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Some electrodynamic effects connected with the motion of dust grains in self-gravitational
plasma are considered. The investigation of energy losses of a probe particle moving through the
dusty self-gravitational plasma demonstrates that electric disturbances can be excited not only by
a charged particle but by neutral one as well which is impossible for the conventional ion—electron
plasma. The energy losses of a charged massive particle associated with wave excitation can either
increase (as compared with the conventional plasma) or drop down to zero for specific values of the
charge—to—mass ratio, depending on the charge sign. Moreover, it is shown that the simultaneous
action of electric and gravitational forces in a plasma medium can alter the traditional conditions
for the development of beam instability or change its growth rate.
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I. INTRODUCTION

Charged dust grains are often encountered in space
(e.g. in planetary rings, comet tails, interstellar dust
clouds, etc.). If the particulate density is sufficiently high,
these grains, along with electrons and ions, are involved
in collective processes and form a mixture that is referred
to as a dusty plasma [1]. The interaction of dust particles
in a dusty plasma does not occur via electric fields alone
but also via gravitation which is an equally long-range
force. With the inclusion of self-gravitation effects, the
longitudinal dielectric constant ¢ of such a medium is
markedly different from that of the common plasma. In
hydrodynamical approach 1t may be written in the form

of [2]
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where the frequencies wy, o and wg o characterize the
time scales of cooperative effects that are associated with
the electric and gravitational interactions, i.e. wp o =
(4#@2710705771;1)1/2 and wg o = (47anoyoémoé)1/2 are the
plasma and Jeans frequency, respectively, for the parti-
cles of species o (plasma particles are characterized by
the charge ()., mass mg, the equilibrium density n,
and thermal velocity vy o, G is the gravitational con-
stant), Kp = Z(Q) wpyawaa(wz - k’zv%yo{)_l.

According to (eq. 1) the structure of dispersion equa-
tion for the longitudinal waves (w,k) = 0 is such, that
the plasma processes (g, (w, k) = 0) and gravitational ef-
fects (eq(w, k) = 0) are involved in an equipotent man-

ner. The term Krp is the thermal factor responsible for
the coupling of gravitational and electrical processes in
a hot medium (vr o # 0).

Stationary magnetic, electric or gravitation fields are
nearly always present in space, affecting the motion of
different kinds of particles in a different way. Quite of-
ten, the result may be a relative motion of particles. Con-
sider, for example, the motion of particles in planetary
rings. For heavy particles gravity prevails independently
of their electric charge, and hence such particles move
through the gravitation field of the planet in accordance
with Kepler’s laws. Contrary to this, the motion of mi-
croparticles (i.e. electrons and ions) is governed by elec-
tromagnetic forces greatly exceeding the gravitation and
the microparticles corotate with the planetary magnetic
field. As for electrically charged dust grains, they “feel”
both gravitation and electromagnetic forces. As a result,
the macroscopic particles do not move around the planet
at the Kepler velocity but rather at a somewhat different
velocity Vi o, which is determined by the charge/mass
ratio [1], hence it may vary for particles with different
Qo /me even at the same orbit. Apparently, similar mul-
tistream structures should exist not only in dusty plasma
of planetary rings but in other astrophysical objects char-
acterized by the presence of a dust component.

If particles of different species move at different regular
velocities (Vo # 0), then the electric and gravitational
perturbations are coupled through the drift coupling fac-
tor Ky . In hydrodynamical approach the dielectric con-
stant for a model of unbounded, mutually penetrating
cold particle beams would be [2]

K (w,k)
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As a result of coupling between electric and grav-
itational disturbances in self-gravitation plasma, new
branches of eigenwaves can appear in the spectrum of
free oscillations, and the criteria for the stability of wave-
like perturbations, as well as their propagation condi-
tions, become altered. In this paper we concentrate on
the electrodynamic processes that a moving dust particle
causes in self-gravitational plasma. We consider two ef-
fects. One of them is the excitation of electrostatic waves
by a probe particle moving through the hot dust self-
gravitational plasma ( vr o # 0). The other effect is con-
nected with different regular velocities of dust grains in
space plasma (V) o # 0) which may give rise to the beam
instability of the waves.

II. ENERGY LOSSES OF MOVING PARTICLES

In the conventional plasma, electromagnetic waves are
known to be excited by electric currents, i.e. charged par-
ticles moving through the medium. The situation may
be different with the inclusion of self-gravitation effects.
In particular, electromagnetic waves can be excited in a
self—gravitational plasma by a stream of electrically neu-
tral, as well as charged particles. Indeed, a heavy neutral
particle moving through the dusty medium acts upon
grains of the medium through its gravitation field. The
dust grains start to move and produce, owing to their
electrical charge, electric currents that excite an electro-
magnetic field. Contrary to this, a massive charged par-
ticle moving through such a medium may fail to excite

any perturbations, should the gravitational perturbation
be compensated by an electric disturbance. Such a com-
pensation is only possible if the mass My of the probe
particle and its charge @)y are related in some special way.
To analyze these unusual effects, let us consider energy
losses of a particle moving through the self-gravitational
plasma at a velocity vy.

In the conventional plasma, the energy £ spent by a
moving charged particle to excite plasma waves can be
evaluated as the work done against the braking force ow-
ing to the electric field E at the point where the particle
is at the time moment ¢. The change in energy per unit
time is

dg/dt = QO(VOE)r:vUt~

Allowing for the gravitation effects, this becomes

d&€
- Qo(VoE)r=vet + Mo(voID ) r=vot, (6)

where E = —Viyg and I' = —V¢g. The electrical ¢g
and gravitational ¢ potentials can be found from the
equations of motion and continuity plus Poisson’s equa-
tions
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Avg = 4nG (Z Mang + Mod(r — vot)) , (10)

with § being Dirac’s delta. The Fourier components of E
and T following from g and ¢ are
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Applying the inverse Fourier transformation and substituting the result into equation (6) we can arrive, with an
account of d®k = dk”dzkj_ — 2mky dk 1 dw/volw=xv, and k) = vo(kvo) /v, at

e

dt — wug
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Here kg 1s the highest value of k; allowable in the classi-
cal approach to the description of collisions between the
probe particle and particles of the medium. The integra-
tion along the real w—axis can be performed unambigu-
ously with the use of the standard substitution [3]

1 P )
m = m —ind{e(w)},

where P denotes the Cauchy principal value and
Me(w)} =2, 0w —wy) /e (ws) with e(wy) = 0. The lat-
ter equations is the dispersion relation for longitudinal
waves in the self-gravitational plasma. In general case
solutions w = w; (k) can be represented as complex com-
binations of the Jeans and plasma frequencies for indi-
vidual components and show a marked dependence on
the thermal velocities [2]. The analysis of these solutions
1s sufficiently complex. We shall, therefore, consider some
simpler particular cases.

For a cold single-component medium, accordingly to
eq. (1) e(ws) = 0 is characterized by two real roots (with
w? > wg)

w=x(w! —wi)'? (14)
The rate of energy losses in this case is
d 4 — M, 2
E . Amng(QoQ oGm) (15)

dt mug

x log (k’ovo(w; — wé)_l/z)

with wf, > wi and kv > wf, — wZ. The roots of the
characteristic equation (14) are imaginary if wf, <wi,in
which case the integrand in equation (13) has no poles

on the real axis. As a result,

dE

2 2
=0, (W) <w)). (16)

The |d€/dt] vs w? dependence for My = 0 (this condi-
tion should be understood in the sense that the mass of

moving particle is so small, that My < Qowp/\/éwG)

is shown schematically in fig. 1 (curve 2). At w? = W

the function shows a singularity, namely |[d€/dt| = 0 at

w? =wg — 0 and |d€/dt| — oo at w) = wE + 0. A singu-

-1
2
wG,oc
2 2 3.3 :
1 - vT,a/vo) - kJ_vT,oc

lar behavior can be removed by taking into account the
wave absorption in the medium into account. The most
straightforward way is to introduce the frictional force
caused by collisions between particles into the equation
of motion which is used for the obtaining of dielectric
constant tensor in accordance with the standard proce-
dure [3]. If v is a collision frequency, then the dielec-
tric constant ¢ of the single-component medium becomes
more complicated: ¢ = 1 —w?/(w? +ivw+wy). Substitut-
ing it into equation (13), we obtain d€/dt under v # 0.
In the case of w? = wZ, this equation can be reduced to

P
the simple relation

d — G2 Mywg)? |k
_5 ~_ (Qowp G owG) log ovo; (17)
dt Vo v

kovo > v.

ds
dt

r

Fig. 1. Energy losses of a charged particle moving through
a plasma: curve 1 is for the conventional plasma; curve 2
for a collisionless self—gravitational plasma, and curve 3 for a
self—gravitational plasma with collisions.

Curve 3 in fig. 1 shows the |d€/dt| vs w; dependence
for v # 0, My = 0. It can be compared with a similar
dependence for the common plasma (curve 1) given by

[3]

d& Qiwy | kov
(e === Flog=——. (18)
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As can be seen from the figure, the three curves are
markedly different even with My = 0. The differ-
ences are more pronounced with My # 0 (i.e. My >
Qowp/\/éwG). Of the greatest interest is the effect shown
by self-gravitational plasmas, namely excitation by a
neutral particle of longitudinal oscillations involving an
electric field component (E; # 0 with Qo = 0). The
energy lost by the neutral particle is given by

d& Z kovo

— ~ —GMZ=Clog —— s 19
ai O B G — )i (19)
wf, > wZG.

The rate of the energy losses, equation (15), happens to
depend on the sign of the charges @y and @, specifically
it can be either higher than in equation (18) (Qq and
Q) are of opposite signs) or lower than that (Qy and Q
are of the same sign). Moreover, the polarization losses
can vanish if some special relation between @y, My and
parameters of the medium holds, viz. Qo/My = Gm/Q.
This can only occur if the moving probe particle has a
charge of the same sign as the ambient plasma particles,
and their electrostatic repulsion is balanced by gravita-
tional attraction (fig. 2).

Fig. 2. The polarization losses of a massive charged parti-
cle in a self—gravitational plasma: curve 1 corresponds to the
opposite signs of Q and Qq; curve 2 for the same signs of Q

and Qq.

The pattern described will be somewhat different in
the case of a bicomponent medium. The rate of energy
losses will show a considerably more complex depen-
dence upon (")12),1,2’ WzG,l,z and kzv%ylyz. We shall consider
a simpler case of sharply different masses of the two
kinds of particles (m; < ms), assuming %2;,1 > WZG,N
%2;,2 < “’ZG,z and v3 > v%yl > v%,z — 0. In such a
case the real solutions of the equation ¢(w;) = 0 are
w= :I:((.uf)y1 + k’zv%yl)l/z.

Integrating equation (13) we arrive at
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where we have assumed k2v2 > wf,yl, WZG,z and k%v%yl &
wf,yl, ""ZG,2~ As can be seen, the energy losses in a bi-
component medium cannot turn to zero for any relation
between wp 1, wg,1,2 and k’zv% 1 o- Indeed, the dispersion
relation has at least two real solutions. However, the par-
ticle will not be decelerated if its charge and mass are
related so as to nullify the square brackets in equation
(20).

Generally, both charged and neutral particles mov-
ing through a multicomponent self-gravitational plasma
are capable of exciting waves similar to the electrostatic
waves of conventional plasmas.

III. TWO-BEAM INSTABILITY OF THE
SELF-GRAVITATIONAL DUSTY PLASMA

Until now we have considered the effect, connected
with the motion of one probe particle. Along with ran-
domly moving particles, space plasmas often involve par-
ticle streams with ordered velocities[1,2]. The regular
speeds of particles characterized by different masses and
charges are different, which may give rise to beam insta-
bilities. Unstable states accompanied by generation of
noise or individual waves can arise in the case of purely
gravitational as well as purely electrostatic interaction
between the streams [4]. The simultaneous action of elec-
tric and gravitational forces in a plasma medium can al-
ter the traditional conditions for the development of an
instability or change its growth rate. To analyze the in-
stability of self-gravitational plasma flows, let us return
to the dispersion relation equation (2) with ¢,, ¢g and
Ky given by equations (3), (4) and (5), respectively. As
a result, the dispersion relation becomes

w2  —wi
1— P, G,
Za: (w - k’Voyoé)z
_Ls Gnavap —wppeaa) gy
2 o (w—kVo,0)?(w —kVh g)?
a#f

Once again, we will consider the simplest case of two par-
ticle streams, «; 3 = 1,2. Then in the frame of a refer-
ence moving at the mean velocity Vo = (1/2)(Vo,1+ Vb ,2)
equation (21) turns into a fourth-order equation in & =
w— kVy, viz.

%2;,2 - WZG,z i ‘-";,G
(@ +kAV)Z (B2 — kPAV)

(22)

2 2
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where w;G denotes |wp 1w 2 —wp 2w, 1|. The dispersion
relation can be analyzed graphically. To do so, let us con-
sider the right-hand side of equation (22) as a function
of frequency, n = f(&). The solutions of equation (22)
are given by intersections of this graph with the straight
line 7 = 1. To analyze the relative importance of the two
kinds of particle interaction, let us introduce the dimen-
sionless parameters Yy, = wp /W o = Qa/(mQGl/z)
and re-write f(&) as

o wha ) Wy — 1)
I&) = G =ravy T G rravy (23)

WzG,lsz,z(yl - 1‘12)2
(@ — k2AV?)?

If y; or y» happen to equal 1, then the corresponding
term in equation (23) vanishes but parameters of that
beam are still represented in the dispersion relation ow-
ing to the third term. With any y,, the graph of f(&) is
characterized by two vertical asymptotes at © = +kAV,
and four different types of the curves are possible (see
fig. 3):

(a) yo > 1. Electrical interaction prevails in both
beams. The appearance of four intersection points with
17 = 1 suggests the existence of four eigenmodes, two of
which propagate at phase velocities close to the speed
Vo,1 of one beam and the other two at the velocities
close to Vp 2. As the loop in the area & < |kAV| moves
above the level = 1, intersection points 2 and 3 merge
and then disappear, giving rise to two complex—conjugate
roots of equation (22). The system becomes unstable
with respect to electrical interaction of the beam par-
ticles (beam instability in conventional plasma [3]).

(b) yo < 1. Gravitation interaction prevails in both
beams. The system is unstable against excitation of four
wavelike disturbances propagating in two pairs at phase
velocities close to V51 and Vj »(the beam instability of
gravitating particles develops against the background of
the Jeans—unstable ambient medium [4]). In this case the
beam parameters are such that the loop lying in the do-
main @ < |[kAV| moves above n = 1, then the two waves
with the phase velocities close to the mean velocity of
the two beams are stable, however the system as a whole
remains unstable.

(¢) y2 < 1 and y; > 1. Gravitation prevails in the sec-
ond beam with V52 = Vp — AV. Owing to that beam,
the system is unstable against gravitational interactions.
The waves with vp, ~ Vo1 = Vo + AV remain stable.

(d) y1 < 1 and y2 > 1. The system is unstable like
in ¢), however the growing wave is controlled by gravita-
tion forces in the first beam. Besides, constant—amplitude
waves are possible in the system, traveling at a velocity
close to Voo = Vo — AV.

Strictly speaking, the run of f(&) is not determined by
the parameters y; and ys alone (altogether, there are five
parameters of the frequency dimension, i.e. wyp1; wp 2;
wa,1; wa,2; and kAV). Therefore, the inequalities like
y1,2 > 1 or y1 2 < 1 should be complemented by other

conditions, namely the sign of f(&) should be determined
by that of the first term in the vicinity of @ = KAV and
by the second term of equation (23) in the vicinity of

w=—-kAV.
Sn=l
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Fig. 3. Four possible variants of the n = f(vpn) depen-
dence: a) y1 > 1 and y2 > 1, the electric interaction prevails
in both beams; b) y1 < 1 and y2 < 1, the gravitational in-
teraction prevails in both beams; ¢) y1 > 1 and y. < 1, the
electric interaction is dominant in the first beam, while the
gravitational in the second; d) y1 < 1 and y2 > 1, the grav-
itational interaction is dominant in the first beam and the
electric in the second.

Investigating the system stability analytically is quite
difficult as it involves the analysis of a fourth—order al-
gebraic equation. By way of example, we will just con-
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sider a restricted model. Let the beam of a heavy par-
ticles (wg 2 > wp o) move through an ensemble of fine
dust grains wg,1 < wp1. To further simplify the anal-
ysls, we assume %2;,1 — szyl = WZG,z — %2;,2 = w?. The
general run of f(&) is determined by the magnitude of
k. For short wave disturbances, KAV > w;G/Qwo, the
growth rate is v ~ 2kAVwy/(4k>AV? — w3)'/?. Tor
the disturbances satisfying the opposite inequality, i.e.
AV < w;G/Qwo, f(@) is symmetrical at w > 0 and
w < 0 and tends to infinity at & — £kAV. It reaches
the minimum of w? o/k*AV* = f(0) at & = 0. In the
case of f(0) lying below the unit level, which is possi-
ble with w, ¢ < kAV < W;yg/QWO, the self-gravitating
plasma streams are stable with respect to such distur-
bances.

In the case of long wave disturbances, KAV < w, a,
such that f(0) = (.«);;G/kAAV4 > 1 there are two un-
stable branches with the respective growth rates v » &~
wgyG/(wg + 42 AV,

The dispersion relation equation (22) allowing for both
kinds of the particle interaction is capable of predicting
one of the four possible versions (see fig. 3) for instability
development in a two—component plasma—beam system.
We consider the linear theory, which describes just the
initial stage of the growing disturbance. A further devel-
opment of the process is essentially nonlinear, and it is
not described by the dispersion relation equation (23).
Such a process can be analyzed through numerical mod-
eling of the particle dynamics. Apparently, the first step
in this direction is the numerical modeling of the particle
dynamics in a two—component system with regular drifts

[5].

IV. SUMMARY

Summarizing this paper, we have tried to demon-
strate some of the interesting peculiarities of dusty self-
gravitational plasma. Calculations of energy losses of
a probe particle moving through the self-gravitational
plasma showed, that electric disturbances can be excited
even by a neutral particle, which is impossible for the
conventional ion—electron plasma. Meanwhile, the energy
losses of a charged massive particle associated with wave
excitation can either increase (as compared with the con-
ventional plasma) or drop down to zero for specific val-
ues of the charge-to—mass ratio, depending on the charge
sign. The beam instability can arise not only in charged
particle beams or in neutral beams but in the streams of
self—gravitational plasmas as well where particles inter-
act through electric and gravitation forces. The simul-
taneous action of electric and gravitational forces in a
plasma medium can alter the traditional conditions for
the development of the beam instability or change their
growth rate. In the general case of a self-gravitational
plasma, the instability growth rates can be higher or
lower as compared with the “pure” modes. The growth
rate can even change its sign to become an attenua-
tion owing to the combined interaction, i.e. an unstable
stream—controlled state can turn stable and vice versa.
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3BYAKEHHSA EJTEKTPOCTATUYHUX XBHJIb YACTUHKAMM, IO PYXAIOTBHCA
B ITMJIOBIU CAMOT PABITYIOUIU TTJI A3MI

B. B. Apomenko
Padioacmporomiurut incmumym HAH Yxpainu,

sys. Yepsononpanopna, 4, Xapxis, 310002, ¥xpaina

Y poBoTl po3raASHYTI OesdKl eJeKTpoaInHaMIUHI edpeKTH, OB’ A3aHl 3 PYXOM 3aPsIsKeHIUX ITIJIOBUX YACTUHOK Y

OMJIOBIA caMorpaBiTyowil maasmi. [lokasaHo, Mo BpaxyBaHHS CaMOr paBITAlll B IIa3Ml 3MIHIOE BEJIUYNHY BTPAT

eHeprili YaCTUHOK, MO Py XaloThCsl, 60 MOpIL 3 eJeKTPUUYHOI HeODX1THO BpaXoByBaTH 1 I'paBITAINNHY B3a€MOMIIO

HpoBGHOI YaCTUHKM 3 IIasMoo. HaplTh y HafipocTiioMy BHUITa Ky OTHOKOMIIOHEHTHOI CAaMOI paBITyIOUOl IIa3M I

IJIST Ty 3Ke JIETKOL 3apsiasKeHol MIIMHKNA XapaKTep 3aJe JKHOCTH HOJAPU3AIliiHIX Yy TPpaT ICTOTHO BLAPI3HAETHCS Bl

yTpaTeHeprii y spudaiiniil mrasmi. Hafimkapinmomwo ocobInBICTIO TUIOBOIL IIa3MI € TeHepalls e 1eKTPUYHIX OB
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HeRTPAJTBbHOIO MAaCUBHOIO YACTUHKOWK. ¥ BUNAIKY HATaTOKOMIIOHEHTHOI MMAMOBOI IA3MHU TTPU BU3HAYEHOMY CITiB-
BIIHOIIEHH] MK MapaMeTpaMu cepeIoBuIa 1 TpoBHOI YaCTUHKN MOJAPU3AINHI BTPATH MOKY Th 3TOPHY THCS 10
HyJas1. KpiM Toro, y poBoTi HoCaiaskeHl yMOBU 30y IKeHHS eJeKTpOMarHe THUX XBIUJIb ¥ IMTOTOKAX CAaMOTL paBITy I0Uol
mrasmu. OnHoYacHe BpaXyBaHHA €JIeKTPUYHOI Ta I'PaBITAINHOl B3aEMOII KOMIIOHEHTIB IIa3MU IPUBOIUTH 10O
icToTHOl TpaHcdopMalli KpATepiiB 3BUYaNHOL Iy YKOBOI HeCTIHKOCTH. [Ipi IIbOMY 3MIHIOIOTBCST TIOPOTOBI 3HAYEHHS
Ta IHKpeMEeHTH HeCTIHKOCTI; GLIBII TOTO, 3’ SIBIASETHCA BY3bKa OBJACTh CTIIKUX PO3B’SI3KIB, BJACTHBA TIIBKHU Ca-
MOT'PaBITY IOUMM TLIA3MOBUM IIOTOKAM.
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