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The usual state of laboratory plasma is that of turbulence and as a consequence one needs to

study its extreme characteristics among which the magnetic z{pinch structure appears to be very

important for various technologies, sources of high temperature plasmas and local strong magnetic

�elds. In a turbulence the energy of the system is shared between very many di�erent modes. If

some characteristic time{scales are provided, it then becomes possible to describe the turbulence

by kinetic equations governing the transfer of energy between the modes. In this study we shall

restrict ourselves to the so called Langmuir turbulence, that is the turbulence dominated by the

behaviour of the longitudinal electromagnetic or Langmuir modes, leading to the creation of the

vortex structure in the interrupted magnetic z{pinch. This vortex structure is stable enough for

a spheroidal plasmoid to exist for a rather long time as it was discovered in recent experiments.

Since physical processes giving rise to such a structure are essentially nonlinear, one needs to derive

from the very basic principles the corresponding vortex generating equations and to treat them

under the conditions at the experiments. As a result we have built the so called paired Hill's vortex

solutions compatible with the ambient magnetic �eld supplying the wanted stability condition of

the plasmoid existence at the magnetic z{pinch.

Key words: vortex, plasmoid structure, z{pinch.
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I. THE VORTEX EQUATIONS AND PLASMOID

STRUCTURE

We shall �rst derive the necessary equations from a

two{uid description of the plasma as this provided a

clear picture of interactions, following Zakharov [4] and

ter Haar [1].

Let us write the ion density n

i

and the electron density

n

e

in the form

n

i

= n

0

+ �n

i

; n

e

= n

0

+ �n

s

+ �n

f

; (1)

where �n

i

and �n

s

vary on the slow time{scale �

i

�

!

�1

pi

= (m

i

=4�n

0

e

2

)

1=2

, and �n

f

on the fast time{scale

�

e

� !

�1

pe

= (m

e

=4�n

0

e

2

)

1=2

; n

0

is the equilibrium den-

sity, m

e

| the electron mass, m

i

| the ion mass and e

| the electron charge.

On the slow time{scale the average of �n

f

vanishes:

h�n

f

i = 0; (2)

where h�i denotes the temporal averaging operation. Sim-

ilarly, one can write the electron uid velocity v

e

in the

form:

v

e

= v

s

+ v

f

: (3)

The high mobility of electrons as compared to that of

the ions ensures approximate charge quasi{neutrality on

the ion time{scale, or

�n

s

� �n

i

� �n; v

s

� v

i

� v; (4)

but the symbols have been kept distinct, as there are

small di�erences between them which drive ion{sound

oscillations.

We shall consider the following equations in what fol-

lows as basic:

(i) Maxwell equations for free charges:

div E = 4��; rot E = �

1

c

@B

@t

; (5)

div B = 0; rot B =

4�

c

j+

1

c

@E

@t

;

whence we get

@

2

E

@t

2

+ c

2

rot rot E = �4�

@j

@t

: (6)

490



THE VORTEX STRUCTURE OF LANGMUIR TURBULENCE : : :

The charge density � and the current density j are given

by equations

� = �e(n

e

� n

i

); j = �e(n

e

v

e

� n

i

v

i

); (7)

(ii) the viscousless electron{uid equation of motion:

@v

e

@t

+ (v

e

�5)v

e

+

e

m

e

(E +

v

e

c

�B) (8)

+



e

T

e

n

e

m

e

5n

e

= 0;

(iii) the viscousless ion{uid equation of motion:

@v

i

@t

+ (v

i

�5)v

i

�

e

m

i

�

E +

v

i

c

�B

�

(9)

+



i

T

i

n

i

m

i

5n

i

= 0;

where the values of the speci�c heat ratios 

e

' 3 and



i

' 1 are not essential in our further investigation. The

action of the electrons on the ions and vice versa is me-

diated by the slow part of the electronic �eld and does

not appear explicitly.

We need further to split the electronic and magnetic

�elds, the charge density, the current density and the

electron velocity into their slow and fast parts:

E = E

s

+ E

f

; B = B

s

+B

f

; (10)

j = j

s

+ j

f

; � = �

s

+ �

f

:

From (7) one can �nd that

j

f

= �e(n

0

+ �n

s

)v

f

� e[�n

f

v

f

� h�n

f

v

f

i]; (11)

where the harmonic generating term in square brackets

can be dropped in what will follow. Taking the fast part

component of eq. (9), we obtain that

@v

f

@t

+ (v

s

�5)v

f

+ (v

f

�5)v

s

+ [(v

f

�5)v

f

� hv

f

�5v

f

i

+

e

m

e

E

f

+

v

f

c

�B

s

+

v

s

c

�B

f

� h

v

f

c

�B

f

i) +

v

f

c

�B

f

]�



e

T

e

4�n

0

m

e

e

5(div E

f

) = 0; (12)

where we have used Poisson's equation in the last term and in the denominator of that term neglected �n

s

as

compared to n

0

. As a result of omitting all convective terms one can get that

@

2

E

f

@t

2

+ !

2

pe

(E

f

+

v

f

c

�B

s

+

v

s

c

�B

f

) + c

2

rot rot E

f

+

3T

e

m

e

5(div E

f

) (13)

=

�n

s

n

0

!

2

pe

(E

f

+

v

f

c

�B

s

+

v

s

c

�B

f

):

and

@v

s

@t

+ (v

s

�5)v

s

+ (v

f

�5)v

f

+

e

m

e

� (E

s

+

v

s

c

B

s

+ hv

f

�B

f

i) +



e

T

e

n

0

m

e

5(�n

e

) = 0: (14)

Taking into account now the lowest order on the last time scale we can obtain from (12) that

@v

f

@t

' �

e

m

e

(E

f

+

v

f

c

�B

s

+

v

s

c

�B

f

); (15)

which combined with the Maxwell equations gives

@

@t

�

rot v

f

�

e

cm

e

B

f

�

' 0; (16)

or B

f

' (cm

e

=e)rot v

f

in accordance with the condition div B

f

� 0. As a result we can �nd that
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@v

s

@t

+ (v

s

�5)v

s

+

e

m

e

(E

s

+

v

s

c

�B

s

) (17)

+5

 



e

T

e

n

0

m

e

�n

s

+

hE

2

f

i

m

e

8�n

0

!

= 0;

@v

i

@t

+ (v

i

�5)v

i

�

e

m

i

(E

s

+

v

s

c

�B

s

) (18)

+5

�



i

T

i

n

0

m

i

�n

i

+

m

e

m

2

i

8�n

0

hE

2

f

i

�

= 0:

Equations (13), (17) and (18) together with the Maxwell

equations (5) lead us to the main object of studying the

Langmiur turbulence of a plasma. To come for a vortex

structure equations, let us take the rot{operation to the

left hand sides of eqs. (17) and (18):

@


s

@t

+ rot (


s

� v

s

) = 0; (19)

@


i

@t

+ rot (


i

� v

i

) = 0;

where by de�nition, we set




s

:= rot (v

s

�

e

cm

e

A

s

);




i

:= rot (v

i

+

e

cm

i

A

s

); (20)

rot A

s

:= B

s

:

Therefore, we can assert that into each plasma compo-

nent there are frozen the corresponding vortex vectors




s

and 


i

.

II. THE PLASMOID STRUCTURE

We proceed now to considering a plasma moving be-

tween two electrodes generating via a discharge a struc-

ture of the interrupted z{pinch.

Let us now consider the structure of the vortex vectors




s

and 


i

, taking into account the Maxwell equations

(5):

rot j

s

' �en

0

(rot v

s

� rot v

i

= �en

0

�




s

+

B

s

e

m

e

c

�


i

+

B

s

e

cm

i

�

= en

0

(


s

�


i

)�

e

2

n

0

c

�

1

m

e

+

1

m

i

�

B

s

;

whence,

4�en

0

c

(


s

�


i

) = �

4�

c

rot j

s

�

4�e

2

n

0

(m

i

+m

e

)

c

2

m

e

m

i

B

s

� rot rot B

s

�

4�n

0

(m

i

+m

e

)

c

2

m

e

m

i

B

s

(21)

+

1

c

rot

@E

s

@t

' 4B

s

�

4�e

2

n

0

c

2

m

e

B

s

�

1

c

2

@

2

B

s

@t

2

:

Thus we obtain from (19) and (21) that

1

c

2

@

2

B

s

@t

2

+

!

2

pe

c

2

B

s

�4B

s

= �; (22)

where � = �

0

en

0

(


i

�


s

) .

The expressions (21) and (22) lead us to the following �nal equations on the vectors �;


i

and 


s

:

�4B

s

+

!

2

pe

c

2

B

s

+

1

c

2

@

2

B

s

@t

2

= �;

@

@t




s

+ rot (


s

� v

s

) = 0; (23)

@

@t




i

+ rot (


i

� v

i

) = 0;

where !

2

pe

:= (4�e

2

n

0

=m

e

)

1=2

| the so called plasmon frequency. In case of incompressibility of the plasma under

consideration one can transform equations (23) into the following ones having used the axis{symmetry of the magnetic
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z{pinch [3]:

D

Dt

�




i;�

r

�

= 0; (24)

D

Dt

�




s;�

r

�

= 0;

where 


i

= (0;


i;�

; 0); 


s

= (0;


s;�

; 0) 2 R

3

; D=Dt

| the corresponding material (Lagrangian) derivative.

We will use the cylindrical coordinate system (r; �; z) 2

R

+

� [0; 2�)� R and we also put � := (0; �

�

; 0), B

s

:=

(0;B

�

; 0) 2 R

3

, where we have taken into account the

actual absence of either turning round motion in the

plasma. Incompressibility of the plasmamakes it possible

to present the velocity components v

i;z

; v

i;r

and v

s;z

; v

s;�

as follows:

v

s;r

: =

1

r

@	

s

@z

; v

s;z

:= �

1

r

@	

s

@r

; (25)

v

i;r

: =

1

r

@	

i

@z

; v

i;z

:= �

1

r

@	

i

@r

;

where 	

i

(r; z);	

s

(r; z) | some potential functions.

As a result we obtain that the functions 	

i

(r; z),

	

s

(r; z)satisfy the following equations:

D

Dt

�




s;�

r

�

= 0;

D

Dt

�




i;�

r

�

= 0;




i;�

=

1

r

�

@

2

	

i

@r

2

�

1

r

@	

i

@r

+

@

2

	

i

@z

2

�

�

e

m

i

B

s;�

; (26)




s;�

=

1

r

�

@

2

	

s

@r

2

�

1

r

@	

s

@r

+

@

2

	

s

@z

2

�

�

e

m

e

B

s;�

:

The simplest Hill's solution [5] to eq. (26) is given by the

following completely stationary expressions:

B

s;�

= C

�

r; 


i;�

=

15Z

i

r

2a

2

�C

�

r

e

m

i

; 0 � r � a;




s;�

=

15Z

s

r

2a

2

�C

�

r

e

m

e

; (27)

B

s;�

= 0; 


i;�

� 0; 


s;�

= 0; r � a;

where Z

i

and Z

s

2 R and a 2 R

+

| some arbitrary con-

stants. Then from (26) one can exact the solution 	(r; z)

as follows:

	

i

(r; z) = r

2

�

3Z

i

4a

2

(r

2

� a

2

) +

3Z

i

4a

2

(z � Z

i

)

2

�

1

2

Z

i

�

; (28)

	

s

(r; z) = r

2

�

3Z

s

4a

2

(r

2

� a

2

) +

3Z

s

4a

2

(z � Z

s

)

2

�

1

2

Z

s

�

:

The solution (28) and its derivatives with respect to z and r are compatible at r ! a � 0 with the corresponding

solution to (26) at z 2 R, r � a, when �

�

� 0. From (25) and (28) one can get the following dynamic characteristics

of the plasma ow:

v

i;r

= 3Z

i

r(z � Z

i

)=2a ; v

s;r

= 3Z

s

r(z � Z

s

)=2a ; 0 � r � a;

v

i;r

= 3a

2

Z

i

r(z � Z

i

)=2R

5

i

; v

i;r

= 3a

2

Z

s

r(z � Z

s

)=2R

5

s

; r � a;

v

i;z

= Z

i

[5a

2

� 3(z � Z

i

)

2

� 6r

2

]=2a

2

; 0 � r � a; (29)

v

s;z

= Z

s

[5a

2

� 3(z � Z

s

)

2

� 6r

2

]=2a

2

;

v

i;z

= a

3

Z

i

[3(z � Z

i

)

3

�R

2

i

]=2R

5

i

; r � a;

v

s;z

= a

3

Z

s

[3(z � Z

s

)

3

�R

2

s

]=2R

5

s

;

where R

2

i

:= r

2

+ (z � Z

i

)

2

; R

2

s

:= r

2

+ (z � Z

s

)

2

.

The solution (29) describes a spherical vortex in the plasma moving along the axis Oz with the constant velocity

Z = const, this vortex being completely contained inside a sphere of a radius a > 0.

It is obvious that the spherical vortex part of solution (29) can model the plasmoid creation existing during the

interrupted z{pinch in a plasma, described in article [3]. To justify the above conclusion, we need to agree solution

(27) for the velocity �

�

with the corresponding magnetic �eld equation of (22). Thus we must solve the following

magnetic �eld equations for the magnetic �eld B

s

:= (B

r

; B

�

; B

z

) 2 R

3

;4Z = Z

i

� Z

s

; k = (m

i

+m

e

)=m

i

m

e

:
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4B

�

�

!

2

pe

c

2

B

�

�

1

c

2

@

2

B

�

@t

2

= en

0

�

0

15Zr

2a

2

� kC

�

r�

0

en

0

; 0 � r � a; (30)

4B

�

�

!

2

pe

c

2

B

�

�

1

c

2

@

2

B

�

@t

2

= 0 r � a;

with the solenoidal condition div B

s

� 0. The last two

equations plausibly would lead us to a possibility of con-

forming the vortex structure of a plasmoid from paper

[3] where this hypothesis was claimed too. Thereby we

can formulate the following theorem.

Theorem The dynamic vortex structure (26), (28)

describes a plasmoid generated by the interrupted z{pinch

[3] in a plasma if and only if the solenoidal magnetic �eld

system (30) is compatible for all r � 0 at some �xed pa-

rameters a > 0;4Z 6= 0 and

C

�

= 154Zen

0

=

�

2a

2

(ken

0

� !

2

pe

"

0

)

�

�

=

�154Zen

0

=(2a

2

!

2

pi

"

0

):

Note. Below we rewrite our equations (19) and (23)

in the following somewhat generalized continual form:

B

tt

+ !

2

pe

B = c

2

4B + �

0

c

2

rot j ;

E = �v �B + 2J;

!

t

+ rot (! � v) (31)

= �en

0

kB

t

� en

0

k rot (B � v) + �4!;

v

t

+ rot v � v

+

1

n

0

m

i

r

�

p +

v

2

2

�

� J �B + v4� = 0;

where ! = rot j; v = v

s

; B = B

s

; � 2 R

+

{the vis-

cosity and p 2 C

1

(R

3

;R) {some external and intrinsic

ponderomotive pressure in the plasma ow. Equations

(31) are obtained basing on the averaging procedure on

the ion time{scale. They can be extended still with the

pressure equation [7,9]:

1

 � 1

�

@p

@t

+ (v

i

r)p

�

= j

2

+ 2�

3

X

i;j=1

e

ij

e

ji

; (32)

e

ij

=

1

2

�

@v

i

@x

j

+

@v

j

@x

i

�

;

where  = 5=3 | the speci�c ion heat, � ' 1 � 10

�4

|

the resistivity. The resulting systems (31) and (32) can

be studied also by numerical calculations giving rise to

driven magnetic reconnections of the Hill type sphero-

marks [7] playing an important role in explanation of

the interrupted magnetic z{pinch in a plasma.

The next important question arises whether the solu-

tion obtained above is stable under some small pertur-

bations of the corresponding boundary and initial data.

Fortunately this can be studied in detail and solved af-

�rmatively due to the Hamiltonian structure of vorticity

equations (23) as shown in [6]. On some problems impor-

tant for modelling the plasmoid structure we are going

to stay in detail in Part 2 of the article.
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Odnim �z stan�v, u �komu mo�e perebuvati plazma v laboratornih umovah,  stan �z turbulentn�st�;

tomu vinikaproblema vivqenn� ekstremal~nih harakteristik turbulentnogostanu.Sered nih struktura

magnetnogo z{p�nqu v�d�gra va�livu rol~ dl� r�znih tehnolog�� ta d�erel visokotemperaturnoÝ plazmi �

lokal~nih sil~nih magnetnih pol�v. Pri turbulenc�Ý ener��� sistemi rozd�l�t~s� m�� bagat~ma r�znimi

modami. Pri umov� zabezpeqenosti pevnoÝ qasovoÝ harakteristiki turbulenc�� opisut~s� k�netiqnimi

r�vn�nn�mi. U naxomu rozgl�d� mi obme�imos~ tak zvano� turbulenc�� Len�m�ra, �ka privodit~ do

stvorenn� vihrovoÝ strukturi v perervanomu z{p�nq�. Stab�l~na dl� sferiqnogo plazmoÝda vihrova struk-

tura �snupereva�nodovgi� qas, �k ce bulo pokazano v nedavn�h eksperimentah.Osk�l~ki f�ziqn� procesi,

wo privod�t~ do takoÝ strukturi,  nel�n��nimi, potr�bno otrimati z zagal~nih princip�v v�dpov�dn� r�v-

n�nn� dl� vihor�v ta rozv'�zati Ýh zg�dno z umovami eksperimentu. �k rezul~tat mi mamo pobuduvati

paru rozv'�zk�v G�lla, sum�snu z magnetnim polem, wo zabezpequ xukan� umovi stab�l~nosti dl� �snu-

vann� plazmi pri magnetnomu z{p�nq�.
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