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In this article we will follow the approach developed in articles N. N. Bogoliubov,
V. Hr. Samoilenko, Ukr. Fiz. Zh., 87, 147 (1992); J. Gibbon, Physica D 3, 503 (1981) using modern
Lie—algebraic and symplectic geometry methods. It is devoted to the description of Boltzman—Vlasov
type kinetic equations and some two—dimensional hydrodynamic Benney type flows associated with
them. In our case of the cylindrical symmetry taking place at the interrupted magnetic z—pinch in
plasma we used intensively the corresponding two—dimensionality of the plasma flow under consid-
eration which made it possible to build a kinetic model of the plasmoid vortex structure with a
conserved number of linkages of vortex lines. The latter can be used to explain the observed earlier
stability of the plasmoid structure at the magnetic z—pinch.
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I. THE KINETIC MODEL OF THE PLASMA 9B _rot E (1)
FLOW WITH CYLINDRICAL SYMMETRY ot ’

Consider a multispecies collisionless plasma consisting
of particles with the charges e;, s = 1, N, moving in
3-space R3, with the positions x € R? and velocities
v € T*(R3). We shall assume that the plasma densities
£ (x,v) as well as the electric and magnetic fields E and
B are either periodic in x € R3, or have asymptotic de-
cay sufficient to justify integration by parts. We shall also
assume that f°, s € 1, N, decay to zero in the v—variable
as v — 0o at a sufficient rate that makes all subsequent

rot B =

060—-1-#02/ v vfi(x,v),

divE = — Zes/ v vfi(x,v), divB=0.

integrals convergent. (Some weighted spaces may be ap-
propriate here). The simplest Maxwell-Vlasov equations
in R3 are:

aft aft €s af N\ _

N
_ 3 3, ps oy  dp v df\ du
{7’”}_;/]&3”/]33” Hafs’afs}+<<ﬁﬁ>afs

where €9 and pg are the well known in electrodynamics
constants, chosen further to be unity.

The equations of motion (1) are Hamiltonian with re-
spect to the following Poisson bracket found from La-
grangian to Eulerian coordinates in [3, 4] for any v, u €

D(T*(R3)) :

~Gw o) ar) ot (P (7)< (67)) 8

oy op
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The bracket (2) is a canonical one on the quotient
space of the cotangent bundle of a principal fibre bundle
by its structure group. Below we shall assume in more
detail a one—component plasma flow over the constant
charged background, possessing the cylindrical symme-
try and giving rise to the vortex structure at the inter-
rupted z—pinch. To proceed with let us define a model
distribution function f = f(z,v,) of plasma particles
along z—axis under condition of the incompressibility.
The resulting many—particle flow will model our plasma
medium with the vortex structure if some reciprocity re-
lationships are fulfilled upon the vortex boundary sur-
face. Thus one can write down the following physically
motivated simple equality:

uz(r,z)
/ dvs f(z,v;) = ring, (3)

oQ

determining the vortex surface r = R(z), z € R, as fol-
lows:

u;(R(z2),2)
/ dv, f(z,v,) = FRZ(Z)RQ. (4)

— 00

In the above we denoted the hydrodynamic particle ve-
locity as v = (u,, u,,0)T € R3 satisfying due to (3) the
incompressibility condition div v = 0, or

E(ruz) =0, (5)

i(rw) + 0z

or

taking place for all r € Ry, z € R. Now we need to built
proper Hamiltonian equations, governing the axisymmet-
ric velocity vector u € B3, This can be done quite eas-
ily upon the reduced Poisson structure (2) in case when
N = 1 and upon the corresponding Hamiltonian func-
tion. The latter is constructed in terms of the moment
function a = {a, € C*(R;R):n € Zy} C Mz, as
follows:

1
H = —/dz(az—l—ozz—l—ozao (6)
2 Jr

1 R(z)
+a) + —/ dz/ (|E|2 + |B|2) mrdr,
20k Jo

for some appropriate vortex fields o € C*°(R,R) and
E,B € C*(R_ x R,R), where by definition, for all
n e Z+

on = [ fz 0z, (7)

Making use of the canonical transformations theory [7,
11] one can be convinced that the next representation

follows from (3) and (4):

R(2)
an = / dr ul mrng, (8)
0

for all n € Z,. The moment functionals (8) will be in-
terpreted below magneto-hydrodynamically.

II. THE MAGNETO-HYDRODYNAMIC MODEL
OF THE PLASMA FLOW WITH CYLINDRICAL
SYMMETRY

Here we need to notice that electromagnetic field E
and B € C*(R,_ x R;R) introduced above being ax-
isymmetric, can be defined also as follows:

uz+=A, .
/ dp, F(z,p.) = mr'no, (9)

— 00

where by the definition, for all z,p, € R,

Fep) = fep = Sa0), (10)

— the distribution function on canonical phase space
with the following evolution relation satisfied for all
telR:

A
oA _ o

BT rot A = B.

As a result of some simple calculations one obtains
the following Hamiltonian equations of motion (in units
when 2mng = 1):

3_u_ 3u 3u1/ Ja
ot 3rr

e 0A, 0A, " Ou oP
+E[<3z_3r)_/ 3zd] 0z’ (11)

Ja da  OR

a9 0z’

OR  OR 10

R(z) p
——Ea—z /0 ruar|,

ot~ Oz

where we denoted by P € C* (R, x R;IR) the plasma
pressure and put u, = u € C*(R xR, R). The Hamilto-
nian system (11) possesses the following important math-
ematical property: the algebraic curve

A= %52+a+a(5), (12)

where for A, & € C,
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R(z) r 2
a(§) = / rdv (13) w=rotu= 3_u + 1 g udr’ (14)

0 E—u(rz)— = 2(r, z) or 7 orﬁ

one can obtain the conditions making it possible for our

is invariant with respect to the flow (11). This property
gives rise to a possibility of analysing the Hamiltonian
system (11) by means of modern and powerful analyti-
cal methods developed during the past decades [3-8, 11].

system to have a nontrivial vortex solution. As can be de-
rived from bracket (2), dynamical system (11) is Hamil-
tonian on a manifold M, o r) C C™(R 4 x R;R? x R4)
with respect to a Poisson bracket reduced from the one

before found in [4,5]: for any v, € D(M,__7.)

Especially, using the formula for the vorticity (@7D)

— oy op dp oy
{yv, 1} = /Rxm dzdr 7rr<u, [<6u,v> Sa <(5u’v> a
oy op op oy
dzd — rot — ) — { —,rot — 1
+/]R+><]R zrﬂ'r[<6E,ro (5B> <6E,ro B (15)
oy dp dp Oy e oy dp
2 _ —_ — —_ —_ —_ _ —_
+2/R+XﬂgdZd’””’”[<au’aE> <6u’6E H2r AR w5/

with both the incompressibility restriction div u = 0 and some boundary conditions [6, 11] involved upon the vortex
structure. Since the vortex surface ¢ C R3 is defined by the free boundary equation r = R(z) for z € R in the
cylindrical coordinates because of assumed axisymmetry of the plasma motion, we will further consider the surface
o to be compact and diffeomorphic to the boundary of some axisymmetric reference region £2,. The Hamiltonian

function (6) is subject to a generalization taking into account boundary terms on the vortex surface ¢ : H — H,,
where
1 1 R(z) N )
H, = §/Rdz(a2+a2+aa0—|—a1)—|— 5/ dz/ (|E| +B] )ﬂrdr—i—r/dS, (16)
R 0 o
where 7 € R4 is the vortex surface tension, dS is an in- _ Vo. Aw =0 5_@ _ 19
finitesimal area element of the surface o. Upon the vortex uE=wWh Ve S T on|, {a,n0) (19)

surface o the following boundary relationships are to be
satisfied:

do

e ={u,n,), P|,=Tk, (17)

where n, € C°(R;R?) is the unit outward normal
to the surface o, k € C™(R;R) is the mean curva-
ture of the vortex surface o, P € C® (R4 x R;R) is
the above introduced plasma pressure. Just as stated in
[13], the resulting still unreduced upon the submanifold
div u = 0 Poisson bracket can be written as follows: for

any v, pt € D(M(a;ag))
B dydp Iy dp
vmde =1y 1 +/0d5 (50 b0 3550) U9

where ¢ € C™(R; x R;R) is the velocity potential
uniquely obtained from the following decomposition:
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The velocity component w € C®(R x R;R?) is ob-
viously divergent free and tangent to the vortex surface
o. As a result of the above decomposition the variational

derivative g—; . for any functional v € D(M(y)) is de-

fined by the rule:
v| _ /o
@g—<au’“0>’ (20)

The corresponding derivative g—; is slightly more in-
volved. A variation do of the vortex surface o is identified
with a function on o; it represents an infinitesimal varia-
tion of ¢ in its normal direction n,. By the incompress-
ibility assumption, do has zero integral on o, a condition
dual to the additive constant ambiguity in ¢. Smoothly
extend the velocity u so it is defined in a neighborhood of
o; thus, holding u constant while varying o makes sense.

Then one can set
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57::/"§gaads, (21)

determining g—l up to an additive constant. It is easily
checked that g—l is independent on the way the velocity u
is extended as long as the functional v is C'! as u varies
in the C'—topology. Note here also that the plasma pres-
sure P in (17) can be determined as the solution to the
Dirichlet problem:

P|, =1k, AP = —div ({u, V)u). (22)

g

After an appropriate reduction of the Poisson bracket
(18) upon the invariant submanifold div u = 0 the Pois-
son bracket on the manifold M, 4 r,r 5) coincides with
the reduced Poisson bracket (2) via the transformation
(3) to the velocity variables. The above mentioned reduc-
tion procedures are of quite complicated form, so for the
moment they are omitted from the present treatment of
the problem.

III. THE VORTEX AND HELICITY
STRUCTURE ANALYSIS

To proceed further with the study of the peculiar vor-
tex type and helicity solutions to the vortex modeling hy-
drodynamic system (11) , let us first discuss its so called
Riemannian invariants [7]. To compute them in explicit
form, we shall recall here that the algebraic function (12)
is invariant with respect to the evolution (11).

The corresponding winding points of curve (12) are de-
termined by the condition % =0, C. Since A\eCis
the invariant “spectral” parameter, the critical points
& = &z, t), j = 1, Ny, generate on the (z,r)-plane
the following set of characteristics

(1/ drra—u), (23)
r=x; \TJ o 0z

where A;=A(¢;), A(&;) = 0 for all j = 1, N,. Having ob-
tained the information about the motion in the (z,r)-
plane of the quasi-invariants A\; € D(M, r.p B))J =

A

A\ O
_ w2
or

dt T 9z

A=Aj

1, Ny, one can build explicitly some helicity conserved
functionals sufficing the wanted existence of the vortex

structure in the plasma. Assuming the superfluid approx-
imation of the plasma motion, that is putting

IA ; OE
W_UXB’ I'OtB—/iO(J‘i‘EO_at)a (24)
0B

B —rot E,

d
j = enpu, nomd—lt1 =-Vp+jx B, rot A=B,

one can prove [8] that the following helicity functional is
conserved, 1.e. for all t € R

OA

— =0, A:/ drwrdz{q,rot q), (25)
ot Q

4

where q = u+=A. The result (25) generalizes evidently
the well known Kelvin theorem on the helicity, repre-
senting the number of linkages of the vortex lines in the
domain €, with the surface o [8].

An appropriate nonlinear analysis of vector fields (23)
concerned with the algebraic curve (12) show that there
exist zeroes Ajr, k = 1, N, creating some linked closed
lines, thereby suggesting the existence of the vortex
structure in the plasma flow under consideration. A much
more detailed analysis of this possibility created by the
isospectral representation (12), (13) will be delivered in
the subsequent Part 3 under preparation.
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Y mifi poBoTi MU TTpoAoB Ky emo poseuayTe B cTaTTax N. N. Bogoliubov, V. Hr. Samoilenko, Ukr. Fiz. Zh., 37,
147 (1992); J. Gibbon, Physica D 8, 503 (1981) mocainxenns. BoHo mpucesideHe oMUCOBl KIHETHUHUX PIBHSHB
Boasnmana—Baacosa it acomifioBaHUX 3 HUMM JBOBUMIPHUX Tl APOAMHAMIYHIX ITOTOKIB BeHHI, 3 BUKOpHUCTaHHAM
cyuvacHux Jli—aareGpalyHux METOIIB Ta METOIIB CUMIIEKTUYHOL TeoMeTpii. Y BUIIAIKY ITUJIIHIPHIHOI CUMETPIl y
IIa3Mi Ma€ MicIie e pepBaHUil z— M HY, TOMY BUKOPUCTAHHS Bl ATIOBI JTHOTO TBOBUMIPHOTO ILIA3MOBOTO ITOTOKY JAJ0
3Mory moby nyBaTh KiHE TUUHY MOIEb IIIa3MOlHOI BUXPOBOI CTPYKTY PU 31 CTAJOI0 KIIBKICTIO 3B’ I3HIX BUXPOBUX
miuift. e Moske 6y TH BUKOPUCTAHO IS MOSICHEHHS CTaGlIBHOCTHU IJIAa3MOITHOL CTPYKTYPU P MAarHETHOMY Z—

miHYl.
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