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Non{linear properties of the order parameter distributions in the systems with one{component

order parameter are considered. It is shown that the solutions expressed through Jacobi elliptic

functions give more information about the behaviour of such a system in comparison with the

models in which the order parameter distribution is approximated with the harmonic series. The

developed approach provides a new mechanism of system characteristics dependence on the external

parameters.
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I. INTRODUCTION

The incommensurate states are known to exist in many

materials [1]. Their appearance is caused di�erent rea-

sons. The properties of modulated phases are di�erent

as well. Following the classi�cation proposed in [2] we

point out the systems of type I and type II.

In the case of type I system the order parameter has

two (or more) components �(x) and �(x), and the invari-

ant linear on the gradients can be constructed (the Lif-

shits invariant [�(x) �@�(x)=@x� �(x) �@�(x)=@x]). Close

to the point of transition from the normal phase into the

incommensurate state the order parameter spatial dis-

tribution is sinusoidal. But it distorts to the step{like

dependence as the temperature is lowered. The transi-

tion between modulated and commensurate phases can

be of the second order (at least in the samples without

defects).

In the case of type II systems the order parameter

'(x) transforms under one{dimensional irreducible rep-

resentation of the symmetry group of disordered phase.

The Lifshits invariant is forbidden. The order param-

eter spatial distribution is sinusoidal almost in all the

temperature region of the existence of the incommensu-

rate phase. The phase transition into the commensurate

phase is always of the �rst order.

The di�erences of type II systems, especially their spe-

ci�c non{linear properties [3], are discussed in many pa-

pers. In particular, the numerical analysis in the frame-

work of multiplane approximation [4] shows that the con-

tribution of higher harmonics in the order parameter dis-

tribution increases when the g �'

2

(x)[@'(x)=@x]

2

invari-

ant with large enough coe�cient g is taken into account

in the thermodynamical potential expression. Moreover,

the g{term mechanism permits to describe the order pa-

rameter dependence on temperature, pressure, electric

�elds correctly [4]{[6].

At the same time, in the theory of systems with scalar

order parameter the solutions analogous to the multi{

soliton distributions known for the type I systems [7]

are not found. The one{harmonic approximation is of-

ten used to describe the spatial dependence of the order

parameter.
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Fig. 1. The dependence of wave number b on the e�ective

temperature q in model (1), (9). The solid curve shows b(q) for

the case g = �10; the dashed curve is for g = �1; the dotted

curve corresponds to the case g = +0:1: The dashed-dotted

curve is calculated according to the (3), (4), g = �1: The

solid line corresponds to the value b

2

0

(q) = 0:5 (the case g = 0

in equation (4))

In [8, 9] within the framework of Landau{type the-

ory the approach is developed which allows to obtain

new non{linear solutions for the scalar order parame-

ter distributions in the incommensurate phase. In the
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present paper we continue investigating the properties

of the found solutions.

In the section II we formulate the problem and point

out the class of considered solutions. These distributions

are expressed through the Jacobi elliptic sinus the pa-

rameters of which are de�ned by means of the minimiza-

tion of the system thermodynamical potential.

In section III the results of numerical investigations of

the solution parameters and the phase transition charac-

teristics are presented.

Section IV contains discussion and conclusions. The

order parameter distributions under consideration cor-

rectly describe the known properties of the type II sys-

tems. But they give more information in comparison

with multi{plane approximation because they allow to

understand the non{linear behaviour of one{component

order parameter systems in more detail and provide a

new mechanism for describing the order parameter de-

pendence on the external parameters. The g{term can,

in principle, provide the existence of multi{soliton states

in the type II systems. But the growth of the absolute

value of parameter g simultaneously leads to an essen-

tial narrowing of the temperature interval where the in-

commensurate phase exists and makes the observation of

such states a di�cult task.

II. THE Sn{DISTRIBUTIONS OF SCALAR

ORDER PARAMETER

Phase transitions in the system with one{component

order parameter can be described phenomenologically on

the basis of the following thermodynamical potential [4,

5, 9]:

� =

Z

L

0

h
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)
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2
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where '(x) is the order parameter, L is the crystal length

along the x{axis (the direction of modulation in the in-

commensurate phase), '

0

� @'(x)=@x; g; 
; g; p, are

the material parameters. In expression (1) all the pa-

rameters, the order parameter and the coordinate x are

dimensionless [10]. We suggest that the temperature is

the only external parameter causing the phase transfor-

mations in the system, and q = q � (t � t

0

), while other

parameters do not depend on the temperature.

The variational di�erential equation corresponding to

functional (1) is given by

'

(IV )

+ g('

2

'

00

+ ''

0

2

) + 
'

00

(2)

+q'+ p'

3

+ '

5

= 0:

Due to taking into account of the gradient terms the

thermodynamical potential (1) allows to describe not

only homogeneous phases such as disordered and com-

mensurate ones but incommensurate phase as well [3].

The g{term permits to explain the order parameter de-

pendence on the external parameters [4{6]. In particular,

if the order parameter spatial distribution is considered

in the plane wave approximation [11]

'(x) = a � sin(bx) (3)

then the g{term provides the proper modulation period

dependence on the temperature. Really, the minimiza-

tion of functional (1) in respect to the parameters a; b

in the case when the order parameter is expressed ac-

cording to (3) gives [4]:

b

2

=




2

+

1

8

ga

2

: (4)

If g < 0 and the temperature is lowered the order pa-

rameter amplitude a increases [4] that leads to simultane-

ous decreasing of the wave number b. As a consequence,

the modulation period T = 2�=b grows under the men-

tioned conditions. Such a behaviour qualitatively corre-

sponds to the experimental data for ferroelectrics (for

example, thiourea and sodium nitrite), some magnetics

etc. [1].
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Fig. 2. The dependence of modulation period T on the ef-

fective temperature q in the model (1), (9). The solid curve

shows T (q) for the case g = �1; the dashed curve is for

g = +0:1; the dotted curve is for g = +1: The dashed-dotted

curve is calculated in the approach (3), g = +0:1: The solid

line corresponds to the value T (q) = 2�=b

0

� 8:886.

In the previous papers [8,9] we have developed the ap-

proach to �nd the novel solutions of equation (2).

According to [8,9], the solutions of equation (2) can

satisfy the expression
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'

0

2

(x) =

1

X

n=0

a

n

'

2n

: (5)

The coe�cients a

n

in the equation (5) are found from

the in�nite system of linking algebraic equations.

In general, the solving of equation (5) and the corre-

sponding system for the coe�cients a

n

is not a more sim-

ple task than the initial problem (1){(2). Nevertheless,

the representation (5) allows to facilitate our consider-

ation essentially. Really, we can account the truncated

sum

'

02

(x) =

N

X

n=0

a

n

'

2n

(6)

as the N -th approximation of the exact solution (5). In

the case of (6) the coe�cients a

0

; a

1

; :::; a

N

can be found

by the minimization of thermodynamical potential (1) in

respect to them.

According to (6) the �rst approximation which gives

the spatially periodic solutions corresponds to N = 1

and the equation (6) has the form:

('

0

)

2

= a

0

+ a

1

'

2

: (7)

It is easy to see that equation (7) is the di�erential equa-

tion for function (3), i.e. the case N = 1 represents the

one{harmonic approximation.

The simplest approximation which generates non{

linear distribution is the case of N = 2:

('

0

)

2

= a

0

+ a

1

'

2

+ a

2

'

4

: (8)

Equation (8)is the di�erential equation for the Jacobi

elliptic functions [12]. Among the Jacobi elliptic func-

tions only the elliptic sinus sn(x; k), the elliptic cosine

cn(x; k) and the function dn(x; k) are �nite on the real

x{axis. The elliptic modulus k satis�es the inequality

0 � k

2

� 1.

The distribution (3) is an essentially linear one. At

the same time, in the real physical systems the order pa-

rameter distribution is strictly linear only in the close

vicinity of the point of transition from the disordered

phase into the incommensurate one (more exactly, only

at this point). The farther the system is from this point

the larger the contribution of higher harmonics becomes.

Hence, for the correct description of order parameter dis-

tribution the non{linear solutions are more appropriate.

Among the functions satisfying equation (8) the fol-

lowing one can be considered as the non{linear general-

ization of distribution (3) [9,12]:

'(x) = a � sn(bx; k): (9)

If the elliptic modulus is small (k

2

� 0) distribution (9)

is equivalent to the one{harmonic approximation (3). As

k approaches unity the contribution of higher harmon-

ics grows. It should be noted that only odd harmonics

sin[(2n+1)]bx, n = 0; 1; 2; : : :; are present in the Fourier

series of distribution (9) which is in complete agreement

with the symmetrical properties of equation (2) and the

numerical analysis of the problem (1){(2) [2]. In the lim-

iting case k

2

� 1 dependence (9) corresponds to the pe-

riodic structure of kink{like spatial solitons.

As we have said above distribution (9) is the simplest

non{linear approximation of the exact solution (5). To

get closer to the exact solution we should use the approx-

imations with N � 3. In this case the order parameter

distribution is expressed through the hyperelliptic func-

tions. But when we preserve the terms '

2n

, n � 3, in

expression (6) which can mean, in particular, that large

values of the order parameter become important. In the

Landau{type theory such a situation needs an additional

detailed study.

It should be noted that there exists the unique set of

values of parameters a; b; k for which solution (9) is

an exact one to equation (2) [9]. But this partial exact

solution does not correspond to the absolute minimum

of thermodynamical potential [9] and, consequently, it

does not describe the equilibrium state which is under

consideration in the current paper.

III. NUMERICAL INVESTIGATION OF

Sn{DISTRIBUTION

In this section we represent the results of the investi-

gation of properties of the approximate equilibrium dis-

tributions of one{component order parameter (9).

The variational equations for parameters a; b; k of dis-

tribution (9) are complex expressions containing com-

plete elliptic integrals of the �rst K(k) and second E(k)

kind. Therefore we use a numerical procedure to �nd the

equilibrium values of a; b; k:

The properties of system (1) depend on the current

values of parameters g; q; p. Among these generalized

material parameters the \temperature" q and the mag-

nitude g of the interaction between '(x) andr'(x) �elds

[9] are of main interest. So we assume that p = 1 for the

sake of simplicity.

In our calculations the e�ective temperature q changes

in the interval q

L

� �q � q � q

I

. Here q

I

= 


2

=4

is the point where the disordered phase becomes abso-

lutely unstable and the system undergoes the second or-

der phase transition into the incommensurate phase [11],

q

L

= q

L

(g) is the point of �rst order phase transition into

the commensurate phase, �q stands for some arbitrary

small q{interval which is used to locate the point q

L

dur-

ing the calculations.

The parameter g changes in the interval �10 < g <

p

40=3: The lower limit is an arbitrary but large enough

value needed to evaluate the tendency of system char-

acteristics behaviour. As for the upper limit, it is the

boundary value for the parameter g (see Appendix).

Figs. 1{3 show the characteristic dependence of wave

number b, modulation period T and thermodynamical

potential � on the e�ective temperature q for di�erent
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values of the parameter g. The dependencies of ampli-

tude a(q) and elliptic modulus k(q) are monotonically

increasing functions as the temperature is lowered.

The decrease of parameter g from +1 to �10 leads to

the following consequences.

a). The absolute value of q

L

becomes smaller (q

L

is

negative for all the values of g). In other words, the tem-

perature interval of incommensurate phase existence de-

creases because the temperature q

I

does not depend on

the g value. For example, if g = �1 then q

L

= �0:69; if

g = �10 then q

L

= �0:23:

b). The elliptic modulus value k

L

corresponding to the

point q

L

increases: for g = �1 | k

L

= 0:53; for g = �10

| k

L

= 0:888: It means that the contribution of higher

harmonics in the order parameter distribution becomes

larger as g decreases.

c). The modulation period grows faster. But the fol-

lowing should be emphasized circumstances.

Firstly, there is no strong correlation between the mod-

ulation period and the wave number as it takes place

for models (3), (4). For distribution (9), the period

T = 4K(k)=b [12] increases even when the parameter

b increases as well. As for the wave number itself, it be-

gins to decrease as the temperature is lowered only for

the large enough value of jgj ; g < 0:

Secondly, for some positive values of g, the modulation

period begins to decrease. But there also exist such val-

ues of g > 0 (for example, g = 0:1) for which the period

T decreases in some vicinity of q

I

but then it starts to

grow.

IV. DISCUSSION

In the present paper we investigate some non{linear

properties of the incommensurate state in the systems

with one{component order parameter.

Our consideration is based on approach (6) which gives

the \recipe" to obtain the solutions of variational equa-

tion with di�erent accuracy. The considered solution (9)

is one of the essentially non{linear approximations of

the order parameter distribution in the incommensurate

phase. The distribution (9) permits to describe the or-

der parameter behaviour not only in the vicinity of the

point of the disordered-incommensurate phase transition

but near the transition from the incommensurate phase

into the commensurate state as well. Using model (9) we

express the order parameter dependence on the spatial

coordinate through the well{known special function with

three varying parameters rather than through the har-

monic series which, in general, is in�nite. This circum-

stance essentially simpli�es the analysis of the non-linear

properties of the systems with one{component order pa-

rameter.

The speci�c feature of the elliptic sinus is that it essen-

tially di�ers from distribution (3) only in close vicinity

of the point k

2

= 1 [12]. For the characteristic values

of k

L

occurring in our calculations, the contribution of

the second harmonic a

3

� sin(3bx) in (9) in respect to the

basic harmonic (3) equals several percent [12]. That is in

good agreement with the experimental data [1].

When the parameter g is negative and jgj is large

enough the k

L

values close to unity can arise in the

vicinity of the point of transition from the incommen-

surate phase into the commensurate state. It enables the

appearance of distributions resembling the multi{soliton

structures. But, at the same time, the growth of g ab-

solute value leads to a decrease in the incommensurate

phase existence interval. Hence, even neglecting the fact

that the large negative values of g can never occur in real

systems, we see that the possibility of the appearance of

multi{soliton states can be in contradiction with the pos-

sibility to observe not only the non{linear distributions

but the incommensurate phase in the experiment as well.

���� ���
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����T
Fig. 3. The dependence of thermodynamical potential �

on the e�ective temperature q: The parameter g is equal to

g = �1: The solid curve is for model (9), the dashed curve is

for approach (3), the dotted curve shows the thermodynami-

cal potential of commensurate phase.

Our results con�rm that the g{term plays a very im-

portant role in the phenomenology of systems with one{

component order parameter. But as it follows from what

has been said above, in the case of model (9) the novel

mechanism of the order parameter dependence on the

external parameters exists.

This mechanism di�ers from the ordinary one (4)

based on the g{term utilization. The essentially non{

linear character of solution (9) permits to take into ac-

count, in particular, the dependence on temperature even

when g = 0. Using the solution (9) we make the re-

quirements on the parameter g value weaker. This cir-

cumstance enhances the ability of theory to describe the

properties of one{component order parameter systems. It

is also important from the point of view that the equa-

tions analogous to equation (2) are encountered not only

in the physical systems (ferroelectrics etc.) but in chem-

ical, biological, computer systems as well [13] where the

role of g{term can be very di�erent.

Therefore, in comparison with the models in which

the order parameter distribution is approximated with
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the harmonic series model (1), (9) allows to under-

stand the non{linear behaviour of systems with the one{

component order parameter in more detail and provides

a new mechanism for the description of the dependence

of system characteristics on the external parameters.
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APPENDIX. System global stability and '

02

'

2

{term

If g < 0 then the contribution of the (�g�'

02

'

2

) |

term in thermodynamical potential is always positive and

can not destroy the global stability of system (1). But it

can be broken when g is positive [14]. Nevertheless, there

exists the interval of parameter g > 0 values for which

the global stability of (1) (at least with respect to the

considered distributions) is preserved.

To prove this statement we consider in the �rst place

the limiting case of function (9) k = 0: If k = 0 then [12]

sn(bx; 0) = sin(bx) (A1)

and the expression for the thermodynamical potential

has the form

� =

1

2

a

2
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3

16
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48

a

6

:

(A2)

Mathematically the global stability breaking means

that the thermodynamical potential of the system ap-

proaches minus in�nity �!�1 for some values of a; b.

For the concrete expression (A2) such points are respec-

tively a = 1 and b = 1 (we consider physically mean-

ingful solutions so we assume that a � 0 and b � 0):

When only one of the parameters a; b becomes in�nite

the thermodynamical potential (A2) is always positive

because the leading coe�cients on a and b are positive.

But when a; b are of the same order and approach in�nity

and g > 0 then the function (A2) can become negative.

As long as a and b must change simultaneously we can

assume that b is a function on a : b = f(a) and fur-

thermore that b =

1

P

n=0

c

n

a

n

. It is simple to see that the

leading coe�cient in a{terms can be negative only for

the case b = c � a. Indeed, when b � a

m

, m � 2, the term

in a

2

b

4

� a

2+4m

, where 2 + 4m > 6, is the leading one

and it is always positive. For the case of the correlation

b = c � a function (A2) transforms into

� = A � a

6

+

�

3

16

p�

1

2


c

2

�

� a

4

+

1

2

qa

2

; (A3)

A =

1

2

c

4

�

1

8
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2

+

5

48

: (A4)

If for the current value of g and for some real values

of c coe�cient A can become negative then the system

thermodynamical potential is globally unstable. In other

words, to provide the thermodynamical potential global

stability function A(c) must be always positive, i.e. poly-

nomial (A4) must not have real roots. This requirement

leads to the inequality

g <

r

40

3

� 3:65 (A5)

When k

2

> 0 the restriction (A5) becomes less strict.

Really, for k

2

! 1 the thermodynamical potential (1)

can be written in the form

�
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(A6)

Repeating the foregoing consideration we come to the

conclusion that g must satisfy the following condition

g <

q

40��

184

3

;

� = ln

4

p

1�k

2

:

(A7)

If k

2

= 0:9 then � = 2:54 and g < 6:3: When k

2

! 1

then �!1: In the limit k

2

= 1 there is no any restric-

tion on the value of parameter g if we keep in mind the

system's global stability.

Therefore, if we assume that the order parameter dis-

tribution has the form of (9), 0 � k

2

� 1, then system

(1) is globally stable not only for the negative values of

parameter g but for the interval 0 � g <

p

40=3 as well.
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NEL�N��N� VLASTIVOST� NESUM�RNIH FAZ U SISTEMAH

Z� SKAL�RNIM PARAMETROM POR�DKU

S. V. Berezovs~ki�, V. F. Klep�kov, �. V. Sereda

Naukovo{tehn�qni� centr elektrof�ziqnoÝ obrobki

Nac�onal~noÝ akadem�Ý nauk UkraÝni

vul. Qernixevs~kogo, 28, a/s 8812, Hark�v, 310002, UkraÝna,

tel. (0572) 40{42{82, e{mail: ipct@pem.kharkov.ua

Rozgl�nuto nel�n��n� vlastivost� rozpod�l�v parametra por�dku v sistemah �z odnokomponentnim para-

metrom por�dku. Pokazano, wo rozv'�zki, �k� vira�a�t~s� qerez el�ptiqn� funkc�Ý �kob�, da�t~ b�l~xe

�nformac�Ý pro poved�nku takih sistem por�vn�no z model�mi, de rozpod�l parametra por�dku nabli�eni�

garmon�qnim r�dom. Rozrobleni� p�dh�d zabezpequ
 novi� mehan�zm zale�nosti harakteristik sistemi v�d

zovn�xn�h parametr�v.
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