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It is shown that the ondensation in the Bogoliubov Weakly Imperfet Bose{Gas (WIBG) may

appear in two stages. If the interation is suh that the pressure of the WIBG does not oinide

with the pressure of the Perfet Bose{Gas (PBG), then the WIBG may manifest two kinds of

ondensations: a non{onventional ondensation in the zero{mode due to the interation (the �rst

stage) and a onventional (generalized of type I) Bose{Einstein ondensation in modes next to the

zero{mode due to the partile density saturation (the seond stage).
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I. INTRODUCTION

Consider a system of bosons of mass m in a ubi box

� = L � L � L � R

3

of the volume V � j�j = L

3

, with

periodi boundary onditions on ��. If ' (x) denotes an

absolutely integrable two{body interation potential and

v (q) =

Z

R

3

d

3

x' (x) e

�iqx

; q 2 R

3

; (1.1)

then its seond{quantized Hamiltonian ating on the bo-

son Fok spae F

�

an be written as

H

�

=

X

k2�

�

"

k

a

�

k

a

k

(1.2)

+

1

2V

X

k

1

;k

2

;q2�

�

v (q) a

�

k

1

+q

a

�

k

2

�q

a

k

1

a

k

2

;

where all sums run over the set �

�

de�ned by

�

�

=

�

k 2 R

3

: � = 1; 2; 3, (1.3)

k

�

=

2�n

�

L

et n

�

= 0;�1;�2; : : :

�

:

Here "

k

= ~

2

k

2

=2m is the kineti energy, and a

#

k

=

fa

�

k

; a

k

g are usual boson reation and annihilation opera-

tors in the one{partile state  

k

(x) = V

�

1

2

e

ikx

; k 2 �

�

,

x 2 �; for example, a

�

k

� a

�

( 

k

) =

R

�

dx 

k

(x)a

�

(x)

where a

#

(x) are basi boson operators in the Fok spae

F

�

over L

2

(�).

Below we suppose that:

(A) ' (x) = ' (kxk) and ' 2 L

1

�

R

3

�

;

(B) v (k) is a real ontinuous funtion, satisfying

v (0) > 0 and 0 � v (k) � v (0) for k 2 R

3

.

If one expets that Bose{Einstein ondensation, whih

ours for the Perfet Bose{Gas (PBG) in the mode

k = 0, persists for a weak interation ' (x), then a-

ording to Bogoliubov [1,2℄ the most important terms

in (1.2) should be those in whih at least two operators

a

�

0

; a

0

appear. We are thus led to onsider the following

trunated Hamiltonian (the Bogoliubov Hamiltonian for

a Weakly Imperfet Bose gas (WIBG), see [1,2℄):

H

B

�

= T

�

+ U

D

�

+ U

�

; (1.4)

where

T

�

=

X

k2�

�

"

k

a

�

k

a

k

; (1.5)

U

D

�

=

v (0)

V

a
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0

a

0

X

k2�

�

;k 6=0

a

�

k

a

k

(1.6)

+

1

2V

X

k2�

�

;k 6=0

v (k) a
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0

a

0

�

a

�

k

a

k

+ a

�

�k

a

�k

�

+

v (0)

2V

a

�

2

0

a

2

0

;

U

�

=

1

2V

X

k2�

�

;k 6=0

v (k)

�

a

�

k

a

�

�k

a

2

0

+ a

�

2

0

a

k

a

�k

�

: (1.7)

Notie that the self{adjoint operator H

B

�

is de�ned on a

dense domain in the boson Fok spae F

�

� F

0�


 F

0

�

over L

2

(�) ; where F

0�

and F

0

�

are the boson Fok

spaes onstruted out ofH

0�

(the one{dimensional sub-

spae generated by  

k=0

2 L

2

(�)) and of its orthogonal

omplement H

?

0�

respetively.

For any omplex  2 C , we an de�ne in F

0�

a oher-

ent vetor
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0�

() = e

�V jj

2

=2

1

X

k=0

1

k!

�

p

V 

�

k

(a

�

0

)

k




0

; (1.8)

where 


0

is the vauum of F

�

and therefore a

0

 

0�

() = 

p

V  

0�

(). Using this onept of the oherent vetors in

F

0�

, Ginibre [3℄ de�nes the Bogoliubov approximation to a Hamiltonian H

�

in F

�

as follows:

De�nition 1 The Bogoliubov approximation H

�

�



#

; �

�

for a Hamiltonian H

�

(�) � H

�

� �N

�

on F

�

is the

operator de�ned on F

0

�

by its quadrati form

�

 

0

1

;H

�

�



#

; �

�

 

0

2

�

F

0

�

� ( 

0�

()
  

0

1

;H

�

(�) 

0�

() 
  

0

2

)

F

�

for  

0�

()
  

0

1;2

in the form{domain of H

�

(�), where 

#

= (; ) and

N

�

=

X

k2�

�

N

k

is the partile{number operator (here N

k

� a

�

k

a

k

is the oupation{number operator for the mode k) and � is the

hemial potential.

Therefore, the Bogoliubov approximation in the Bogoliubov Hamiltonian for the WIBG (1.4) gets the form:

H

B

�

�



#

; �

�

=

X

k2�

�

;k 6=0

h

"

k

� �+ v (0) jj

2

i

a

�

k

a

k

+

1

2

X

k 2 �

�

; k 6= 0v (k) jj

2

�

a

�

k

a

k

+ a

�

�k

a

�k

�

(1.9)

+

1

2

X

k2�

�

;k 6=0

v (k)

�



2

a

�

k

a

�

�k

+ 

2

a

k

a

�k

�

� � jj

2

V +

1

2

v (0) jj

4

V:

Then the Hamiltonian (1.9) an be diagonalized (f.

[1,2℄). The pressure assoiated with H

B

�

�



#

; �

�

:

ep

B

�

�

�; �; 

#

�

�

1

�V

lnTr

F

0

�

e

��H

B

�

(



#

;�

)

; (1.10)

(where � = �

�1

is the temperature) is well{de�ned for

� � v (0) jj

2

and has the following expliit form:

ep

B

�

�

�; �; 

#

�

= �

�

(�; �;x) + �

�

(�;x) ; (1.11)

�

�

(�; �;x) =

1

�V

X

k2�

�

;k 6=0

ln

�

1� e

��E

k

�

�1

;

�

�

(�;x) = �

1

2V

X

k2�

�

;k 6=0

(E

k

� f

k

) + �x�

1

2

v (0)x

2

;

where x = jj

2

� 0 and

f

k

= "

k

� �+ x [v (0) + v (k)℄ ; (1.12)

h

k

= xv (k) ;

E

k

=

q

f

2

k

� h

2

k

:

Another observation onerns the original Hamilto-

nian (1.4), see [4,5℄.

Proposition 1 The pressure p

B

�

(�; �) assoiated with

the Bogoliubov Hamiltonian H

B

�

, i.e.

p

B

�

(�; �) � p

�

�

H

B

�

�

�

1

�V

ln Tr

F

�

e

��

(

H

B

�

��N

�
)

;

(1.13)

is de�ned only in domain Q = f� � 0g � f� � 0g and it

is equal in the thermodynami limit to

p

B

(�; �) = sup

2C

ep

B

�

�; �; 

#

�

(1.14)

� lim

�

�

sup

2C

ep

B

�

�

�; �; 

#

�

�

:

Therefore, from the expliit form (1.11) of

ep

B

�

�

�; �; 

#

�

we an dedue (f. [4,5℄) the following two

orollaries:

Corollary 2. Let v (k) satisfy (A), (B) and

v(0) �

1

2 (2�)

3

Z

R

3

d

3

k

v(k)

2

"

k

: (1.15)
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Then

p

B

(�; �) = sup

2C

ep

B

�

�; �; 

#

�

= ep

B

(�; �; 0) (1.16)

= p

P

(�; �) ;

where

p

P

(�; �) � lim

�

p

�

[T

�

℄

is the pressure of the Perfet Bose{Gas (PBG).

Corollary 3. Let v (k) satisfy (A), (B) and

(C) :

v(0) <

1

2 (2�)

3

Z

R

3

d

3

k

v(k)

2

"

k

: (1.17)

Then there are �

0

< 0 and �

0

(�) > 0 suh that one has

p

B

(�; �) = sup

2C

ep

B

�

�; �; 

#

�

(1.18)

= ep

B

�

�; �; b

#

(�; �) 6= 0

�

> p

P

(�; �) ;

for (�; �) 2 D de�ned by

D = f(�; �) : �

0

< � � 0; 0 � � < �

0

(�)g ; (1.19)

and

p

B

(�; �) = sup

2C

ep

B

�

�; �; 

#

�

= p

P

(�; �) ; (1.20)

for (�; �) =2 D.

Moreover, see [4,5℄, D is a domain whih orresponds

to a non{onventional ondensation in the mode k = 0:

�

B

0

(�; �) � lim

�

�

a

�

0

a

0

V

�

H

B

�

(�; �) =

=

�

jb (�; �)j

2

> 0, (�; �) 2 D

0, (�; �) 2 QnD

�

; (1.21)

where b (�; �) is de�ned by (1.18) and

!

B

�

(�) � h�i

H

B

�

(�; �) (1.22)

represents the grand{anonial Gibbs state for

the Hamiltonian H

B

�

. The non{onventional Bose{

ondensate (1.21) undergoes a jump on the boundary

�D, see [4,5℄ .

However, we have to admit that in [4,5℄ we study the

WIBG only in the grand{anonial ensemble, i.e. by �x-

ing the hemial potential �. On the other hand, it is

well{known that the onventional Bose{Einstein onden-

sation in the PBG is parametrized by the total partile

density � whih should be higher than the saturated for

� = 0 partile density �

P

(�; �) in the grand anonial

ensemble: � > �

P



(�) � �

P

�

�

�1

; � = 0

�

. Thus [4,5℄ do

not study the onventional Bose{Einstein ondensation

in the WIBG.

Notie that using the GriÆths Lemma (see [6,7℄) and Proposition 1, one �nds for the grand{anonial total partile

density in the WIBG:

�

B

(�; �) � lim

�

!

B

�

�

N

�

V

�

= lim

�

1

V

X

k2�

�

!

B

�

(N

k

) = lim

�

�

�

p

B

�

(�; �) = �

�

ep

B

(�; �; 0)

=

1

(2�)

3

Z

R

3

�

e

�("

k

��)

� 1

�

�1

d

3

k; (1.23)

for (�; � < 0) 2 QnD and:

�

B

(�; �) = �

�

ep

B

�

�; �; b

#

(�; �) 6= 0

�

(1.24)

=

1

(2�)

3

Z

R

3

�

f

k

E

k

�

e

�E

k

� 1

�

�1

+

h

2

k

2E

k

(f

k

+ E

k

)

�

d

3

k

�

�

�

�

=b(�;�)

+ jb (�; �)j

2

;

for (�; � < 0) 2 D. Then, from (1.23) and (1.24), we see that the total density �

B

(�; �) reahes its maximal (ritial)

value at � = 0, i.e. �

B



(�) � �

B

(�; � = 0):

(i) for � > �

0

(� = 0)

�

B



(�) =

1

(2�)

3

Z

R

3

�

e

�"

k

� 1

�

�1

d

3

k < +1; (1.25)
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(ii) for � < �

0

(� = 0)

�

B



(�) =

1

(2�)

3

Z

R

3

�

f

k

E

k

�

e

�E

k

� 1

�

�1

+

h

2

k

2E

k

(f

k

+ E

k

)

�

d

3

k

�

�

�

�

=b(�;0)

�=0

+ jb (�; � = 0)j

2

< +1: (1.26)

By onvexity of p

B

(�; �) with respet to the parameter � one gets that

lim

�!�

0

(�)

�

�

B

(�; �) � �

B

inf

(�) < lim

�!�

0

(�)

+

�

B

(�; �) � �

B

sup

(�) ; (1.27)

where �

0

= �

0

(�) is the inverse funtion of �

0

(�), and

lim

�!�

0

(0)

+

�

B



(�) < lim

�!�

0

(0)

�

�

B



(�) : (1.28)

Thus the aim of the present paper is to study the thermodynami properties of the WIBG in funtion of the total

partile density � to answer the question of its thermodynami behaviour for the densities � � �

B



(�). Our main

statements are formulated in the next Setion II where we expliit the existene of a onventional (generalized) Bose{

Einstein ondensation for � = 0 and densities � > �

B



(�) whih ours after a non{onventional ondensation (1.21)

[4,5℄ if � � �

0

(0), see Figure 1. Setion III ontains disussions and onluding remarks. Some tehnial statements

are formulated in Appendix A.

Fig. 1. Density of the non{onventional ondensation in the Bogoliubov WIBG.

II. BOSE{EINSTEIN CONDENSATION IN THE WIBG

In this setion we study the WIBG for temperature and the total partile density as given parameters.

Theorem 4. Let interation (1.1) satis�es (A) and (B). Then there exists "

�;1

:

"

�;1

2

�

inf

k 6=0

�

"

k

�

v (k)

2V

�

; b"

�;1

= inf

k 6=0

"

k

�

;

suh that for � < "

�;1

p

B

�

(�; �) < +1; !

B

�

�

N

�

V

�

< +1; (2.1)

and
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lim

�!"

�;1

p

B

�

(�; �) = +1; lim

�!"

�;1

!

B

�

�

N

�

V

�

= +1: (2.2)

Proof. Sine v (k) satis�es (A) and (B), by regrouping terms in (1.6), (1.7) one gets

H

B

�

=

e

H

�

+

v (0)

V

a

�

0

a

0

X

k2�

�

;k 6=0

a

�

k

a

k

+

1

2V

X

k2�

�

;k 6=0

v (k)

�

a

�

0

a

k

+ a

�

�k

a

0

�

�

�

a

�

0

a

k

+ a

�

�k

a

0

�

; (2.3)

where

e

H

�

=

X

k2�

�

;k 6=0

�

"

k

�

v (k)

2V

�

a

�

k

a

k

+

v (0)

2V

(a

�

0

a

0

)

2

�

1

2

' (0) a

�

0

a

0

: (2.4)

Thus from (2.3), (2.4) we obtain

H

B

�

�

e

H

�

: (2.5)

By straightforward alulations one gets

p

�

h

e

H

�

i

=

1

�V

X

k2�

�

;k 6=0

ln

n

1� e

��

[

"

k

�

(

�+

v(k)

2V

)℄

o

�1

+

1

�V

ln

+1

X

n

0

=0

e

�V

h

(

�+

1

2

'(0)

)

n

0

V

�

v(0)

2V

[

n

0

V

℄

2

i

;

whih together with (2.5) implies

p

B

�

(�; �) � p

�

h

e

H

�

i

< +1 (2.6)

for � < inf

k 6=0

h

"

k

�

v(k)

2V

i

. Sine

!

B

�

�

N

�

V

�

= �

�

p

B

�

(�; �) ;

by (2.6) and by onvexity of the pressure p

B

�

(�; �) in

parameter � we dedue that

!

B

�

�

N

�

V

�

< +1

for � < inf

k 6=0

h

"

k

�

v(k)

2V

i

. Moreover by the Bogoliubov

inequality (see e.g. [8,9℄), one gets:

1

V

hU

�

i

H

B

�

� p

�

�

H

BD

�

�

� p

�

�

H

B

�

�

�

1

V

hU

�

i

H

BD

�

;

(2.7)

where H

BD

�

� T

�

+U

D

�

is the diagonal part of the Bogoli-

ubov Hamiltonian with T

�

and U

D

�

de�ned respetively

by (1.5) and (1.7). Sine hU

�

i

H

BD

�

= 0; we dedue from

(2.7) that

p

B

�

(�; �) � p

�

�

H

BD

�

�

:

Combining this with the estimate (f. [4,5℄)

p

�

�

H

BD

�

�

�

1

�V

X

k2�

�

;k 6=0

ln

�

�

1� e

[��("

k

��)℄

�

�1

�

we get

lim

�!inf

k6=0

"

k

p

�

�

H

BD

�

�

= +1: (2.8)

Therefore, by (2.6) and (2.8) we dedue that there exists

"

�;1

2

h

inf

k 6=0

h

"

k

�

v(k)

2V

i

; inf

k 6=0

"

k

i

suh that p

B

�

(�; �)

and !

B

�

�

N

�

V

�

are bounded for � < "

�;1

and

lim

�!"

�;1

p

B

�

(�; �) = +1: (2.9)

Notie that by onvexity of p

B

�

(�; �) one gets

p

B

�

(�; �)� p

B

�

(�; 0)

�

� �

�

p

B

�

(�; �) = !

B

�

�

N

�

V

�

:
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Then the limit (2.9) implies

lim

�!"

�;1

!

B

�

�

N

�

V

�

= +1;

whih ompletes the proof of (2.2). �

Sine the ase of � < �

B



(�) (f. (1.25), (1.26)) has been

already studied in Setion I, see (1.23), (1.24), below we

onsider the ase � � �

B



(�).

Corollary 5. By Theorem 4 for any � � �

B



(�) there

is a unique value of the hemial potential �

B

�

(�; �) <

"

�;1

(notie that in general �

B

�

(�; �) ? 0) suh that

!

B

�

�

N

�

V

�

= �; (2.10)

and

lim

�

�

B

�

�

�; � � �

B



(�)

�

= 0: (2.11)

From now on we put

!

B

�;�

(�) � !

B

�

(�) j

�=�

B

�

(�;�)

: (2.12)

Aording to [4,5℄ the WIBG non{onventional on-

densation in the mode k = 0 is saturated for �! 0

�

ei-

ther by jb (�; 0)j

2

> 0 (for � < �

0

(0)), or by jb (�; 0)j

2

= 0

(for � > �

0

(0)), see (1.21). Therefore, by (1.23){(1.26)

and Theorem 4 the saturation of the total partile den-

sity should imply the onventional Bose{Einstein on-

densation in modes next to k = 0. For disussion of this

phenomenon of two kinds of ondensations in the frame-

work of simple models see e.g. reent papers [10,11℄.

To ontrol the ondensation in k 6= 0 we introdue an

auxiliary Hamiltonian

H

B

�;�

= H

B

�

� �

X

k2�

�

;a<kkk<b

a

�

k

a

k

;

for a �xed a > 0 and b > a > 0: Then we set

p

B

�

(�; �; �) �

1

�V

lnTr

F

�

e

��H

B

�;�

(�)

; (2.13)

and

!

B;�

�

(�) � h�i

H

B

�;�

(�; �)

for the grand{anonial Gibbs state orresponding to

H

B

�;�

(�).

Reall that �

0

(�) is the funtion (inverse to �

0

(�))

whih de�nes a borderline of domain D, see (1.19).

Proposition 6. [4,5℄ Let � 2 [�Æ; Æ℄ where 0 � Æ �

"

a

=2 and "

a

= inf

kkk�a

"

k

. Then there exists a domain

D

Æ

� D:

D

Æ

� f(�; �) : �

0

< �

0

(Æ) � � � 0; 0 � � � �

0

(�; Æ) < �

0

(�)g (2.14)

suh that

�

�

�

�

p

B

�

(�; �; �)� sup

2C

ep

B

�

�

�; �; �; 

#

�

�

�

�

�

�

K (Æ)

p

V

(2.15)

for V suÆiently large, uniformly in � 2 [�Æ; Æ℄ and for:

(i) (�; �) 2 D

Æ

, if �

B

�

�

�; � � �

B



(�)

�

� 0; (2.16)

(ii) (�; �) 2 D

Æ

[

�

(�; �) : 0 � � � �

B

�

�

�; � � �

B



(�)

�

; 0 � � � �

0

(� = 0; Æ)

	

, if �

B

�

�

�; � � �

B



(�)

�

� 0:

Proof. The existene of the domain D

Æ

follows from the proof of Theorem 3.14 [5℄. This means that the estimate

(2.15) is stable with respet to loal perturbations of the free{partile spetrum: "

k

! "

k

���

(a;b)

(kkk) for j�j � Æ �

"

a

=2 in a redued domain D

Æ

� D. Here �

(a;b)

(kkk) is the harateristi funtion of (a; b) � R. Extension in (2.16)

(f. Corollary 5) is due to ontinuity of the pressure p

B

�

(�; �; �) and the trial pressure ep

B

�

�

�; �; �; 

#

�

in parameters

� 2 [�Æ; Æ℄ and � � �

B

�

�

�; � � �

B



(�)

�

, see (2.11). �

Corollary 7. Let � � �

B



(�), see (1.25), (1.26). Then for � < �

0

(0) one has

lim

�

1

V

X

k2�

�

;a<kkk<b

!

B

�;�

(N

k

) =

1

(2�)

3

Z

a<kkk<b

�

f

k

E

k

�

e

�E

k

� 1

�

�1

+

h

2

k

2E

k

(f

k

+ E

k

)

�

d

3

k

�

�

�

�

�

�

�

=b(�;0)

�=0

; (2.17)
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whereas for � > �

0

(0) we have

lim

�

1

V

X

k2�

�

;a<kkk<b

!

B

�;�

(N

k

) =

1

(2�)

3

Z

a<kkk<b

�

e

�"

k

� 1

�

�1

d

3

k: (2.18)

Proof. Consider the sequene of funtions

�

p

B

�

�

�; �

B

�

(�; �) ; �

�	

�

(2.13), where hemial potential is de�ned by

(2.10), (2.11) and � 2 [�Æ; Æ℄. Sine by (2.13)

�

�

p

B

�

�

�; �

B

�

(�; �) ; �

�

=

1

V

X

k2�

�

;a<kkk<b

!

B;�

�;�

(N

k

) (2.19)

and

�

p

B

�

�

�; �

B

�

(�; �) ; �

�	

�

are onvex funtions of � 2 [�Æ; Æ℄, Proposition 6 and the GriÆths lemma [6,7℄ imply

lim

�

�

�

p

B

�

�

�; �

B

�

(�; �) ; �

�

= lim

�

1

V

X

k2�

�

;a<kkk<b

!

B;�

�;�

(N

k

) = �

�

lim

�

sup

2C

ep

B

�

�

�; �

B

�

(�; �) ; �; 

#

�

; (2.20)

for � 2 [�Æ; Æ℄. Therefore, by expliit alulations in the right{hand side of (2.20) (f. (1.10){(1.12)) we obtain for

� = 0 equalities (2.17) and (2.18). �

Remark 1. Notie that the expetation values

!

B

�

(N

k

) = hN

k

i

H

B

�

(�; �) (and similar !

B

�;�

(N

k

) =

hN

k

i

H

B

�

�

�; �

B

�

(�; �)

�

) are de�ned on the disrete set �

�

.

Below we denote by

�

!

B

�

(N

k

)

	

k2R

3

a ontinuous inter-

polation of these values from the set �

�

to R

3

.

Now we are in position to prove the main statement of

this setion about the Bose{Einstein ondensation man-

ifested by the WIBG for large densities � at �xed tem-

perature � = �

�1

.

Theorem 8. For � > �

B



(�) we have that

(i)

lim

�

!

B

�;�

�

a

�

0

a

0

V

�

=

�

jb (�; 0)j

2

, � < �

0

(0)

0, � > �

0

(0)

�

; (2.21)

(ii) for any k 2 �

�

; suh that kkk >

2�

L

;

lim

�

!

B

�;�

�

N

k

V

�

= 0; (2.22)

(iii) for � < �

0

(0) and for all k 2 �

�

; suh that

kkk > Æ > 0

lim

�

!

B

�;�

(N

k

) =

�

f

k

E

k

�

e

�E

k

� 1

�

�1

(2.23)

+

h

2

k

2E

k

(f

k

+E

k

)

�

=b(�;0)

�=0

whereas for � > �

0

(0)

lim

�

!

B

�;�

(N

k

) =

1

e

�"

k

� 1

; (2.24)

(iv) the double limit

lim

Æ!0

+

lim

�

1

V

X

fk2�

�

;0<kkk�Æg

!

B

�;�

(N

k

) = � � �

B



(�) ;

(2.25)

whih means that the WIBG manifests a onventional

generalized Bose{Einstein ondensation in the 2d modes

next to the zero{mode due to partile density saturation.

Proof. (i) Sine by (2.11) we have

lim

�

�

B

�

(�; �) = 0; (2.26)

the thermodynami limit (2.21) results from Theorem

4.4 and Corollary 4.8 of [5℄, see also (1.21) for � = 0.

(ii) Sine kkk >

2�

L

and � = L � L � L, whih ex-

ludes a generalized Bose{Einstein ondensation due to

anisotropy [12℄, the thermodynami limit (2.22) follows

from Lemma 10.

(iii) Let us onsider g

�

(k) de�ned for k 2 R

3

, kkk >

Æ > 0 by

g

�

(k) � lim

�

!

B

�;�

(N

k

) ; (2.27)

where (f. (2.12)) the state !

B

�;�

(�) stands for !

B

�

(�)

with � = �

B

�

(�; �) . Notie that by Lemma 10 and the

fat that
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�

B

�

(�; �) < "

�;1

< inf

k 6=0

"

k

= "

kkk=

2�

L

the thermodynami limit (2.27) exists and it is informally

bounded for kkk > Æ > 0. Moreover, for any interval

(a > Æ; b) we have

lim

�

1

V

X

k2�

�

;kkk2(a;b)

!

B

�;�

(N

k

)

=

1

(2�)

3

Z

kkk>Æ

g

�

(k)�

(a;b)

(kkk) d

3

k;

where �

(a;b)

(kkk) is the harateristi funtion of (a; b).

Then Corollary 7 implies that

1

(2�)

3

Z

kkk>Æ

g

�

(k)�

(a;b)

(kkk) d

3

k (2.28)

=

1

(2�)

3

Z

kkk>Æ

f

�

(k)�

(a;b)

(kkk) d

3

k;

where f

�

(k) is a ontinuous funtion on k 2 R

3

de�ned

by (2.17), (2.18), i.e.

f

�

(k) �

1

(2�)

3

�

f

k

E

k

�

e

�E

k

� 1

�

�1

(2.29)

+

h

2

k

2E

k

(f

k

+ E

k

)

�

=b(�;0)

�=0

;

for � < �

0

(0) and

f

�

(k) �

1

(2�)

3

�

e

�"

k

� 1

�

�1

; (2.30)

for � > �

0

(0). Sine the relation (2.28) is valid for any

interval (a > Æ; b) � R one gets

g

�

(k) = f

�

(k) ; k 2 R

3

; kkk > Æ > 0

from whih by (2.27), (2.29) and (2.30) we dedue (2.23)

and (2.24).

(iv) Sine the total density � is �xed, we have

1

V

X

fk2�

�

;0<kkk�Æg

!

B

�;�

(N

k

) = � � !

B

�;�

�

a

�

0

a

0

V

�

�

1

V

X

fk2�

�

:kkk>Æg

!

B

�;�

(N

k

) : (2.31)

Using Corollary 7 for a = Æ and b! +1 we obtain for � < �

0

(0)

lim

�

1

V

X

fk2�

�

:kkk>Æg

!

B

�;�

(N

k

) =

1

(2�)

3

2

6

4

Z

kkk>Æ

f

k

E

k

�

e

�E

k

� 1

�

�1

+

h

2

k

2E

k

(f

k

+ E

k

)

d

3

k

3

7

5

=b(�;0)

�=0

; (2.32)

and for � > �

0

(0)

lim

�

1

V

X

k2�

�

;kkk>Æ

!

B

�;�

(N

k

) =

1

(2�)

3

Z

kkk>Æ

�

e

�"

k

� 1

�

�1

d

3

k: (2.33)

Then, from (1.25), (1.26), (2.21), (2.31){(2.33) we �nally

dedue (2.25) by taking the limit Æ ! 0

+

. �

Therefore, aording to (2.25) and in a lose similarity

to [11℄ for � > �

0

(0) and � > �

B



(�) the WIBG manifests

only one kind of ondensation, namely a onventional

Bose{Einstein ondensation whih ours in the mode

k 6= 0, whereas for � < �

0

(0) it manifests for � > �

B



(�)

this kind of ondensation as a seond stage after the non{

onventional Bose ondensation jb (�; 0)j

2

, see (2.21).

Remark 2. Similar to the model of ref. [11℄ in do-

main: � < �

0

(0), � > �

B



(�), we have the oexistene of

two kinds of ondensations:

| the non{onventional one whih starts when � >

�

B

sup

(�) (� � �

B



(�)), see (1.25){(1.27),

| and the onventional Bose{Einstein ondensation

when � > �

B



(�).

Remark 3. Before we lassify this latter ondensa-

tion we remind to the readers about the onveniene

of the nomenlature of onventional (generalized) Bose{

Einstein ondensations aording to [12,13℄:

| a ondensation is alled of type I when a �nite num-

ber of levels is marosopially oupied;
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| it is of type II when an in�nite number of levels is

marosopially oupied;

| it is alled of type III, or the non{extensive on-

densation, when no levels are marosopially oupied

whereas one has

lim

Æ!0

+

lim

�

1

V

X

fk2�

�

;0<kkk�Æg

hN

k

i = � � �



(�) :

Paper [12℄ demonstrates that these three kinds of on-

ventional ondensations an be realized for the ase of

the PBG in an anisotropi box � � R

3

with volume

the V = j�j and the Dirihlet boundary onditions, i.e.

in a box � with L

x

= V

�

x

, L

y

= V

�

y

and L

z

= V

�

z

for �

x

+ �

y

+ �

z

= 1 and �

x

� �

y

� �

z

. At �xed

temperature and for suÆiently large density �, we have

a ondensation of the type I in the fundamental mode

k =

�

2�

L

x

;

2�

L

y

;

2�

L

z

�

if �

z

< 1=2 whereas for �

z

= 1=2

one gets a ondensation of the type II haraterized by a

marosopi oupation of all modes k =

�

2�

L

x

;

2�

L

y

;

2�n

L

Z

�

,

n 2 N and for �

z

> 1=2 one obtains a ondensation of

the type III. In [14,15℄ it was shown that type III onden-

sation an be provoked in the PBG by a weak external

potential or (see [13,16℄) by a spei� hoie of boundary

onditions and geometry. Another example of the non{

extensive ondensation is given in [10,11℄ for bosons in

an isotropi box � with interations whih spread out

the onventional ondensation of the type I into a on-

ventional ondensation of the type III.

Therefore, from (2.22) and (2.25) we an dedue only

that the onventional ondensation in the WIBG an be

either a ondensation of type I in modes kkk = 2�=L, or

a ondensation of the type III if modes kkk = 2�=L are

not marosopially oupied, or �nally a ombination

of the non{extensive ondensation with a ondensation

of the type I in the modes kkk = 2�=L.

Corollary 9. In fat, for � > �

B



(�) the generalized

(onventional) ondensation (2.25) is a ondensation of

the type I in the �rst 2d modes next to the zero{mode

k = 0, i.e.

lim

�

1

V

X

f

k2�

�

;kkk=

2�

L

g

!

B

�;�

(a

�

k

a

k

) = � � �

B



(�) : (2.34)

Proof. Sine for Æ > 0

1

V

X

f

k2�

�

;kkk=

2�

L

g

!

B

�;�

(N

k

) = �� !

B

�;�

�

a

�

0

a

0

V

�

�

1

V

X

f

k2�

�

;

2�

L

<kkk<Æ

g

!

B

�;�

(N

k

) �

1

V

X

fk2�

�

:kkk�Æg

!

B

�;�

(N

k

) ;

using Lemma 1 we �nd that

1

V

X

f

k2�

�

;kkk=

2�

L

g

!

B

�;�

(N

k

) � � �

1

V

X

f

k2�

�

;

2�

L

<kkk<Æ

g

1

e

B

k
(

�

B

�

(�;�)

)

� 1

� !

B

�;�

�

a

�

0

a

0

V

�

2

6

4

1 +

�

2V

X

f

k2�

�

;

2�

L

<kkk<Æ

g

v (k)

1� e

�B

k
(

�

B

�

(�;�)

)

3

7

5

�

1

V

X

fk2�

�

:kkk�Æg

!

B

�;�

(N

k

) ; (2.35)

with B

k

�

�

B

�

(�; �)

�

de�ned by (4.2). Sine by Theorem 1 one gets

�

B

�

(�; �) < "

�;1

< inf

k 6=0

"

k

= "

kkk=

2�

L

;

from (1.25), (1.26), (2.32) we dedue

lim

�

1

V

X

f

k2�

�

;kkk=

2�

L

g

!

B

�;�

(a

�

k

a

k

) � �� �

B



(�) (2.36)

by taking the limit Æ ! 0

+

in the right{hand side of (2.35) after the thermodynami limit. Therefore, ombining the
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inequality

lim

�

1

V

X

f

k2�

�

;kkk=

2�

L

g

!

B

�;�

(N

k

)

� lim

�

1

V

X

fk2�

�

;0<kkk<Æg

!

B

�;�

(N

k

)

with Theorem 5 (f. (2.25)) and (2.36)), we obtain (2.34).

�

Therefore, for a �xed temperature � and a �xed total

partile density �, we obtain three types of thermody-

nami behaviour of the WIBG for � < �

0

(0):

(i) for � � �

B

inf

(�), there is no ondensation;

(ii) for �

B

sup

(�) � � � �

B



(�), there is a non{

onventional (dynamial) ondensation (1.21) in the

mode k = 0 due to non{diagonal interation in the Bo-

goliubov Hamiltonian, see Figure 1 and [4,5,17℄;

(iii) for �

B



(�) � �, there is a seond kind of ondensa-

tion: the onventional type I Bose{Einstein ondensation

whih ours after the non{onventional one due to the

standard mehanism of the total partile density satura-

tion (Corollary 9).

If � � �

0

(0), there are only two types of thermody-

nami behaviour: they orrespond to � � �

B



(�) with

no ondensation and to �

B



(�) � � with a onventional

ondensation as in (iii). Hene, for � > �

0

(0) the on-

densation in the WIBG oinides with type I generalized

Bose{Einstein ondensation in the PBG with exluded

mode k = 0, see Theorem 8 (iii) and [18℄.

III. CONCLUSION

Papers [4,5℄ have already disussed the existene of a

non{onventional ondensation of bosons for k = 0, for

negative � and � < �

0

(0). The physial reason of this

non{onventional (or dynamial) ondensation is an ef-

fetive attration between bosons in the mode k = 0 [17℄:

�

8

<

:

1

V

2

X

k2�

�

;k 6=0

[v(k)℄

2

4"

k

9

=

;

a

�

2

0

a

2

0

(3.1)

whih has to dominate the diret repulsion in (1.7):

v (0)

2V

a

�

2

0

a

2

0

;

to ensure this new kind of ondensation, see ondition

(C) (1.17) and disussions in [17℄. However, for �xed tem-

perature � and total partile density � the present paper

indiates the possibility of a onventional ondensation:

a generalized Bose{Einstein ondensation of the type I in

the �rst 2d modes next to the zero{mode k = 0. This

seond kind of ondensation appears only for high den-

sities � � �

B



(�) due to the standard mehanism of the

total partile density saturation, see Corollary 9.

Therefore, ombining [4,5℄ with Setion II for � <

�

0

(0) we obtain for the WIBG three types of thermo-

dynami behaviour:

(i) for � � �

B

inf

(�), there is no ondensation;

(ii) for �

B

sup

(�) � � � �

B



(�), a non{onventional (dy-

namial) ondensation (1.21) appears in the mode k = 0;

(iii) for �

B



(�) � �, the WIBG manifests a onven-

tional Bose{Einstein ondensation of the type I (Corol-

lary 6). Therefore, two kinds of ondensation oexist.

For � < �

0

(0), the thermodynami behaviour of the

WIBG is related to the two reent models [11℄ de�ned

respetively by Hamiltonians

H

0

�

� T

�

+ U

0

�

; (3.2)

and

H

�

= H

0

�

+ U

�

; (3.3)

where

T

�

=

X

k2�

�

nf0g

"

k

a

�

k

a

k

; "

k 6=0

= ~

2

k

2

=2m;

U

0

�

= "

0

a

�

0

a

0

+

g

0

V

a

�

0

a

�

0

a

0

a

0

; "

0

2 R

1

; g

0

> 0; (3.4)

U

�

=

1

V

X

k2�

�

;k 6=0

g

k

(V ) a

�

k

a

�

k

a

k

a

k

;

with 0 < g

k

(V ) � 

k

V

�

k

for k 2 �

�

n f0g ; �

k

� �

+

< 1

and 0 < 

k

� 

+

. Notie that in these models, "

0

2 R

1

is

not equal to "

kkk=0

= 0. Paper [11℄ shows the possibility

of oexistene of two kinds of Bose ondensations equally

for models (3.2) and (3.3). In partiular the WIBG is

lose to model (3.2) for � < �

0

(0) in the sense that the

Bose gas (3.2) manifests the same three types of thermo-

dynami behaviour (i)�(iii) as above but there is no lim-

iting temperature �

0

(0) and no disontinuity of the on-

densate and the total partile density. The peuliarity of

model (3.3) is that under onditions g

k 6=0

(V ) � g

�

> 0

or inf

kkk<Æ

0

;V

g

k

(V ) > 0 in a band Æ

0

> 0, the diret

repulsion U

�

(3.4) spreads out the onventional Bose{

Einstein ondensation, originally of the type I in modes

kkk =

2�

L

, into a onventional Bose{Einstein ondensa-

tion of the type III (f. [10,11℄). Notie that the onven-

tional Bose{Einstein ondensation persists in the model

(3.3) even if for k 2 �

�

n f0g g

k

(V ) = 

k

V

�

k

V!+1

�! +1

(�

k

� �

+

< 1) whih is similar to the WIBG where in

the e�etive two{bosons repulsion for k; q 6= 0

g

�;kq

a

�

k

a

�

�k

a

�q

a

q

;

the \form{fator" g

�;kq

> 0 diverges with volume as

V

2=3

, see [17℄. However, an important di�erene is that

this e�etive interation (whih is due to non{diagonal

term (1.7)) does not able to spread out the Bose{Einstein
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ondensation into the type III as in the model (3.3) for

the WIBG: it rests as a ondensation of the type I.

For � � �

0

(0), there are only two types of thermo-

dynami behaviour: they orrespond to the domain � �

�

B



(�) where there is no ondensation and to �

B



(�) � �

where we have a onventional ondensation as in (iii).

Hene, for � > �

0

(0) the ondensation in the WIBG

oinides with the type I generalized Bose{Einstein on-

densation in the PBG with exluded mode k = 0, see

(iii) in Theorem 8 and [18℄.

Notie that one of the possibility to orret the insta-

bilities of the WIBG for � > 0 (originally disovered

in [21℄) would be to add to H

B

�

(1.4) the "forward{

sattering" repulsive interation between partiles next

to the zero{mode k = 0:

H

�

= H

B

�

+

v (0)

2V

X

k;q2�

�

nf0g

a

�

k

a

�

q

a

q

a

k

: (3.5)

Paper [21℄ proposes to use the superstable Hamiltonian

(3.5) to extrat the gapless spetrum by doing the Bo-

goliubov approximation (see De�nition 1) only in the op-

erator H

B

�

�v (0)a

�

2

0

a

2

0

=2V (see also [22,23℄). In fat the

problem of the thermodynamis and the gapless spe-

trum for stabilized WIBG models is rather deliate, see

disussions in [21{23℄. The reason is that the intera-

tion in the WIBG is in fat a long{range one, whih

implies the appearane of the gap when one has the non{

onventional ondensation in the zero{mode, see [5℄.
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IV. APPENDIX A

Lemma 10.

Let kkk > 2�=L. Then for the Gibbs state !

B

�;�

(�) we

have:

!

B

�;�

(N

k

) �

1

e

B

k
(

�

B

�

(�;�)

)

� 1

+ �

v (k)

2V

!

B

�;�

(a

�

0

a

0

)

1� e

�B

k
(

�

B

�

(�;�)

)

;

(4.1)

with

B

k

�

� = �

B

�

(�; �)

�

� �

�

"

k

� �

B

�

(�; �) �

v (k)

2V

�

: (4.2)

Proof. By the orrelation inequalities for the Gibbs

state !

B

�

(�) � h�i

H

B

�

(�; �) (see [19,20℄):

�!

B

�

�

X

�

�

H

B

�

(�) ; X

��

� !

B

�

(X

�

X) ln

!

B

�

(X

�

X)

!

B

�

(XX

�

)

;

(4.3)

where X is an observable from the domain of the om-

mutator

�

H

B

�

(�) ; :

�

, we dedue

�!

B

�

�

a

�

k

�

H

B

�

(�) ; a

k

��

� !

B

�

(N

k

) ln

!

B

�

(N

k

)

!

B

�

(N

k

) + 1

; (4.4)

for X = a

k

. Sine for kkk > 2�=L

�

H

B

�

(�) ; a

k

�

= �

�

"

k

� �� [v (0) + v (k)℄

a

�

0

a

0

V

�

a

k

�

v (k)

V

a

2

0

a

�

�k

;

one gets for � = �

B

�

(�; �) that

!

B

�;�

�

a

�

k

�

H

B

�

�

�

B

�

(�; �)

�

; a

k

��

= �

�

"

k

� �

B

�

(�; �)

�

!

B

�;�

(N

k

) � [v (0) + v (k)℄

!

B

�;�

(a

�

0

a

0

N

k

)

V

� v (k)

!

B

�;�

�

a

2

0

a

�

k

a

�

�k

�

V

(4.5)

Notie that !

B

�;�

�

a

�

k

�

H

B

�

�

�

B

�

(�; �)

�

; a

k

��

2 R, then by (4.5) !

B

�;�

�

a

2

0

a

�

k

a

�

�k

�

2 R. Therefore,

2!

B

�;�

�

a

2

0

a

�

k

a

�

�k

�

= !

B

�;�

�

a

2

0

a

�

k

a

�

�k

�

+ !

B

�;�

�

a

k

a

�k

a

�2

0

�

: (4.6)

Moreover, sine the funtions "

k

and v (k) are even, we have
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!

B

�;�

(a

�

0

a

0

N

k

) = !

B

�;�

(a

�

0

a

0

N

�k

) : (4.7)

Thus (4.5){(4.7) imply

!

B

�;�

�

a

�

k

�

H

B

�

�

�

B

�

(�; �)

�

; a

k

��

= �

�

"

k

� �

B

�

(�; �)

�

!

B

�;�

(a

�

k

a

k

)�

v (k)

2V

!

B

�;�

�

a

2

0

a

�

k

a

�

�k

+ a

�2

0

a

k

a

�k

�

�

[v (0) + v (k)℄

2V

!

B

�;�

(a

�

0

a

0

N

k

+ a

�

0

a

0

N

�k

) : (4.8)

Now applying the identity

a

2

0

a

�

k

a

�

�k

+ a

�2

0

a

k

a

�k

+ a

�

0

a

0

a

�

k

a

k

+ a

�

0

a

0

a

�

�k

a

�k

=

�

a

�

0

a

k

+ a

�

�k

a

0

�

�

�

a

�

0

a

k

+ a

�

�k

a

0

�

� a

�

k

a

k

� a

�

0

a

0

; (4.9)

we dedue from (4.8) the estimate:

!

B

�;�

�

a

�

k

�

H

B

�

�

�

B

�

(�; �)

�

; a

k

��

� �

�

"

k

� �

B

�

(�; �) �

v (k)

2V

�

!

B

�;�

(N

k

) +

v (k)

2V

!

B

�;�

(a

�

0

a

0

) : (4.10)

Therefore, ombining (4.4) with (4.10) we �nd that:

B

k

�

�

B

�

(�; �)

�

!

B

�;�

(N

k

)� �

v (k)

2V

!

B

�;�

(a

�

0

a

0

) � !

B

�;�

(N

k

) ln

!

B

�;�

(N

k

) + 1

!

B

�;�

(N

k

)

; (4.11)

with B

k

�

�

B

�

(�; �)

�

de�ned by (4.2). Notie that, sine

�

B

�

(�; �) < "

�;1

< b"

�;1

= inf

k 6=0

"

k

and kkk > 2�=L, one has B

k

�

�

B

�

(�; �)

�

> 0. Hene we

have to solve the inequality

B

k

�

�

B

�

(�; �)

�

x� �

v (k)

2V

!

B

�;�

(a

�

0

a

0

) � x ln

x+ 1

x

;

(4.12)

for x = !

B

�;�

(N

k

) � 0. Notie that the solution of (4.12)

is the set f0 � x � x

2

g where x

2

is a solution of the equa-

tion

B

k

�

�

B

�

(�; �)

�

x

2

� �

v (k)

2V

!

B

�;�

(a

�

0

a

0

) = x

2

ln

x

2

+ 1

x

2

:

Let

x

1

=

1

e

B

k
(

�

B

�

(�;�)

)

� 1

(4.13)

be a nontrivial solution of the equation

B

k

�

�

B

�

(�; �)

�

x = x ln

x+ 1

x

:

Then the inequality x � x

2

an be rewritten as

x � x

1

+ (x

2

� x

1

) : (4.14)

Sine the funtion f (x) � x ln

x+1

x

de�ned for x � 0 is

onave, we get

f (x

2

)� f (x

1

)

f

0

(x

1

)

� x

2

� x

1

;

from whih by (4.13), (4.14) we get (4.1) for kkk > 2�=L.
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Pokazano, wo kondensa�� slabone�deal~nogo boze{gazu Bogol�bova mo�e mati dv� stad�Ý. �kwo vza-

mod��  tako�, wo tisk slabone�deal~nogo boze{gazu ne zb�gat~s� z tiskom �deal~nogo boze{gazu, to slabo-

ne�deal~ni� boze{gaz mo�e vi�vl�ti dva tipi kodensa��: nezviqnu kondensa�� v nul~ov�� mod� zavd�ki

vzamod�Ý (u perx�� stad�Ý) � zviqnu (u zagal~nomu tipu I) boze{a�nxta�n�vs~ku kondensa�� v modah, su-

m��nih �z nul~ovo�, zavd�ki nasiqenost� gustini qastinok (u drug�� stad�Ý).

251


