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Some electrodynamic e�ects connected with the motion of dust grains in self{gravitational

plasma are considered. The investigation of energy losses of a probe particle moving through the

dusty self{gravitational plasma demonstrates that electric disturbances can be excited not only by

a charged particle but by neutral one as well which is impossible for the conventional ion{electron

plasma. The energy losses of a charged massive particle associated with wave excitation can either

increase (as compared with the conventional plasma) or drop down to zero for speci�c values of the

charge{to{mass ratio, depending on the charge sign. Moreover, it is shown that the simultaneous

action of electric and gravitational forces in a plasma medium can alter the traditional conditions

for the development of beam instability or change its growth rate.
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I. INTRODUCTION

Charged dust grains are often encountered in space

(e.g. in planetary rings, comet tails, interstellar dust

clouds, etc.). If the particulate density is su�ciently high,

these grains, along with electrons and ions, are involved

in collective processes and form a mixture that is referred

to as a dusty plasma [1]. The interaction of dust particles

in a dusty plasma does not occur via electric �elds alone

but also via gravitation which is an equally long{range

force. With the inclusion of self{gravitation e�ects, the

longitudinal dielectric constant " of such a medium is

markedly di�erent from that of the common plasma. In

hydrodynamical approach it may be written in the form

of [2]
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According to (eq. 1) the structure of dispersion equa-

tion for the longitudinal waves "(!;k) = 0 is such, that

the plasma processes ("

p

(!; k) = 0) and gravitational ef-

fects ("

G

(!; k) = 0) are involved in an equipotent man-

ner. The term K

T

is the thermal factor responsible for

the coupling of gravitational and electrical processes in

a hot medium (v

T;�

6= 0).

Stationary magnetic, electric or gravitation �elds are

nearly always present in space, a�ecting the motion of

di�erent kinds of particles in a di�erent way. Quite of-

ten, the result may be a relative motion of particles. Con-

sider, for example, the motion of particles in planetary

rings. For heavy particles gravity prevails independently

of their electric charge, and hence such particles move

through the gravitation �eld of the planet in accordance

with Kepler's laws. Contrary to this, the motion of mi-

croparticles (i.e. electrons and ions) is governed by elec-

tromagnetic forces greatly exceeding the gravitation and

the microparticles corotate with the planetary magnetic

�eld. As for electrically charged dust grains, they \feel"

both gravitation and electromagnetic forces. As a result,

the macroscopic particles do not move around the planet

at the Kepler velocity but rather at a somewhat di�erent

velocity V

0;�

, which is determined by the charge/mass

ratio [1], hence it may vary for particles with di�erent

Q

�

=m

�

even at the same orbit. Apparently, similar mul-

tistream structures should exist not only in dusty plasma

of planetary rings but in other astrophysical objects char-

acterized by the presence of a dust component.

If particles of di�erent species move at di�erent regular

velocities (V

0;�

6= 0), then the electric and gravitational

perturbations are coupled through the drift coupling fac-

tor K

V

. In hydrodynamical approach the dielectric con-

stant for a model of unbounded, mutually penetrating

cold particle beams would be [2]
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As a result of coupling between electric and grav-

itational disturbances in self{gravitation plasma, new

branches of eigenwaves can appear in the spectrum of

free oscillations, and the criteria for the stability of wave-

like perturbations, as well as their propagation condi-

tions, become altered. In this paper we concentrate on

the electrodynamic processes that a moving dust particle

causes in self{gravitational plasma. We consider two ef-

fects. One of them is the excitation of electrostatic waves

by a probe particle moving through the hot dust self{

gravitational plasma ( v

T;�

6= 0). The other e�ect is con-

nected with di�erent regular velocities of dust grains in

space plasma (V

0;�

6= 0) which may give rise to the beam

instability of the waves.

II. ENERGY LOSSES OF MOVING PARTICLES

In the conventional plasma, electromagnetic waves are

known to be excited by electric currents, i.e. charged par-

ticles moving through the medium. The situation may

be di�erent with the inclusion of self{gravitation e�ects.

In particular, electromagnetic waves can be excited in a

self{gravitational plasma by a stream of electrically neu-

tral, as well as charged particles. Indeed, a heavy neutral

particle moving through the dusty medium acts upon

grains of the medium through its gravitation �eld. The

dust grains start to move and produce, owing to their

electrical charge, electric currents that excite an electro-

magnetic �eld. Contrary to this, a massive charged par-

ticle moving through such a medium may fail to excite

any perturbations, should the gravitational perturbation

be compensated by an electric disturbance. Such a com-

pensation is only possible if the mass M

0

of the probe

particle and its charge Q

0

are related in some special way.

To analyze these unusual e�ects, let us consider energy

losses of a particle moving through the self{gravitational

plasma at a velocity v

0

.

In the conventional plasma, the energy E spent by a

moving charged particle to excite plasma waves can be

evaluated as the work done against the braking force ow-

ing to the electric �eld E at the point where the particle

is at the time moment t. The change in energy per unit

time is
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equations of motion and continuity plus Poisson's equa-
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with � being Dirac's delta. The Fourier components of E

and � following from  
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Applying the inverse Fourier transformation and substituting the result into equation (6) we can arrive, with an
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Here k

0

is the highest value of k

?

allowable in the classi-

cal approach to the description of collisions between the

probe particle and particles of the medium. The integra-

tion along the real !{axis can be performed unambigu-

ously with the use of the standard substitution [3]

1

"(!)

=

P

"(!)

� i��f"(!)g;

where P denotes the Cauchy principal value and
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) = 0. The lat-

ter equations is the dispersion relation for longitudinal

waves in the self{gravitational plasma. In general case

solutions ! = !

s

(k) can be represented as complex com-

binations of the Jeans and plasma frequencies for indi-

vidual components and show a marked dependence on

the thermal velocities [2]. The analysis of these solutions

is su�ciently complex.We shall, therefore, consider some

simpler particular cases.
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The rate of energy losses in this case is
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The jdE=dtj vs !
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dependence for M
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= 0 (this condi-

tion should be understood in the sense that the mass of

moving particle is so small, that M
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is shown schematically in �g. 1 (curve 2). At !
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+ 0. A singu-

lar behavior can be removed by taking into account the

wave absorption in the medium into account. The most

straightforward way is to introduce the frictional force

caused by collisions between particles into the equation

of motion which is used for the obtaining of dielectric

constant tensor in accordance with the standard proce-

dure [3]. If � is a collision frequency, then the dielec-

tric constant " of the single{component medium becomes

more complicated: " = 1�!
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Fig. 1. Energy losses of a charged particle moving through

a plasma: curve 1 is for the conventional plasma; curve 2

for a collisionless self{gravitational plasma, and curve 3 for a

self{gravitational plasma with collisions.

Curve 3 in �g. 1 shows the jdE=dtj vs !

2

p

dependence

for � 6= 0, M

0

= 0. It can be compared with a similar

dependence for the common plasma (curve 1) given by

[3]
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As can be seen from the �gure, the three curves are

markedly di�erent even with M

0

= 0. The di�er-

ences are more pronounced with M

0

6= 0 (i.e. M

0

�

Q

0

!

p

=

p

G!

G

). Of the greatest interest is the e�ect shown

by self{gravitational plasmas, namely excitation by a

neutral particle of longitudinal oscillations involving an

electric �eld component (E

k

6= 0 with Q

0

= 0). The

energy lost by the neutral particle is given by
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The rate of the energy losses, equation (15), happens to

depend on the sign of the charges Q

0

and Q, speci�cally

it can be either higher than in equation (18) (Q

0

and

Q are of opposite signs) or lower than that (Q

0

and Q

are of the same sign). Moreover, the polarization losses

can vanish if some special relation between Q

0

, M

0

and

parameters of the medium holds, viz. Q

0

=M

0

= Gm=Q.

This can only occur if the moving probe particle has a

charge of the same sign as the ambient plasma particles,

and their electrostatic repulsion is balanced by gravita-

tional attraction (�g. 2).

Fig. 2. The polarization losses of a massive charged parti-

cle in a self{gravitational plasma: curve 1 corresponds to the

opposite signs of Q and Q

0

; curve 2 for the same signs of Q

and Q

0

:

The pattern described will be somewhat di�erent in

the case of a bicomponent medium. The rate of energy

losses will show a considerably more complex depen-

dence upon !

2

p;1;2

, !

2

G;1;2

and k

2

v

2

T;1;2

. We shall consider

a simpler case of sharply di�erent masses of the two

kinds of particles (m

1

� m

2

), assuming !

2

p;1

� !

2

G;1

;

!

2

p;2

� !

2

G;2

and v

2

0

� v

2

T;1

� v

2

T;2

! 0. In such a

case the real solutions of the equation "(!

s

) = 0 are

! = �(!

2

p;1

+ k

2

v

2

T;1

)

1=2

.

Integrating equation (13) we arrive at

dE

dt

' �

!

2

p;1

v

0

"

Q

2

0

� 2G

1=2

M

0

Q

0

!

p;1

!

G;1

+ !

p;2

!

G;2

!

2

p;1

+ !

2

G;2

� GM

2

0

!

2

p;2

v

2

T;1

(!

2

p;1

+ !

2

G;2

)v

2

0

#

log(k

0

v

0

=!

p;1

); (20)

where we have assumed k

2

0

v

2

0

� !

2

p;1

; !

2

G;2

and k

2

0

v

2

T;1

�

!

2

p;1

; !

2

G;2

. As can be seen, the energy losses in a bi-

component medium cannot turn to zero for any relation

between !

p;1

, !

G;1;2

and k

2

v

2

T;1;2

. Indeed, the dispersion

relation has at least two real solutions. However, the par-

ticle will not be decelerated if its charge and mass are

related so as to nullify the square brackets in equation

(20).

Generally, both charged and neutral particles mov-

ing through a multicomponent self{gravitational plasma

are capable of exciting waves similar to the electrostatic

waves of conventional plasmas.

III. TWO{BEAM INSTABILITY OF THE

SELF{GRAVITATIONAL DUSTY PLASMA

Until now we have considered the e�ect, connected

with the motion of one probe particle. Along with ran-

domly moving particles, space plasmas often involve par-

ticle streams with ordered velocities[1,2]. The regular

speeds of particles characterized by di�erent masses and

charges are di�erent, which may give rise to beam insta-

bilities. Unstable states accompanied by generation of

noise or individual waves can arise in the case of purely

gravitational as well as purely electrostatic interaction

between the streams [4]. The simultaneous action of elec-

tric and gravitational forces in a plasma medium can al-

ter the traditional conditions for the development of an

instability or change its growth rate. To analyze the in-

stability of self{gravitational plasma 
ows, let us return

to the dispersion relation equation (2) with "

p

, "

G

and

K

V

given by equations (3), (4) and (5), respectively. As

a result, the dispersion relation becomes
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Once again, we will consider the simplest case of two par-

ticle streams, �; � = 1; 2. Then in the frame of a refer-

ence moving at the mean velocity V

0

= (1=2)(V
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)

equation (21) turns into a fourth-order equation in e! =
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where !
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p;G

denotes j!
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j. The dispersion

relation can be analyzed graphically. To do so, let us con-

sider the right{hand side of equation (22) as a function

of frequency, � = f(e!). The solutions of equation (22)

are given by intersections of this graph with the straight

line � = 1. To analyze the relative importance of the two

kinds of particle interaction, let us introduce the dimen-

sionless parameters y
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If y

1

or y

2

happen to equal 1, then the corresponding

term in equation (23) vanishes but parameters of that

beam are still represented in the dispersion relation ow-

ing to the third term. With any y

�

, the graph of f(e!) is

characterized by two vertical asymptotes at e! = �k�V ,

and four di�erent types of the curves are possible (see

�g. 3):

(a) y

�

> 1. Electrical interaction prevails in both

beams. The appearance of four intersection points with

� = 1 suggests the existence of four eigenmodes, two of

which propagate at phase velocities close to the speed

V

0;1

of one beam and the other two at the velocities

close to V

0;2

. As the loop in the area e! < jk�V j moves

above the level � = 1, intersection points 2 and 3 merge

and then disappear, giving rise to two complex{conjugate

roots of equation (22). The system becomes unstable

with respect to electrical interaction of the beam par-

ticles (beam instability in conventional plasma [3]).

(b) y

�

< 1. Gravitation interaction prevails in both

beams. The system is unstable against excitation of four

wavelike disturbances propagating in two pairs at phase

velocities close to V

0;1

and V

0;2

(the beam instability of

gravitating particles develops against the background of

the Jeans{unstable ambient medium [4]). In this case the

beam parameters are such that the loop lying in the do-

main e! < jk�V j moves above � = 1, then the two waves

with the phase velocities close to the mean velocity of

the two beams are stable, however the system as a whole

remains unstable.

(c) y

2

< 1 and y

1

> 1. Gravitation prevails in the sec-

ond beam with V

0;2

= V

0

� �V . Owing to that beam,

the system is unstable against gravitational interactions.

The waves with v

ph

' V

0;1

= V

0

+�V remain stable.

(d) y

1

< 1 and y

2

> 1. The system is unstable like

in c), however the growing wave is controlled by gravita-

tion forces in the �rst beam. Besides, constant{amplitude

waves are possible in the system, traveling at a velocity

close to V

0;2

= V

0

��V .

Strictly speaking, the run of f(e!) is not determined by

the parameters y

1

and y

2

alone (altogether, there are �ve

parameters of the frequency dimension, i.e. !

p;1

; !

p;2

;

!

G;1

; !

G;2

; and k�V ). Therefore, the inequalities like

y

1;2

> 1 or y

1;2

< 1 should be complemented by other

conditions, namely the sign of f(e!) should be determined

by that of the �rst term in the vicinity of e! = k�V and

by the second term of equation (23) in the vicinity of

e! = �k�V .

Fig. 3. Four possible variants of the � = f(v

ph

) depen-

dence: a) y

1

> 1 and y

2

> 1, the electric interaction prevails

in both beams; b) y

1

< 1 and y

2

< 1, the gravitational in-

teraction prevails in both beams; c) y

1

> 1 and y

2

< 1, the

electric interaction is dominant in the �rst beam, while the

gravitational in the second; d) y

1

< 1 and y

2

> 1, the grav-

itational interaction is dominant in the �rst beam and the

electric in the second.

Investigating the system stability analytically is quite

di�cult as it involves the analysis of a fourth{order al-

gebraic equation. By way of example, we will just con-
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sider a restricted model. Let the beam of a heavy par-

ticles (!

G;2

� !

p;2

) move through an ensemble of �ne

dust grains !

G;1

� !

p;1

. To further simplify the anal-

ysis, we assume !

2

p;1

� !

2

G;1

= !

2

G;2

� !

2

p;2

= !

2

0

. The

general run of f(e!) is determined by the magnitude of

k. For short wave disturbances, k�V > !

2

p;G

=2!

0

, the

growth rate is � � 2k�V !

0

=(4k

2

�V

2

� !

2

0

)

1=2

. For

the disturbances satisfying the opposite inequality, i.e.

k�V < !

2

p;G

=2!

0

, f(e!) is symmetrical at ! > 0 and

! < 0 and tends to in�nity at e! ! �k�V . It reaches

the minimum of !

4

p;G

=k

4

�V

4

= f(0) at e! = 0. In the

case of f(0) lying below the unit level, which is possi-

ble with !

p;G

< k�V < !

2

p;G

=2!

0

, the self{gravitating

plasma streams are stable with respect to such distur-

bances.

In the case of long wave disturbances, k�V < !

p;G

,

such that f(0) = !

4

p;G

=k

4

�V

4

> 1 there are two un-

stable branches with the respective growth rates �

1;2

�

!

2

p;G

=(!

2

0

� 4k

2

�V

2

)

1=2

.

The dispersion relation equation (22) allowing for both

kinds of the particle interaction is capable of predicting

one of the four possible versions (see �g. 3) for instability

development in a two{component plasma{beam system.

We consider the linear theory, which describes just the

initial stage of the growing disturbance. A further devel-

opment of the process is essentially nonlinear, and it is

not described by the dispersion relation equation (23).

Such a process can be analyzed through numerical mod-

eling of the particle dynamics. Apparently, the �rst step

in this direction is the numerical modeling of the particle

dynamics in a two{component system with regular drifts

[5].

IV. SUMMARY

Summarizing this paper, we have tried to demon-

strate some of the interesting peculiarities of dusty self{

gravitational plasma. Calculations of energy losses of

a probe particle moving through the self{gravitational

plasma showed, that electric disturbances can be excited

even by a neutral particle, which is impossible for the

conventional ion{electron plasma.Meanwhile, the energy

losses of a charged massive particle associated with wave

excitation can either increase (as compared with the con-

ventional plasma) or drop down to zero for speci�c val-

ues of the charge{to{mass ratio, depending on the charge

sign. The beam instability can arise not only in charged

particle beams or in neutral beams but in the streams of

self{gravitational plasmas as well where particles inter-

act through electric and gravitation forces. The simul-

taneous action of electric and gravitational forces in a

plasma medium can alter the traditional conditions for

the development of the beam instability or change their

growth rate. In the general case of a self{gravitational

plasma, the instability growth rates can be higher or

lower as compared with the \pure" modes. The growth

rate can even change its sign to become an attenua-

tion owing to the combined interaction, i.e. an unstable

stream{controlled state can turn stable and vice versa.
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ZBUD�ENN� ELEKTROSTATIQNIH HVIL^ QASTINKAMI,WO RUHA�T^S�

V PILOVI� SAMO�RAVITU�QI�PLAZMI

V. V. �roxenko

Rad�oastronom�qni� �nstitut NAN UkpaÝni,

vul.Qervonopraporna, 4, Hark�v, 310002, UkraÝna

U roboti rozgl�nuti de�ki elektrodinamiqni efekti, pov'�zani z ruhom zar�d�enih pilovih qastinok u

pilovi� samo�ravitu�qi� plazmi. Pokazano, wo vrahuvann� samo�ravitaciÝ v plazmi zmin�
 veliqinu vtrat

ener�iÝ qastinok, wo ruha�t~s�, bo por�d z elektriqno� neobhidno vrahovuvati i �ravitaci�nu vza
modi�

probnoÝ qastinki z plazmo�. Navit~ u na�prostixomu vipadku odnokomponentnoÝ samo�ravitu�qoÝ plazmi

dl� du�e legkoÝ zar�d�enoÝ pilinki harakter zale�nosti pol�rizaci�nih utrat istotno vidrizn�
t~s� vid

utrat ener�iÝ u zviqa�ni� plazmi. Na�cikav�xo�osoblivist� pilovoÝ plazmi 
 �eneraci� elektriqnih poliv
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ne�tral~no� masivno� qastinko�. U vipadku bagatokomponentnoÝ pilovoÝ plazmi pri viznaqenomu spiv-

vidnoxenni mi� parametrami seredoviwa i probnoÝ qastinki pol�rizaci�ni vtrati mo�ut~ zgornutis� do

nul�. Krim togo, u roboti doslid�eni umovi zbud�enn� elektromagnetnih hvil~ u potokah samo�ravitu�qoÝ

plazmi. Odnoqasne vrahuvann� elektriqnoÝ ta �ravitaci�noÝ vza
modi� komponentiv plazmi privodit~ do

istotnoÝ transformaciÝ kriteriÝv zviqa�noÝ puqkovoÝ nesti�kosti.Pri c~omu zmin��t~s� porogovi znaqenn�

ta inkrementi nesti�kosti; bil~x togo, z'�vl�
t~s� vuz~ka oblast~ sti�kih rozv'�zkiv, vlastiva til~ki sa-

mo�ravitu�qim plazmovim potokam.
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