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Nonadiabatic states of electron{ion system close to Bragg plane play an important role in forming

vibrational spectrum singularities in a crystal. In ordered matter the presence of nonadiabatic states

causes drastic transformation of the behavior of nondiametral singularities near electron topological

transition. This e�ect is most pronounced when phonon momentum connects two reconstructed

parts of electron spectrum near a Bragg plane. Some polarization operator singularities lead to

nonanalytic behavior of a phonon group velocity as a function of momentum under the conditions.

These conditions are obtained in the present paper.
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I. INTRODUCTION

The nonadiabaticity in a crystal manifests in two ways:

as interaction of electrons with ion vibrations and as lat-

tice anharmonisms. The �rst e�ect attracts the perma-

nent attention relatively to the problem of H�T

c

super-

conductivity (see review [1]). Then, a study of the nona-

diabatic e�ects (in harmonic approximation) in crystals

is of a great interest especially when Fermi surface is

close to the Bragg plane (Brilluoin zone face). Another

problem requiring the consideration of the Fermi surface

to a Bragg plane proximity e�ects is the problem of the

peculiarities in the properties of crystal under high pres-

sure up to insulator{metal transition pressure.

One can observe the e�ects of nonadiabaticity in

phonon spectra in the easiest way. The present paper

is devoted to the study of phonon curves singularities

caused by the proximityof the Fermi surface to the Bragg

plane.

There is a narrow layer � �h!

D

of nonadiabatic states

in the vicinity of the Fermi level in metals and narrow

gap semiconductors. One usually neglects the contribu-

tion of this layer due to a small phase volume of it. These

states should be taken into account with closing the fun-

damental band gap E

g

(e.g.,in strongly compressed in-

sulators). Electron velocity in these states has the same

order of magnitude as the phonon velocity has. The con-

sideration of this case is important because the Fermi

surface to the Bragg plane proximity is a more usual case

than the exotic one. The development of general theory

of nonadiabatic states is also necessary for the investi-

gation of such phenomena as superconductivity, lattice

instability etc.

The adiabatic approximation is the successful and

well developed both theoretically and experimentally ap-

proaches to investigate vibrational spectra of insulators

(E

g

> �h!

D

) at the present time. The adiabatic approx-

imation in lattice dynamics was also established to be

valid for metals (see reviews [2, 3]). The validity of adi-

abatic approximation for metals (also for narrow gap

semiconductors E

g

� �h!

D

) is based on few nonadiabatic

states in the layer with the energies � �h!

D

as compared

to the number of all the electron states with the energies

� E

F

.

Approximately at the same time Kohn showed that in

metals the (q�2k

F

) ln j q�2k

F

j singularity in screening

at q = 2k

F

(q is a momentum transferred to an electron)

gave rise of a similar singularity in vibration spectrum

[4]. At �rst the Kohn anomaly (or something that one

regards as Kohn anomaly) had been observed experi-

mentally in the behavior of phonon dispersion curves of

Pb [5].

Diametral singularities belonging to a systems with

a spherical Fermi surface were discussed in [4, 6] ne-

glecting electron phonon interaction. The singularities

at other values of phonon momentum q may also occur

along with diametral Kohn singularities at jq+gj = 2k

F

as the Fermi surface is reconstructed strongly near the

Bragg plane (g is reciprocal lattice vector). The hierar-

chy of many{particle singularities in electron multipolar

diagrams had been established in [2] taking into account

impaired indirect interaction of ions through conductiv-

ity electrons. The contribution of nondiametral Kohn

anomaly was always small as compared to the contri-

bution of the three{particle one [7].

Anomalies in the phonon spectrum are most seen

clearly on the curves of group velocity @!=@q as a func-

tion of the momentum. Precious measurements of the

@!=@q versus q of Al are given in [8]. Both the diame-

tral Kohn anomalies and a number of the nondiametral

ones which due to the electron spectrum reconstruction

near the Bragg plane had been found there.

The signi�cance of considering nonadiabatic states is

already seen in the frames of near free{electron approxi-

mation [9, 10]. Qualitative changing in the phonon group
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velocity behavior over the results of adiabatic approxi-

mation appear in the vicinity of q � 2k

F

. A consistent

consideration of nonadiabatic states leads to the renor-

malization of @!=@q at q � 2k

F

. This renormalization

removes the logarithm divergences existing in adiabatic

theory. The group velocity has pole singularities instead

the logarithm ones (see below).

Anomalies in the phonon spectrum of niobium are

something similar to the ones considered above [11{13].

The phonon spectrum of niobium contains a number of

anomalies, including phonon group velocity anomalies as

shown in [13]. The calculation for niobium [11] showed

the electron structure to contain the domains of a �nite

size for which the adiabatic approximation was violated.

The phonon spectrum singularities at 10 MeV for q k

[001] and at 10{21 MeV for q k [110] may be explained

by nonadiabaticity of niobium electron{phonon system

as follows from [11].

The division of electron and vibrational degrees of free-

dom of electron{ion system is impossible when the ef-

fect of nonadiabatic states on vibration spectra is inves-

tigated. So, we apply a self{consistent description of the

crystal by the Green function technique.

II. DYNAMICAL SUSCEPTIBILITY

We show briey the singularities in vibrational spec-

trum to be determined by the singularities of the polar-

ization operator �(q;q

0

;!). We use the results obtained

in [9, 10]. Let us consider an equation for the Green func-

tion

^

D

q

(!) of ion displacements only. Its poles determine

lattice vibration spectrum. We have for the representa-

tion of

^

D

q

(!) a standard form

^

D

q

(!) = [

^

I!

2

M �

^

D(q;!)]

�1

; (1)

where

^

I is the unit matrix,M is the mass of the ion, and

^

D(q;!) is a generalized dynamical matrix of a crystal

depending on the unknown lattice vibration frequency !

^

D(q;!) =

^

D

i

(q) +

^

�(q;!): (2)

In eq. (2) the D

��

i

(q) is a dynamical matrix of ionic

plasma oscillations,

D

��

i

(q) =

4�e

2

Z

2

V

0

X

g

(q + g)

�

(q+ g)

�

j q + g j

2

:

Here V

0

is the volume of the unit cell, Z is a charge of

the ion. We use later on self{energy function

^

�(q;!) of

ion vibrations (2) in a harmonic approximation.

The terms

^

D

i

(q) and

^

�(q;!) exactly cancel each other

in eq. (2) at q ! 0, ! ! 0. This fact provides a correct

description of the acoustic phonons [2, 9].

The generalized dynamic matrix

^

D(q;!) by itself

depends on the unknown frequency ! if you take

into account the nonadiabaticity of vibrations. The !{

dependency comes from the electron contribution

^

�(q; !) =

^

�

1

(q; !) �

^

�

1

(q! 0; !! 0); (3)

�

��

1

(q;!) =

X

g;g

0

V (q+ g)V (�q � g

0

)(q + g)

�

(q + g

0

)

�

�(q+ g;q+ g

0

;!); (4)

where the V (q) is pseudopotential form{factor, the �(q+ g;q+ g

0

;!) is generalized susceptibility of electron gas in

a crystal. The susceptibility may be written in terms of electron polarization operator �(q+g;q+ g

0

;!) and inverse

dielectric matrix �

�1

(q + g;q+ g

0

;!) in the following way

�(q+ g;q+ g

0

;!) =

X

g

00

�(q + g;q+ g

00

;!)�

�1

(q + g

00

;q+ g

0

;!): (5)

We reduce the analysis of singularities in

^

D(q;!) to the analysis of the ones in the polarization operator �(q+g;q+

g

0

;!). It will be done below. We have in Hartree approximation for real part of �(q + g;q+ g

0

;!) the following

�

0

(q + g;q+ g

0

;!) =

2

N

X

k;g

00

A

k

(�g � g

00

+ g

0

)A

k+q+g+g

00

(g)

n

k

� n

k+q+g+g

00

E

k+q+g+g

00

�E

k

� �h!

(6)

Here the A

k

(g) is a complicated function of the momentum k (see [10] and below), the E

k

is the dispersion low of a

band electron.
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The polarization operator singularities are due to the

poles of the integrands as follows from eq. (6). The

poles are determined by the equation E

k+q+g+g

00

�E

k

�

�h! = 0: The solutions of this equation give the criti-

cal values k

c

of the integration variable k at which the

�

0

(q+g;q+g

0

;!) changes its analytical properties. As a

phonon momentum q is altered, the value of k

c

changes

too. The result is an analytic function of q if the phonons

have momenta q corresponding to the k

c

being inside or

outside of the integration domain. Singularity appears

in the case when the phonons with the k

c

lies on the

boundary of the integration domain (k

c

= k

0

) or falls

on the Bragg plane (k

c

= g=2). This fact takes place

for the phonon wave vector connecting two points of the

Fermi surface with collinear normals [15]. A similar case

appears for the Landau singularity in S{matrix [16].

As follows from (5) and (6), the nonadiabatisity of

states close to the Fermi surface and Bragg plane man-

ifests in two ways. The �rst e�ect consists us the ap-

pearance of the phonon energy dependence of the dy-

namic matrix D

��

. The second one is a change of poles

of �

0

(q;q

0

;!)(eq. (6)) and the integration domains (over

to free electron case). We note that the combinations of

��

�1

are included in the �(q;q

0

;!) and of the D

��

(q).

Therefore, the singularities in � are cancelling the singu-

larities in �

�1

which have the same form as the ones in

�. It will be demonstrated in paragraph 4.

We will consider the full operator � and its RPA ap-

proximation �

0

to have the same singularities. To put

it exactly, the � and �

0

are di�erent. The full operator

� contains many{electron contributions. One may inves-

tigate the contributions in the local �eld approximation

introducing functions G(q; !)(see e.g. [17]) which depend

on the unknown frequency ! too.

To calculate the diagonal element �

0

(q;q;!)(6) a

three{ wave model is used. The electron waves with the

momenta q = 0 and q = �g=2 only are taken into ac-

count in the frames of this model. So,

E

k

=

�h

2

2m

(k

2

x

+ k

2

y

) +E

0

g

+ sign

�

k

2

z

� (g=2)

2

�

�

s

�

E

0

g

�

�h

2

k

2

z

2m

�

2

+ j v(g) j

2

: (7)

The coe�cients A

k

(g) are

A

k

(0) =

(E

k

�E

0

k�g

)(E

k

�E

0

k+g

)

(E

k

�E

k�g

)(E

k

�E

k+g

)

;

A

k

(�g) =

v(�g)(E

k

�E

0

k�g

)

(E

k

�E

k�g

)(E

k

� E

k�g

)

:

Here E

0

g

= �h

2

(g=2)

2

=2m, and v(g) � V (g)=~�(g) is a

linearly screened pseudopotential form{factor. Let us

use dimensionless variables z = 2k

z

=g; x = 2k

x

=g =

� cos'; y = 2k

y

=g = � sin' in a cylinder coordinate sys-

tem z; �; ' with the z{axis directed along g. We consider

the q to have only two components, q = (q

x

; 0; q

z

). One

guess the equation for the diagonal element after the '{

and �{integrations in eq. (6)

Re�

0

(Q;Q; 
) =

V

0

mg

8�

2

�h

2

Q

2

x

z

0

Z

�z

0

dz

n

A

z

(0)A

z+Q

z

(0)f

1

(z;Q

x

; Q

z

;
)

+ A

z

(0)A

z�Q

z

(0)f

1

(�z;Q

x

; Q

z

;�
) +A

z

(�2)A

z+Q

z

+2

(2)f

2

(z;Q

x

; Q

z

;
) (8)

+ A

z

(2)A

z�Q

z

�2

(�2)f

2

(�z;Q

x

; Q

z

;�
) +A

z

(2)A

z+Q

z

�2

(�2)f

3

(z;Q

x

; Q

z

;
)

+ A

z

(�2)A

z�Q

z

+2

(2)f

3

(�z;Q

x

; Q

z

;�
)

o

:

The functions included in eq. (8) are as follows

f

1

(z;Q

x

; Q

z

;
) =

�

B � sign(B)

p

B

2

� 4�

2

(z)Q

2

x

; B

2

> 4�

2

(z)Q

2

x

;

B; B

2

� 4�

2

(z)Q

2

x

;

(9)

B = sign

�

(z +Q

z

)

2

� 1

�

q

�

1� (z + Q

z

)

2

�

2

+W

2

g

� sign(z

2

� 1)

q

(1� z

2

)

2

+W

2

g

+ Q

2

x

�
; (10)

�

2

(z) = �

2

F

� 1� sign(z

2

� 1)

q

(1 � z

2

)

2

+W

2

g

; (11)
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where

�

2

F

= E

F

=E

0

g

; W

g

=j v(g) j =E

0

g

;

Q = 2q= j g j; 
 = �h!=E

0

g

:

The function f

2

(z;Q

x

; Q

z

;
) is obtained from eq. (9)

if we replace z ! z + 2 in the �rst term of eq. (10), and

the f

3

(z;Q

x

; Q

z

;
) is obtained by us similar replacement

of z ! z � 2. The integration limit z

0

is determined by

the condition �

2

(z

0

) = 0:

The integrands in eq. (8) are nonanalytic functions if

B

2

= 4�

2

(z)Q

2

x

: (12)

Eq. (12) is reduced to a well known equation for free elec-

trons q

2

� 2k

F

q = 0 [6] for the spherical Fermi surface.

III. SINGULARITIES OF SCREANING

Let us study the behavior of polarization operator in

the vicinity of electron topological transition when the

Fermi level is located near the face of the Brillouin zone:

j 1�z

2

0

j�W

g

. We expand the integrands in eq. (8) on the

parameter (1� z

2

)=W

g

. We consider two di�erent cases:

q k g (Q

z

6= 0; Q

x

= 0) and q ? g (Q

z

= 0; Q

x

6= 0)

calculating the diagonal element �

0

(Q;Q; 
).

A. In the case of q k g and q

z

= g��q

z

; �q

z

� g(Q

z

=

2��Q

z

) the presence of nonadiabatic states in the vicin-

ity of electron topological transition leads to anomalous

logarithm contribution in the �

0

(Q;Q; 
) [14]. This con-

tribution is absent in adiabatic theory. Its magnitude de-

pends on the Fermi surface topology and its maximum

value is

��

0

(Q;Q; 
) '

V

0

mgW

g

s

64�

2

�h

2

ln j

�Q

z

� �Q

c

�Q

z

+ �Q

c

j; (13)

when electron pocket in the second Brillouin zone ap-

pears (in eq. (13) s = 
=�Q

z

is phase velocity of phonons

and �Q

c

= W

g

s=2). At small momenta Q

z

= �Q

z

umk-

lapp processes give the same contribution with the oppo-

site sign. So, the terms ��

0

(eq. (13)) is are absent in the

�

0

(Q;Q; 
). Here is only an ordinary (1 � q

z

=2k

F

) ln j

1 � q

z

=2k

F

j Kohn singularity. It exists at any position

of E

F

relatively to a Brillouin zone face. Unlike of the

Kohn singularity, logarithm one at �Q

z

! �Q

c

(��

0

,

eq. (13)) does not depend directly on the k

F

and it is

due to nonadiabatic states of the electron{ion system.

We note that the di�erence of the coe�cients A

k

(0) from

1 and A

k

(�g) from 0 is essential in the calculation of the

�

0

(Q;Q; 
) because it is the di�erence that leads to the

cancellation of the logarithm contribution at small mo-

menta Q

z

.

Nondiagonal elements �

0

(q+g;q+g

0

;!) also contain

the terms of the form of eq. (13) having the same order of

magnitude as the diagonal ones. The di�erence from the

case of �

0

(Q;Q; 
). The nondiagonal parts of the polar-

ization operator contain the logarithm singularity both

in the region of momenta q

z

� g and in that of q

z

� g.

Phonon energy spectrum has no logarithm singular-

ity due to pseudopotential screening. The �(q;!) and

�(q;!) contain the logarithm singularity ��

0

(eq. (13))

since the �(q;!) � �(q;!)�

�1

(q;!) (�(q;!) = 1 +

v

c

(q)�(q;!); v

c

(q;!) = 4�e

2

=q

2

). These divergences are

cancelling each other at �q

z

! �q

c

. Pole anomaly only is

present in group velocity of phonons like it does in the

case of near free electrons [9].

B. In the case of q ? g a nonanalyticity is observed in

polarization operator as a function of q

x

in the vicinity

of electron topological transition. The main contribution

to the integral of eq. (8) comes from its �rst pair of terms

corresponding to the normal processes. It is due to the

A

2

z

(0) � 1 in the whole integration on the z domain. We

have the A

z

(�2)A

z�2

(�2) � 1 only in the small vicinity

� W

g

near the Brillouin zone face z = �1 for the second

and the third pairs of terms which are due to umklapp

processes . The A

z

(�2)A

z�2

(�2) � W

2

g

in major part of

the integration domain.

For the closed Fermi surface the values of �

0

(q;q;!)

at q

x

! s � 0 and at q

x

! s + 0 are di�erent. Their

di�erence is

� (4Q

x

)

�1

q

W

g

=2

�

(Q

x

� s)

2

+ d

2

0

�

� arccos

d

0

((Q

x

� s)

2

� d

0

)

1=2

: (14)

In eq. (14) d

0

= 2

p

�

(1)

� �

2

F

, s = 
=Q

x

is phonon

phase velocity, �

(1)

= 1 � W

g

is the energy at which

the Fermi surface is changed from closed to open. The

magnitude of the jump in the polarization operator is

determined by eq. (14). The singular point Q

x

= s is es-

sentially determined by nonadiabatic states, and there is

no such singularity in adiabatic approximation. The case

of Q

x

= 0 when polarization operator has logarithm con-

tribution is exclusive, as mentioned above.

For the open Fermi surface two di�erent cases are

possible depending on the ratio of phonon phase veloc-

ity, s = 
=Q

x

, and the diameter of the Fermi surface

\neck", d

1

=

p

�

2

F

� �

(1)

. The nonanalyticity is brought

to the �

0

(Q;Q; 
) both by normal processes and umk-

lapp ones if s < d

1

. However, umklapp processes con-

tribute only before the appearance of the second Bril-

louin zone in a narrow strip of the parameter d

1

values,

p

8W

g

� s < d

1

<

p

8W

g

+ s. For normal processes

there are two values of phonon momentum, Q

x

= d� s,

at which the critical points z

c

fall on the boundary of

the integration domain (z

0

= 1). Polarization operator

of eq. (8) is of the form
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�

0

(Q;Q; 
) '

V

0

mg

8�

2

�h

2

8

<

:

1; Q

x

� d

1

� s;

1� �F

1

; d

1

� s < Q

x

� d

1

+ s;

1� �(F

1

� 2s); Q

x

> d

1

+ s:

(15)

Here � =

�

8

p

W

g

=2 and F

1

= [(Q

x

+ s)

2

� d

2

1

]Q

�1

x

.

Such a behavior of �

0

(Q;Q; 
) means that the jumps with the magnitude � ��

p

W

g

=2 are contained in the

derivative @�

0

(Q;Q; 
)=@
 at the momenta Q

x

= d

1

�s. Umklapp processes give nonanalytic contribution of the

magnitude � a

2

lna to the �

0

(Q;Q; 
) but respective jump in the derivative is � a�

p

2W

g

. The limit of adiabatic

approximation is possible in this case. The single value of momentumQ

x

= d

1

for which the z

c

falls on the boundary

of integration domain exists only. The curve of the �

0

(Q;Q; 
) versus Q

x

has a break at this point. The condition

of s < d

1

may be performed, practically, for any Fourier transform W

g

of a pseudopotential since at small phonon

momenta the value of s is two or three orders less than

p

W

g

.

The case of s > d

1

may be realised at the moment of forming an open Fermi surface. Then

�

0

(Q;Q; 
) '

V

0

mg

8�

2

�h

2

8

>

<

>

:

1� 4�s; Q

x

< s� d

1

;

1� �F

1

; s� d

1

� Q

x

� s + d

1

;

1� 2�(F

1

� 2s); Q

x

> s+ d

1

:

(16)

The kind of behavior of the �

0

(Q;Q; 
) is changed to some extent. However, the magnitude of the jump in the

@�

0

(Q;Q; 
)=@
 has the same order as that for normal processes at s < d

1

. The case of s > d

1

is essentially

nonadiabatic and here is not a limit of adiabatic approximation. The condition of s > d

1

constrains strongly the area

of the Fermi energy values: 4(�

2

F

� �

(1)

) < 
.

An additional parameter, d

2

= 2

p

�

2

F

� �

(2)

(d

2

is the diameter of the cavity) appears in theory along with s

and d

1

with the formation of the electron cavity in the second Brillouin zone. The �

(2)

= 1 + W

g

is the energy

of appearing electron topological transition related to �lling the second Brillouin zone. The six di�erent cases are

possible depending on the ratio between the parameters d

1

and d

2

. The cases of great interest are those which admit

of being realized independently from the magnitude of W

g

. Thus, for s < d

2

; 2s < (d

1

� d

2

) there are four critical

values of phonon momentum, Q

x

= d

2

� s and Q

0

x

= d

2

� s. For them critical values z

c

of integration variable z get

on the Brillouin zone face, and analytical properties of the �

0

(Q;Q; 
) are changed

�

0

(Q;Q; 
) '

V

0

mg

8�

2

�h

2

8

>

>

>

<

>

>

>

:

L

1

; Q

x

< d

2

� s;

L

2

; d

2

� s � Q

x

< d

2

+ s;

L

3

; d

2

+ s � Q

x

� d

1

� s;

L

4

; d

1

� s < Q

x

� d

1

+ s;

L

5

; Q

x

> d

1

+ s;

(17)

where

L

1

= 1 + 2�(d

2

+ F

2

+ F

3

);

L

2

= 1 + �

�

d

2

(3 +

s

Q

x

) + 2F

2

�

;

L

3

= 1 + 4�d

2

;

L

4

= 1 + �

�

d

2

(3�

s

Q

x

)� �F

1

+ 2F

2

�

;

L

5

= 1 + 2� ( d

2

+ F

2

+ F

3

� �(F

1

� 2s) ) ;

F

2

= (4Q

x

)

�1

[ (Q

x

� s)

2

� d

2

2

] ln j

d

2

� Q

x

+ s

d

2

+ Q

x

� s

j;

F

3

= (4Q

x

)

�1

[ (Q

x

+ s)

2

� d

2

2

] ln j

d

2

� Q

x

� s

d

2

+ Q

x

+ s

j :

The jump of the derivatives @�

0

(Q;Q; 
)=@Q

x

is � W

1=2

g

. Umklapp processes give small (� a

2

ln a) contribution

513



E. V. ZAROCHENTSEV

like they do in the case of the open Fermi surface. The adiabatic limit is possible at s ! 0. The violation of the

analytic behavior of polarization operator appears at two values of the momentum Q

x

= d

2

and Q = d

1

only.

As the second Brillouin zone is being �lled the case of d

2

< s < d

1

; 2s < (d

1

� d

2

) may be performed into reality.

Polarization operator is of the form

�

0

(Q;Q; 
) '

V

0

mg

8�

2

�h

2

8

>

<

>

:

L

3

; Q

x

� s � d

2

; s + d

2

� Q

x

� d

1

� s;

L

2

; s � d

2

< Q

x

< s+ d

2

;

L

4

; d

1

� s < Q

x

� d

1

+ s;

L

5

; Q

x

> d

1

+ s:

(18)

In this case the moment of violation of the condition

d

2

< s appears as the second Brillouin zone is being

�lled. Thus, the last case is possible only at early stage

of forming electron cavity, i.e. in the narrow region of

the Fermi energy values when 4(�

2

F

� �

(2)

) < 
. Other

four cases may occur for quite a weak W

g

: v(g)=E

F

�

(10

�4

� 10

�6

).

Nondiagonal elements �

0

(q+g;q+g

0

;!) of the polar-

ization operator appear to have an order of magnitude

v(g) but they contain similar singularities to chose of

�

0

(q;q;!).

Numerical calculation shows all the things said above

to be valid also in the case of am arbitrary direction of q.

With increasing q

z

the angle between right and left tan-

gents at the point of break decreases. The values of q

x

and q

z

are correspondent to nondiametral Kohn singular-

ities [7] at the break points on the curves of �

0

(q;q;!).

The presence of breaks on the curves of �

0

(q;q;!), and,

therefore, on the dispersion curves too, gives rise to the

jumps in momentum derivatives of �

0

(q;q;!).

Similar jumps must be observed also in the phonon

group velocity [4].

IV. PHONON GROUP VELOCITY ANOMALIES

The Green function poles determine a nonlinear equa-

tion

!

2

�

��

�D

��

i

(q) � Re�

��

(q; !) = 0 (19)

for the phonon frequency !(their dumping is not con-

sidered here). The equation for the polarization oper-

ator can be found everywhere (see, e.g., [9]), and we

don't write it. The singularities on the phonon disper-

sion curves considered here have the same genesis as the

Kohn ones [4] but the presence of the Bragg plane leads

to drastic changes in their behavior and location.

Let us to be interested in the region of q � 2k

F

. We

consider that Re�(q; !) neglecting umklapp processes

(g = 0) escape formulas complication. As it follows from

the equation for �

��

(q; !)(eqs. (3), (4)), the terms with

g 6=0 contain the values of pseudopotential form{factor

with the arguments q+ g. The values drop rapidly with

the growing of its arguments. In the case of g = 0 the

phonon dispersion low can be easily obtained from (19)

in the form




2

= 


2

pl

+B�x

2

�

0

(x;
)

�

0

(x;
)

: (20)

The dimensionless variables were used in (20)


 =

!m

2�hk

2

F

; x =

q

2k

F

;




pl

=

!

pl

m

2�hk

2

F

;

�

0

(x;
) = 1 + v

c

(x)�

0

(x;
);

B =j V (x) j

2

�

m

2�h

2

k

2

F

�

2

; (21)

where !

pl

is the ion plasma frequency, v

c

(x) is Coulomb

form{factor, V (x) is the pseudopotential. In eq. (20) the

magnitude of � is proportional to the electron{phonon

interaction vertex and its form is not important here.

It is enough for our purpose to use the Lindhard form

for polarization operator �

0

(x;
)

�

0

(x;
) = 1�

1

4x




2

+ x

4

� x

2

x

2

� ln

�

�

[
� x(x+ 1)][
 + x(x+ 1)]

[
� x(x� 1)][
 + x(x� 1)]

�

�

(22)

� 2
 ln

�

�

[
� x(x+ 1)][
+ x(x� 1)]

[
� x(x� 1)][
+ x(x+ 1)]

�

�

:

The dependence of �

0

on 
 is neglected in the adi-

abatic approximation. Thus, the 
(x) has only Kohn

singularity x lnx, which leads to logarithm divergence

of the phonon group velocity at x ! �1(q ! �2k

F

).

With considering electron nonadiabatic states, one may

not divide the energy of the system on electron and ion

parts. Elementary excitations spectrum should be found

by solving a common system of equations. It leads to a

nonlinear behavior of 
(x)(20), with the phonon group

velocity w
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@


@x

=

A

1

+A

2

A

3

(23)

being the function not only of the @�

0

=@x (like it does in the adiabatic approximation) but of the @�

0

=@
. In equation

(23)

A

1

=

�B

2�

2

0

(x;
)




2

� x

2

x

2

ln

�

�

[
� x(x+ 1)][
+ x(x+ 1)]

[
� x(x� 1)][
+ x(x� 1)]

�

�

; (24)

A

2

=

@


2

pl

@x

��

0

(x;
)

�

0

(x;
)

@B

@x

x

2

+

2�Bx

�

2

0

(x;
)

2��

0

(x;
)Bx

�

2

0

(x;
)

(25)

�

�B�

0

(x;
)x

�

2

0

(x;
)

+

2�Bv

c

(x)�

2

0

(x;
)x

�

2

0

(x;
)

;

A

3

= 2
+

�B

�

2

0

(x;
)




x

ln

�

�

�

[
� x(x+ 1)][
+ x(x+ 1)]

[
� x(x� 1)][
+ x(x� 1)]

�

�

�

(26)

�

�B

�

2

0

(x;
)

x ln

�

�

�

[
� x(x+ 1)][
+ x(x� 1)]

[
� x(x� 1)][
+ x(x+ 1)]

�

�

�

:

The Kohn anomaly is canceled in group velocity since the A

1

term (containing logarithm Kohn singularity in

adiabatic approximation) and the A

3

one have the same singularities. One can easily see it by transforming of the

term of A

1

=A

3

near x = 1 to the form

A

1

A

3

=

x

2

�


2

2


2

4

�1 +

C � x ln

�

�

�


+ x� 1


� x+ 1

�

�

�

C � 
 ln j [
� x+ 1][
+ x� 1] j �x ln

�

�

�


+ x� 1


� x+ 1

�

�

�

3

5

; (27)

where C = 2
�

2

0

(x;
)=(�B).

The numerator and denominator in eq. (27) contain

the same logarithm singularities. The group velocity has

�nite limits which equal �v

F

in the points of x = 1�


where the logarithms diverge (v

F

is the electron velocity

on the Fermi surface)

lim

x!1�


@!(q)

@q

= �v

F

; lim

x!1+


@!(q)

@q

= v

F

: (28)

The singularities due to denominator A

3

tending to

zero appear in the phonon group velocity instead loga-

rithm ones. It is essential that the zero values of A

3

are

located between the zero values of the second term in

(27). This fact determines the behavior of the function

A

1

=A

3

.

In eq. (23) the second term A

2

=A

3

also has singular-

ities due to zero values of the denominator A

3

. The be-

havior of this term depends on the sign of A

2

(25) which

is the function of the @!

pl

=@q and @V (q)=@q.

Thus, the phonon group velocity can be represented

as a sum of two competing terms (see eq. (23)) which

have the same singularities related to the tending of the

denominator to zero. We note that the denominator in

group velocity is equal to twin adiabatic frequency and

has no singularities in adiabatic approximation.

As is seen from eqs. (24), (26), the singularities of

phonon group velocity are shifted to large momenta rel-

atively to q = 2k

F

on the value of �q = !m=(�hk

F

).

The distance between zero points of the denominator in

eq. (23) (x

2;3

� 1 + 
 � 2
 exp(�C)) depends on the

magnitude of C (eq. (27)) signi�cantly. The C � 10

2

,

B � 10

�2

for simple metals since B �j V (q = 2k

F

) j

2

.

There is a hope that the factor exp(�C) has a larger

magnitude due to the presence of d{ or f{electrons in

the transition metals and the rare{earth ones.

V. CONCLUSION

The dynamical problem is investigated in this paper,

with the dynamical matrix D(q; !) being calculated in

the three{wave model for a crystal when the Fermi sur-

face is close to the Bragg plane j E

F

�E

0

g

j� �h!

D

. Major

attention is given to the analysis of the polarization oper-

ator �(q;q

0

;!) because the lattice vibrational spectrum

singularities of a metal or narrow{gap semiconductor are

due to singularities in screening. The electron topological

transitions are the phenomena for which the considera-

tion of nonadiabatic states (the inuence of electron{

phonon interaction on them) is essential when the type
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of anomalies and singularities is being found.

The nonlinearity of equations for lattice vibration fre-

quencies is caused by retarded behavior of electron{

ion potential at vibrations. The qualitative changing of

group velocity behavior takes place in the vicinity of

Kohn singularity momenta q � 2k

F

although the mag-

nitude of phonon frequencies is changed insigni�cantly

over the adiabatic ones . It should be emphasized that

the group velocity anomalies in this case are already not

Kohn ones both of the type of singularity and of its gen-

esis. They are due not only to harsh edge of Fermi{Dirac

distribution but to the change of the distribution near

the Bragg plane. Phonon frequency dependence of the

polarization operator must lead to new e�ects in ther-

modynamical and kinetic properties of metals and semi-

conductors. Unfortunately, we don't know any such ex-

periments to be carried out at the present time.

The polarization operator singularities appear if the

critical values of the integrand (the points of changing

its analytical behavior) fall on the bound of the integra-

tion domain or on the Bragg plane.

For closed Fermi surface (�

2

F

< �

(1)

) there is one value

of Q

x

= s, at which the condition z

c

= z

0

is ful�lled.

It is the point in which the changing of the analytical

behavior of �

0

(q;q;!) takes place. The existence of a

singular point Q

x

= s is related to the presence of nona-

diabatic electron states in the reconstructed area, i.e. in

the layer with the width � �h! near the Fermi surface.

The electron{phonon interaction leads in this layer to

the transitions in the electron spectrum with the phonon

emission or absorption. The ! = 0; s = 0 in the adiabatic

approximation, and the integral (8) has no singularities

at Q

x

6= 0; Q

z

= 0:

The processes with phonon emission and absorption

appear to be nonequivalent ones because the condition

of z

c

= z

0

is ful�lled only for the process with the phonon

absorption. Thus, it is the absorption process that abides

by the existence of the polarization operator singularity.

Two cases are possible depending on the ratio between

the phonon phase velocity s and the neck diameter d

1

when the electron neck is formed for the open Fermi sur-

face (1 � �

(1)

) � �

2

F

� �

(2)

. In the case of s < d

1

there

are two values of momentum d

1

� s at which the ana-

lytical behavior of the �

0

(q;q;!) is changed. The limit

of adiabatic approximation is possible here. The case of

s > d

1

is nonadiabatic essentially.

When the electron cavity exists in the second Bril-

louin zone (�

2

F

> �

(2)

), the singularities in the �

0

(q;q;!)

appear if the critical values fall on the Fermi surface

(z

c

= z

0

) or on the Bragg plane (z

c

= 1). Ten di�erent

cases of behavior of integral (8) are possible depending on

the ratio among the s; d

1

and d

2

. The adiabatic limit is

possible in the case of s < d

2

< d

1

; 2s < (d

1

�d

2

); 2s < d

2

only. Here is the degeneration of critical points to one

point. The change of analytical behavior of the integral

takes place for two values of the momentum Q

x

= d

1

and Q

x

= d

2

only. At these values the momentum Q

connects the states on the Bragg plane which belong to

the reconstructed area of electron spectrum.

The Fermi surface topology changing similar to the one

considered here takes place in In [18] and Al [19] under

pressure. One may expect the appearing of the singular-

ities in the phonon group velocity in these metals, and

also in thermo{E. M. F. [20].
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VPLIV NEAD��BATIQNIH STAN�V, BLIZ^KIH DO GRAN� ZONI BRILL�ENA,

NA KOLIVNI�SPEKTR

�. V. Zaroqencev

Donec~ki� f�ziko{tehn�qni� �nstitut Nac�onal~noÝ Akadem�Ý Nauk UkraÝni

vul. R. L�ksembur , 72, Donec~k, 340114, UkraÝna

E{mail: zero@host.dipt.donetsk.ua

Va�livu rol~ u formul�vann� osoblivoste� kolivnogo spektra kristala v�d�gra�t~ dv� obstavini: ne-

ad��batiqn� stani elektron{�onnoÝ sistemi, wo le�at~ poblizu graniqnoÝ ener��Ý, � bliz~k�st~ cih stan�v

do Bre��ovoÝ plowini. V okol� elektronnogo topolog�qnogo perehodu v upor�dkovanih seredoviwah na-

�vn�st~ nead��batiqnih stan�v privodit~ do radikal~noÝ zm�ni harakteru ned��metral~nih osoblivoste�.

Na�sil~n�xe ce� efekt vi�vl�t~s� tod�, koli �mpul~s fonona z'dnu dv� perebudovan� poblizu Bre��ovoÝ

plowini oblast� elektronnogo spektra. Ustanovleno umovi, pri �kih de�k� osoblivost� pol�rizac��nogo

operatora privod�t~ do neanal�tiqnoÝ zale�nosti grupovoÝ xvidkosti fonona v�d �mpul~su.
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