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The con�nement of a Lennard{Jones 
uid in a slit{like pore �lled with a random hard matrix is

studied using the inhomogeneous Ornstein{Zernike equation and grand canonical Monte Carlo sim-

ulations. Associative matrix{
uid interactions are considered. Density pro�les and pair distribution

functions are reported. The agreement of the theoretical and simulation results is satisfactory.
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I. INTRODUCTION

Investigations of adsorption of 
uids in disordered and

in random matrices commence from the adaptation of

the methods of liquid{state statistical mechanics for 
uid

mixtures [1{16]. According to the usual nomenclature

random matrices are those whose particles do not in-

teract between themselves, but interact with all the re-

maining molecules in the system. Disordered matrices,

however, are formed by quenching a 
uid composed of

particles interacting via model repulsive or repulsive{

attractive potentials.

One of the �rst theoretical approaches to quenched{

annealed systems has been proposed by Madden and

Glandt [1,2], who obtained a set of Ornstein{Zernike

(OZ) type integral equations for the pair correlation

functions. Next, Given and Stell [3{5] have generalized

the theory of Madden and Glandt, developing the replica

Ornstein{Zernike (ROZ) equation. In several papers [6{

13] di�erent approximations to pair correlation functions

have been studied. A review of the theoretical methods

can be found in our recent paper [14].

The theory of inhomogeneous quenched{annealed mix-

tures is in its infancy. This is not surprising, since the

properties of nonuniform systems are more complex and

require more sophisticated methods for investigation.

However, the nonuniform quenched{annealed systems

are of much greater interest for basic and applied re-

search. Formally, the problem of theoretical description

of such systems was stated �rst in Ref. [15], where the

inhomogeneous replica Ornstein{Zernike equations, sup-

plemented by either the Born{Green{Yvon (BGY), or by

the Lovett{Mou{Bu�{Wertheim equation for the density

pro�les, were proposed to study the adsorption of a 
uid

near a plane boundary of a disordered matrix. In our re-

cent works [16,17], however, we formulated a theory for

a 
uid adsorbed in a pore �lled with a nonuniform ma-

trix. Speci�c calculations have been carried out for hard

sphere 
uid and for hard sphere disordered matrix. A

comparison with the Monte Carlo simulation data has

indicated that the structure of the system is reproduced

correctly by the proposed theory. In subsequrnt papers

[18, 19] we applied a similar formalism to describe 
u-

ids in contact with porous membranes and adsorption of


uids in pores with molecularly rough walls.

Adsorption of 
uids in con�ned inhomogeneous dis-

ordered media is important for several practical applica-

tions as, for example, for chromatography [20], for the in-

vestigations of adsorption by some modi�ed adsorbents,

as well as by the so{called pillared clays [21,22], for ex-

ample, and for separation. In such systems the speci�c

interactions between the immobilized (\frozen") compo-

nent and the annealed particles may occur. Thus, the

aim of this note is to extend the theory reported in Refs.

[16{19] to the case of more sophisticated interparticle

forces. In particular, we test the predicted density pro-

�les against the grand canonical Monte Carlo data. The

success of the theory would allow us to study several in-

teresting phenomena in the future, such as the capillary

condensation in matrix{�lled pores, for example.

II. THEORY

In this section we report equations describing the

structure of a 
uid inside a slit{like pore �lled with a

random matrix, i.e. a matrix built of frozen ideal gas.

The 
uid particles, labelled by subscript 1 interact via

the Lennard{Jones (12,6) potential

u
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whereas the 
uid{matrix potential, besides the Lennard{

Jones part, may also contain speci�c, spherically sym-

metric intracore (associative) part [23, 24]
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In the above the matrix particles are distinguished by

the subscript 0, r

c

is the cut{o� distance, r

l

and r

u

are

the lower and upper limits of the square{well associative

potential, "

a

is the intracore potential depth (the en-

ergy of association) and the remaining parameters have

their usual meaning. Speci�c calculations are performed

assuming that the Lennard{Jones parameters for 
uid{


uid and for 
uid{matrix interaction are the same and

that "=kT = 1, "

a

=kT = 3, r

l

= 0:3� and r

u

= 0:4�. The

cut{o� distance is r

c

= 3�. The square{well part of the

potential is located deep inside the core of the Lennard{

Jones (12,6) function. This location makes unprobable a

situation in which more than one 
uid particle is bonded

to the same matrix particle. However, because the ma-

trix particles can freely penetrate themselves, one 
uid

particle can be bonded with more than one matrix par-

ticle.

Both 
uid and matrix are between two hard walls of a

slit{like pore of the width H

v

i

(z) =

8

<

:

1 for z < 0 and z > H;

0 otherwise;

(3)

where i stands for 0 and for 1.

The �lling of the pore occurs stepwise. At the �rst

stage an empy pore is �lled with the matrix species.

This process takes place at the chemical potential �

0

,

corresponding to the bulk (reference) system density �

0

.

Because the matrix is formed from an ideal gas, its distri-

bution inside the pore is given by the Boltzmann function

�
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0 otherwise:

(4)

During the second step, the 
uid, at the chemical po-

tential �

1

enters the matrix{�lled pore. The pair 
uid{


uid and 
uid{matrix correlations are described by the

nonuniform ROZ equations [15{17]
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The 
uid{
uid pair (h) and direct (c) correlation

functions consist of the blocking and connected part,

'

11

(1; 2) = '

b;11

(1; 2) + '

c;11

(1; 2); where ' stands for

h or c, as appropriate. The de�nition of the blocking

part can be found in refs. [1{3]. Obviously, for ran-

dom matrix the matrix{matrix correlation functions are

h
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Following Refs. [15{17] we use the BGY equation to

describe the local density of the 
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where the e�ective one{body potential, w(z), satis�es the

relation,
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and where g

ij

(1; 2) = 1 + h

ij

(1; 2). It is important

to emphasize that a boundary condition results from

the fact that the one particle cavity function, y

1

(z) =

�

1

(z) exp[v

1

(z)=kT ], tends to its limiting value, deter-

mined by the con�gurational 
uid chemical potential

[25],�

1;c
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z!�1

y

1

(z) = exp[�
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=kT ] = �

1

; (8)

where �

1

denotes the 
uid activity.

To solve the set of equations (5){(7), the closure rela-

tions for the inhomogeneous pair functions must be spec-

i�ed. We use the second order hypernetted chain (HNC2)

closure [1{6]

c
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for the blocking term of the 
uid{
uid function, and
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ij
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Fig. 1. Fluid density pro�le as functions of the distance

z

�

= z=� from the pore wall. Points donote simulational re-

sults, whereas curves have been calculated according to the

proposed theory. In each Figure the lower curves are for the

system with the 
uid{matrix associative force switched o�

and the upper curves | for the systems with the associa-

tive interaction being swiched on. The pore width is given

in each of the Figure; in part (a) the 
uid activity is equal

to �

�

1

= 0:5, whereas in parts (b) and (c) | it is equal to

�

�

1

= 5.

for (i; j) = (1; 0) and (1; 1). We do not use the PY2 clo-

sure for this part of the calculation because it has been

shown to be inconsistent in this application [5]. In solving

the above equations we apply the techniques that were

employed earlier [16{17, 26].

III. RESULTS AND DISCUSSION

In addition to theoretical caluclations we have carried

out the grand canonical simulations. The technique ap-

plied by us was the same as in Refs. [17{19]. In our

computer experiments a rectangular cell of dimensions

10�

0

� 10�

0

� H with periodic boundary conditions in

the plane parallel to the pore walls was used. Each run

consisted of two steps. In the �rst step, the pore was

�lled with randomly distributed noninteracting matrix

particles. Next, grand canonical ensemble simulations of

the 
uid in a pore �lled with the matrix species were

performed. The calculations were repeated several times

starting from di�erent matrix con�gurations. During the

production runs we performed at least 5 � 10

6

Monte

Carlo steps; each step consisted of an attempt to move,

an attempt to destroy and an attempt to create a parti-

cle that had been selected with equal probability. It was

found that usually 10 replicas of the matrix assured good

statistics for the determination of the local 
uid density.

However, the evaluation of the nonuniform pair distri-

bution functions required much longer runs; at least 100

matrix replicas were necessary to calculate the correla-

tion functions for particles parallel to the pore walls.

Our calculations have been carried out for two pore

widths, H

�

= H=� = 3 and H

�

= 5 and for two activi-

ties �

1

= exp[�

1;conf

=kT ] = 0:5 and 5. To get reference

data, we have also considered the case when the 
uid{

matrix square{well interaction was switched o�, i.e. for

"

a

=kT = 1.

In Fig. 1 we show the density pro�les evaluated for the

pore H

�

= 3 at �

�

1

= �

1

�

3

= 0:5 and �

�

1

= 5 (Figs 1a

and 1b) and for the pore H

�

= 5 at �

�

= 5. In both

cases the matrix density is equal to �

�

0b

= �

0b

�

3

= 0:5.

In the case of computer simulations the total porosity of

both the pores, de�ned as the ratio of the free space to

the total pore volume was nearly identical and equal to

� 0:77. Obviously, only a part of the \free pore volume"

is available to the 
uid particles. In Fig. 1 lines denote

the results of theoretical calculations, whereas points ab-

breviate the simulational data. Note that only every sec-

ond Monte Carlo point is displayed here. The upper set

of the curves has been obtained for switched on square{

well (associative) potential, whereas the lower set | for

the associative forces switched o�.

The discrepancies between simulational and theoreti-

cal results increase with the increase of the activity of the


uids, �

�

1

. Also, the theoretical results become slightly

worse when the associative forces are turned on. The

contact values of the density pro�les are rather well re-

produced. Also, the density at the pore centre resulting

from the theory agrees well with the simulational results.
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Fig. 2. Pair correlation function for a pair of spheres

equidistant from the wall for matrix and 
uid spheres in a

slit{pore for which H

�

= 5 and �

�

1

= 5. The associative in-

teractions are switched on. Part a gives the 
uid{
uid sphere

correlation function at the pore centre (solid line and cricles)

and at the pore wall (dashed line and crosses). Parts b and

c give the matrix{
uid correlation function at the pore wall

(part b) and at the pore centre (part c). Poins have been

evaluated from the Monte Carlo simulations, lines denote the

results of the theory. The intramolecular peaks in parts b and

c have been reduced by 2.

The largest discrepancies are observed in the vicinity of

the �rst local density minimum.

Figure 2 shows two particle correlation functions g

ij

for a pair of particles located parallely to the pore walls

at the pore wall, z = 0:02� and at the pore centre,

z = H=2. Similarly to Fig. 1 the points denote the re-

sults of computer simulations and lines have been eval-

uated from theoretical calculations. All these results are

for H

�

= 5 and for �

�

1

= 5. Part (a) shows the 
uid{


uid correlation functions. Solid line and circles denote

the function at the pore wall, dashed line and crosses

| at the pore centre. Parts (b) and (c) give the 
uid{

matrix correlation functions, g

11

. Part b | at the pore

centre, and partc | at the pore wall. Note that the \in-

tramolecular" peak, corresponding to the formation of

the associative bond has been reduced by 2.

Inspecting the curves given in Fig. 2 we can realize that

the pair correlation function at the pore walls seems to be

better reproduced by the theory than by the correspond-

ing functions at the pore centre. Similarly to the case of

noniniform hard{sphere 
uid con�ned by a slit{like pore

�lled by nonuniform disordered matrix, the correlations

are stronger at the pore centre than at the pore wall. Es-

pecially the simulated 
uid{matrix pair correlation func-

tion given in Fig. 2b exhibits much richer structure than

the function resulting from the theory.

In this note we have solved the inhomogeneous replica

OZ equations for a model of a random, associatively ad-

sorbing matrix and an inhomogeneous 
uid. We have

substantially considered the model of a random matrix

and Lennard{Jones (12,6) potentials with, in the case

of matrix{
uid forces, associative \intracore" well. We

have reported the results for the 
uid density pro�les

and some results for the pair correlation functions. We

have also used the Monte Carlo simulation technique to

yield reference data for the investigated systems. The

aim of the work was to test the accuracy of the struc-

ture evaluation and the reported results have indicated

that the theory in hand predicts the structure of the

adsorbed 
uid quite successfully. However, the theory is

based on Cumming{Stell [27] model for the treatment of

the association between matrix and 
uid particles. Un-

fortunately, a generalization of the Wertheim type ap-

proach, developed in ref. [28] to the case studied here

is not simple. This problem is currently under study.

Undoubtfully, the theory applied by us may yield un-

expected and rich structural and thermodynamic behav-

ior in partly quenched con�ned systems. The perspec-

tives for the investigations in the �eld that has just been

opened by the solution of the IROZ equations are very

promising. More complex studies of adsorption of 
uids

in matrix{�lled pores will be reported elsewhere.
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FL�ÕD LENNARDA{D�ONSA U W�LINOPOD�BN��POR�, ZAPOVNEN��

ASOC��TIVNO ADSORBU�QO� VIPADKOVO�MATRICE�

M. Boruvko

1

, O. P�z�o

2

, V. R�isko

1

, S. Sokolovsk�

1

1

Kafedra model�vann� f�ziko{hem�qnih proces�v, fakul~tet hem�Ý,

Un�versitet Mar�Ý K�r�{Sklodovs~koÝ, 203{31, L�bl�n, Pol~wa

2

�nstitut hem�Ý, Meksikans~ki� nac�onal~ni� avtonomni� un�versitet,

Ko�oakan, 04510, Meh�ko, Meksika

Vivqeno poved�nku fl�Ýdu z� vza
mod�
� Lennarda{D�onsa v por� m�� dvoma paralel~nimi poverh-

n�mi. Ob'
m pori m�stit~ tverdokul~kov� qastinki, konf��urac�� �kih 
 nevpor�dkovano�. Model~ v�d-

tvor�
 neodnor�dnu qastkovo zamoro�enu sistemu. Kr�m togo, model~ vkl�qa
 asoc��tivnu vza
mod�� m��

qastinkamifl�Ýdu � nevpor�dkovano� matrice�.Strukturifl�Ýdu v c�� sistem� dosl�d�uvali, zastoso-

vu�qi neodnor�dn� �nte�ral~n� r�vn�nn� tipu repl�ki Ornxta�na{Cern�ke, a tako�komp'�tern� simul�c�Ý

v metod� Monte{Karlo u velikomu kanon�qnomu ansambl�. Oder�ano prof�l� gustini � neodnor�dn� parn�

funkc�Ý rozpod�lu qastinok fl�Ýdu. Pokazano, wo teoretiqn� rozrahunki zadov�l~no v�dtvor��t~ dan�

komp'�ternogo eksperimentu � teor�� mo�e buti zastosovana do opisu adsorbc�Ý v porah �z nevpor�dkova-

nim rozpod�lom matriqnih qastinok.
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