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Using earlier proposed method of selfconsistent investigation of the lattice strain the localized
electron states in the vicinity of an edge staight linear dislocation are analyzed, namely the depen-
dence on the value of the electron-deformation interaction. It is shown that the depth of the state
location nonmonotonously depends on such an interaction.
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It is known that the mechanical distortion of a crystal
lattice caused by dislocations,twinning planes and impu-
rities can essentially change its electron properties. The
study of these effects is an important aspect of both ex-
perimental and theoretical investigations [1-4]. A similar
task in a crystal with dislocation was considered in [5].
A dislocation was presented by the d-like distortion on
the axis in its core. For the description of the distor-
tion let us use U(r) = SpU = (Q(z) — Qo)/Q (g is
a crystal cell volume of the undeformed lattice). U > 0
corresponds to the lattice extention and U < 0 to its
shortening. In [1] it is shown that in the U > 0 case
(U < 0) in the electron spectrum the localized splitted
out of the bottom (top) of the band states appear. The
influence of the potential slowly changing away from the
distortion axis on the localized states was investigated
in [2, 5]. According to more accurate theory which takes
into account electron-deformation interaction [4, 6, 7] the
parameter of the lattice deformation essentially depends
on the degree of the conduction band population. Be-
low we analyze the electron spectrum of defect crystal
with straight linear dislocation in the frame of the model
taking into account the electron-deformation interaction.
We consider an isotropic metal with a dislocation with
an axis along OZ and with a Burger vector b along OX.
Then all-round mechanical strain out of the dislocation
core region in cylindrical coordinates with polar coordi-
nates (p,6) in XOY plane can be written in the form

[8]:
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Where v is Poisson’s coefficient, Cgg 1s a metal elastic
modulus, py is a radius of a dislocation (p = (1 — 2)a, a
is a crystal parameter). The Hamiltonian of the system
in the site representation is:
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Here the 1st term 1s a Hamiltonian of an electron on the
site 7; with taking into account a change of its energy by
deformation (S is a constant of deformation potential,
W is a reference to the origin of the energy chosen in the
middle of the band).The 2nd term is an electron mixing
of the i-th and j-th sites in nondeformed crystal; the 3rd
one is a potential energy of the elastic deformed crystal
(C'is an elastic modulus). The 4th term is Coulomb inter-
action. (c;';, ¢;o are fermion operators). The parameter of
the total deformation U(r), caused by mechanical strain
om(ri) consists of electron and mechanical components.
Outside the region of the dislocation it may be obtained
from the condition of the mechanical equilibrium [9]:

OH
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where V' is the crystal’s volume. Considering (2), con-
dition (3) in momentum representation takes the form

of
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where the first term describes the electron component of
the total deformation U(r). The mechanical one, Uy, (),
as a result of the mechanical strain in cylindrical coordi-
nates is
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Unl(p,0,2) = Spop, = —DSHp1 (5)
with
D _ 2066M1+V.
3C ml—-v

From (4) it follows that the electron component of de-
formation is accompined by the determination of the
<c,;|'gckzg> correlator which is connected with the electron
conduction band concentration
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by Fourier-transformation. In (6) ¢, (r) is a solution of

Schrodinger equation
S € 1
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Here a = % (m is an effective mass) and Ay, is an en-
ergy counted off Ag. The last term in the left hand of (7)
is the electrostatic energy caused by the charge redistri-
bution. The potential ¢(r) may be obtain from Poisson

equation
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Here g = W, l.e. it is a value inverse to an effec-
s 0

tive radius of screening dependent on the band popula-
tion n, the elastic modulus and the effective mass. Here
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— 1is an average total concentration of the electron in a
crystal in consideration of electron-deformation interac-
tion.

The system of equations (4), (5)—(7) and equation

Q
70 n(r)ydr =i, 0 <n <2 (11)

which allows to determine chemical potential were solved
in [4, 6, 10] (7 = n, ). According to [10] the potential
p(r) is

9DS Ki(gpo)Ii(gp), p € [0, po]
olp,0,2) = — sin ¢
po Li(gpo) K1(gp), p € [po, )
(12)

where Ky(gp) is McDonalds function, and I(gp) is
the first kind Bessel function of the first order [12]. A
strain of the crystal in the vicinity of the edge core in-
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duced by both its mechanical component Uy, (p, f) and a
component originating from the electron redistribution
An(p,0,z) = n(p, 0, z) — ny, is defined by relation [10]:

AU(p,0,z) :—gAn(p,H,z)—l—Um(p, ) (13)
where

2 1
An(p,0,z) = —=SR;Dsin® | — 11 (gpo)K1(9p) — —
Po P

(14)

Note that the analysis (in the frame of quasiclassic ap-
proximation) is justifiable for the pa? < 0.01 case [3] (a is
some characteristic length of the problem, f.ex., a lattice
parameter). The existence of regions with negative values
of the potential SU(r) can be risen to localized states.
Analyze such a possibility. As far as the potential of dis-
location (5) has a two-dimensional character Schrodinger
equation with such a potential is a two-dimensional task.
Let A(FE) be a region where inequality

SU < E=¢— Xy — ak? (15)

is realized. Define G(F) as a spatial density per unit sur-
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face at SU = 0. For smoothing a potential well it takes
the form of

CEV=TE = Jave

Go(E — SU)A(E).  (16)

In the two-dimensional case E(kyy) = ozkgy and Gg =
2wm/h?. Then
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Define the boundary of region A(FE).
S AU = F and equation (13) we have

From equality
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i1s a parameter taking into account the influence of the
electron-deformation interaction on the level of the elec-
tron states localization. In this case

A(E)://pdpdﬁ:%SzDz(q—l)z/o sin?0 (22)
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and (17) in consideration of (20) takes the form of
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From (24) it follows that localized states behave as a
~ N~ decreasing sequence. It coinsides with the results
of [5].

From (24) the conclusions follow that

e for “weak” electron-deformation interaction, ¢ €
[0, 1],the localized states are closer to the band bot-
tom than in the case of such an interaction. If ¢
tends both from the right and from the left to one,
FE tends to the band bottom;

o for the “large” ¢, ¢ > 2, or its negative value (such
a situation at certain correlations between n,,, .S,
C', m according to (9), (21) is possible) localized
states are depeer and the absolute value ¢ increas-
ingly tends to lower such states.
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IIPO BILIUB EJEKTPOHHOI CKJIAIOBOI JESOPMAIIII TPATKUN HA
JJOKAJII3ZOBAHI CTAHUN B KPUCTAJIAX 3 NVMCJOKALIIAMUAU

P. M. HeJIeLL[aKl7 B. A. ﬂyKiﬂHeL{L2
L Ipozobuybkuti nedazoziunud ynisepcumem im. I Opanxa,
sys. . @panxa, 34, Apozobun, 293720, Jeeiccvra obaace, Yxpaina
2 epocasnut yrisepcumem “Jdveiscowa Hoaimeswira”,
sys. C. Bandepu, 12, Jveis, 290646, YVxpaina

OTpuMaH paHille pe3yIbTaTH CAMOY 3TOIKEHOTO po3paXxyHKY dedhopMaliii I'paTKN 3aCTOCOBY IOTHCS IO aHAJI3Y
eJeKTPOHHUX JOKAJJ130BAHIX CTAHIB B OKOJI1 KpafloBol mpsaMoJiHiiHol auciaokartii. [IpoanaaisoBaHa rmoBeIiHKa IIAX
CTaHIB 3aJI€ JKHO BLJ BETUYNHE eJeKTpoH—aedopMaliiitiol Baemomil. [lokasamo, mo cTymHb 3adsiraHHsa JOKaIi30-
BaHUX PIBHIB HEMOHOTOHHO 3aJI€ JKUTH Bl BEJTUUYNHI TaKOl B3a€MOIIl.



