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THE STRUCTURE OF A LENNARD-JONES FLUID IN A SLIT-LIKE PORE
FILLED WITH RANDOM MATRIX FROM INTEGRAL EQUATION THEORY
AND FROM MONTE CARLO SIMULATIONS
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The confinement of a Lennard—Jones fluid in a slit-like pore filled with a random hard matrix is
studied using the inhomogeneous Ornstein—Zernike equation and grand canonical Monte Carlo sim-
ulations. Associative matrix—fluid interactions are considered. Density profiles and pair distribution
functions are reported. The agreement of the theoretical and simulation results is satisfactory.
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I. INTRODUCTION

Investigations of adsorption of fluids in disordered and
in random matrices commence from the adaptation of
the methods of liquid—state statistical mechanics for fluid
mixtures [1-16]. According to the usual nomenclature
random matrices are those whose particles do not in-
teract between themselves, but interact with all the re-
maining molecules in the system. Disordered matrices,
however, are formed by quenching a fluid composed of
particles interacting via model repulsive or repulsive—
attractive potentials.

One of the first theoretical approaches to quenched—
annealed systems has been proposed by Madden and
Glandt [1,2], who obtained a set of Ornstein—Zernike
(OZ) type integral equations for the pair correlation
functions. Next, Given and Stell [3-5] have generalized
the theory of Madden and Glandt, developing the replica
Ornstein—Zernike (ROZ) equation. In several papers [6—
13] different approximations to pair correlation functions
have been studied. A review of the theoretical methods
can be found in our recent paper [14].

The theory of inhomogeneous quenched—annealed mix-
tures is in its infancy. This is not surprising, since the
properties of nonuniform systems are more complex and
require more sophisticated methods for investigation.
However, the nonuniform quenched—annealed systems
are of much greater interest for basic and applied re-
search. Formally, the problem of theoretical description
of such systems was stated first in Ref. [15], where the
inhomogeneous replica Ornstein—Zernike equations, sup-
plemented by either the Born—Green—Yvon (BGY), or by
the Lovett—Mou-Buff-Wertheim equation for the density
profiles, were proposed to study the adsorption of a fluid
near a plane boundary of a disordered matrix. In our re-
cent works [16,17], however, we formulated a theory for
a fluid adsorbed in a pore filled with a nonuniform ma-
trix. Specific calculations have been carried out for hard
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sphere fluid and for hard sphere disordered matrix. A
comparison with the Monte Carlo simulation data has
indicated that the structure of the system is reproduced
correctly by the proposed theory. In subsequrnt papers
[18, 19] we applied a similar formalism to describe flu-
ids in contact with porous membranes and adsorption of
fluids in pores with molecularly rough walls.
Adsorption of fluids in confined inhomogeneous dis-
ordered media is important for several practical applica-
tions as, for example, for chromatography [20], for the in-
vestigations of adsorption by some modified adsorbents,
as well as by the so—called pillared clays [21,22], for ex-
ample, and for separation. In such systems the specific
interactions between the immobilized (“frozen”) compo-
nent and the annealed particles may occur. Thus, the
aim of this note is to extend the theory reported in Refs.
[16-19] to the case of more sophisticated interparticle
forces. In particular, we test the predicted density pro-
files against the grand canonical Monte Carlo data. The
success of the theory would allow us to study several in-
teresting phenomena in the future, such as the capillary
condensation in matrix—filled pores, for example.

1I. THEORY

In this section we report equations describing the
structure of a fluid inside a slit—like pore filled with a
random matrix, i.e. a matrix built of frozen ideal gas.

The fluid particles, labelled by subscript 1 interact via
the Lennard—Jones (12,6) potential

o= TP

whereas the fluid—matrix potential, besides the Lennard—
Jones part, may also contain specific, spherically sym-
metric intracore (associative) part [23, 24]

(1)
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In the above the matrix particles are distinguished by
the subscript 0, r. is the cut—off distance, r; and r, are
the lower and upper limits of the square—well associative
potential, €, is the intracore potential depth (the en-
ergy of association) and the remaining parameters have
their usual meaning. Specific calculations are performed
assuming that the Lennard—Jones parameters for fluid—
fluid and for fluid-matrix interaction are the same and
that e/kT = 1,e,/kT = 3,7 = 0.30 and r, = 0.40. The
cut—off distance is r. = 30. The square—well part of the
potential is located deep inside the core of the Lennard—
Jones (12,6) function. This location makes unprobable a
situation in which more than one fluid particle is bonded
to the same matrix particle. However, because the ma-
trix particles can freely penetrate themselves, one fluid
particle can be bonded with more than one matrix par-
ticle.

Both fluid and matrix are between two hard walls of a
slit-like pore of the width H

oo for z < 0and z > H,

vilz) = (3)

0 otherwise,

where ¢ stands for 0 and for 1.

The filling of the pore occurs stepwise. At the first
stage an empy pore is filled with the matrix species.
This process takes place at the chemical potential py,
corresponding to the bulk (reference) system density po.
Because the matrix is formed from an ideal gas, its distri-
bution inside the pore is given by the Boltzmann function

po(2) = pob exp[—vo(2)/kT]
pop for z< 0 and z > H,

= (4)

0 otherwise.

During the second step, the fluid, at the chemical po-
tential pp enters the matrix—filled pore. The pair fluid—
fluid and fluid—-matrix correlations are described by the
nonuniform ROZ equations [15-17]

hlo(l, 2) — 610(1, 2) = /d3p0(23)610(1, 3)]100(3, 2)
—|—/d3p1(23)66711(1,3)]110(3,2),

hol(l, 2) — 601(1, 2) = /d3p0(23)600(1, 3)]101(3, 2)

~—

—|—/d3p1(23)601(1,3)]16711(3,2), (5

h11(1,2) —e11(1,2) = /d3p0(23)610(1,3)h01(3,2)
—1—/d3p1(Z3)ccyll(1,3)h11(3,2)
+/d3p1(23)6b,11(1,3)hc,11(3,2),
he11(1,2) —e.11(1,2) = /d3p1(Z3)ccyn(1,3)h6711(3,2).

The fluid-fluid pair (k) and direct (¢) correlation
functions consist of the blocking and connected part,
v11(1,2) = ¢p11(1,2) + e 11(1,2), where ¢ stands for
h or ¢, as appropriate. The definition of the blocking
part can be found in refs. [1-3]. Obviously, for ran-
dom matrix the matrix—matrix correlation functions are
hoo = Cpp = 0.

Following Refs. [15-17] we use the BGY equation to
describe the local density of the fluid, p;(2),

dlnpy(z1) Jw(z1)
821 821

= —ﬁ/d2p1(22)911(1,2)8U;172(212), (6)

where the effective one-body potential, w(z), satisfies the
relation,

Ow(z1)  OU(z1)
9 = on —|—/d2po(22)g10(1,2)

OUo(12)
om0 U

and where ¢;;(1,2) = 1+ h;(1,2). It is important
to emphasize that a boundary condition results from
the fact that the one particle cavity function, y;(z) =
p1(z) explv1(2)/kT], tends to its limiting value, deter-
mined by the configurational fluid chemical potential

[25]a/'L1,C

lim y1(2) = explus o/kT) = a1, (8)

z—too

where a7 denotes the fluid activity.

To solve the set of equations (5)—(7), the closure rela-
tions for the inhomogeneous pair functions must be spec-
ified. We use the second order hypernetted chain (HNC2)
closure [1-6]

ev11(4, J) = exp{he11(4,7) — v 11(4,7)} — 1

— {ho1(d,7) — ev1(d, 5) 1 (9)
for the blocking term of the fluid—fluid function, and
[hi(1,2) + 1] exp[BUij] = exp{hij(1,2) — ci5(1,2)}, (10)
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Fig. 1. Fluid density profile as functions of the distance
z* = z/o from the pore wall. Points donote simulational re-
sults, whereas curves have been calculated according to the
proposed theory. In each Figure the lower curves are for the
system with the fluid-matrix associative force switched off
and the upper curves — for the systems with the associa-
tive interaction being swiched on. The pore width is given
in each of the Figure; in part (a) the fluid activity is equal
to @] = 0.5, whereas in parts (b) and (c¢) — it is equal to
o] =5.
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for (¢,j) = (1,0) and (1,1). We do not use the PY2 clo-
sure for this part of the calculation because it has been
shown to be inconsistent in this application [5]. In solving

the above equations we apply the techniques that were
employed earlier [16-17, 26].

III. RESULTS AND DISCUSSION

In addition to theoretical caluclations we have carried
out the grand canonical simulations. The technique ap-
plied by us was the same as in Refs. [17-19]. In our
computer experiments a rectangular cell of dimensions
100g x 1009 x H with periodic boundary conditions in
the plane parallel to the pore walls was used. Each run
consisted of two steps. In the first step, the pore was
filled with randomly distributed noninteracting matrix
particles. Next, grand canonical ensemble simulations of
the fluid in a pore filled with the matrix species were
performed. The calculations were repeated several times
starting from different matrix configurations. During the
production runs we performed at least 5 x 10° Monte
Carlo steps; each step consisted of an attempt to move,
an attempt to destroy and an attempt to create a parti-
cle that had been selected with equal probability. It was
found that usually 10 replicas of the matrix assured good
statistics for the determination of the local fluid density.
However, the evaluation of the nonuniform pair distri-
bution functions required much longer runs; at least 100
matrix replicas were necessary to calculate the correla-
tion functions for particles parallel to the pore walls.

Our calculations have been carried out for two pore
widths, H* = H/o = 3 and H* = 5 and for two activi-
ties a1 = exp[pt1,cons/kT] = 0.5 and 5. To get reference
data, we have also considered the case when the fluid—
matrix square—well interaction was switched off, i.e. for
ca/ kT = 0.

In Fig. 1 we show the density profiles evaluated for the
pore H* = 3 at o} = a10® = 0.5 and of = 5 (Figs la
and 1b) and for the pore H* = 5 at a* = 5. In both
cases the matrix density is equal to p5, = popo® = 0.5.
In the case of computer simulations the total porosity of
both the pores, defined as the ratio of the free space to
the total pore volume was nearly identical and equal to
~ 0.77. Obviously, only a part of the “free pore volume”
is available to the fluid particles. In Fig. 1 lines denote
the results of theoretical calculations, whereas points ab-
breviate the simulational data. Note that only every sec-
ond Monte Carlo point is displayed here. The upper set
of the curves has been obtained for switched on square—
well (associative) potential, whereas the lower set — for
the associative forces switched off.

The discrepancies between simulational and theoreti-
cal results increase with the increase of the activity of the
fluids, aF. Also, the theoretical results become slightly
worse when the associative forces are turned on. The
contact values of the density profiles are rather well re-
produced. Also, the density at the pore centre resulting
from the theory agrees well with the simulational results.
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Fig. 2. Pair correlation function for a pair of spheres
equidistant from the wall for matrix and fluid spheres in a
slit—pore for which H* = 5 and o] = 5. The associative In-
teractions are switched on. Part a gives the fluid—fluid sphere
correlation function at the pore centre (solid line and cricles)
and at the pore wall (dashed line and crosses). Parts b and
¢ give the matrix—fluid correlation function at the pore wall
(part b) and at the pore centre (part c). Poins have been
evaluated from the Monte Carlo simulations, lines denote the
results of the theory. The intramolecular peaks in parts b and
¢ have been reduced by 2.

The largest discrepancies are observed in the vicinity of
the first local density minimum.

Figure 2 shows two particle correlation functions g;;
for a pair of particles located parallely to the pore walls
at the pore wall, z = 0.020 and at the pore centre,
z = H/2. Similarly to Fig. 1 the points denote the re-
sults of computer simulations and lines have been eval-
uated from theoretical calculations. All these results are
for H* = 5 and for o = 5. Part (a) shows the fluid-
fluid correlation functions. Solid line and circles denote
the function at the pore wall, dashed line and crosses
— at the pore centre. Parts (b) and (c) give the fluid-
matrix correlation functions, g11. Part b — at the pore
centre, and partc — at the pore wall. Note that the “in-
tramolecular” peak, corresponding to the formation of
the associative bond has been reduced by 2.

Inspecting the curves given in Fig. 2 we can realize that
the pair correlation function at the pore walls seems to be
better reproduced by the theory than by the correspond-
ing functions at the pore centre. Similarly to the case of
noniniform hard—sphere fluid confined by a slit-like pore
filled by nonuniform disordered matrix, the correlations
are stronger at the pore centre than at the pore wall. Es-
pecially the simulated fluid—matrix pair correlation func-
tion given in Fig. 2b exhibits much richer structure than
the function resulting from the theory.

In this note we have solved the inhomogeneous replica
07 equations for a model of a random, associatively ad-
sorbing matrix and an inhomogeneous fluid. We have
substantially considered the model of a random matrix
and Lennard-Jones (12,6) potentials with, in the case
of matrix—fluid forces, associative “intracore” well. We
have reported the results for the fluid density profiles
and some results for the pair correlation functions. We
have also used the Monte Carlo simulation technique to
yield reference data for the investigated systems. The
aim of the work was to test the accuracy of the struc-
ture evaluation and the reported results have indicated
that the theory in hand predicts the structure of the
adsorbed fluid quite successfully. However, the theory is
based on Cumming-Stell [27] model for the treatment of
the association between matrix and fluid particles. Un-
fortunately, a generalization of the Wertheim type ap-
proach, developed in ref. [28] to the case studied here
is not simple. This problem is currently under study.
Undoubtfully, the theory applied by us may yield un-
expected and rich structural and thermodynamic behav-
ior in partly quenched confined systems. The perspec-
tives for the investigations in the field that has just been
opened by the solution of the TROZ equations are very
promising. More complex studies of adsorption of fluids
in matrix—filled pores will be reported elsewhere.
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®JI10I 1 JEHHAPIA-I3KOHCA Y HIIJIMHOIIOAIBHIN ITOPI, 3ATIOBHEHIIT
ACOLISITUBHO A JICOPBYIOUOIO BUIIA JKOBOIO MATPUIIEIO

M. Bopyero!, O. Ilisio?, B. Puucko!, C. Cokomocki!

1Hagieapa MO0EAWBANHA HIBUKO-TEMINHUL NPOYECI6, PAKYAbMeEm Temit,
Yuieepcumem Mapit RKwpi—Cxaodoscoxor, 203-31, JTwbain, Hosvuwa

2 . ) . Co
Inemumym xemit, Mexcuxarcokull nayionasb null aemonomnutl ynisepcumem,
Kottoaxan, 04510, Mexixo, Mexcuxa

Bupueno moseminky doaroiny 31 Bzaemomiero Jlenmnapaa—/lxomHca B mmopl Ml ABOMa MapaJelbHUMU ITOBEPX-

Hamu. O6’eM mmopy MICTUTH TBEPIOKYJIBKOBI YacCTHUHKM, KOH(ITYpalls SKUX € HeBHopsakoBaHoio. Moneas Bia-

TBOPIOE HEOTHOPI AHY YaCTKOBO 3aMOPOKEHY CHCTEMY. LpIM TOTO, MOAETH BRIIOUAE ACOMIATHBHY B3a€MOITO M1 K

YacTUHKaM K OIIOL Y i HEBIOPAIKOBAHOIO MaTpureio. CTpy KTy pudIiol Ay B Il CUCTeM] JOCII I 3KY BAJIH, 3aCTOCO-

BY FOYH HEOTHOPIAHI IHTET paJdbHl PIBHAHHA Ty perrikn Opumraita—llepHike, a Tako sk KOMIT'IOTe pHI CUMY JISTTI1

B Metoal Moure-Rapaoy Beankomy kamomiunoMmy amcam6iai. Ogepkamo mpoddiil TyCTUHI i HEOTHOPI IHL HapHL

yuKmi posnomiay vactuHOK doaroiny. [Tokasamo, Mo TeopeTHUHl po3paxyHKH 3aJOBLIBHO BlITBOPIOIOTH JaHL

KOMII' FOTE PHOTO €KCIIEPUMEHTY 1 TeOpisi MOske 6YTH 3aCTOCOBaHa IO OMUCY aAcoplIiil B Mopax 13 HEBIOPAIKOBA-

HHM pOSHOﬂiJIOM MAaTPUYHUX YaCTUHOK.
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