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The conductivity of a periodical structure consisting of successive layers of a material with

degenerate electron gas, divided by thin tunnel barriers, or having periodical set of planes with

randomly distributed scattering centers, is calculated. In both cases a correction to resistivity

increases linearly with the rise of the ratio of the bulk electron free path to the structure period.

The dependence of conductivity on parameters characterizing the interfaces between conducting

layers is established.
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The electrical resistivity of structures consisting of mi-

croregions of materials of metallic type conductivity di-

vided by thin insulating barriers is a well known problem

of the solid state physics. The interest to it has aroused

due to the latest intensive investigations of metallic su-

perlattices. As is known, the attempts of calculating the

conductivity of spatial con�ned systems, based on the

Boltzmann's equation, have had serious di�culties in

the formulation of boundary conditions for the partition

functions. The use of some model ideas requires intro-

duction of phenomenological parameters in the bound-

ary conditions. It leads to a loss of the dependence of

conductivity upon such an important factor as the mean

free path [1].

In this paper we consider a structure consisting of suc-

cessive layers of the material with degenerate electron

gas. We assume the layers to be divided from each other

either by tunnel thin barriers or by some planes with

randomly distributed scattering centers like impurities

or interface defects. A similar situation can be realized

by various ways, for example, in metallic superlattices or

semiconductor structures with delta-doped layers.

The width of conducting with z

0

is assumed to be suf-

�ciently large as compare of to the electron mean free

path � so that the size{quantization e�ects in a layer

could be neglected. At the same time, we assume the

screening length L to be small in comparison with the

bulk mean free path l

F

= v

F

� . The above-indicated con-

ditions can be ful�lled simultaneously for strongly degen-

erated electron gas (for the metallic densities of electron

gas � � L � a

o

, where a

o

is the lattice constant).

To calculate the conductivity of the structure, we use

a method based on the solution of the kinetic equation

in a conducting layer with periodic boundary conditions,

so that the boundary conditions at the interface are de-

termined by the sewing up the electron wavefunctions.

Let us consider the electric current in the direction

of z-axis, that is perpendicular to the layer plane. The

kinetic equation for the partition functions inside each

layer under weak electric �eld has the form
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It accounts for the scattering from impurities in the bulk

of the layer in the framework of the relaxation time � -

approximation. As usual, here f

0

is the equilibrium par-

tition function.

Let the layer 0 < z < z

0

be under consideration. The

solution of (1) can be written separately for carriers mov-

ing along the direction of the electric �eld, and in the

opposite direction
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Here C

1

(v) ; C

2

(v) are certain functions that are de-

�ned by the conditions of �tness of the wavefunctions at

z = 0 and z = z

0

. Besides, in the partition functions (2)

v = v

z

is assumed to be positive, i.e., we take the module

of the velocity projection on the z-axis.

The distribution of electric �eld E (z) in (1) and (2)

di�ers from the constant value E

c

inside the layer only

in a narrow region � near the interface. The boundary

conditions at z = 0 and z = z

0

, as follows from (2), can

be written as

f

+

(+0) = f

0

+ C

1

(v) ; (3)
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where l = v� , and the value E

0

� de�nes the potential

drop at the interface.

The current along z-axis can be calculated from
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Consequently, the equation

j

z

(z) = j

0

(5)

determines the distribution of electric �elds. Here j

0

is a

given value of the current 
owing through the structure.

Using (3), equation (5) can be presented in the form
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where new constants
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are introduced.

Apart from the periodicity condition of the type

f

�

(�0) = f

�

(z

0

� 0) (8)

for the f

�

functions, the conditions of �tness are imposed

at each interface between conducting layers.

In order to obtain the equations of �tness we follow

the method proposed in [2] in the problem of scattering

of electrons from the rough metal-vacuum interface, and

the one developed in [3] for the problem of conductivity

of the simple contact of two metals.

The carriers are quantum re
ected and scattered from

defects at the interface. Taking into account the elastic-

ity of these processes, the wavefunction can be written

as a superposition of states at the isoenergetic surface
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where � = (x; y) is the vector perpendicular to the sys-

tem axis. After evaluating the integral over k

z

, we obtain

an expression
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where the denotations k � k

�

; k

0

z

=

p

2m" � k

2

; v =

k

0

z

=m are introduced (here and so on we put �h = 1). In-

dex � = 1; 2 corresponds to the wavefunction values in

the regions 0 < z < z

0

, and z

0

< z < 2z

0

, respectively.

The upper indices (>;<) correspond to the two possible

signs of k

0

z

, therefore a

>

�k

and a

<

�k

are the amplitudes of

waves moving in the opposite directions.

The Lagrangian of the system of two layers, divided

by a barrier, has the form
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:

Here V (�) is the potential created by the distribution

of impurities at the interface, � (z) is the step function,

	 = 	

1
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0
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2
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0
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1

;	

2
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. After variation in (11) over 	 we get
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The integration of (12) within the in�nitely small

neighborhood � ! +0 of the point z = z

0

gives us an

equation of �tness for the wavefunctions

1
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which after substitution of (10) can be rewritten in the

form
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The second equation for amplitudes is a consequence

of the continuity condition for the wavefunctions at the

interface 	
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The equations for partition functions follow from their

relation with the diagonal components of the density ma-

trix
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and the analogous formulas for the second region z

0

<

z < 2z

0

. The factor v in these formulas is related with

normalization conditions [2].

In what follows we consider two cases corresponding to

the di�erent model description of the interface between

the conducting layers.

For the tunnel transparent barrier (no impurities or

defects at the interface) when V (�) = const, we get us-

ing (14){(16)

8

<

:

f

�

(z

0

� 0) = Rf

+

(z

0

� 0) + (1� R) f

�

(z

0

+ 0)

f

+

(z

0

+ 0) = Rf

�

(z

0

+ 0) + (1�R) f

+

(z

0

� 0)

(17)

where R (v) is the re
ection coe�cient at the barrier. The substitution in (17) of the boundary values (3) of f

�

accounting for their periodicity (8) and denotation (7), leads to a set of equations for determination of coe�cients
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Their solution has the form
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Then, the equation (6) may be written
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Counting, that re
ection coe�cient R = R(v) is a func-

tion of electron speed, equation (20) takes the form

E

c

l

~

R

1

+E

0

�

~

R

2

� E

0

� ~p = 0; (21)

where the notations

~

R =

v

F

Z

0

v

2

v

F

R (v) '

�

e

��

�

dv;

~

D =

v

F

Z

0

(1� R (v)) '

�

e

��

�

v dv; (22)

' (x) = �

(1 + x)

1� (1� 2R)x

are used.

Adding resistance in the structure may be obtained

from expression
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where voltage drop on the barriers per length unit is de-

termined as
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Then, from (21), (23), and (24) follows an expression for

the resistivity of structure
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where �

0

is the bulk resistivity of the conducting layer

material.

In the presence of impurities or defects at the inter-

face we assume the corresponding random potential to

be Gaussian
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where angled brackets are for averaging over realizations

of the random potential. In this case the equations of

�tness at the interface has the form
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where index k

0

corresponds to the z-component of mo-

mentum, and the sum over q means the summation over

longitudinal components of momentum (i.e., along the

interface).

Consequently, from (26) follows a new set of equations

for the determination of coe�cients
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and the dimensionless scattering parameter ~
 = 2m

2


 is

introduced.

In the case of weakly scattering, when the conditions

~
 � 1 and p

�
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1 are obeyed, solutions of (28) have the

form
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that leads to

~
 E

c
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�: (33)

Making use of (33) and performing the calculations in

a way similar to obtaining (25), we get an expression for

the resistivity of the structure at the presence of scatters

at the interface
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Note that in formula (34) we assume the parameter

~
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F
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� 1 to be small.

Summarizing, we conclude, that according to (25) and

(34) the resistivity of structure increases linearly with

parameter 2l =z

0

in both the considered cases. The di�er-

ence in the character of electron scattering at the inter-

face between the conducting layers, is taken into account

with the aid of factors

~

R=

~

D and ~
 in these formulas.
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PROVIDNIST^ U PERIODIQNIH STRUKTURAH Z� SIL^NO VIROD�ENIM

ELEKTRONNIM GAZOM

P. Petrov

Der�avni� universitet \L~vivs~ka politehnika",

vul. Kotl�revs~kogo, 1, L~viv, 290013, UkraÝna.

Obqisleno providnist~ u periodiqni� strukturi, �ka sklada
t~s� z xariv providnogo materi�lu, rozdile-

nih tunel~no prozorimi bar'
rami abo plowinami z vipadkovim rozpodilom centriv rozsi�nn�. V oboh

vipadkah popravka do pitomogo oporu providnogo materi�lu strukturi zrosta
 lini�no zi zbil~xenn�m vid-

noxenn� dov�ini vil~nogo probigu elektroniv do periodu strukturi. Viznaqeno zale�nist~ providnosti

strukturi vid parametriv,wo opisu�t~ me�i rozdilu mi� providnimi xarami.
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