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The conductivity of a periodical structure consisting of successive layers of a material with

degenerate electron gas, divided by thin tunnel barriers, or having periodical set of planes with

randomly distributed scattering centers, is calculated. In both cases a correction to resistivity
increases linearly with the rise of the ratio of the bulk electron free path to the structure period.

The dependence of conductivity on parameters characterizing the interfaces between conducting

layers is established.
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The electrical resistivity of structures consisting of mi-
croregions of materials of metallic type conductivity di-
vided by thin insulating barriers is a well known problem
of the solid state physics. The interest to it has aroused
due to the latest intensive investigations of metallic su-
perlattices. As is known, the attempts of calculating the
conductivity of spatial confined systems, based on the
Boltzmann’s equation, have had serious difficulties in
the formulation of boundary conditions for the partition
functions. The use of some model ideas requires intro-
duction of phenomenological parameters in the bound-
ary conditions. It leads to a loss of the dependence of
conductivity upon such an important factor as the mean
free path [1].

In this paper we consider a structure consisting of suc-
cessive layers of the material with degenerate electron
gas. We assume the layers to be divided from each other
either by tunnel thin barriers or by some planes with
randomly distributed scattering centers like impurities
or interface defects. A similar situation can be realized
by various ways, for example, in metallic superlattices or
semiconductor structures with delta-doped layers.

The width of conducting with zy is assumed to be suf-
ficiently large as compare of to the electron mean free
path A so that the size—quantization effects in a layer
could be neglected. At the same time, we assume the
screening length L to be small in comparison with the
bulk mean free path ([ = vp7. The above-indicated con-
ditions can be fulfilled simultaneously for strongly degen-
erated electron gas (for the metallic densities of electron
gas A ~ L ~ a,, where a, is the lattice constant).

To calculate the conductivity of the structure, we use
a method based on the solution of the kinetic equation
in a conducting layer with periodic boundary conditions,
so that the boundary conditions at the interface are de-
termined by the sewing up the electron wavefunctions.

Let us consider the electric current in the direction
of z-axis, that is perpendicular to the layer plane. The
kinetic equation for the partition functions inside each
layer under weak electric field has the form

90

eE(Z)3f0+v 3_f_|_f—f0

m Jv, 0z T

-0 (1)

It accounts for the scattering from impurities in the bulk
of the layer in the framework of the relaxation time 7-
approximation. As usual, here fy is the equilibrium par-
tition function.

Let the layer 0 < z < zp be under consideration. The
solution of (1) can be written separately for carriers mov-
ing along the direction of the electric field, and in the
opposite direction
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Here Cy (v), Ca (v) are certain functions that are de-
fined by the conditions of fitness of the wavefunctions at
z =0 and z = zp. Besides, in the partition functions (2)
v = v, 18 assumed to be positive, 1.e., we take the module
of the velocity projection on the z-axis.

The distribution of electric field F (z) in (1) and (2)
differs from the constant value F. inside the layer only
in a narrow region A near the interface. The boundary
conditions at z = 0 and z = zg, as follows from (2), can
be written as

JH(+0) = fo+Ci(v), (3)

J7(+0) = fo+ C3 (v),



CONDUCTIVITY OF PERIODICAL STRUCTURES WITH STRONGLY DEGENERATED ELECTRON GAS

f+(20—0) :f0+01(v)6_20/l—688i2

x (Bl (1= em2/) 4 Boa (147201

J (20 =0) = fo+ C2(v) er/l—eaais

X {—Ecl (1 — ezu/’) + BoA (1 + ezu/’)]

where [ = vr, and the value FgA defines the potential
drop at the interface.

The current along z-axis can be calculated from

Consequently, the equation
J= (2) = Jo (5)

determines the distribution of electric fields. Here jg 1s a
given value of the current flowing through the structure.
Using (3), equation (5) can be presented in the form
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where new constants

are introduced.

Apart from the periodicity condition of the type
JE(£0) = f* (20 £0) (8)

for the f* functions, the conditions of fitness are imposed
at each interface between conducting layers.

In order to obtain the equations of fitness we follow
the method proposed in [2] in the problem of scattering
of electrons from the rough metal-vacuum interface, and
the one developed in [3] for the problem of conductivity
of the simple contact of two metals.

The carriers are quantum reflected and scattered from
defects at the interface. Taking into account the elastic-
ity of these processes, the wavefunction can be written
as a superposition of states at the isoenergetic surface
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where p = (2, y) is the vector perpendicular to the sys-
tem axis. After evaluating the integral over k., we obtain
an expression
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where the denotations k = k,; k) = 2me — k%, v =
k% /m are introduced (here and so on we put A = 1). In-
dex a = 1,2 corresponds to the wavefunction values in
the regions 0 < z < zgp, and zp < z < 2zp, respectively.
The upper indices (>, <) correspond to the two possible
signs of k', , therefore a, and aZ, are the amplitudes of

waves moving in the opposite directions.

The Lagrangian of the system of two layers, divided
by a barrier, has the form

L:/dzdzp{% [1—©(z—z)] (11)
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Here V (p) is the potential created by the distribution
of impurities at the interface, © (z) is the step function,
U =", at z <zg, W=y at z > 2, ¥ = W, ¥y at
z = zp. After variation in (11) over ¥ we get

1 1
— ﬁ{& (1 — @ (Z — Zo)) 82'\111 — ﬁ&@ (Z — Zo) 82'\112
+6(z—2)V(p) ¥ —cT =0 (12)

The integration of (12) within the infinitely small
neighborhood § — + 0 of the point z = z; gives us an
equation of fitness for the wavefunctions

1 d\IJ1| 1 d\I/2|
om dz 770 om dz Tt
+Vip) ¥, =0 (13)

which after substitution of (10) can be rewritten in the
form
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a7y, — aty + ax, — ag,
. V.
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The second equation for amplitudes is a consequence
of the continuity condition for the wavefunctions at the
interface ¥y (zg, p) = ¥s (20, p)

a, + af, = ag, + ag, (15)

The equations for partition functions follow from their
relation with the diagonal components of the density ma-

trix
K P = urt, (16)

laf|” = vf™, a7

and the analogous formulas for the second region zy <
z < 2zp. The factor v in these formulas is related with
normalization conditions [2].

In what follows we consider two cases corresponding to
the different model description of the interface between
the conducting layers.

For the tunnel transparent barrier (no impurities or
defects at the interface) when V (p) = const, we get us-

ing (14)-(16)

f7(20=0)=Rf"(20-0)+ (1= R) f~ (20 +0)

(17)
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where R (v) is the reflection coefficient at the barrier. The substitution in (17) of the boundary values (3) of f*
accounting for their periodicity (8) and denotation (7), leads to a set of equations for determination of coefficients

Cy (v),Cy (v).
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Their solution has the form
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where £ = zp/l.
Then, the equation (6) may be written
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e_zu/l) + TEA (1 — e_zu/l) .

Counting, that reflection coefficient R = R(v) is a func-
tion of electron speed, equation (20) takes the form

E.lRy + EgA Ry — EgAp =0, (21)

where the notations

U
Foa

R:/U—R (v) ¢ (e7%) dv,

VF
0

vE

D= /(1 ~ R (v) ¢ (e7%) vdv, (22)

are used.

Adding resistance in the structure may be obtained
from expression
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where voltage drop on the barriers per length unit 1s de-
termined as

2EpA

20

U=

(24)

Then, from (21), (23), and (24) follows an expression for
the resistivity of structure

Up R
+2£ ) (25)
20 D

where pg i1s the bulk resistivity of the conducting layer
material.

In the presence of impurities or defects at the inter-
face we assume the corresponding random potential to
be Gaussian

Vip) =0, (V(p)V(p)) =~d(p-p"), (26)
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Sl = /dv’ él e_zu/ll; Sg = /dv’ éz (29)
0 0
and the dimensionless scattering parameter 5 = 2m?~ is
introduced.
In the case of weakly scattering, when the conditions

¥ < 1 and p = 1 are obeyed, solutions of (28) have the
form
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where angled brackets are for averaging over realizations
of the random potential. In this case the equations of
fitness at the interface has the form
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where index k' corresponds to the z-component of mo-
mentum, and the sum over ¢ means the summation over
longitudinal components of momentum (i.e., along the
interface).

Consequently, from (26) follows a new set of equations
for the determination of coefficients Cy(v), Ca(v)

6—20/’)p+E0A (1+e—20/’) j(51 +Sy) (28)
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Cy = E.l + EgActh(Zy/20), (30)

Cy = —E.1 — EyActh(Zy/21), (31)

Therefore the equation (6) may be written as
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that leads to

§E,l = EoA. (33)

Making use of (33) and performing the calculations in
a way similar to obtaining (25), we get an expression for
the resistivity of the structure at the presence of scatters
at the interface

2 = o (1 + 21”) . (34)
<0

Note that in formula (34) we assume the parameter

Ylp /20 < 1 to be small.

Summarizing, we conclude, that according to (25) and
(34) the resistivity of structure increases linearly with
parameter 2/ /zo in both the considered cases. The differ-
ence in the character of electron scattering at the inter-
face between the conducting layers, is taken into account
with the aid of factors R /D and ¥ in these formulas.

[1] H. Sondheimer, Adv. Phys. 1, 1 (1952)
[2] L. A. Falkovsky, Adv. Phys. 32, 753 (1983)

[3] V. K. Dugaev, V. I. Litvinov, P. P. Petrov, Phys. Rev. B
52, 5306 (1995)

IMTPOBIOHICTD ¥ IIEPIOJMTYHHNX CTPYRTYPAX 31 CMJALHO BUPOASKEHIM
EJERTPOHHINM I'A30M
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OGUncIeHo TPOBI THICTE ¥ IEPIOANYHIN CTPYKTY Pl, AKA CKJIATAETHCA 3 MIaPlB HPOBIIHOTO MATEPIALY, PO3ILIe-
HUX TYHEJIBbHO ITpo3opuMu Gap’epaMu abo INIOIMHAMMI 3 BUIAJIKOBUM PO3IOIIJIOM IeHTPIB poscisuus. B ofox
BUIaIKaX IIOMPaBKa J0 MUTOMOTO OHOPY MPOBLIHOIO MATEPISAY CTPYKTY PH 3pOCTa€ JIHIAHO 31 361IbIIe HHAM BiI-
HOIIEHHS JOBKIHN BIIBHOTO IMPOBITY eJeKTPOHIB OO0 MePIoAy CTPYKTYpH. BUsHaueHO 3aJie KHICTH ITPOBIIHOCTH
CTPYKTYPH BlI ITapaMeTpiB, O OMUCYIOTh M€ 3l PO3ILIY MisK IIPOBIIHIME HIapaMI.
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