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Energy spectrum and thermodynamics of the pseudospin{electron model are investigated in the

dynamical mean �eld approximation (d = 1 limit). In the limit of zero electron correlation this

model is analytically exactly soluble within this approach: in the � = const regime the �rst order

phase transition with the jump of the pseudospin mean value and reconstruction of the electron

spectrum can be realized, while in the n = const regime the phase separation in electron subsystem

can take place for certain values of the model parameters. On the basis of the obtained results the

applicability of the approximate schemes previously used for the investigation of the pseudospin{

electron model are discussed.
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I. INTRODUCTION

The theoretical investigation of the strongly correlated

electron systems is an enduring subject of interest in con-

densed matter physics especially after the discovery of

high{T

c

superconductivity.

In recent years the essential achievements of the the-

ory of strongly correlated electron systems have been

connected with the development of the dynamical mean

�eld theory (DMFT) proposed by Metzner and Vollhardt

[1] for the Hubbard model (see also [2] and references

therein). DMFT is a nonperturbative scheme which al-

lows to project the Hubbard model on the single impu-

rity Anderson's model and is exact in the limit of in�nite

space dimension (d =1). Moreover, some class of the bi-

nary alloy type models (e.g. Falicov{Kimball model [3])

can be studied almost analytically within DMFT.

The Hamiltonian of the binary alloy type models can

be written in the form:

H =

X

i
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i
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X

ij�
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ij
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(1.2)

is single{site Hamiltonian, and includes local interaction

(g{term) of conducting electrons with some two level

subsystem described by pseudospins S

z

i

= �

1

2

placed

in the longitudinal �eld h.

Hamiltonian (1.1), (1.2) is a simpli�ed version of the

pseudospin-electron model when we neglect electron cor-

relations. In general, pseudospin{electron model [4] was

proposed to be included into the theory the interaction

of correlated electrons with some local lattice excitations

described by pseudospins (e.g. anharmonic vibrations of

apex oxygen in YBaCuO type HTSC's). It shows the pos-

sibility of dipole (pseudospin) and charge density insta-

bilities [5,6] and phase separation [7] due to the e�ective

retarded interaction between pseudospins via conducting

electrons. All these results were obtained within the gen-

eralized random phase approximation (GRPA) [8] which

is a realization of the appropriate perturbation theory

for correlation functions in the case of strong coupling

(U � t) and corresponds to the mean �eld type approx-

imation in the calculation of mean values.

It is convenient to introduce projective operators on

pseudospin states

P
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= 0 (1.3)

and Hamiltonian of the binary alloy can be obtained by

substitution P

+

i

= c

i

, P

�

i

= 1� c

i

, where c

i

is the con-

centration of one component of binary alloy and 1� c

i

is

the concentration of the second one. On the other hand,

if we remove in (1.1) and (1.2) spin indices and rewrite

Hamiltonian in terms of the operators of the mobile d

i

(a
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= d

i

) and localized f

i
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= f
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electrons we shall get the Hamiltonian of the Falicov{

Kimball model where h plays a role of the chemical po-

tential for the localized electrons (or ions). As a rule the

common chemical potential is introduced for both elec-

tron subsystems but the case of two chemical potentials

was also considered (see, e.g. [9]) and the �rst consider-

ation of Falicov{Kimball model within DMFT was done

by Brandt and Mielsch [3].

The main di�erence between these models is in the

way how an averaging procedure over projection oper-

ators is performed (thermal statistical averaging in the

case of pseudospin{electron and Falicov{Kimball mod-

els and con�gurational averaging for binary alloy) and

how self{consistency is achieved (�xed value of longitu-
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dinal �eld h for pseudospin{electron model, �xed value

of the component concentration c for binary alloy and

�xed value of the electron concentration | total or for

both electron subsystems | for Falicov{Kimballmodel).

The ground state of the Falicov{Kimball model, when

the electron concentration for subsystems is �xed (the

�xed values of the electron concentration and pseudospin

mean value for pseudospin{electron model), is not uni-

form and shows the commensurate or incommensurate

ordering or phase separation depending on the concen-

tration and coupling constant values [9]. On the other

hand, in the case of the �xed value of the longitudinal

�eld h the possibility of the jump-like uniform changes

of the pseudospin mean value without symmetry break

(bistability) appears. Such bistability is caused by the ef-

fective many{body interactions between pseudospins vs.

conducting electrons.

Here we investigate the possibility of such phase tran-

sitions without symmetry break for pseudospin{electron

model described by the Hamiltonian (1.1) within DMFT,

which exactly takes into account all single{site many{

body interactions.

II. PERTURBATION THEORY IN TERMS OF

ELECTRON TRANSFER AND THE LIMIT OF

LARGE DIMENSIONS (d!1)

In general, one{electron Green's function G
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where scattering matrix is determined by
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� = 1=T and averaging h: : :i

0

is performed with the one

site part H

0

=
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i
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i

of the Hamiltonian (1.1), satis�es

Larkin's equation
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Here �

�

ij

(� � �

0

) is the total irreducible according to

Larkin part [10] and summation (integration) over re-

peated indices is supposed. The formal solution of Eq.

(2.3) can be written in the form

G

�

(!

n

;k) =

1

�

�1

�

(!

n

;k)� t

k

(2.4)

and the problem is to calculate the irreducible parts
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Formally diagrammatic series for the irreducible part
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and includes both single{site and intersite contributions.

Here, arrows indicate electron propagators g
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in the subspaces projected on the pseudospin

states of site i and ovals represent semi{invariant aver-

aging of projection operators.

In the case of high dimensions (d ! 1) one should

scale hopping integral

t
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in order to obtain �nite density of states (the Gaussian

one for d = 1 hypercubic lattice �(") =
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[2]). Due to such scaling only single{site

contributions survive in the expression for irreducible

parts �

�

[11]
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and such a site{diagonal function, as shown by Brandt

and Mielsch [3], can be calculated by mapping the

in�nite{dimensional lattice problem on the atomicmodel

e
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with auxiliary Kadano�{Baym �eld J

�
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) [12] which

has to be selfconsistently determined from the condition

that the same function �

�

de�nes Green's functions for

lattice (2.4) and atomic limit
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\Dynamical" mean �eld J

�

(� � �

0

) describes the hop-

ping (transfer) of electron from the atom into the en-

vironment at the moment � , propagation in the envi-

ronment without stray into the atom until the moment

�

0

. Connection between these \dynamical" mean �eld of

atomic problem and Green's function of the lattice can

be obtained using a standard CPA approach [2]:

J
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where
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is a single{site Green's function both for atomic limit and

lattice. Here summation over wave vector was changed

by the integration with the density of states �(t).

In order to complete our self{consistent set of equa-

tions we should �nd expression for Green's function in

the atomic limit (2.9). Due to the properties of the pro-

jection operators (1.3) one can rewrite Hamiltonian of

atomic problem (2.8) in the form
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and our space of states splits into two independent sub-

spaces hence all projection operators (1.3) act at the

same site and in any order of the perturbation theory

expansion all projection operators can be replaced by

their product result and there are no necessity to make

semi{invariant expansions.

Single{electron Green's function is a sum of Green's

functions in subspaces and is equal
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Here h: : :i is a statistical averaging with the e�ective

Hamiltonian (2.8). For the one-site functions it is equiv-

alent to the averaging with the total Hamiltonian (1.1).

Partition functions in subspaces are
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and presents the partition functions of the non{interac-

ting fermions with frequency dependent hopping placed

in the external �eld formed by pseudospin.

Pseudospin mean value is determined by equation
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which is an analogue of the well known equation of state

for Ising model in mean{�eld approximation: hS
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case of Lorentzian density of states �(") =
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,

which is frequently used in some applications of DMFT,

one can easily obtain a simple result J

�
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n

) = iW [2],

quantities Q

�

do not depend on hS

z

i and equation (2.15)

transforms into an expression for hS

z

i that indicates the

sensitivity of the equation of state to the shape of DOS.

Electron concentration mean value is determined by
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and the functional of thermodynamic potential can be

derived in the same way as it was done in [3] for Falicov{

Kimball model
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is a thermodynamic potential for the atomic problem.

Below, all calculations will be performed for semi{

elliptic DOS when the auxiliary �eld is determined by

the simple cubic equation
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In a usual way we perform analytical continuation on

real axis (i!

n

! ! � i�) and the only solutions of (2.19)

with =mJ

�

(!) > 0 must be considered. Band bound-

aries are determined from the condition =mJ

�

(!) ! 0

and in Fig. 1 their dependence on coupling constant g are

presented. One can see that there exists critical value of

coupling constant g � W when a gap in spectrum ap-

pears. It should be noted that within GRPA as well as

in other approaches where single{electron Green's func-

tion is calculated in Hubbard{I approximation, when we

keep only the �rst term of the single{site contribution in

the expression for the irreducible part (2.5), this gap in

spectrum always exists.

In the case of strong (g � W ) coupling an analytical

solutions can be obtained
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for upper and lower subbands, respectively, and one can

see that subbands halfwidth is equal to W

q

1

2
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whereas in Hubbard{I approximation it isW
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.
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This result clearly shows that even for the case of strong

coupling when subbands are well separated and one of

them becomes narrow (hS

z

i ! �

1

2

) Hubbard{I approx-

imation is unsu�cient and can not be derived from the

exact solution in any way, e.g. due to the subbands

halfwidth square root dependence on the localized states

occupancy (hP

�

i ! 0).

Fig. 1. Electron bands boundaries (semi{elliptic DOS,

W = 0:4, hS

z

i = 0:2).

The expressions presented above were obtained for

the �xed value of the chemical potential � when stable

states are determined from the minimum of the ther-

modynamical potential (2.17). This regime � = const

corresponds to the case when the charge redistribution

between conducting sheets CuO

2

and other structural el-

ements (charge reservoir, e.g. nonstoichiometric in oxy-

gen CuO chains in YBaCuO type structures) which �x

the value of the chemical potential is allowed. On the

other hand, in the regime of the �xed electron concen-

tration value one should solve equation for the chemical

potential n = hni (2.16) and stable states are determined

by the minimum of the free energy F = 
+ �n.

III. RESULTS AND DISCUSSION

Integrals in Eqs. (2.14) and (2.17) can be calculated

analytically for states with hS

z

i = �

1

2

at zero temper-

ature and corresponding phase diagrams � � h which

indicate stability regions for these states are shown in

Fig. 2a and b for g > W and g < W , respectively. One

can see two regions of � and h values where the states

with hS

z

i = �

1

2

coexist. In the vicinity of these regions

the phase transitions of �rst order with the change of

the longitudinal �eld h and/or chemical potential � take

place (see Fig. 3) and they are shown by thick lines on

phase diagrams (Fig. 2).

a)

b)

Fig. 2. Phase diagram � � h. Dashed and thin solid lines

surround regions with S

z

= �

1

2

, respectively. Thick solid line

indicate the �rst order phase transition points. a) g = 1,

W = 0:2; b) g = 1, W = 0:7.

There is not any speci�c behaviour when chemical po-

tential is placed out of bands. If chemical potential is

placed in the upper subband the graphs presented in

Fig. 3 transform according to the internal symmetry of

the Hamiltonian:

�!��; h! 2g � h; n! 2 � n; S

z

!�S

z

:

With the temperature increase the region of the phase

coexistence narrows and the corresponding phase dia-

gram T

c

� h is shown in Fig. 4. One can see that with

respect to Ising model the phase coexistence curve is

shifted in the �eld and distorted from the vertical line

and hence the possibility of the �rst order phase transi-

tion with the temperature change exists in pseudospin{

electron model for the narrow range of h values.
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a)

b)

Fig. 3. Field dependencies of hS

z

i (a) and thermodynami-

cal potential (b) for � = const regime when chemical potential

is placed in the lower subband � = �0:37 (W = 0:2, g = 1,

T = 0).

As mentioned above, the band structure is determined

by the pseudospin mean value and its change is accom-

panied by the corresponding changes of the electron con-

centration and for the (�; h) values �xed on the Ist order

phase transition line there are three solutions for electron

concentration one of which is unstable.

In the case of the �xed value of the electron concentra-

tion value (regime n = const) this Ist order phase tran-

sition transforms into the phase separation. One can see

regions with d�=dn � 0, which correspond to this e�ect

in electron subsystem, on the concentration dependen-

cies (Figs. 5 and 6a).

The corresponding dependencies of free energy F =


 + �n are given in Fig. 6b. In the phase separated re-

gion free energy deects up and concentration values at

binodal points are determined by the tangent line touch

points Fig. 6b or from the chemical potential depen-

dencies (Fig. 6a) using Maxwell construction. Resulting

phase diagram T � n is shown in Fig. 7.

For the �rst time the possibility of phase separation

in pseudospin{electron model was marked in [7] where it

was obtained within GRPA in the limit of strong corre-

lation U !1. Here it is observed for the opposite case

of U = 0.

The problem of phase separation in strongly correlated

systems is not new (see [13] and references therein). It

was shown for Hubbard and t � J models [14] that for

some parameter values system separates into hole{rich

and hole{poor regions with paramagnetic and antiferro-

magnetic orders, respectively, and long{range interaction

between these charged regions is considered as an origin

of the appearance of stripe structures.

Fig. 4. Phase diagram T

c

� h: solid and dashed lines in-

dicate the �rst order phase transition line and boundaries of

the phase stability, respectively (g = 1, W = 0:2, � = �0:5)

Fig. 5. Dependence of the chemical potential � and elec-

tron bands boundaries (dashed lines) on the electron concen-

tration n (T = 0:001, g = 1, W = 0:2, h = 0:1).
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a)

b)

Fig. 6. Dependence of the chemical potential � (a)

and deviation of free energy from linear dependence

�F = F (n)�

n

2

F (2)�

�

1�

n

2

�

F (0) (b) on the electron con-

centration n for di�erent temperatures T (g = 1, W = 0:2,

h = 0:1).

In Ref. [9] the phase segregation for some parameter

values was reported for the annealed binary alloy with

diagonal disorder described by Falicov{Kimball model.

In our case of the pseudospin{electron model without

electron correlations system separates into regions with

di�erent values of electron concentration and pseudospin

mean value and electron spectrum contains both wide

empty electron band and occupied localized states of the

regions with n � 0 as well as partially �lled wide elec-

tron band and empty localized states of the regions with

n � 1 (see Fig. 5) the weights of which are determined

by the electron concentration.

Localized states of such type (polarons) result from the

strong electron{pseudospin (out of plane apical oxygen

vibrations) coupling (g > W ) in the case of YBaCuO{

type structures and it is supposed that the hopping be-

tween such polarons gives signi�cant contribution in the

carrier relaxation observed by the resonant Raman spec-

troscopy [15].

It should be noted that in the case of spinless fermions

Hamiltonian (1.1) can be applied for the description of

the oxygen vacancies subsystem in high{T

c

superconduc-

tors, which can be treated as quasiequilibrium, and it is

known that their interaction with some relaxation type

lattice mode leads to the phase separation and appear-

ance of superstructures and stripes [16].

Fig. 7. Phase diagram T�n for phase separated state: solid

line | binodal, dashed line | spinodal (g = 1, W = 0:2,

h = 0:1).

In this paper we investigated the possible phase transi-

tions in pseudospin{electron model within DMFT with-

out creation of super structures (k = 0) and the phase

diagrams presented in Figs. 4 and 7 concern only this

case. In order to detect instabilities associated with a

speci�c wave vectors one should calculate response func-

tions which will be the subject of the further investiga-

tions.
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PSEVDOSP�N{ELEKTRONNAMODEL^ PRI BEZME�N�� VIM�RNOST�

PROSTORU

�. V. Stas�k,A. M. Xva�ka

�nstitut f�ziki kodensovanih sistem Nac�onal~noÝ akadem�Ý nauk UkraÝni,

vul. Svnc�c~kogo, 1, 290011, L~v�v, UkraÝna

U nabli�enn� dinam�qnogoseredn~ogo pol� (granic� d =1) rozgl�nuto ener�etiqni� spektr ta termo-

dinam�ku psevdosp�n{elektronnoÝ model�, �ka bula vvedena pri vivqenn� angarmon�qnih efekt�v u visoko-

temperaturnihnadprov�dnikah.U granic� nul~ovoÝ elektronnoÝ korel�c�Ý c� model~  toqnorozv'�zuvano�

v ramkah c~ogo p�dhodu: u re�im� � = const ma m�sce fazovi� pereh�d perxogo rodu z� stribkom seredn~ogo

znaqenn� psevdosp�nu � perebudovo�elektronnogo spektra, tod� �k u re�im� n = const pri pevnih znaqenn�h

parametr�v mo�e v�dbutis� fazove rozxaruvann� v elektronn�� p�dsistem�. Na osnov� otrimanih rezul~-

tat�v obgovoreno me�� zastosovnosti nabli�enih p�dhod�v, �k� ran�xe vikoristovuvali pri dosl�d�enn�

psevdosp�n{elektronnoÝ model�.
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