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I. INTRODUCTION

The tunneling of a particle through the potential bar-

rier is an essentially quantum phenomenon. This process

involves propagation of a particle through a classically

inaccessible region. The complete information about the

tunneling of a particle from the solution of Schr�odinger

equation with appropriate boundary conditions can be

obtained in all regions. But in practice, the exact so-

lution of Schr�odinger equation can be found for some

simplest forms of potentials and it is di�cult enough to

obtain the exact solution for an arbitrary potential form.

For this reason the approximation methods are used for

�nding solutions for potentials of a speci�c form. But ex-

act solutions, which were found, are of great importance,

because they allow to analyze the tunneling process in

general.

It is su�ciently di�cult to obtain solutions for multi{

dimension potential forms. Therefore, in the present

work only one{dimensional case is considered, for which

exact solutions are obtained for some simple forms of po-

tential having two wells separated by barrier. Every spe-

ci�c form of potential in comparison with the other ones

requires the use of a speci�c approach for solving the

problem, allowing some features of tunneling to be more

pronounced, the others remaining in the shade. Having

analyzed the use of boundary conditions for solving the

problem, we proposed to divide various shapes of double{

well potentials into two classes: squared potentials and

potentials having rounded o� forms. Squared double{

well potentials have exact analytic solutions (which can

be expressed through elementary functions). Rounded

o� double{well potentials have the solutions expressed

through special functions (if these solutions exist). In the

present work after qualitative analysis of energy levels of

various forms of the double{well potential the problem

of squared potential and the problem of rounded o� po-

tential (the Morse's potential) are considered separately

in the following two sections.

The period of particle oscillations between two wells is

one of the most important parameters which characterize

the process of tunneling. We can obtain its value falling

back on the energy levels of the system. For this at the

beginning we will con�ne ourselves to class of systems,

for which the distances between energy levels have the

exactly determined largest common devizor � and the

following condition is ful�lled:

E

n

= E

0

+� � l

n

; (1.1)

where l

n

2 0; N . In the general case within the region of

discrete energy spectrum the states of these systems are

described by the wave packet as follows [3]

 (t) =

X

n

g

n

'

n

(x)e

�i(E

n

�E

0

)t=�h

=

X

n

g

n

'

n

(x)e

�i�l

n

t=�h

(1.2)

where '

n

(x) is orthonormal wave functions of stationary

states of the system satisfying the equation

b

H'

n

(x) =

E

n

'

n

(x);

b

H is the Hamiltonian of the system;

P

n

jg

n

j

2

=

1 and the insigni�cant factor e

�iE

0

t=�h

is omitted which

is common for all terms of the sum

P

n

. Let us select the

moment t = 0 as the origin of time reference.

Let the function  (t) be determined on the region

[�

��h

�

;

��h

�

] and satisfy the Dirichlet's conditions [11]: (a)

it can divide this region into a �nite number of regions

in which the function  (t) will be continuous, monotonic

and bounded; (b) if t

0

is the discontinuity point of the

function  (t), then  (t

0

+0) and  (t

0

� 0) exist. In that

case expression (1.2) is an expansion of the function  (t)

into the Fourier series with respect to t which is con-

verging in all the points of the region [�

��h

�

;

��h

�

]. Then

the function  (t) is periodic in time and period of the

oscillations (the time of Poincare's cycle) is given by

T =

2��h

�

(1.3)
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Expression (1.3) determines the period of oscillations

of the wave packet, if energy levels in the region of a dis-

crete spectrum have exactly determined common largest

divizor � and condition (1.1) is ful�lled.

Fig. 1. Double{well squared potential.

Fig. 2. Double{well rounded o� potential.

In a general case for the systems for which the dis-

tances between energy levels in the region of discrete

spectrum do not have the exactly determined divizor �

one can select the 'quasi{cycles' with the given degree of

accuracy, for which the state of the system approaches

the maximumdegree the initial state after a 'quasi{cycle'

time [1]. The states of such systems are localized in a con-

�ned volume of space and the time of Poincare's cycle

(which includes the required number of 'quasi{cycles')

can be determined with given degree of accuracy. To

�nd the information about some parameters for quan-

tum systems evolving with time in the region of discrete

spectrum see [1,6,7].

Since the period of particle oscillations between wells

is obtained on the basis of energy eigenvalues, much at-

tention is paid to the problem of solving eigenvalue equa-

tions. For some forms of potential the transmission co-

e�cient through the barrier is found. This parameter

can be obtained using two approaches: in the region of

continuous spectrum for the particle which is incident

upon the barrier, with asymptotic velocity �hk=m, and,

when the condition of WKB approximation is ful�lled,

in the region of discrete spectrum for the particle which

initially is located in one well and then is tunneling to

another well. In case of double{well squared potential the

comparison of these two approaches for calculating the

transmission coe�cient through the barrier is performed.

For symmetric double{well potentials the dependence of

transmission coe�cient (which is found using one of the

approaches) on the period of particle oscillations between

wells is analyzed.

II. ANALYSIS OF THE POSSIBILITY OF

PARTICLE TUNNELING THROUGH A

BARRIER

The qualitative estimation| will the particle oscillate

between wells or not | can be obtained on the basis of

analysis of solutions of stationary Schr�odinger equations

which are found for every well.

Let us divide various forms of double{well potentials

into two classes: squared potentials (see Fig. 1) and po-

tentials, which have rounded o� forms (see Fig. 2). To ob-

tain the energy levels, the Schr�odinger equation is solved

separately in every region (3 regions for squared poten-

tial, see Fig. 1; 2 regions for potential having rounded o�

form, see Fig. 2).

As a result of this solution, the wave functions '

i

(x)

are found in every region, and these functions must be

continuous and bounded (we consider discrete spectrum

E < U

0

) all over the region of its determination (here,

i is the number of region). If wave function is expressed

through special or elementary functions, then it will be

bounded everywhere in the region �d < x < b (with

the exception of some cases of hypergeometric functions

which must be considered separately, see [9,10]), and in

points x = �d and x = b the boundary conditions are is

given by

'

1

(�d) = 0; '

2

(b) = 0:
(2.1)

This conditions determine eigenvalues for energy lev-

els as for discrete levels. Condition of continuity of wave

function and its derivative in the region �d < x < b

requires the equality of solutions '(x) and d'(x)=dx for

the adjacent regions in the points of boundary between

these regions (in these points the discontinuity of deriva-

tive is possible).

At the beginning we consider squared potential (see

Fig. 1). For particle located in left well (region 1) we an-

alyze the possible cases of its propagation to right well

in result of tunneling through the barrier. Among them

we select the following cases:

1. In regions 1, 2 and 3 there are equal levels of E

0

(see Fig. 1) which are found from Schr�odinger equation

for every region separately. Then the particle can prop-

agate through the barrier along level E

0

. (In this case

the transitions between levels are not required for tun-

neling). We obtain the eigenvalue of energy level E

0

from

system (2.1) and the following system:

'

1

(�c) = '

3

(�c); '

0

1

(�c) = '

0

3

(�c);
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'

3

(a) = '

2

(a); '

0

3

(a) = '

0

2

(a): (2.2)

2. In regions 1 and 3 there are equal levels of E

1

, but

such levels are absent from region 2. In regions 2 and 3

there are equal levels of E

0

1

, but such levels are absent

from region 1. Then the particle initially located on level

E

1

in the left{side well, can not propagate to the right{

side well along this level. But in region 3 wave functions

corresponding to levels E

1

and E

0

1

are not equal to zero.

Therefore, in this region the matrix element of transition

from level E

1

to level E

0

1

(and on the contrary) is not

equal to zero. Therefore, the particle which is initially

located on level E

1

in the left{side well can propagate

to the right{side well with a transition from level E

1

to

level E

0

1

. The transition E

1

! E

0

1

takes place in the re-

gion of barrier 3. Eigenvalue of level E

1

can be obtained

from the system:

'

1

(�c) = '

3

(�c); '

0

1

(�c) = '

0

3

(�c);

'

1

(�d) = 0; '

3

(a) = 0: (2.3)

In this fashion, one can �nd the eigenvalue for level E

0

1

from the following system:

'

2

(a) = '

3

(a); '

2

(b) = 0;

'

0

2

(a) = '

0

3

(a); '

3

(�c) = 0: (2.4)

3. In region 1 the particle is located on level E

2

and

this level is absent from regions 2 and 3. Also in regions

1, 2 and 3 there are equal levels of E

0

2

. In this case the

particle can not propagate along level E

2

to the right

well and to region 3 of the barrier (there is a full re
ec-

tion of the particle along level E

2

). But the particle can

make transition on level E

2

0 in region 1 and then it can

propagate to regions 2 and 3 along this level. One can

�nd the eigenvalue of level E

2

from the following system:

'

1

(�d) = 0; '

1

(�c) = 0:
(2.5)

The eigenvalue of level E

0

2

satis�es system (2.1) and

system (2.2).

More concretely the �rst case will be considered in one

of the next sections. Note, that at the symmetry of po-

tential (d = b, c = a, W

0

= 0) for every level of left well

one can �nd the appropriate level in right well and con-

versely. Therefore, for cases considered above only the

�rst case is possible for this potential.

Now we consider the potential which has a rounded

o� form (see Fig. 2). Let the particle be localized in the

left well. Among possible cases, in which the particle can

propagate through a barrier to right well, we select the

following cases:

1. In regions 1 and 2 there are equal levels E

0

. Then

the particle can tunnel from left well to right well along

level E

0

. The eigenvalue for this level can be found from

system (2.1) and the following system:

'

1

(0) = '

2

(0); '

0

1

(0) = '

0

2

(0):
(2.6)

2. In left well the particle is located on level E

1

and

this level is absent in region 2. But in regions 1 and 2

there are equal levels E

0

1

. Then the particle cannot tun-

nel from the left well into the right one along level E

1

.

But at �rst it can make a transition from level E

1

to

level E

0

1

in region 1 and then it can propagate to region

2 along level E

0

1

. A system for �nding the eigenvalue of

level E

1

is given by

'

1

(�d) = 0; '

1

(0) = 0:
(2.7)

The eigenvalue for level E

0

1

can be obtained from sys-

tem (2.1) and system (2.6).

Fig. 3. Splitting of energy levels in symmetric potential.

In one of the next sections the problem with potential

of such a form will be considered more concretely. As an

example, the double{well Morse's potential is selected.

Also note, that for potential of the rounded o� form (as

in case of the squared potential) only the �rst case is

possible when the potential is symmetric.

III. A DEPENDENCE OF THE DISTANCE

BETWEEN THE TWO CLOSELY LOCATED

LEVELS ON THE TRANSMISSION

COEFFICIENT THROUGH A BARRIER IN A

QUASI{CLASSIC SYMMETRIC POTENTIAL

Consider potential U (x) which has two symmetric

wells separated by a barrier (see Fig. 3). If the barrier

is not penetrable, then there are energy levels E

0

corre-

sponding to oscillations of the particle only in one well.

The possibility of particle transitions between the wells

leads to splitting of every level E

0

into two closely lo-

cated levels E

1

and E

2

.

We consider the case, when potential U (x) is quasi{

classic. Then the splitting value �E can be obtained

through the wave function '

0

(x) which determined with

accuracy to �rst order terms in �h, as follows [2]
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�E = E

2

� E

1

=

2�h

2

m

'

0

(0)'

0

0

(0)

=

w�h

�

exp

0

@

�

1

�h

a

Z

�a

jpjdx

1

A

; (3.1)

where

'

0

(0) =

r

w

2�v

0

exp

0

@

�

1

�h

a

Z

0

jpjdx

1

A

;

'

0

0

(0) =

mv

0

�h

'

0

(0); (3.2)

and v

0

=

p

2(U

0

�E)=m, p is the system momentum,

w = 2�=T is frequency of classic periodic oscillations; a

is turning point corresponding to level E

0

(see Fig. 3).

Transmission coe�cient D through the barrier in the

WKB approximation is determined by [2]

D = const � exp

�

�

2

�h

a

Z

�a

jpjdx

�

; (3.3)

where proportionality factor const is determined by the

accuracy of the WKB approximation and is equal to 1

with the accuracy of the �rst order terms in �h (see [2]).

Taking into consideration expressions (3.1) and (3.3) we

can write

�E = const �

w�h

�

p

D (3.4)

Here, transmission coe�cient D is determined by ex-

pression (3.3) for the discrete energy spectrum. In ac-

cordance with the conditions of using the WKB approx-

imation expression (3.4) determining the dependence of

level splitting �E on transmission coe�cient D is used

only for small values of D.

Now we consider some cases, for which there are exact

analytical solutions.

IV. DOUBLE{WELL INFINITE SQUARED

POTENTIAL

Consider a system the potential of which consists of

two squared wells separated by squared barrier of �nite

height (see Fig. 1). This potential is given by

U (x) =

8

>

<

>

:

1; for x < �d; x > b;

0; for � d < x < �c; (region I);

U

0

; for � c < x < a; (region III);

�W

0

; for a < x < b; (region II):

(4.1)

In case of discrete energy spectrum in the region of

U

0

> E > 0 we �nd the solution of the stationary

Schr�odinger equation in the form:

'(x) =

8

<

:

a

1

sin(k(x+ d)); for � d < x < �c;

a

2

e

�x

+ b

2

e

��x

; for � c < x < a;

a

3

sin(k

3

(x � b)); for a < x < b:

(4.2)

Here, the following coe�cients are used:

k =

1

�h

p

2mE;

k

3

=

1

�h

p

2m(E +W

0

); (4.3)

� =

1

�h

p

2m(U

0

� E):

Let's consider the case of particle oscillations between

wells along one energy level (without transitions between

energy levels). Unknown coe�cients and these energy

levels can be found from continuity conditions of wave

function in boundary points x = �c, x = a and from the

following normalization condition:

+1

Z

�1

j'(x)j

2

dx = 1: (4.4)

Ultimately, we obtain unknown coe�cients:

a

1

=

(

d� c

2

+

a+ c

2

�

sin

2

(k(d� c))�

k

2

�

2

cos

2

(k(d� c))

�

+

�

sin(k(d� c))� k=� cos(k(d� c))

sin(k

3

(b � a)) + k

3

=� cos(k

3

(b� a))

�

2

e

�2�(a+c)

�

b� a

2

+

1

4k

3

sin(2k

3

(a� b))

�

�

1

4k

sin(2k(d� c)) +

(sin(k(d� c)) + k=� cos(k(d� c)))

2

8�

(e

2�(a+c)

� 1)
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+

(sin(k(d� c))� k=� cos(k(d� c)))

2

8�

(1� e

�2�(a+c)

)

)

�1=2

; (4.5)

a

2

= a

1

1

2

e

�c

(sin(k(d� c)) + k=� cos(k(d� c)));

b

2

= a

1

1

2

e

��c

(sin(k(d� c)) � k=� cos(k(d� c))); (4.6)

a

3

= a

1

e

��(a+c)

k=� cos(k(d� c))� sin(k(d� c))

k

3

=� cos(k

3

(b� a)) + sin(k

3

(b� a))

:

The eigenvalue equations for this potential are given by

E = �h

2

k

2

=2m;

sin(k

3

(b� a))� k

3

=� cos(k

3

(b� a))

sin(k

3

(b� a)) + k

3

=� cos(k

3

(b� a))

�

sin(k(d� c)) � k=� cos(k(d� c))

sin(k(d� c)) + k=� cos(k(d� c))

= e

2�(a+c)

: (4.7)

Now we consider the symmetric case of (d = b; c = a;W

0

= 0) [2,4]. The wave function became symmetric or

antisymmetric:

'

n

(x) =

8

<

:

a

1

sin(k

n

(x+ b)); for � b < x < �a;

b

2

((�1)

n

e

�x

+ e

��x

); for � a < x < a;

a

1

(�1)

n

sin(k

n

(b� x)); for a < x < b:

(4.8)

where n 2 0; N . The unknown coe�cients a

1

and b

2

, obtained from expressions (4.5) and (4.6), are given by

a

1

=

(

b� a+

(sin(k(b� a)) � k=� cos(k(b � a)))

2

4e

2�a

�

(�1)

n

2a+

e

2�a

� e

�2�a

�

�

)

�1=2

b

2

= a

1

sin(k(b � a)) � k=� cos(k(b� a))

2e

�a

: (4.9)

The wave vector k is transformed to form:

k =

1

b� a

8

>

>

<

>

>

:

� arcsin

2

6

6

4

1

r

1 +

�

2

k

2

�

(�1)

n

�e

2�a

(�1)

n

+e

2�a

�

2

3

7

7

5

+ �n

9

>

>

=

>

>

;

: (4.10)

Consider the particle propagating from left to right in potential (4.1) with the asymptotic velocity �hk=m and

energy E < U

0

. For it the wave function can be written as follows

'(x) =

8

<

:

(�hk=m)

�1=2

� (e

ikx

� Ae

�ikx

); for x < �c;

(�hk=m)

�1=2

� (Be

�x

+ B

0

e

��x

); for � c < x < a;

(�hk=m)

�1=2

�Ce

ikx

; for x > a:

(4.11)

Coe�cients A, B, B

0

and C are obtained from continuity conditions for '(x) and d'(x)=dx at the points x = �c

and x = a. The transmission coe�cient D and re
ection coe�cient R calculated as the ratio of the 
ux of incident

wave in region III to the 
ux of transmitted wave in region I or re
ected wave in region III, are given by

D =

4kk

3

�

2

(kk

3

+ �

2

)

2

sinh

2

(�(a+ c)) + �

2

(k � k

3

)

2

ch

2

(�(a+ c)) + 4kk

3

�

2

;
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R =

(kk

3

+ �

2

)

2

sinh

2

(�(a+ c)) + �

2

(k � k

3

)

2

ch

2

(�(a+ c))

(kk

3

+ �

2

)

2

sinh

2

(�(a + c)) + �

2

(k � k

3

)

2

ch

2

(�(a + c)) + 4kk

3

�

2

: (4.12)

We �nd the valuesD and R for transmission of the par-

ticle through the barrier in continuous energy spectrum.

But comparing the transmission coe�cient D with its

small values determined by expression (4.11) for symmet-

ric case with that determined by expression (3.3) which

is obtained in the WKB approximation for a discrete

energy spectrum shows that both the approaches give

identical formulations with accuracy to the normalized

constant: D = const � exp(�2�a), where const is deter-

mined by the accuracy of the WKB approximation and

is equal to 1 in terms of the �rst order in �h [2,5]. In this

sense, we will formally consider expression (4.11) as the

determination of transmission and re
ection coe�cients

for the discrete energy spectrum. The values k and �,

used in expression (4.11), can be obtained from equation

(4.7) or (4.10).

Fig. 4. The values k

0

n

are exact graphic solutions of set

(4.15) and the values k

n

are graphic solutions on this set,

where the second equation is changed to its linear approxi-

mation f

2

(k

n

).

We analyze the periodicity of particle oscillations be-

tween wells in a symmetric potential. For this we consider

equation (4.10) which can be written as

f

1

(k

n

) = k

n

(b� a);

f

2

(k

n

) = � arcsin

8

>

>

>

>

<

>

>

>

>

:

1

s

1 +

�

2

k

2

�

(�1)

n

�e

2�a

(�1)

n

+e

2�a

�

2

9

>

>

>

>

=

>

>

>

>

;

+ �n: (4.13)

The graphic analysis of exact solutions of system (4.13)

gives a number of values k

0

n

(see Fig. 4). Changing the

second equation of set (4.13) to its linear relation f

2

(k

n

),

which can be obtained by linear approximation, we �nd

the following values of k

n

:

k

n

= k

0

(2n+ 1);

E

n

= E

0

(2n + 1)

2

= E

0

+ 4E

0

n(n+ 1)

= E

0

+�l

n

; (4.14)

� = 4E

0

:

where n; l

n

2 0; N . From expressions (4.14) we obtain

period T of particle oscillations between the wells:

T =

2��h

�

=

��h

2E

0

=

��h

2

(2n + 1)

2

E

n

=

�m

�hk

2

n

(2n+ 1)

2

: (4.15)

For values k

n

the accuracy �=(2(b � a)) is used. The

series of solutions k

n

is bounded by the maximum value

k

N

, where N (the number of energy levels in the region

E < U

0

) satis�es the following condition:

0 < N <

p

2mU

0

� �hk

0

2�hk

0

:

From expression (4.15) we obtain:

k

2

n

= (2n+ 1)

2

�m

�hT

= �

m(2n+ 1)

2

2�h

2

: (4.16)

Using expression (4.12) for the symmetric case and ex-

pression (4.16) we �nd the dependence of transmission

coe�cient D through barrier on the oscillation period T

and on the value of �:
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D

n

(T ) =

8

>

>

>

<

>

>

>

:

1 +

sinh

2

�

2a

r

2mU

0

�h

2

� (2n+ 1)

2

�m

�hT

�

4(2n+ 1)

2

�m

�hT

�

1� (2n+ 1)

2

��h

2U

0

T

�

9

>

>

>

=

>

>

>

;

�1

: (4.17)

D

n

(�) =

8

>

>

>

>

<

>

>

>

>

:

1 +

sinh

2

 

2a

r

2mU

0

�h

2

��

(2n+ 1)

2

2�h

2

!

�

2m(2n+ 1)

2

�h

2

�

1��

(2n+ 1)

2

4U

0

�

9

>

>

>

>

=

>

>

>

>

;

�1

: (4.18)

Also note, that in both limiting cases D ! 0 and D !1 the oscillation period T approaches the value:

T =

4m(b� a)

2

��h

(4.19)

V. DOUBLE{WELL MORSE'S POTENTIAL

Consider a system the potential of which is shown in

Fig. 2 and is given by

U (x) =

�

A(e

�2�(x+c)

� 2e

��(x+c)

); for � d < x < 0;

B(e

2�(x�a)

� 2e

�(x�a)

); for 0 < x < b:

(5.1)

For this potential we �nd solutions of stationary

Schr�odinger equation. Performing the following changes:

�

A

=

2

p

2mA

��h

e

��(x+c)

; for � d < x < 0;

�

B

=

2

p

2mB

��h

e

�(x�a)

; for 0 < x < b; (5.2)

and introducing the following notations:

s

A

=

p

�2mE

��h

; n

A

=

p

2mA

��h

�

�

s

A

+

1

2

�

;

s

B

=

p

�2mE

��h

; n

B

=

p

2mB

��h

�

�

s

B

+

1

2

�

;

(5.3)

we transform the stationary Schr�odinger equation to the

following form:

�

d

2

'

d�

2

+

1

�

d'

d�

+

�

�

1

4

+

n + s + 1=2

�

�

s

2

�

2

�

'

�

�

�

�

�

A;B

= 0:

(5.4)

Here, the indexes A or B are used by the values ', �,

n and s with the proviso that equation (5.4) is solved

in the region of left or right well, respectively. In order

to obtain the general solution let us omit these indexes.

Using the following changes:

y(�) = �

�

c

2

+

1

2

e

�

2

'(�);

c = 1 + 2s;

(5.5)

equation (5.4) can be transformed to the con
uent hy-

pergeometric equation as follows

�

d

2

y

d�

2

+ (c� �)

dy

d�

+ ny = 0: (5.6)

Particular solutions of this equation can be written

using the con
uent hypergeometric function F (�n; c; �)

[9,10]:

y

1

(�) = F (�n; c; �);

y

2

(�) = �

1�c

F (�n� c+ 1; 2� c; �);

y

3

(�) = e

�

F (c+ n; c;��);

y

4

(�) = �

1�c

e

�

F (1 + n; 2� c;��): (5.7)

Consider the case c 62 Z (i.e. 2s 62 Z). Then both the

particular solutions y

3

and y

4

are linear dependent on y

1

and y

2

, because they are transformed to y

1

and y

2

by

Kummer's transformation [9,10]:

F (a; c; �) = e

�

F (c� a; c;��): (5.8)
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Solutions y

1

and y

2

are linearly independent between

themselves. It can see this from its behaviour at � ! 0.

Then the general solution of equation (5.6) can be writ-

ten as follows

y(�) = c

1

F (�n; c; �)

+ c

2

�

1�c

F (�n� c + 1; 2� c; �) (5.9)

where c

1

and c

2

are arbitrary constants. In the initial

variables the general solution has the form:

'(�) = e

�

�

2

[c

1

�

s

F (�n; 1 + 2s; �)

+ c

2

�

�s

F (�n� 2s; 1� 2s; �)] (5.10)

Expression (5.10) with relations (5.2) and (5.3) is a

general solution of the stationary Schr�odinger equation

at 2s 62 Z and E < 0 for the regions of left and right

wells. Coe�cients c

1A

, c

1B

, c

2A

and c

2B

(where indexes

A or B for coe�cients c

1

and c

2

are indicated at left

or right well, respectively) are obtained from boundary

conditions and normalization condition. Imposed bound-

ary conditions determine the energy spectra as a discrete

ones. Using them one can �nd the energy eigenvalues of

the system.

The discrete energy spectrum determines the require-

ment that the wave function will be �nited all over the

region of its determination. The �nity of the wave func-

tion in the regions �d < x < 0 and 0 < x < b depends

on the constraining condition of particular solutions, by

use of which the general solution (5.10) can be repre-

sented. Constraining particular solutions at �nite values

x depends on constraining functions F (�n; 1+2s; �) and

F (�n� 2s; 1 � 2s; �). But these functions are con
uent

hypergeometric and are represented by converging series

at �nite � [10,11]. At n = 0 or n 2 N the �rst func-

tion has the form of the polynomial, and therefore, it

is bounded (because the values of � are �nited). In this

fashion, at n + 2s = 0 or n + 2s 2 N the second func-

tion is bounded. Therefore, both the particular solutions

are bounded all over the region �d < x < b (factor �

�s

at � ! 0 is �nited because of constraining condition

at x = 0). Therefore, the general solution (5.10) is also

bounded all over the region �1 < x <1.

Since wave function satis�es the condition of con-

straining de�nition x all over the region it can be nor-

malized by

b

Z

�d

j'(x)j

2

dx = 1: (5.11)

Now we �nd the energy eigenvalues of the system. Con-

sidering possible solutions we select two cases:

1. The particle oscillates between wells along one en-

ergy level (without transitions between energy levels). In

this case the energy levels which are obtained from the

eigenvalue equation in the region of the left well must

correspond to the energy levels which are obtained from

the eigenvalue equation in the region of the right well. On

this case the following boundary conditions are required:

'

A

(0) = '

B

(0);

'

0

A

(0) = '

0

B

(0); (5.12)

'

A

(�d) = 0;

'

B

(b) = 0;

where '

A

(x) and '

B

(x) are general solutions (5.10) of

the stationary Schr�odinger equation in the regions of left

and right wells, respectively. The solution of equation set

(5.12) gives the eigenvalue equation form of:

�

��

A0

��

B0

�

c

1B

c

2B

� �

s

B

B0

F (�n

B

; 1 + 2s

B

; �

B0

) + �

�s

B

B0

F (�n

B

� 2s

B

; 1� 2s

B

; �

B0

)

�

�

�

c

1A

c

2A

�

�

�

1

2

�

s

A

A0

F (�n

A

; 1 + 2s

A

; �

A0

) + s

A

� �

s

A

�1

A0

F (�n

A

; 1 + 2s

A

; �

A0

)

+ �

s

A

A0

@F (�n

A

; 1 + 2s

A

; �

A0

)

@�

A

�

+

�

�

1

2

�

�s

A

A0

F (�n

A

� 2s

A

; 1� 2s

A

; �

A0

)

� s

A

� �

�s

A

�1

A0

F (�n

A

� 2s

A

; 1� 2s

A

; �

A0

) + �

�s

A

A0

@F (�n

A

� 2s

A

; 1� 2s

A

; �

A0

)

@�

A

��

=

�

c

1B

c

2B

�

�

�

1

2

�

s

B

B0

F (�n

B

; 1 + 2s

B

; �

B0

) + s

B

� �

s

B

�1

B0

F (�n

B

; 1 + 2s

B

; �

B0

)

+ �

s

B

B0

@F (�n

B

; 1 + 2s

B

; �

B0

)

@�

B

�

+

�

�

1

2

�

�s

B

B0

F (�n

B

� 2s

B

; 1� 2s

B

; �

B0

)
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� s

B

� �

�s

B

�1

B0

F (�n

B

� 2s

B

; 1� 2s

B

; �

B0

) + �

�s

B

B0

@F (�n

B

� 2s

B

; 1� 2s

B

; �

B0

)

@�

B

��

�

�

c

1A

c

2A

� �

s

A

A0

F (�n

A

; 1 + 2s

A

; �

A0

) + �

�s

A

A0

F (�n

A

� 2s

A

; 1� 2s

A

; �

A0

)

�

(5.13)

where

c

1A

c

2A

= �

�

�

A0

e

�d

�

�2s

A

F (�n

A

� 2s

A

; 1� 2s

A

; �

A0

e

�d

)

F (�n

A

; 1 + 2s

A

; �

A0

e

�d

)

;

c

1B

c

2B

= �

�

�

B0

e

�b

�

�2s

B

F (�n

B

� 2s

B

; 1� 2s

B

; �

B0

e

�b

)

F (�n

B

; 1 + 2s

B

; �

B0

e

�b

)

; (5.14)

�

A0

=

2

p

2mA

��h

e

��c

;

�

B0

=

2

p

2mB

��h

e

��a

: (5.15)

We shall transform expressions (5.3) to form:

s

B

=

�

�

s

A

;

n

B

=

�

�

r

B

A

�

n

A

+ s

A

+

1

2

�

�

�

�

�

s

A

+

1

2

�

: (5.16)

To �nd the eigenvalues we need to substitute expressions (5.14) and (5.16) into equation (5.13) and to resolve it

relatively for the value s

A

which unequivocally de�nes eigenvalue E. The solution of equation (5.13) is performed

by the use of numerical methods and determines the energy eigenvalues corresponding to the particle oscillations

between wells.

2. Now we shall consider a di�erent case: the particle oscillates in one well (for example, in the left one). In this

case its full re
ection takes place from the middle of the barrier (here, the transition of the particle to another energy

level is possible, which exists in both regions, with further tunneling of the particle along it). Note, that in this case

the re
ection of the particle from the barrier is principally possible along the energy levels of the range of 0 > E > U

0

(this case of re
ection is impossible for symmetric potential). We determine the condition of the particle re
ection

from the barrier as follows

'

A

(0) = 0: (5.17)

Using this condition and also the following boundary condition

'

A

(�d) = 0: (5.18)

we obtain equation from which the energy eigenvalues for the particle oscillations in the left well can be found

e

2s

A

�d

F (�n

A

� 2s

A

; 1� 2s

A

; �

A0

)F (�n

A

; 1 + 2s

A

; �

A0

e

�d

)

= F (�n

A

� 2s

A

; 1� 2s

A

; �

A0

e

�d

)F (�n

A

; 1 + 2s

A

; �

A0

) (5.19)

Resolving in this equation the relatively unknown values of s

A

we can �nd the energy eigenvalues of the system.

In this fashion, the equation determining the energy eigenvalues for the particle oscillations in the right well can be

obtained
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e

2s

B

�b

F (�n

B

� 2s

B

; 1� 2s

B

; �

B0

)F (�n

B

; 1 + 2s

B

; �

B0

e

�b

)

= F (�n

B

� 2s

B

; 1� 2s

B

; �

B0

e

�b

)F (�n

B

; 1 + 2s

B

; �

B0

) (5.20)

Equations (5.19) and (5.20) include the case when

some energy levels of left well are equal to some energy

levels of the right well. In this case the following condi-

tion is ful�lled:

'

A

(0) = '

B

(0) = 0;

'

0

A

(0) = '

0

B

(0) = 0;

which correspond to the particle oscillations between the

wells. Therefore, it is necessary to except such energy

levels from the analysis of the particle behaviour in one

well.

Fig. 5. Symmetric potential of form x

2

+ B

2

=x

2

.

Let us consider symmetric potential. In this case every

energy level obtained by the solution of the eigenvalue

equation in the left well region, is equal to the corre-

sponding energy level which is obtained by solving the

eigenvalue equation in the region of the right well. There-

fore, the particle located on any energy level of the region

of E < 0 will be oscillated between the wells. The wave

function becomes symmetric or antisymmetric. A system

of equations for �nding energy eigenvalues is given by

'(�d) = 0; '(0) = 0;

if wave function is symmetric (even states), and

'(�d) = 0; '

0

(0) = 0;

if wave function is antisymmetric (odd states).

VI. SYMMETRIC POTENTIAL OF THE FORM

OF x

2

+ B

2

=x

2

To analyze the particle behavior in a symmetric po-

tential with su�ciently high barrier, we can use the po-

tential of the following form:

U (x) =

mw

2

2

�

x

2

+

B

2

x

2

�

(6.1)

where x 2]�1; +1[. This potential is shown on Fig. 5.

Let us use the new parameters:

G =

2mE

�h

2

;

F = �

m

2

w

2

�h

2

; (6.2)

K = �

m

2

w

2

�h

2

B

2

:

Then the stationary Schr�odinger equation is trans-

formed to the form of

d

2

'

dx

2

+

�

G+ Fx

2

+

K

x

2

�

� ' = 0 (6.3)

Let us �nd solutions of this equation. We shall perform

the following change of variables:

� = �x

2

;

� =

mw

�h

=

p

�F ; (6.4)

'(�) = (�=�)

�1=4

w(�):

As a result, equation (6.3) is transformed to the stan-

dard Whittaker's form [9,10]:

d

2

w

d�

2

+

�

�

1

4

+

G

4

p

�F

1

�

+

�

3

16

+

K

4

�

1

�

2

�

w = 0: (6.5)

Using the following parameters and performing the fol-

lowing change of variables:

k =

G

4

p

�F

;
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�

2

=

1

16

�

K

4

; (6.6)

a =

1

2

� k + �;

c = 1 + 2�;

y(�) = �

�c=2

e

�=2

w(�); (6.7)

we transform equation (6.5) to a con
uent hypergeomet-

ric equation of the form:

�

d

2

y

d�

2

+ (c � �)

dy

d�

� ay = 0 (6.8)

Particular solutions of this equation can be represented

by con
uent hypergeometric function F (a; c; �) as follows

y

1

(�) = F (a; c; �);

y

2

(�) = �

1�c

F (a� c + 1; 2� c; �);

y

3

(�) = e

�

F (c� a; c;��);

y

4

(�) = �

1�c

e

�

F (1� a; 2� c;��):

(6.9)

Let us consider the case c 62 Z. In accordance with

Kummer's transformation [9,10], the solutions y

3

and y

4

can be written through y

1

and y

2

. Therefore, the solu-

tions y

3

and y

4

are linear dependent on y

1

and y

2

. Write

the �rst two solutions y

1

and y

2

in the initial variables:

'

1

(x) = �

1=2+�

x

�1+2�

e

��x

2

=2

F

�

a; 1 + 2�;�x

2

�

;

'

2

(x) = �

1=2+�

x

�1

e

��x

2

=2

F

�

a� 2�; 1� 2�;�x

2

�

:

(6.10)

The condition of the wave function �nity all over the

range x requires, that the following conditions are ful-

�lled:

for '

1

(x) : a 2 0;�N ; 2� 62 �N;

for '

2

(x) : �a+ 2� 2 0; N ; 2� 62 N:

(6.11)

As a result of these conditions, the series, which rep-

resent a con
uent hypergeometric function for the solu-

tions '

1

and '

2

, transform to polynomial and the spec-

trum becomes discrete. The analysis of expressions (6.11)

shows that solutions '

1

and '

2

cannot be used at the

same time. But both the solutions have equal energy

eigenvalues E which can be written as

E

�

n

= 2�hw

0

@

1

2

+ n�

1

4

s

1 +

4m

2

w

2

�h

2

B

2

1

A

(6.12)

where n 2 0; N . The general solution of the wave func-

tion can be represented through '

1

or '

2

(which are lin-

early independed between themselves). Both the energy

eigenvalues E

+

n

and E

�

n

used in expression (6.12) can be

considered separately as de�ning two independed waves

with the oscillation periods T

+

and T

�

, respectively. To

obtain a period for every wave we write equation (6.12)

as follows

E

�

n

= E

�

0

+�n

= 2�hwn+ 2�hw

 

1

2

�

1

4

r

1 +

4m

2

w

2

�h2

B

2

!

From this we obtain

E

�

0

= 2�hw

 

1

2

�

1

4

r

1 +

4m

2

w

2

�h2

B

2

!

;

� = 2�hw;

T

�

=

2��h

�

=

�

w

:

(6.13)

It can be seen from expressions (6.13), that the two

considered waves have equal periods. In accordance with

the following relation

Ae

iwt+i�

1

+Be

iwt+i�2

= e

iwt

�

Ae

i�

1

+ Be

i�

2

�

;

it can be seen that the general period of oscillations be-

tween the wells is equal to T

+

or T

�

:

T = T

�

=

�

w

: (6.14)

Now we �nd a dependence of the transmission coe�-

cient D through the barrier on the oscillation period T

between the wells. Consider the case of small values of

D when expression (3.4) can be used. From expression

(6.13) we �nd the distance between two closely located

levels by

�E = E

+

n

�E

�

n

= �hw

s

1 +

4m

2

w2

�h

2

B

2

(6.15)

Using this relation and also expression (3.4), we obtain

the transmission coe�cient as follows

D � �

2

�

1 +

4m

2

w

2

�h

2

B

2

�

= �

2

�

1 +

m

2

B

2

�h

4

�

2

�
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= �

2

�

1 +

�

2

16m

2

B

2

�h

2

1

T

2

�

: (6.16)

This expression establishes the dependencies of the

transmission coe�cient D on the oscillation period T

between the wells and on the largest common divizor �

which is determined by expression (1.1).

VII. DOUBLE{WELL SYMMETRIC PARABOLIC

POTENTIAL

Consider the system the potential of which can be writ-

ten as

U (x) =

8

>

>

<

>

>

:

1

2

mw

2

(x+ a)

2

; for x < 0;

1

2

mw

2

(x� a)

2

; for x > 0:

(7.1)

Let us assume that potential U (x) satis�es conditions

of using the WKB approximation. As a result of tunnel-

ing through a barrier the displacements of energy levels

which takes place because of level splitting expression

(3.1) is determined from their positions without tunnel-

ing. For potential (7.1) the energy eigenvalues are given

by

E

�

n

= �hw(n+

1

2

) ��E

n

;

E

+

n

= �hw(n+

1

2

) +�E

n

; (7.2)

�E

n

= jE

�

n

� E

(0)

n

j =

�h

2

m

'

0

n

(0)

@'

(0)

n

(0)

@x

;

where E

�

n

and E

+

n

are eigenvalues occuring because of

splitting and corresponding to symmetric and antisym-

metric wave functions, respectively. '

(0)

n

is a solution of

stationary Schr�odinger equation in the region x > 0 with-

out splitting and has the form:

'

(0)

n

(x) = A

n

e

��

2

(x�a)

2

=2

H

n

(�(x� a)) (7.3)

where � =

p

mw=�h, H

n

(�) is the Hermitian polynomial.

Using (7.3), we �nd the displacement value:

�E

n

=

�h

2
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2
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��

2
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2

H

n

(�a)(�

2

aH
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(�a)� 2nH

n�1
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(7.4)

Coe�cient A

n

can be obtained from the normalization

condition of '

(0)

n

(x). The function '

(0)

n

(x) is assumed as

a normalized one whose integral of j'

(0)

n

j

2

in the region

of the right well is equal to 1. Then we can write
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2
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+1
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2
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(�(x� a))dx

�

�1

=

�

2

n

n!

�p

�

2

(1 + erf(�a))

� e

��

2

a

2

n�1

X

k=0

H

n�k

(�a)H

n�k�1

(�a)

(n� k)!

�

�1

(7.5)

where erf(x) =

2

p

�

x

Z

0

e

��

2

d� is the integral of proba-

bility [10].

VIII. CONCLUSIONS

In all the problems considered above an attempt to

describe the tunneling process of the particle through

the barrier with its oscillations between the wells in

double{well symmetric potential was made on the basis

of such main parameters as period T of the particle os-

cillations between the wells, the transmission coe�cient

D through a barrier, re
ection coe�cient R from the

barrier (for squared potential). The transmission coe�-

cient D through the barrier is found with consideration

of the particle which is incident upon the barrier having

asymptotic velocity �hk=m and is initially determined for

continuous energy spectrum (see [2,4]). One can obtain

all the considered above parameters and describe the par-

ticle tunneling through a barrier from the found energy

eigenvalues of the considered systems. If the transmission

coe�cient is small, then it can be calculated in the WKB

approximation for a discrete energy spectrum. Compari-

son of both the methods realized for a squared potential

shows that the values of transmission coe�cient calcu-

lated by these methods are equal with the accuracy to

normalization constant which is determined by accuracy

of the used WKB approximation and equal to 1 for the

�rst order terms in �h. Therefore, the transmission coe�-

cient of the particle through a barrier between two wells

in a double{well potential is considered only formally, if

it was initially determined for the continuous spectrum,

or with the accuracy to the normalization constant, if it

is obtained in the WKB approximation.

The dependencies of transmission coe�cient when its

value is small on another parameters are identical for

both the methods. These dependencies are obtained, if

the parameters are the oscillation period between wells

and the largest common divizor determined by expres-

sion (1.1) when the WKB approximation is applied.

All the parameters considered above and describing

the tunneling of the particle through a barrier can be

obtained on the basis of the discovered energy levels of

the systems considered. For asymmetric forms of the po-

tential they are more di�cult to found.
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For asymmetric forms of potentials the splitting of en-

ergy levels which occurs because of tunneling of the par-

ticle through a barrier and is studied by the theory of

WKB approximation gives some features which are ab-

sent when the potential is symmetric (for example, the

possibility of the particle re
ection from a barrier along

the level located higher than the height of a barrier). In

the case of the potential asymmetry the use of bound-

ary conditions must be careful enough. Therefore, in the

present work a considerable attention is paid to the prob-

lem of �nding the solutions of energy levels for asymmet-

ric potentials.

The problem of the squared potential was studied early

in literature (for example, see [2{7]). This problem is con-

sidered here as one of the simplest cases because it can

give a visual teaching picture for studying the tunneling

particle behavior. Relative easiness of �nding the solu-

tions in comparison with the problems with rounded o�

potentials allows to study deeply the process of tunneling

on the basis of oscillation period and transmission and

re
ection coe�cients.

It is signi�cantly di�cult to obtain solutions for the

potential which has a rounded o� form. Using double{

well Morse's potential (as an example) the solution ex-

istence is studied and energy eigenvalues equation is ob-

tained a further solution of which can be calculated by

the use of numerical methods.

The interesting symmetric double{well potential of the

form x

2

+ B

2

=x

2

is also analyzed because the exact an-

alytical solutions exist for it (and one can obtain energy

eigenvalues E

n

, period T of oscillations between wells in

the explicit form). This potential is suitable enough for

the analysis of the particle behavior in wells with a su�-

ciently high barrier (with su�ciently large depth). Mod-

els of a one{dimensional motion of the particle in such a

form of potential have been studied in the literature [8].

Further, basic parameters the determining behavior of

the particle motion in some forms of asymmetric double{

well potentials are to be obtained.
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PRO EVOL�CI� PEREHODIV Z ODNI�Õ �MI V INXU

U DVO�MNOMU POTENCI�LI

V. S. Ol~hovs~ki�, S. P. Ma�dan�k

Institut �dernih doslid�en~ NAN UkraÝni,

prosp. Nauki, 47, 252650, KiÝv{22, UkraÝna

E{mail: maidan@kinr.kiev.ua

Rozgl�nuto odnovimirnuzadaquz riznimi potenc��lami,�ki ma�t~ vigl�d dvoh �m, rozdilenih bar'
rom.

Vivqa
mo mo�livist~ tunel�vann� kriz~ bar'
r qastinki, �ka spoqatku znahodit~s� v odni� iz �m, a potim

oscil�
 mi� nimi. Dl� asimetriqnogo pr�mokutnogo potenc��lu ta asimetriqnogo potenc��lu Morze ot-

riman� rivn�nn� dl� znahod�enn� vlasnih znaqen~ rivniv ener�iÝ, podal~xi� rozv'�zok �kih mo�e buti

vikonano qisel~no. Dl� pr�mokutnogo potenc��lu pri �ogo simetriÝ otrimano zale�nist~ periodu osci-

l�ci� qastinki mi� �mami, �ki� viznaqa
t~s� na osnovi zna�denih rivniv ener�iÝ v perxomu nabli�enni,

vid koefici
nta prohod�enn� qastinki kriz~ bar'
r.

Koefici
nt prohod�enn� mo�e buti otrimani� dvoma sposobami: dl� qastinki v oblasti neperervnogo

spektra ener�i�, �ka spoqatku ma
asimptotiqnuxvidkist~ �hk=m, a potim pada
na bar'
r, ta dl� qastinki

v oblasti diskretnogo spektra, koli mo�e buti vikoristano VKB{nabli�enn�. Obidva pidhodi da�t~

virazi dl� koefici
nta prohod�enn�, �ki zbiga�t~s� z toqnist� do konstanti, wo viznaqa
t~s� toqnist�

vikoristann� VKB{nabli�enn�.

Dl� potenc��lu vidu x

2

+ B

2

=x

2

otrimani toqni analitiqni rozv'�zki dl� rivniv ener�iÝ ta periodu

oscil�ci�.
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