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In this article we will follow the approach developed in articles N. N. Bogoliubov,

V. Hr. Samoilenko, Ukr. Fiz. Zh., 37, 147 (1992); J. Gibbon, Physica D 3, 503 (1981) using modern

Lie{algebraic and symplectic geometry methods. It is devoted to the description of Boltzman{Vlasov

type kinetic equations and some two{dimensional hydrodynamic Benney type ows associated with

them. In our case of the cylindrical symmetry taking place at the interrupted magnetic z{pinch in

plasma we used intensively the corresponding two{dimensionality of the plasma ow under consid-

eration which made it possible to build a kinetic model of the plasmoid vortex structure with a

conserved number of linkages of vortex lines. The latter can be used to explain the observed earlier

stability of the plasmoid structure at the magnetic z{pinch.
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I. THE KINETIC MODEL OF THE PLASMA

FLOW WITH CYLINDRICAL SYMMETRY

Consider a multispecies collisionless plasma consisting

of particles with the charges e

s

, s = 1; N , moving in

3{space R

3

, with the positions x 2 R

3

and velocities

v 2 T

�

(R

3

). We shall assume that the plasma densities

f

s

(x;v) as well as the electric and magnetic �elds E and

B are either periodic in x 2 R

3

, or have asymptotic de-

cay su�cient to justify integration by parts. We shall also

assume that f

s

, s 2 1; N , decay to zero in the v{variable

as v !1 at a su�cient rate that makes all subsequent

integrals convergent. (Some weighted spaces may be ap-

propriate here). The simplest Maxwell{Vlasov equations

in R

3

are:

@f

s

@t

+

�

v;

@f

s

@x

�

+

e

s

m

s

�

E + v �B;

@f

s

@v

�

= 0;

@B

@t

= �rot E; (1)
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0

"

0
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3
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3

v vf

s

(x;v);

div E =

1
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0

N

X

s=1

e

s

Z

R

3

d

3

v vf

s

(x;v); div B = 0:

where "

0

and �

0

are the well known in electrodynamics

constants, chosen further to be unity.

The equations of motion (1) are Hamiltonian with re-

spect to the following Poisson bracket found from La-

grangian to Eulerian coordinates in [3, 4] for any ; � 2

D(T

�

(R

3

)) :

f; �g =

N

X

s=1

Z

R

3

d

3

x

Z

R

3

d

3

vf

s

��

�

�f

s

;

��

�f

s

�

+

��

�

�E

;

�f

�v

�

��

�f

s

�

�

�

�E

;

�f

�v

�

��

�f

s

�

+

e

s

m

s

f

s

�

B;

@

@v

�

�

�f

s

�

�

@

@v

�

��

�f

s

���

(2)

+

Z

R

3

d

3

x

��

�

�E

; rot

��

�B

�

+

�

��

�E

; rot

�

�B

��

:
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The bracket (2) is a canonical one on the quotient

space of the cotangent bundle of a principal �bre bundle

by its structure group. Below we shall assume in more

detail a one{component plasma ow over the constant

charged background, possessing the cylindrical symme-

try and giving rise to the vortex structure at the inter-

rupted z{pinch. To proceed with let us de�ne a model

distribution function f = f(z; v

z

) of plasma particles

along z{axis under condition of the incompressibility.

The resulting many{particle ow will model our plasma

medium with the vortex structure if some reciprocity re-

lationships are ful�lled upon the vortex boundary sur-

face. Thus one can write down the following physically

motivated simple equality:

Z

u

z

(r;z)

�1

dv

z

f(z; v

z

) = �r

2

n

0

; (3)

determining the vortex surface r = R(z); z 2 R; as fol-

lows:

Z

u

z

(R(z);z)

�1

dv

z

f(z; v

z

) = �R

2

(z)n

0

: (4)

In the above we denoted the hydrodynamic particle ve-

locity as v = (u

r

; u

z

; 0)

T

2 R

3

; satisfying due to (3) the

incompressibility condition div v = 0; or

@

@r

(ru

r

) +

@

@z

(ru

z

) = 0; (5)

taking place for all r 2 R

+

; z 2 R:Now we need to built

proper Hamiltonian equations, governing the axisymmet-

ric velocity vector u 2 R

3

: This can be done quite eas-

ily upon the reduced Poisson structure (2) in case when

N = 1 and upon the corresponding Hamiltonian func-

tion. The latter is constructed in terms of the moment

function a = fa

n

2 C

1

(R;R) :n 2 Z

+

g � M

(Z

+

)

as

follows:

H =

1

2

Z
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2

+ �

2
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(6)
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for some appropriate vortex �elds � 2 C

1

(R;R) and

E;B 2 C

1

(R

+

� R;R), where by de�nition, for all

n 2Z

+

a

n

=

Z

R

f(z; v

z

)v

n

z

dv

z

: (7)

Making use of the canonical transformations theory [7,

11] one can be convinced that the next representation

follows from (3) and (4):

a

n

=

Z

R(z)

0

dr u

n

z

�rn

0

; (8)

for all n 2 Z

+

: The moment functionals (8) will be in-

terpreted below magneto{hydrodynamically.

II. THE MAGNETO{HYDRODYNAMIC MODEL

OF THE PLASMA FLOW WITH CYLINDRICAL

SYMMETRY

Here we need to notice that electromagnetic �eld E

and B 2 C

1

(R

+

� R;R) introduced above being ax-

isymmetric, can be de�ned also as follows:

Z

u

z

+

e

m

A

z

�1
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z

e

f (z; p

z
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2

n

0

; (9)

where by the de�nition, for all z; p

z

2 R;

e

f (z; p

z

) = f(z; p

z

�

e

m

A

z

); (10)

| the distribution function on canonical phase space

with the following evolution relation satis�ed for all

t 2 R :

@A

@t

= �E; rot A = B:

As a result of some simple calculations one obtains

the following Hamiltonian equations of motion (in units

when 2�n

0

= 1):
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!

;

where we denoted by P 2 C

1

(R

+

� R;R) the plasma

pressure and put u

z

= u 2 C

1

(R

+

�R;R):The Hamilto-

nian system (11) possesses the following importantmath-

ematical property: the algebraic curve

� =

1

2

�

2

+ �+ a(�); (12)

where for �; � 2 C ;
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a(�) =

Z

R(z)

0

rdr

� � u(r; z)�

e

m

A

z

(r; z)

; (13)

is invariant with respect to the ow (11). This property

gives rise to a possibility of analysing the Hamiltonian

system (11) by means of modern and powerful analyti-

cal methods developed during the past decades [3{8, 11].

Especially, using the formula for the vorticity

! = rot u =

@u

@r

+

1

r

Z

r

0

r

@

2

u

@z

2

dr; (14)

one can obtain the conditions making it possible for our

system to have a nontrivial vortex solution. As can be de-

rived from bracket (2), dynamical system (11) is Hamil-

tonian on a manifoldM

(u;�;R)

� C

1

(R

+

�R;R

2

�R

+

)

with respect to a Poisson bracket reduced from the one

before found in [4,5]: for any ; � 2 D(M
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)
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with both the incompressibility restriction div u = 0 and some boundary conditions [6, 11] involved upon the vortex

structure. Since the vortex surface � � R

3

is de�ned by the free boundary equation r = R(z) for z 2 R in the

cylindrical coordinates because of assumed axisymmetry of the plasma motion, we will further consider the surface

� to be compact and di�eomorphic to the boundary of some axisymmetric reference region 


�

: The Hamiltonian

function (6) is subject to a generalization taking into account boundary terms on the vortex surface � : H ! H

�

;

where

H

�

=

1

2

Z

Rdz(a

2

+ �

2

+ �a

0
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1
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1

2
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R
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Z
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0

�
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2
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2
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Z

�

dS; (16)

where � 2 R

+

is the vortex surface tension, dS is an in-

�nitesimal area element of the surface �: Upon the vortex

surface � the following boundary relationships are to be

satis�ed:

@�

@t

= hu;n

�

i ; P j

�

= �k; (17)

where n

�

2 C

1

(R;R

3

) is the unit outward normal

to the surface �; k 2 C

1

(R;R) is the mean curva-

ture of the vortex surface �; P 2 C

1

(R

+

� R;R) is

the above introduced plasma pressure. Just as stated in

[13], the resulting still unreduced upon the submanifold

div u = 0 Poisson bracket can be written as follows: for

any ; � 2 D(M

(u;e;b)

)

f; �g

�

= f; �g+

Z

�

dS

�

�

��
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�

�
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��
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�
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where ' 2 C

1

(R

+

� R;R) is the velocity potential

uniquely obtained from the following decomposition:

u = w +r'; 4' = 0;

�'

�n

�

�

�

�

�

= hu;n

�

i : (19)

The velocity component w 2 C

1

(R

+

�R;R

3

) is ob-

viously divergent free and tangent to the vortex surface

�. As a result of the above decomposition the variational

derivative

@

@'

�

�

�

�

for any functional  2 D(M

(u)

) is de-

�ned by the rule:

�

�'

�

�

�

�

�

=

�

�

�u

;n

�

�

; (20)

The corresponding derivative

�

�'

is slightly more in-

volved. A variation �� of the vortex surface � is identi�ed

with a function on �; it represents an in�nitesimal varia-

tion of � in its normal direction n

�

. By the incompress-

ibility assumption, �� has zero integral on �, a condition

dual to the additive constant ambiguity in '. Smoothly

extend the velocity u so it is de�ned in a neighborhood of

�; thus, holding u constant while varying � makes sense.

Then one can set
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� =

Z

�

�

��

��dS; (21)

determining

�

��

up to an additive constant. It is easily

checked that

�

��

is independent on the way the velocity u

is extended as long as the functional  is C

1

as u varies

in the C

1

{topology. Note here also that the plasma pres-

sure P in (17) can be determined as the solution to the

Dirichlet problem:

P j

�

= �k; 4P = �div (hu;riu): (22)

After an appropriate reduction of the Poisson bracket

(18) upon the invariant submanifold div u = 0 the Pois-

son bracket on the manifoldM

(u;a;R;E;B)

coincides with

the reduced Poisson bracket (2) via the transformation

(3) to the velocity variables.The above mentioned reduc-

tion procedures are of quite complicated form, so for the

moment they are omitted from the present treatment of

the problem.

III. THE VORTEX AND HELICITY

STRUCTURE ANALYSIS

To proceed further with the study of the peculiar vor-

tex type and helicity solutions to the vortex modeling hy-

drodynamic system (11) , let us �rst discuss its so called

Riemannian invariants [7]. To compute them in explicit

form, we shall recall here that the algebraic function (12)

is invariant with respect to the evolution (11).

The corresponding winding points of curve (12) are de-

termined by the condition

d�

d�

= 0, � 2 C. Since � 2 C is

the invariant \spectral" parameter, the critical points

�

j

= �

j

(z; r; t), j = 1; N

�

, generate on the (z; r){plane

the following set of characteristics

d�

j

dt

=

@�

@z

�

�

�

�

�=�

j
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�

�

�

�
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�

1

r

Z
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dr r

@u

@z

�

; (23)

where �

j

=�(�

j

), �(�

j

) = 0 for all j = 1; N

�

. Having ob-

tained the information about the motion in the (z; r){

plane of the quasi{invariants �

j

2 D(M

(u;R;E;B)

)j =

1; N

�

, one can build explicitly some helicity conserved

functionals su�cing the wanted existence of the vortex

structure in the plasma.Assuming the superuid approx-

imation of the plasma motion, that is putting

@A

@t

= u�B; rot B = �

0

�

j+ "

0

@E

@t

�

; (24)

@B

@t

= �rot E;

j = en

0

u; n

0

m

du

dt

= �rp+ j�B; rot A = B;

one can prove [8] that the following helicity functional is

conserved, i.e. for all t 2 R

@�

@t

= 0; � =

Z




�

dr �r dz hq; rot qi ; (25)

where q = u+

e

m

A. The result (25) generalizes evidently

the well known Kelvin theorem on the helicity, repre-

senting the number of linkages of the vortex lines in the

domain 


�

with the surface � [8].

An appropriate nonlinear analysis of vector �elds (23)

concerned with the algebraic curve (12) show that there

exist zeroes �

jk

; k = 1; N

�

, creating some linked closed

lines, thereby suggesting the existence of the vortex

structure in the plasma ow under consideration. A much

more detailed analysis of this possibility created by the

isospectral representation (12), (13) will be delivered in

the subsequent Part 3 under preparation.
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