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The Poincare’s period of particle oscillations between wells is obtained in a double—well potential.
The dependencies of the oscillation period on transmission coefficient and on distance between levels
are obtained. The cases of squared potentials and some potentials having rounded off forms are

considered specifically.
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I. INTRODUCTION

The tunneling of a particle through the potential bar-
rier is an essentially quantum phenomenon. This process
involves propagation of a particle through a classically
inaccessible region. The complete information about the
tunneling of a particle from the solution of Schrodinger
equation with appropriate boundary conditions can be
obtained in all regions. But in practice, the exact so-
lution of Schrodinger equation can be found for some
simplest forms of potentials and it is difficult enough to
obtain the exact solution for an arbitrary potential form.
For this reason the approximation methods are used for
finding solutions for potentials of a specific form. But ex-
act solutions, which were found, are of great importance,
because they allow to analyze the tunneling process in
general.

It is sufficiently difficult to obtain solutions for multi—
dimension potential forms. Therefore, in the present
work only one—dimensional case is considered, for which
exact solutions are obtained for some simple forms of po-
tential having two wells separated by barrier. Every spe-
cific form of potential in comparison with the other ones
requires the use of a specific approach for solving the
problem, allowing some features of tunneling to be more
pronounced, the others remaining in the shade. Having
analyzed the use of boundary conditions for solving the
problem, we proposed to divide various shapes of double—
well potentials into two classes: squared potentials and
potentials having rounded off forms. Squared double-
well potentials have exact analytic solutions (which can
be expressed through elementary functions). Rounded
off double—well potentials have the solutions expressed
through special functions (if these solutions exist). In the
present work after qualitative analysis of energy levels of
various forms of the double—well potential the problem
of squared potential and the problem of rounded off po-
tential (the Morse’s potential) are considered separately
in the following two sections.

The period of particle oscillations between two wells is
one of the most important parameters which characterize
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the process of tunneling. We can obtain its value falling
back on the energy levels of the system. For this at the
beginning we will confine ourselves to class of systems,
for which the distances between energy levels have the
exactly determined largest common devizor A and the
following condition is fulfilled:

En=Eo+Axl,, (1.1)

where I, € 0, N. In the general case within the region of
discrete energy spectrum the states of these systems are
described by the wave packet as follows [3]

U(1) = D gnipn(w)e o/

- Zgngon(x)e_iAl"t/h (1.2)

where ¢, () is orthonormal wave functions of stationary

states of the system satisfying the equation He,(z) =

Enen(z); H is the Hamiltonian of the system; >~ |g,|* =
n

1 and the insignificant factor e="Fot/? ig omitted which

is common for all terms of the sum . Let us select the

n
moment ¢ = 0 as the origin of time reference.

Let the function (¢) be determined on the region
[—ZZ, 8] and satisfy the Dirichlet’s conditions [11]: (a)
it can divide this region into a finite number of regions
in which the function ¢ (¢) will be continuous, monotonic
and bounded; (b) if ¢y is the discontinuity point of the
function ¢ (t), then ¥ (to +0) and ¢(tp — 0) exist. In that
case expression (1.2) is an expansion of the function (%)
into the Fourier series with respect to ¢ which is con-
verging in all the points of the region [—%h, WA—E] Then
the function ¢(¢) is periodic in time and period of the
oscillations (the time of Poincare’s cycle) is given by

(1.3)
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Expression (1.3) determines the period of oscillations
of the wave packet, if energy levels in the region of a dis-
crete spectrum have exactly determined common largest

divizor A and condition (1.1) is fulfilled.
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Fig. 2. Double—well rounded off potential.

In a general case for the systems for which the dis-
tances between energy levels in the region of discrete
spectrum do not have the exactly determined divizor A
one can select the 'quasi—cycles” with the given degree of
accuracy, for which the state of the system approaches
the maximum degree the initial state after a ’quasi—cycle’
time [1]. The states of such systems are localized in a con-
fined volume of space and the time of Poincare’s cycle
(which includes the required number of ’quasi-cycles’)
can be determined with given degree of accuracy. To
find the information about some parameters for quan-
tum systems evolving with time in the region of discrete
spectrum see [1,6,7].

Since the period of particle oscillations between wells
is obtained on the basis of energy eigenvalues, much at-
tention is paid to the problem of solving eigenvalue equa-
tions. For some forms of potential the transmission co-
efficient through the barrier is found. This parameter
can be obtained using two approaches: in the region of
continuous spectrum for the particle which is incident
upon the barrier, with asymptotic velocity hk/m, and,
when the condition of WKB approximation is fulfilled,
in the region of discrete spectrum for the particle which
initially 1s located in one well and then is tunneling to

another well. In case of double—well squared potential the
comparison of these two approaches for calculating the
transmission coefficient through the barrier is performed.
For symmetric double—well potentials the dependence of
transmission coefficient (which is found using one of the
approaches) on the period of particle oscillations between
wells 1s analyzed.

II. ANALYSIS OF THE POSSIBILITY OF
PARTICLE TUNNELING THROUGH A
BARRIER

The qualitative estimation — will the particle oscillate
between wells or not — can be obtained on the basis of
analysis of solutions of stationary Schrodinger equations
which are found for every well.

Let us divide various forms of double—well potentials
into two classes: squared potentials (see Fig. 1) and po-
tentials, which have rounded off forms (see Fig. 2). To ob-
tain the energy levels, the Schrodinger equation is solved
separately in every region (3 regions for squared poten-
tial, see Fig. 1; 2 regions for potential having rounded off
form, see Fig. 2).

As a result of this solution, the wave functions ¢;(x)
are found in every region, and these functions must be
continuous and bounded (we consider discrete spectrum
E < Uy) all over the region of its determination (here,
i is the number of region). If wave function is expressed
through special or elementary functions, then it will be
bounded everywhere in the region —d < = < b (with
the exception of some cases of hypergeometric functions
which must be considered separately, see [9,10]), and in
points # = —d and x = b the boundary conditions are is
given by

p1(—=d) =0, ¢2(b) =0. (2.1)

This conditions determine eigenvalues for energy lev-
els as for discrete levels. Condition of continuity of wave
function and its derivative in the region —d < = < b
requires the equality of solutions ¢(z) and dy(x)/dx for
the adjacent regions in the points of boundary between
these regions (in these points the discontinuity of deriva-
tive is possible).

At the beginning we consider squared potential (see
Fig. 1). For particle located in left well (region 1) we an-
alyze the possible cases of its propagation to right well
in result of tunneling through the barrier. Among them
we select the following cases:

1. In regions 1, 2 and 3 there are equal levels of Ejy
(see Fig. 1) which are found from Schrédinger equation
for every region separately. Then the particle can prop-
agate through the barrier along level Fy. (In this case
the transitions between levels are not required for tun-
neling). We obtain the eigenvalue of energy level Ey from
system (2.1) and the following system:

p1(—c) = p3(—c),
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/

ps(a) = p2(a), wh(a) = ¢h(a). (2.2)

2. In regions 1 and 3 there are equal levels of Fq, but
such levels are absent from region 2. In regions 2 and 3
there are equal levels of Ff, but such levels are absent
from region 1. Then the particle initially located on level
E7 in the left-side well, can not propagate to the right—
side well along this level. But in region 3 wave functions
corresponding to levels F; and E are not equal to zero.
Therefore, in this region the matrix element of transition
from level F; to level B (and on the contrary) is not
equal to zero. Therefore, the particle which is initially
located on level Ej in the left—side well can propagate
to the right-side well with a transition from level £ to
level Ef. The transition E; — Ff takes place in the re-
gion of barrier 3. Eigenvalue of level E7 can be obtained
from the system:

p1(=c) = gs(—c),  ¢il=c) = g(—c),

v1(=d) =0, ps(a) = 0. (2.3)

In this fashion, one can find the eigenvalue for level E}
from the following system:

e2(b) =0,

p3(—c) = 0.

pa(a) = ps(a),

¢h(a) = p5(a), (2.4)

3. In region 1 the particle is located on level Ey and
this level is absent from regions 2 and 3. Also in regions
1, 2 and 3 there are equal levels of E). In this case the
particle can not propagate along level E5 to the right
well and to region 3 of the barrier (there is a full reflec-
tion of the particle along level E3). But the particle can
make transition on level Esf in region 1 and then it can
propagate to regions 2 and 3 along this level. One can
find the eigenvalue of level E5 from the following system:

p1(~d) = 0, p1(—c) = 0. (2.5)

The eigenvalue of level E) satisfies system (2.1) and
system (2.2).

More concretely the first case will be considered in one
of the next sections. Note, that at the symmetry of po-
tential (d = b, ¢ = a, Wy = 0) for every level of left well
one can find the appropriate level in right well and con-
versely. Therefore, for cases considered above only the
first case 1s possible for this potential.

Now we consider the potential which has a rounded
off form (see Fig. 2). Let the particle be localized in the
left well. Among possible cases, in which the particle can
propagate through a barrier to right well, we select the
following cases:

1. In regions 1 and 2 there are equal levels Ey. Then
the particle can tunnel from left well to right well along
level Ey. The eigenvalue for this level can be found from
system (2.1) and the following system:
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©1(0) = ¢2(0), ©1(0) = ¢5(0). (2.6)

2. In left well the particle is located on level F; and
this level is absent in region 2. But in regions 1 and 2
there are equal levels Ef. Then the particle cannot tun-
nel from the left well into the right one along level Ej.
But at first it can make a transition from level £ to
level E{ in region 1 and then it can propagate to region
2 along level F{. A system for finding the eigenvalue of
level Ey is given by

ng(—d) = 0, @1(0) =0. (27)

The eigenvalue for level Ef can be obtained from sys-
tem (2.1) and system (2.6).

Fig. 3. Splitting of energy levels in symmetric potential.

In one of the next sections the problem with potential
of such a form will be considered more concretely. As an
example, the double—well Morse’s potential is selected.
Also note, that for potential of the rounded off form (as
in case of the squared potential) only the first case is
possible when the potential is symmetric.

III. A DEPENDENCE OF THE DISTANCE
BETWEEN THE TWO CLOSELY LOCATED
LEVELS ON THE TRANSMISSION
COEFFICIENT THROUGH A BARRIER IN A
QUASI-CLASSIC SYMMETRIC POTENTIAL

Consider potential U(z) which has two symmetric
wells separated by a barrier (see Fig. 3). If the barrier
is not penetrable; then there are energy levels Ey corre-
sponding to oscillations of the particle only in one well.
The possibility of particle transitions between the wells
leads to splitting of every level Ey into two closely lo-
cated levels | and E-.

We consider the case, when potential U(z) is quasi—
classic. Then the splitting value AE can be obtained
through the wave function ¢g(#) which determined with
accuracy to first order terms in A, as follows [2]



ON THE EVOLUTION OF PARTICLE TRANSITIONS ...

(3.1)
where
w 1 i
= —— d
©0(0) e h/lpl z ],
0
muv

20(0) = == 0(0), (32)

and vg = /2(Uy — E)/m, p is the system momentum,

w = 27/T is frequency of classic periodic oscillations; a
is turning point corresponding to level Ey (see Fig. 3).

Transmission coefficient 1D through the barrier in the
WKB approximation is determined by [2]

2 a
D = const - exp <_ﬁ / |p|dx),

where proportionality factor const is determined by the
accuracy of the WKB approximation and is equal to 1
with the accuracy of the first order terms in & (see [2]).
Taking into consideration expressions (3.1) and (3.3) we
can write

(3.3)

AE = const - w—h\/ﬁ (3.4)
T

Here, transmission coefficient D is determined by ex-
pression (3.3) for the discrete energy spectrum. In ac-
cordance with the conditions of using the WKB approx-
imation expression (3.4) determining the dependence of
level splitting AFE on transmission coefficient D is used
only for small values of D.

Now we consider some cases, for which there are exact
analytical solutions.

a-+c

_ d—c+
R B 9

2

[sinz(k(d —¢)) — f;— cos?(k(d — c))]

2

n ( sin(k(d — ¢)) — k/x cos(k(d — ¢))
sin(ks(b — a)) + ks/x cos(ks(b— a

(sin(k(d — ¢)) + k/x cos(k(d — ¢)))?

IV. DOUBLE-WELL INFINITE SQUARED
POTENTIAL

Consider a system the potential of which consists of
two squared wells separated by squared barrier of finite
height (see Fig. 1). This potential is given by

oo, for x < —d,z > b;
0, for —d < x < —e, (region I);
U, for —e<ax<a, (region III);
—Wy, for a <z < b, (region II).

(4.1)

U(x) =

In case of discrete energy spectrum in the region of
Uy > E > 0 we find the solution of the stationary
Schrodinger equation in the form:

apsin(k(z + d)), for —d <z < —¢,

o) = < aeX™ +boe™ X, for —c< < aq, (4.2)
agsin(ks(xz — b)), for a <z <b.
Here, the following coefficients are used:
1
k= ﬁ QmE,
1
k’g = %\/ Qm(E + Wo), (43)
1
X = ﬁ\/Qm(Uo - E).

Let’s consider the case of particle oscillations between
wells along one energy level (without transitions between
energy levels). Unknown coefficients and these energy
levels can be found from continuity conditions of wave
function in boundary points ¥ = —¢, x = a and from the
following normalization condition:

+oo
[ oteipds =1,

Ultimately, we obtain unknown coefficients:

)))Ze_ZX(W) [b_—a + L in(2ks(a - b))

2 4ks

1 .
T sin(2k(d —¢)) +

8x

(62x(a+6) -1
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) ) ~1/2
N (sin(k(d — ¢)) — k/x cos(k(d — ¢))) (1- e—zx(a+c))} : (4.5)
8x
as = aléexc(sin(lﬁ(d —¢)) + k/xcos(k(d — ¢))),

by = alée_xc(sin(k(d —¢)) — k/xcos(k(d — ¢))), (4.6)

lato) k/x cos(k(d —¢)) —sin(k(d — ¢))
ks/x cos(ks(b— a)) + sin(ks(b — a))

as = aje

The eigenvalue equations for this potential are given by

E = h’k%/2m,

sin(ks(b — a)) — ks/x cos(ks(b — a)) . sin(k(d —¢)) — k/x cos(k(d — ¢)) _ 2x(a+o) (47)
sin(ks(b — a)) + ka/x cos(ks(b—a)) sin(k(d —c)) + k/x cos(k(d — ¢)) ’ ’

Now we consider the symmetric case of (d = b,ec = a, Wy = 0) [2,4]. The wave function became symmetric or
antisymmetric:

ay sin(kn (z + b)), for —b< < —a
on(x) =< ba((=1)"eX” + e~ X7y for —a <z < a; (4.8)
ar(—1)"sin(kn (b — 2)), for a < z < b.

where n € 0, N. The unknown coefficients a; and by, obtained from expressions (4.5) and (4.6), are given by

462xa X

: 2 2xa —2xa —1/2
o = {b—a—l— (sin(k(b—a)) — k/x cos(k(b — a))) ((—1)”2a—|—6 —e )}

sin(k(b —a)) — k/x cos(k(b — a)) .

by = a; Sexa (49)
The wave vector k 1s transformed to form:
1 . 1
k= o) arcsin - +7n . (4.10)
—a \/1+ X (g_l)n_eZXa)
k2 (_1)n+e2xa

Consider the particle propagating from left to right in potential (4.1) with the asymptotic velocity hk/m and
energy E < Uy. For it the wave function can be written as follows

(hk/m)=M2 x (eh7 — Ae=®) for & < —¢;
p(x) = ¢ (hk/m)=Y? % (BeX® 4+ B'e™X%), for —c < & < a; (4.11)
(hk/m)=? x Ceike, for > a.

Coefficients A, B, B’ and C are obtained from continuity conditions for ¢(x) and dy(x)/dz at the points x = —¢
and x = a. The transmission coefficient D and reflection coefficient R calculated as the ratio of the flux of incident
wave 1n region III to the flux of transmitted wave in region I or reflected wave in region III, are given by

4]€]€3X2
(kks + x?)? sinhz(x(a +¢)) 4 x2(k — k3)2ch?(x(a + ¢)) + 4kkax?’
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(kks + x%)? sinhz(x(a +e))+

2k — ks)?ch?(x(a + )

(4.12)

(kks + x?)? sinhz(x(a + ) + X2k — ks)?ch?(x(a + ¢)) + dkksx? .

We find the values D and R for transmission of the par-
ticle through the barrier in continuous energy spectrum.
But comparing the transmission coefficient D with its
small values determined by expression (4.11) for symmet-
ric case with that determined by expression (3.3) which
is obtained in the WKB approximation for a discrete
energy spectrum shows that both the approaches give
identical formulations with accuracy to the normalized
constant: D = const - exp(—2xa), where const is deter-
mined by the accuracy of the WKB approximation and
is equal to 1 in terms of the first order in 7 [2,5]. In this
sense, we will formally consider expression (4.11) as the
determination of transmission and reflection coefficients
for the discrete energy spectrum. The values k& and y,
used in expression (4.11), can be obtained from equation

(4.7) or (4.10).

19.007 f(kg) i
‘
8.00- i :
L
6.00- / 1 :
I I !
| | )
4.00 i i !
I I !
‘ ‘ o
2.00 ! ! ! i

| I I 0

ke ke kK

e ' ' 2mU7 h

19.007 f(kn) i
‘
8.00- T :
! [
! I
| |
6.00- : |
— :
! | ‘
4.00 ! ! !
I ! I
I ! I
| : |
2.00- 3 : : :
I I ! I

K,k ok, K

2.00 t t T

Fig. 4. The values k% are exact graphic solutions of set
(4.15) and the values k, are graphic solutions on this set,
where the second equation is changed to its linear approxi-
mation fz(ky).

We analyze the periodicity of particle oscillations be-
tween wells in a symmetric potential. For this we consider
equation (4.10) which can be written as

fl(kn) — kn(b_ Cl),

1

2
2 (_1)n_e2xa
\/1 + %2 (W)

(4.13)

fa(ky) = —arcsin

+ .

The graphic analysis of exact solutions of system (4.13)
gives a number of values k) (see Fig. 4). Changing the
second equation of set (4.13) to its linear relation fa(ky),
which can be obtained by linear approximation, we find
the following values of k,,:

k’n = k’o(?ﬂ, + 1),
En = Ey(2n 4+ 1)? = Ey + 4Eon(n + 1)
= By + Al,, (4.14)

A =4F,.

where n,l, € 0, N. From expressions (4.14) we obtain
period T' of particle oscillations between the wells:

po 2 mho o 2n+ 1)
T A T 2B, 2 B,
m™m
=102 (2n + 1)2. (4.15)

n

For values k, the accuracy m/(2(b — a)) is used. The
series of solutions k, is bounded by the maximum value
kn, where N (the number of energy levels in the region
E < Uy) satisfies the following condition:

v 2mU0 - hk’o

0< N
<N S T ohk

From expression (4.15) we obtain:

B = (2 1?0 o a0 D

= 4.16
KT 27?,2 ( )

Using expression (4.12) for the symmetric case and ex-
pression (4.16) we find the dependence of transmission
coefficient D through barrier on the oscillation period T
and on the value of A:
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-1

sinh? <2a¢2ngU0

—(2 12@
(2n+1) hT)

D,(T) =<1+ (4.17)
a2n+127 (12 (20 4 127"
T 20T
2mU RSN
sinh? 2a¢m O—A(n+2)
Dp(A 1 h 2h 4.18
n(A) = +A2m(2n—|—1)2 ) A(2n+1)2 ' (1.18)
h? 4Uy
Also note, that in both limiting cases D — 0 and D — oo the oscillation period T approaches the value:
Am(b — a)?
p o Aml—a)” (4.19)

V. DOUBLE-WELL MORSE’S POTENTIAL

Consider a system the potential of which is shown in
Fig. 2 and is given by

Ulz) = A(e_zo‘(“'c) - 26_0‘(“'6)), for —d<x <0,
T B(e?Plrma) —9ePle=a)y - for 0 < & < b
(5.1)

For this potential we find solutions of stationary
Schrodinger equation. Performing the following changes:

2\/ QmA —oc(x+c)

po= ———c , for —d <z <0,
ah
2v2mB
ép = ieﬁ(x_a), for 0 < x < b, (5.2)
Gh
and introducing the following notations:
vV=2mE V2mA 1
SA= ———, na = —(sa+3),
ah ah 2
(5.3)
_ V=2mE _ V2mB n 1
s = “ah np = h SBt g )

we transform the stationary Schrodinger equation to the
following form:

Py 1d 1
{—¢+——¢+<——+

TR =0

| (5.4)

n+s+1/2 s?
i ¢ _5_2)8”}
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Here, the indexes A or B are used by the values ¢, &,
n and s with the proviso that equation (5.4) is solved
in the region of left or right well, respectively. In order
to obtain the general solution let us omit these indexes.
Using the following changes:

(5.5)
¢ = 14 2s,

equation (5.4) can be transformed to the confluent hy-
pergeometric equation as follows

2

€dy+(c—€)@+ny:0.

& b (5.6)

Particular solutions of this equation can be written
using the confluent hypergeometric function F(—n,¢;¢)

[9,10]:

y(§) = F(=n,¢¢),

y2(€) = €7 F(—n —c+ 1,2 - ¢;§),

y3(€) = e F (e +n, ¢ =¢),

ya(€) = €7 F(1 40,2 — ¢; =€) (5.7)

Consider the case ¢ ¢ 7 (i.e. 2s ¢ 7). Then both the
particular solutions y3 and y,4 are linear dependent on ¥
and y,, because they are transformed to y; and y» by
Kummer’s transformation [9,10]:

F(a,c;¢) = e F(c—a,c;—£). (5.8)
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Solutions y; and y, are linearly independent between
themselves. It can see this from its behaviour at £ — 0.
Then the general solution of equation (5.6) can be writ-
ten as follows

y(€) = crF(—n,¢;€)

+ b T (—n—c+ 1,2 - ¢;€) (5.9)

where ¢; and ¢y are arbitrary constants. In the initial
variables the general solution has the form:

£
2

pE) =€
+ T F(—n — 2s,1 — 25;€)]

[1&° F(—n, 1+ 2s;&)

(5.10)

Expression (5.10) with relations (5.2) and (5.3) is a
general solution of the stationary Schrodinger equation
at 2s ¢ Z and F < 0 for the regions of left and right
wells. Coefficients ¢14, ¢1p, caa and cap (where indexes
A or B for coefficients ¢; and c¢s are indicated at left
or right well, respectively) are obtained from boundary
conditions and normalization condition. Imposed bound-
ary conditions determine the energy spectra as a discrete
ones. Using them one can find the energy eigenvalues of
the system.

The discrete energy spectrum determines the require-
ment that the wave function will be finited all over the
region of its determination. The finity of the wave func-
tion in the regions —d < # < 0 and 0 < & < b depends
on the constraining condition of particular solutions, by
use of which the general solution (5.10) can be repre-
sented. Constraining particular solutions at finite values
x depends on constraining functions F/(—n, 14+2s;£) and
F(—n—2s,1— 2s;&). But these functions are confluent
hypergeometric and are represented by converging series
at finite £ [10,11]. At n = 0 or n € N the first func-

@€ 40 [613

 Béno

c2B

tion has the form of the polynomial, and therefore, it
is bounded (because the values of £ are finited). In this
fashion, at n +2s = 0 or n + 2s € N the second func-
tion is bounded. Therefore, both the particular solutions
are bounded all over the region —d < & < b (factor £7°
at £ — 0 is finited because of constraining condition
at © = 0). Therefore, the general solution (5.10) is also
bounded all over the region —oco < & < oo.

Since wave function satisfies the condition of con-
straining definition x all over the region it can be nor-
malized by

b

[1etaian =1.

—d

(5.11)

Now we find the energy eigenvalues of the system. Con-
sidering possible solutions we select two cases:

1. The particle oscillates between wells along one en-
ergy level (without transitions between energy levels). In
this case the energy levels which are obtained from the
eigenvalue equation in the region of the left well must
correspond to the energy levels which are obtained from
the eigenvalue equation in the region of the right well. On
this case the following boundary conditions are required:

va(0) = ¢p(0),

4 (0) = ¢ (0), (5.12)
pa(=d) =0,

vp(b) =0,

where ¢4 () and @p(x) are general solutions (5.10) of
the stationary Schrodinger equation in the regions of left
and right wells, respectively. The solution of equation set
(5.12) gives the eigenvalue equation form of:

— « (G F (—np, 14+ 2sp;&po) + €o" F(—np — 2sp, 1 — 2sp;ERo)

c 1 s SaA—
% {1—“‘ * [—§£A%F(—n,4, 14 254;6a0) + 54 % EATVF (—na, 1+ 2545 €a0)

C24

F(—na,142s4;€40)
06

9
+ &40

— 54 *E’ZSA_lF(—nA — QSA, 1— 25A;€A0) —|—€ZSA

C1B

[y
|+ |36 pena - 2oa 1= 2sasan)

OF (—na — 254,11 — QSA;€A0)] }
9€a

1., she
= {—* |:_§€B%F(_n3a1+2535€30) +sp* &R F(—np, 1+ 2sp;&R0)

c2B

F(—np,1+2sp;&po)
OB

Y
+ B0

[y
|+ |-3es67 Pionn - 25m.1 - 2smim)

19



V. S. OLKHOVSKY, S. P. MAIDANYUK

oF(—np — 2 1—2sp;
—sp *EpoP T F(—np — 2sp,1 — 25p;&p0) + £ 7 (=ns = 25, SB’gBO)]}

73]
C
X |:C1_A * E’Z‘éF(—nA, 14+ 25A;€A0) + fZSAF(—nA — 2s54,1— 25A;€A0):| (513)
2A
where

C1A (5 ad)_zsAF(—nA—QSA,l—QSA;ngead)

a4 e ’

c2 4 F(=na, 1+ 254;€4069)

—2s _ _ _ . Bb
B _ ﬁb) 255 F(—ng — 2sp,1 — 2sp;Epoe’) "
g (5306 F(—ng, 1+ 255;Ep0eP?) (5.14)
2vV2mA _ .
Eao = ———e %,
ah
N2mB _,,
EBo = 57716 pa. (5.15)

We shall transform expressions (5.3) to form:

«
-S54,

5B

p
np = %@ (nA +sa+t %) - (%SA + %) . (5.16)

To find the eigenvalues we need to substitute expressions (5.14) and (5.16) into equation (5.13) and to resolve it
relatively for the value s4 which unequivocally defines eigenvalue E. The solution of equation (5.13) is performed
by the use of numerical methods and determines the energy eigenvalues corresponding to the particle oscillations
between wells.

2. Now we shall consider a different case: the particle oscillates in one well (for example, in the left one). In this
case its full reflection takes place from the middle of the barrier (here, the transition of the particle to another energy
level is possible, which exists in both regions, with further tunneling of the particle along it). Note, that in this case
the reflection of the particle from the barrier is principally possible along the energy levels of the range of 0 > £ > Uy
(this case of reflection is impossible for symmetric potential). We determine the condition of the particle reflection
from the barrier as follows

¢a(0) = 0. (5.17)
Using this condition and also the following boundary condition
pa(—=d)=0. (5.18)
we obtain equation from which the energy eigenvalues for the particle oscillations in the left well can be found

ezsAO‘dF(—nA —254,1—=254;€40)F(=na, 1+ 25A;€Aoeocd)

=F(—na—254,1 —254;€a0¢ ) F(=na, 1+ 254;&40) (5.19)

Resolving in this equation the relatively unknown values of s4 we can find the energy eigenvalues of the system.
In this fashion, the equation determining the energy eigenvalues for the particle oscillations in the right well can be
obtained
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eszﬁbF(—nB —2sp,1 —2sp;épo)F(—np, 1 + QSB;E’BOeﬁb)

=F(—npg —2sp,1 — 253;€Boeﬁb)F(—nB, 14 2sp;&po)

Equations (5.19) and (5.20) include the case when
some energy levels of left well are equal to some energy

levels of the right well. In this case the following condi-
tion 1s fulfilled:

which correspond to the particle oscillations between the
wells. Therefore, it is necessary to except such energy
levels from the analysis of the particle behaviour in one
well.

Fig. 5. Symmetric potential of form & + B?/z>.

Let us consider symmetric potential. In this case every
energy level obtained by the solution of the eigenvalue
equation in the left well region, is equal to the corre-
sponding energy level which is obtained by solving the
eigenvalue equation in the region of the right well. There-
fore, the particle located on any energy level of the region
of £ < 0 will be oscillated between the wells. The wave
function becomes symmetric or antisymmetric. A system
of equations for finding energy eigenvalues is given by

p(=d) = 0,(0) =0,

if wave function is symmetric (even states), and

if wave function is antisymmetric (odd states).

(5.20)

VI. SYMMETRIC POTENTIAL OF THE FORM
OF % + B2/.’L‘2

To analyze the particle behavior in a symmetric po-
tential with sufficiently high barrier, we can use the po-
tential of the following form:

(6.1)

where z €] — 00; +00[. This potential is shown on Fig. 5.
Let us use the new parameters:

ImE
G = ;,
m2w2
F= =T (6.2)
2,2
K:-%?B?

Then the stationary Schrodinger equation is trans-
formed to the form of

d? K
—S0+<G+Fx2+x—;)*g0:0

- (6.3)

Let us find solutions of this equation. We shall perform
the following change of variables:

£ =ax®,
a:f%f:\LJa (6.4)

p(&) = (&/a) ™ *w(©).

As a result, equation (6.3) is transformed to the stan-

dard Whittaker’s form [9,10]:

ﬁw+ 1+ G 1+<3 K)l
de? 4 4/=F¢

E‘FZ €—2:|w20. (6.5)

Using the following parameters and performing the fol-
lowing change of variables:

21



V. S. OLKHOVSKY, S. P. MAIDANYUK

1 K
2 - — — —
W=~ T (6.6)
1
=——k
a=3 +H,
c=1+42yu,
y(€) = €% Pu(g), (6.7)

we transform equation (6.5) to a confluent hypergeomet-
ric equation of the form:

dy

d
dg?

y—ay:O

§ T

+(c—¢) (6.8)

Particular solutions of this equation can be represented
by confluent hypergeometric function F'(a, ¢; €) as follows

yl(g) = F(G,C;g),
yZ(g) = fl_cF(a—c+1,2—c;€),
ys(&) = et F(c—a,¢=8),

y4(€) = gl_cegF(l —a,2—c¢ —g)

Let us consider the case ¢ € Z. In accordance with
Kummer’s transformation [9,10], the solutions ys and y4
can be written through y; and ys. Therefore, the solu-
tions y3 and y4 are linear dependent on y; and yo. Write
the first two solutions y; and y- in the initial variables:

o1 (x) = ot/ Prug=1t2pne=ac?/2p (a, 14 2p; ax?)

pa(z) = al/2tpg=le=ar®/2p (a—2p,1—2p;az?).
(6.10)

The condition of the wave function finity all over the
range x requires, that the following conditions are ful-

filled:

for p1(x) :a € 0,—N;2u ¢ —N,
(6.11)
for po(x) : —a+2u €0, N;2u ¢ N.

As a result of these conditions, the series, which rep-
resent a confluent hypergeometric function for the solu-
tions 1 and g2, transform to polynomial and the spec-
trum becomes discrete. The analysis of expressions (6.11)
shows that solutions 1 and ¢» cannot be used at the
same time. But both the solutions have equal energy
eigenvalues F which can be written as

22

4m2uw?

hz

B? (6.12)

where n € 0, N. The general solution of the wave func-
tion can be represented through ¢ or 2 (which are lin-
early independed between themselves). Both the energy
eigenvalues E;f and E;; used in expression (6.12) can be
considered separately as defining two independed waves
with the oscillation periods 7t and T, respectively. To
obtain a period for every wave we write equation (6.12)
as follows

EXF =FEf 1+ An

1 1 4m2w?
— 9 9w [ =+ =4 /1 B2
wn A 2w (2 AV e )

From this we obtain

1 1 dm“w
BT = 2hw| =+ 4/1 B2
0 v (2 VT ) ’
2rh T
T = - =
A

It can be seen from expressions (6.13), that the two
considered waves have equal periods. In accordance with
the following relation

Aeiwt+i61 +Beiwt+i62 — eiwt (Aeiél + Bei62)’

it can be seen that the general period of oscillations be-
tween the wells is equal to 71 or 77

T

T=T%= (6.14)
w

Now we find a dependence of the transmission coeffi-
cient D through the barrier on the oscillation period T
between the wells. Consider the case of small values of
D when expression (3.4) can be used. From expression
(6.13) we find the distance between two closely located
levels by

4m2Zw?2
hz

AE = EY —E; = huy/1+ B? (6.15)

Using this relation and also expression (3.4), we obtain
the transmission coefficient as follows

4m2uw? m?B?
D~7r2<1+ -3 BZ):H(H- . Az)
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7?16m?B? 1

This expression establishes the dependencies of the
transmission coefficient 1) on the oscillation period T'
between the wells and on the largest common divizor A
which is determined by expression (1.1).

VII. DOUBLE-WELL SYMMETRIC PARABOLIC
POTENTIAL

Consider the system the potential of which can be writ-
ten as

1

§mw2(x +a)?, for x < 0;
Ulz) = ' (7.1)
—mw?(x —

5 a)?, for x > 0.

Let us assume that potential U(x) satisfies conditions
of using the WKB approximation. As a result of tunnel-
ing through a barrier the displacements of energy levels
which takes place because of level splitting expression
(3.1) is determined from their positions without tunnel-
ing. For potential (7.1) the energy eigenvalues are given

E = hw(n+ %) — AE,,
1
Ef = hw(n+ 5) +AE,, (7.2)
2 (0)
AE, = |Bf - 50 = Ly 0220 O
m oz

where E- and E7T are eigenvalues occuring because of
splitting and corresponding to symmetric and antisym-
metric wave functions, respectively. goglo) is a solution of
stationary Schrodinger equation in the region > 0 with-

out splitting and has the form:

goglo)(x) = Ane_o‘Q(x_a)Q/an(a(x —a)) (7.3)

where o = /mw/h, H,(£) is the Hermitian polynomial.
Using (7.3), we find the displacement value:

hz
AE, = —
m

AZ@‘“QGQHn(aa)(azaHn(aa) —2nH,_1(aq))

(7.4)

Coefficient A,, can be obtained from the normalization

(0)

condition of ¢y, (). The function goglo)(x) is assumed as
a normalized one whose integral of |g0£10)|2 in the region
of the right well is equal to 1. Then we can write

+00 _1
Al = {/ e‘“Q(x_a)QHZ(a(x—a))dx}
0

= an. {—ﬂ-(l +erf(aa))

242 Hn_k(aa)Hn_k_l(aa)}_l

(n—k)! (75)

2 [ .
where erf(z) = 7/6_E d¢ is the integral of proba-
i
0

bility [10].

VIII. CONCLUSIONS

In all the problems considered above an attempt to
describe the tunneling process of the particle through
the barrier with its oscillations between the wells in
double—well symmetric potential was made on the basis
of such main parameters as period T' of the particle os-
cillations between the wells, the transmission coefficient
D through a barrier, reflection coefficient R from the
barrier (for squared potential). The transmission coeffi-
cient D through the barrier 1s found with consideration
of the particle which is incident upon the barrier having
asymptotic velocity hk/m and is initially determined for
continuous energy spectrum (see [2,4]). One can obtain
all the considered above parameters and describe the par-
ticle tunneling through a barrier from the found energy
eigenvalues of the considered systems. If the transmission
coeflicient is small, then it can be calculated in the WKB
approximation for a discrete energy spectrum. Compari-
son of both the methods realized for a squared potential
shows that the values of transmission coefficient calcu-
lated by these methods are equal with the accuracy to
normalization constant which i1s determined by accuracy
of the used WKB approximation and equal to 1 for the
first order terms in h. Therefore, the transmission coeffi-
cient of the particle through a barrier between two wells
in a double—well potential is considered only formally, if
it was initially determined for the continuous spectrum,
or with the accuracy to the normalization constant, if it
is obtained in the WKB approximation.

The dependencies of transmission coefficient when its
value is small on another parameters are identical for
both the methods. These dependencies are obtained, if
the parameters are the oscillation period between wells
and the largest common divizor determined by expres-
sion (1.1) when the WKB approximation is applied.

All the parameters considered above and describing
the tunneling of the particle through a barrier can be
obtained on the basis of the discovered energy levels of
the systems considered. For asymmetric forms of the po-
tential they are more difficult to found.

23



V. S. OLKHOVSKY, S. P. MAIDANYUK

For asymmetric forms of potentials the splitting of en-
ergy levels which occurs because of tunneling of the par-
ticle through a barrier and is studied by the theory of
WKB approximation gives some features which are ab-
sent when the potential is symmetric (for example, the
possibility of the particle reflection from a barrier along
the level located higher than the height of a barrier). In
the case of the potential asymmetry the use of bound-
ary conditions must be careful enough. Therefore, in the
present work a considerable attention is paid to the prob-
lem of finding the solutions of energy levels for asymmet-
ric potentials.

The problem of the squared potential was studied early
in literature (for example, see [2-7]). This problem is con-
sidered here as one of the simplest cases because it can
give a visual teaching picture for studying the tunneling
particle behavior. Relative easiness of finding the solu-
tions in comparison with the problems with rounded off
potentials allows to study deeply the process of tunneling
on the basis of oscillation period and transmission and

reflection coefficients.

It is significantly difficult to obtain solutions for the
potential which has a rounded off form. Using double—
well Morse’s potential (as an example) the solution ex-
istence is studied and energy eigenvalues equation is ob-
tained a further solution of which can be calculated by
the use of numerical methods.

The interesting symmetric double—well potential of the
form x% + B?/z? is also analyzed because the exact an-
alytical solutions exist for it (and one can obtain energy
eigenvalues F,, period T of oscillations between wells in
the explicit form). This potential is suitable enough for
the analysis of the particle behavior in wells with a suffi-
ciently high barrier (with sufficiently large depth). Mod-
els of a one—dimensional motion of the particle in such a
form of potential have been studied in the literature [8].

Further, basic parameters the determining behavior of
the particle motion in some forms of asymmetric double—
well potentials are to be obtained.
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ITIPO EBOJIIOLIIIO ITEPEXO/IIB 3 OHIET IMU B THIITY
Y OBOAMHOMY ITOTEHIIAJII
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Posrasiny To omHOBUMIpHY 3a a4y 3 pISHUMH HOTEHINATaMM, AKI MaIOTh BUTJSAI IBOX M, po3OlIeHNX Gap’ €poM.

Bupuaemo MoKINBICTE TYyHETIOBAHHA Kpi3h Bap’€p YaCTUHKH, AKa CIIOYATKY 3HAXOAUTLCS B OTHIN 13 IM, a HOTIM

OCTIMIIOE M1K HUMU. /I8 acuMeTpUIHOTO MIPAMOKY THOTO TIOTEHINANY Ta acCUMeTpUIHOTO noTeHisay Mopse or-

puMami PIBHSAHHS A0S 3HAXOMKCHHS BJIACHUX 3HAUYEeHb PIBHIB €Hepril, MoJaJdblInil po3B A30K SKUX MOke OyTH

BUKOHAHO YnCedbHO. 1A TpAMOKY THOTO TOTEHINATY MPH HOTO CUMETPIl OTPUMAHO 3aJ€ KHICTh TEPIONY OCITH-

JAMPA JaCTUHKKA MIK AMaMU, SKA BU3HAYAETHLCS HAa OCHOBI 3HAMIeHUX PIBHIB €Hepril B MepuIoMy HaGJIM KeHHI,

BlI KoedIIi€eHTa MPOXOIKeHHS YaCTUHKHA Kpi3h Gap’ep.

RoedirmienT npoxonskeHHS Mo ke 6y TH OTPUMaHIN IBOMa CIIocobaMM: OIS YaCTUHKI B 0BJacTi Helle pe pBHOTO

CTIIEKTpa eHEPTil, AKa CIIoYaTKy Ma€ aCAMIITOTUYHY IBUAKICTE ik /m, a moTim nanacHa Gap’ep, Ta I YaCTHHKH

B 0BgacTl OUCKPETHOTO CIIEKTpa, Koam Moske OyTu Buropuctano BRB-maGauskenns. O6uaBa maxonn JalOTh

BUpa3y IaA KoedDIleHTa MPOXOIKeHHA, SKl 36ITaloThC 3 TOYHICTIO [0 KOHCTAHTH, IO BU3HAYAETHCI TOUHICTIO

pukopucranus BR b-na6an ske .

. 2 2 2 . . . . . . .
Haa norenmary suny - + B*/z® orpumani TouHI aHaTITWYHI PO3B’A3KM s PIBHIB €HEPrii Ta Mepiomdy

OCIIJI A,
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