 57) = �L

3

;

H(46; 46) = 2�

1

+ �

2

+ �

3

+ 2K +K

0

�Q

� Q

a

+ U + 2V ;

H(46; 48) = �2L

1

+ L

3

� �

0

� t

0

;

H(46; 50) = �L

0

3

;

H(46; 52) = L

2

� L

4

+ 2�

a

+ t

aa

0

;

H(46; 53) = �L

0

1

+ L

0

3

� �� �

1

� t ;

H(46; 55) = L

4

;

H(46; 57) = L

3

;

H(48; 48) = 2�

1

+ 2�

3

� 2Q

a

+ 2U + 4V ;

H(48; 50) = �L

4

;

H(48; 52) = 2L

0

1

� L

0

3

+� + t ;

H(48; 53) = L

4

;

H(48; 55) = �2L

0

1

+ L

0

3

� �� t ;

H(48; 57) = Q ;

H(50; 50) = �

1

+ 2�

2

+ �

3

+ 2K + 2K

0

� Q

� Q

0

+ U

0

+ V ;

H(50; 52) = �L

1

+ L

3

� �

0

��

0

1

� t

0

;

H(50; 53) = �Q

a

;

H(50; 55) = �L

3

;

H(50; 57) = 2L

2

� L

4

+�

a

+ t

aa

0

;

H(52; 52) = �

1

+ �

2

+ 2�

3

+K + 2K

0

�Q

a

� Q

0

+ U + 2V ;
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H(52; 53) = �L

3

;

H(52; 55) = �Q ;

H(52; 57) = 2L

0

1

� L

0

3

+�

1

+ t ;

H(53; 53) = �

1

+ 2�

2

+ �

3

+ 2K + 2K

0

� Q

� Q

0

+ U

0

+ V ;

H(53; 55) = �L

1

+ L

3

� �

0

� �

0

1

� t

0

;

H(53; 57) = �2L

2

+ L

4

��

a

� t

aa

0

;

H(55; 55) = �

1

+ �

2

+ 2�

3

+K + 2K

0

� Q

a

� Q

0

+ U + 2V ;

H(55; 57) = �2L

0

1

+ L

0

3

��

1

� t ;

H(57; 57) = 2�

2

+ 2�

3

+ 4K

0

� 2Q

0

+ U + U

0

:

Case N=5:

H(58; 58) = 2�

1

+ 2�

2

+ �

3

+ 4K + 2K

0

� 2Q�Q

a

�Q

0

+ U + U

0

+ 2V ;

H(58; 60) = �2L

1

+ L

3

��

0

� �

0

1

� t

0

;

H(58; 62) = �2L

2

+ L

4

� 2�

a

� t

aa

0

;

H(60; 60) = 2�

1

+ �

2

+ 2�

3

+ 2K + 2K

0

� Q� 2Q

a

�Q

0

+ 2U + 4V ;

H(60; 62) = �2L

0

1

+ L

0

3

�� ��

1

� t ;

H(62; 62) = �

1

+ 2�

2

+ 2�

3

+ 2K + 4K

0

� Q� Q

a

� 2Q

0

+ U + U

0

+ 2V:

APPENDIX 2. SOME INTEGRALS USED IN

THE ELECTRON SPECTRA OF THE O{H{O'

CLUSTER CALCULATIONS.

1. We have obtained analytical expressions for some

integrals used for the calculations of the O{H{O' cluster

electron spectra. The atomic orbitals were chosen in the

form of the Slater functions:

 = R

nl

(r) � Y

lm

(�; '): (16)

Radial part of the function has the following form:

R

nl

(r) = A

n;l

(�)r

n

�

�1

e

��

r

a

0

; (17)

where the normalized factor A

n;l

(�) is equal:

[A

n;l

(�)]

2

=

1

Z

0

drr

�2n

�

e

�2�

r

a

0

; � =

z

�

n

�

; (18)

n

�

| e�ective quantum number (for 1s; 2p{functions

n

�

= n), z

�

| e�ective nuclear charge, a

0

| the �rst

Bohr orbital radius. Generally the values � (or z

�

) are

the variational parameters but one can use the values

for them obtained for this atom in other compounds (see

Appendix 3).

We have calculated the two centre integrals using

spheroidal coordinates [13,14]

� =

r

a

+ r

b

R

;� =

r

a

� r

b

R

;' = '

a

= '

b

: (19)

The element of the volume in these coordinates is:

dV =

R

3

8

(�

2

� �

2

)d�d�d';

there are the boundaries of integration:

1 � � � 1;�1 � � � 1; 0 � ' � 2�:

Here r

a

are r

b

mean the electron distances from the

two centers a and b, R is the distance between the cen-

ters.

We present the analytical expressions obtained for

some molecular integrals which are not mentioned in the

literature, for example in [13,14]:

Z

 

A

(r)

e

2

r

A

 

B

(r)dr =

1

4

�

e

2

a

0

�

H

�

2

0

r

1

3

�

H

�

0

�

R

a

0

�

3

�

1

p

e

�p

�

4




�

1

p

�

1 +

1

p

�

sinh 
 +

1




�

cosh 
 �

1




sinh 


��

; (20)

Z

 

A

(r)

e

2

r

B

 

B

(r)dr =

1

4

�

e

2

a

0

�

H

�

2

0

r

1

3

�

H

�

0

�

R

a

0

�

3

�

�

e




+

�

1

p

�

1




�

sinh 


�

: (21)

Here  

A

(r) | 2p{oxygen orbital directed along the line connecting the centres (2P

�

),  

B

(r) | 1s{hydrogen orbital.

Here:
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p =

�

b

+ �

A

2

�

R

a

0

; 
 =

�

b

� �

A

2

�

R

a

0

: (22)

We have obtained the energy of the Coulomb repulsion between the two electrons in the 1s{state of the hydrogen

atom:

Z

 

2

B

(r

1

)

e

2

r

12

 

2

B

(r

2

)dr

1

dr

2

=

5

8

�

e

2

a

0

�

H

; (23)

which coincides with the expression for the Helium atom known in the literature [13]. In the case of the Coulomb

repulsion between the two electrons in the 2p{state of the oxygen atom we have:

Z

 

2

A

(r

1

)

e

2

r

12

 

2

A

(r

2

)dr

1

dr

2

=

501

1280

�

e

2

a

0

�

0

: (24)

Here jr

1

� r

2

j = r

12

. Below we present the formula obtained for one of the hybrid integrals:

Z

 

2

B

(r

1

)

e

2

r

12

 

A

(r

2

) 

B

(r

2

)dr

1

dr

2

(25)

=

1

4

e

2

a

0

(�

H

)

3=2

(�

0

)

5=2

�

R

a

0

�

3

�

�

4




�

1

p

e

�p

��

1 +

1

p

�

�

�

sinh 
 �

1




cosh 
 +

1




2

sinh 


�

�

�

1 +

1

p

1

+

1

p

2

1

��

� cosh 


1

+

1




1

sinh 


1

��

�

4




1

�

1

p

1

e

�p

1

��

1 +

1

p

1

��

sinh 


1

�

cosh 


1




1

+

sinh 


1




2

1

�

�

�

1 +

1

p

1

+

1

p

2

1

��

� cosh 


1

+

sinh 


1




1

��

�

�

H

2

R

a

0

4




1

1

p

1

e

�p

1

��

1

p

1

+

1




1

�

e




1

+

�

1

p

2

1

+

1




2

1

�

sinh 


1

�3

�

1

p

2

1

+

1

p

3

1

��

� cosh 


1

+

1




1

sinh 


1

�

+ + 3

�

1 +

1

p

1

��

�

1




2

1

cosh 


1

+

1




3

1

sinh 


1

���

;

where

p

1

=

3�

H

+ �

0

2

�

R

a

0

; 


1

=

3�

H

� �

0

2

�

R

a

0

:

2. One can obtain the analytical expression for the exchange integral

~

Q =

Z

 

�

A

(r

1

) 

�

B

(r

2

) �

e

2

jr

1

� r

2

j

 

B

(r

1

) 

A

(r

2

)dr

1

dr

2

(26)

only in the case of the hydrogen molecule, or in the case where  

A

(r

1

) and  

B

(r

2

) are the same nS functions which

are centered at A and B points. In the other cases one can obtain the analytical expression for the exchange integral

only in the form of the in�nite series. The authors propose the general scheme of the calculation and the formula in

the form of the in�nity series obtained for the exchange integrals in the case when the electron functions  (r) are

the S{type functions n

1

S and P{type functions directed along the line connecting the atoms (n

2

P

�

); n

1

; n

2

| the

principal quantum numbers. We have used the expansion into a series in the spheroidal coordinates of the

1

jr

1

�r

2

j

function [14]:

1

jr

1

� r

2

j

=

2

R

1

X

k=0

k

X

m=�k

(�1)

m

(2k + 1)

�

(k � jmj)!

(k + jmj)!

�

2

P

jmj

k

[�(a)] �Q

jmj

k

[�(b)]P

jmj

k

(�

1

)P

jmj

k

(�

2

)e

im('

1

�'

2

)

: (27)

Here �

1

; �

1

; '

1

and �

2

; �

2

; '

2

| spheroidal coordinates of the two electrons, �(a) | is the minimum and �(b) | is

the maximum from �

1

and �

2

, Q

jmj

k

| the Legendre functions of the second type.
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Q

jmj

k

(x) = (1� x

2

)

jmj

2

d

jmj

dx

m

Q

k

(x) ;

Q

k

(x) =

1

2

P

k

(x) ln

x+ 1

x� 1

�

1 � 3::::(2k� 1)

k!

�

�

x

k�1

+ x

k�3

�

1

3

�

k(k � 1)

2(2k � 1)

�

(28)

+x

k�5

�

�

1

5

�

1

3

k(k � 1)

2(2k � 1)

+

k(k � 1)(k � 2)(k � 3)

2 � 4(2k � 1)(2k � 3)

�

+ :::

�

:

A series continues to the last positive power of x.

Quantum numbers m

1

and m

2

equal zero for the

n

1

S{ and n

2

P

�

{functions therefore the only components

m = 0 from the sum over m in (27) give a contribution

to

~

Q (26) which will be:

2

R

1

X

k=0

(2k + 1)P

k

[�(a)]Q

k

[�(b)]P

k

(�

1

)P

k

(�

2

):

Then we go to the spheroidal coordinates in the

integrand for

~

Q (26). Let us consider the part of

the integrand (without

1

r

12

) depending on one variable

 

A

(r

1

) 

B

(r

1

)dr

1

. After transition to the spheroidal co-

ordinates we obtain:

 

A

(r

1

) 

B

(r

1

)dr

1

= �M

1

(�

1

; �

1

) ; (29)

where M

1

(�

1

; �

1

) is a polynomial in the spheroidal coor-

dinates.

The coe�cient � does not involve the variable of in-

tegration and is equal to the product of normalized

factors of the functions  

A

and  

B

; also it includes

the multiplier 2�(

R

2

)

n

1

+n

2

+1

. The coe�cient � equals

� = 2(

�

H

a

0

)

3=2

(

�

0

a

0

)

5=2

(

R

2

)

4

in the case when  

A

= 2�

�

(0),

 

B

= 1S(H). Let us consider the expression under the

integral in �

1

; �

1

variables for the k{term of the series.

Expression (29) is multiplied by the Legendre polynomial

P

k

(�

1

):

�M

1

(�

1

; �

1

) � P

k

(�

1

) = �M

k

2

(�

1

; �

1

) : (30)

Now, the variable �

1

is involved in the M

k

2

polynomial.

The integration of the M

k

2

(�

1

; �

1

) polynomial over the

�

1

variable is not complicated:

1

Z

�1

�

n

1

e

�
�

1

d�

1

= F (n; 
; 1)� F (n; 
;�1) ; (31)

where

F (n; �; r)�

Z

r

n

e

��r

dr = �

n!

�

n+1

e

��r

n

X

s=0

(�r)

s

s!

:

(32)

Denote

�

1

Z

�1

M

k

2

(�

1

; �

1

)d�

1

= �M

k

3

(�

1

) : (33)

The obtained polynomial in the variable �

1

(33) is multi-

plied further by the Legendre function of the �

1

variable

from series (27) . Denote

�M

k

3

(�

1

) � P

k

(�

1

) = �

X

i

A

k

i

�

m

i

i

: (34)

In the integrand for

~

Q the following components are also

presented:

�M

k

3

(�

1

) � f

k

(�

1

) = �

X

j

C

k

j

�

m

j

i

: (35)

We write (see 28)

Q

k

(x) =

1

2

P

k

(x) ln

x+ 1

x� 1

� f

k

(x) : (36)

We have obtained the general formula for the exchange

integral (26)

~

Q =

e

2

R

�

2

1

X

k=0

(2k + 1)

X

i

X

j

�

A

k

i

A

k

j

fF (m

i

; p; 1) � F (m

j

; p; 1) [c+ lnp]

� [F (m

i

; p;�1)F (m

j

; p; 1) + F (m

i

; p; 1)F (m

j

; p;�1)]� E

i

(�2p) + F (m

i

; p;�1)F (m

j

; p;�1) �E

i

(�4p)
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+ F (m

i

; p; 1) �

m

j

!

p

m

j

+1

e

�p

m

j

X

s=1

p

s

s!

s�1

X

k

0

=0

C

k

0

s

(s � k

0

� 1)!

p

s�k

0

�

0

@

1�

1

2

s�k

0

� (�1)

k

0

s�k

0

�1

X

l=0

(2p)

l

l!

1

A

(37)

� F (m

i

; p;�1) �

m

j

!

p

m

j

+1

e

p

m

j

X

s=1

p

s

s!

s�1

X

k

0

=0

(�1)

k

0

C

k

0

s

�F (s � k

0

� 1; 2p; 2)

+

m

i

!

p

m

i

+1

m

i

X

s=1

p

s

s!

s�1

X

k

0

=0

C

k

0

s

(s� k

0

� 1)!

p

s�k

0

�

s�k

0

�1

X

l=0

p

l

l!

l

X

l

1

=0

C

l

1

l

F (m

j

+ l � l

1

; 2p; 1) � [(�1)

l

1

� (�1)

k

0

]g

+ 2A

k

i

C

k

j

(

�

m

i

!

p

m

i

+1

m

i

X

s=0

p

s

s!

F (n

j

+ s; 2p; 1)� F (m

i

; p; 1) � F (n

j

; p; 1) +

n

j

!

p

n

j

+1

n

j

X

l=0

p

l

l!

F (m

i

+ l; 2p; 1)

)

;

E

i

(x) is the exponential integral

E

i

(�x) = �

1

Z

x

e

�t

t

dt; where x > 0 ;

c is the Euler constant

c =

1

Z

0

1� e

�t

t

dt�

1

Z

1

e

�t

t

dt = 0:577216 ;

C

k

s

=

s!

k!(s� k)!

| coe�cient from the Newton bino-

mial.

Let us consider the example of the described scheme

realization in the calculation of the exchange integrals

for the hydrogen molecule. We have

M

1

= �

2

1

� �

2

1

; � =

1

4

(�

R

a

0

)

3

; � = 1: (38)

The integration over the variable �

1

produces only two

nonzero terms of series (27): k = 0 and k = 2. We have

for k = 0:

M

(0)

2

(�

1

; �

1

) = M

1

(�

1

; �

1

) : (39)

In accordance with (33) M

(0)

3

(�

1

) = 2�

2

1

� 2=3 and

A

(0)

1

= 2, m

1

= 2; A

(0)

2

= �2=3, m

2

= 0.

We have for k = 2:

M

(2)

2

(�

1

; �

1

) = P

2

(�

1

)(�

2

1

� �

2

1

); (40)

M

(2)

3

(�

1

) = �4=5;

X

i

A

(2)

i

�

m

i

i

= �

4

5

P

2

(�

1

) = �

2

15

(2�

2

1

� 1) ;

therefore A

(2)

1

= �2=5, m

1

= 2; A

(2)

2

= 2=15, m

2

= 0.

Also

P

j

C

(2)

j

�

n

j

1

= M

(2)

3

(�

1

)f

2

(�

1

) = �(2=5)�

1

and

C

(2)

1

= �2=5, n

1

= 1.

One can obtain the known formula for the exchange

integral of the hydrogen molecule [14] using expression

(37) and using the obtained above nonzero coe�cients

A

i

, C

j

.

APPENDIX 3. EFFECTIVE PARAMETERS OF

THE SLATER TYPE ATOMIC ORBITALS.

It was obtained on the basis of a considerable amount

of results of the electron structure calculations of the

molecules and clusters that the behaviour of a certain

atom in some class of compounds is similar and the cal-

culations of the spectra of these compounds or molecules

in them give us similar values of the e�ective parame-

ters (which were taken as variational parameters). The

rules of the calculations of the e�ective parameters of the

Slater type atomic orbitals on the basis of these results

are determined [15, 16, 17]. We used the modi�ed Slater{

Engus rules in the calculations of the e�ective parame-

ters Z

�

and n

�

[17]. In compliance with them we have for

n � 3, n

�

= n and for the hydrogen and oxygen atom:

 

(H)

1s

: Z

�

= 1, n

�

= 1, �(1S

H

) = 1:0,

 

(O)

2p

: Z

�

= 4:55, n

�

= 2, �(2P

O

) = 2:275.

One can take into account the ionic state of the oxygen

atom in the compounds, for example for O

�1

and O

�1:5

we have

 

(O

�1

)

2p

: Z

�

= 4:2, n

�

= 2, �(2P

O

�1
) = 2:1,

 

(O

�1:5

)

2p

: Z

�

= 4:025, n

�

= 2, �(2P

O

�1:5
) = 2:012.
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ELEKTRONN� STANI TA AD��BATIQN� POTENC��LI VODNEVOGO ZV'�ZKU

�. V. Stas�k,�. V. Sizonenko, R. �. Stec�v

�nstitut f�ziki kondensovanih sistem NAN UkraÝni,

vul. Sv
nc�c~kogo, 1, L~v�v, 290011, UkraÝna

Vivqenovlastivost� vodnevogo zv'�zku na priklad� na�prost�xogoob'
kta,wo m�stit~ vodnevi� zv'�zok,

| �onnogokompleksu O{H{O. Otrimanoelektronni� ener�etiqni�spektr kompleksu O{H{O. Dosl�d�eno

formuvann� dvom�n�mumnogoad��batiqnogopotenc��lu dl� protona zale�no v�d dov�ini vodnevogo zv'�zku

R

OO

, v�dstan� R

OH

, qisla elektron�v N na kompleks�. Otrimano karti elektronnoÝ gustini � rozpod�lu

elektronnogo zar�du vzdov� osi kompleksu. Dosl�d�eno tako� zm�nu gustini elektronnogo zar�du � zase-

lenoste� atomnih orb�tale� vih�dnogo bazisu zale�no v�d zm�wenn� protona vzdov� vodnevogo zv'�zku.
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