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The well{known results onerning a dilute Bose gas with the short{range repulsive interation

should be reonsidered due to a thermodynami inonsisteny of the method as basi to muh of the

present understanding of this subjet and nonrelevant behaviour of the pair distribution funtion at

small boson separations. The aim of our paper is to propose a new way of treating the dilute Bose

gas with an arbitrary strong interation. Using the redued density matrix of the seond order and

a variational proedure, this way allows us to esape the inonsisteny mentioned and operate with

singular potentials like the Lennard{Jones one. All the onsideration onerns the zero temperature.
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I. INTRODUCTION AND BASIC EQUATIONS

It is well{known that to investigate a dilute Bose

gas of partiles with an arbitrary strong repulsion (the

strong{oupling regime), one should go beyond the Bo-

goliubov approah [1℄ (the weak{oupling ase) and treat

the short{range boson orrelations in a more aurate

way. An ordinary manner of doing so is the use of the

Bogoliubov model with the \dressed", or e�etive, inter-

ation potential ontaining \information" on the short{

range boson orrelations (see Ref. [2℄). Below it is demon-

strated that this manner leads to a loss of the thermody-

nami onsisteny. To overome this trouble, we propose

a new way of investigating the strong{oupling regime

whih onerns the redued density matrix of the se-

ond order (the 2{matrix) and is based on the variational

method.

The 2{matrix for the many{body system of spinless

bosons an be represented as [3℄:
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where the pair orrelation funtion is given by

F

2

(r

1

; r

2

; r

0

1

; r

0

2

) = h 

y

(r

1

) 

y

(r

2

) (r

0

2

) (r

0

1

)i: (2)

Here  (r) and  

y

(r) denote the boson �eld operators.

Reently it has been found [4,5℄ that for the uniform

system with a small depletion of the zero{momentum

state the orrelation funtion (2) an be written in the

thermodynami limit as follows:
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where r = r
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)=2 and similar rela-

tions take plae for r

0

and R

0

, respetively. In Eq. (3)

n

0
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0

=V is the density of the partiles in the zero{

momentum state, n

q

= ha

y

q

a

q

i stands for the distribu-

tion of the unondensed bosons over momenta. Besides,

'(r) is the wave funtion of a pair of partiles being

both ondensed. In turn, '

q=2

(r) denotes the wave fun-

tion of the relative motion in a pair of bosons with the

total momentum �hq, this pair inluding one ondensed

and one unondensed partile. So, Eq. (3) takes into a-

ount the ondensate{ondensate and supraondensate{

ondensate pair states and is related to the situation of a

small depletion of the zero{momentum one{boson state.

For the wave funtions '(r) and '

p

(r) we have

'(r) = 1 +  (r); (4)
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p

(r) ! 0
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Having in our disposal the distribution funtion n

k

and

the set of the pair wave funtions '(r) and '

p

(r), we

are able to alulate the main thermodynami quantities

of the system of interest. In partiular, the mean energy

per partile is expressed in terms of n

k

and g(r) via the

well{known formula
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n = N=V stands for the boson density and the relation
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is valid for the pair distribution funtion g(r).

II. THE BOGOLIUBOV MODEL

The starting point of our investigation is the weak{

oupling regime whih implies weak spatial orrelations

of partiles and, thus, is haraterized by the set of the

inequalities
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p
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Spei�ally, the Bogoliubov model orresponds to the

hoie [4,5℄
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So, investigating the Bose gas within the Bogoliubov

sheme, we have two small quantities:  (r) and F

1

(r)=n.

This enables us to write Eq. (8) with the help of (3) as

follows:

g(r) = 1 + 2 (r) +

2
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where we restrited ourselves to the terms linear in  (r)

and F

1

(r)=n and put  

�

(r) =  (r) beause the pair wave

funtions an be hosen as real quantities. Equations

for

e

 (k) and n

k

an be found varying the mean energy

(7) with Eq. (11) taken into aount. However, before

that one should realize an important point, namely: n

k

and

e

 (k) annot be independent variables. Indeed, when

there is no interation between partiles, there are no

spatial partile orrelations either. So,

e

 (k) = 0 and,

sine the zero{temperature ase is onsidered, all the

bosons are ondensed, n

k

= 0. While \swithing on"

the interation results in appearing the spatial orrela-

tions and ondensate depletion:
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Indeed, the anonial Bogoliubov transformation [1℄ im-
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With Eqs. (14) and (15) one an readily obtain Eq. (12).

Now, let us show that all the results on the thermo-

dynamis of a weak{oupling Bose gas an be derived

for the Bogoliubov sheme with variation of the mean

energy (7) under the onditions (11) and (12). Inserting

Eq. (11) into Eq. (7) and, then, varying the obtained

expression, we arrive at
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is taken into onsideration. Setting Æ" = 0 and using

Eqs. (16) and (17), we derive the following expression:
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Here one should realize that Eq. (19) is able to yield a-

urate results only to the leading order in (n � n

0

)=n

beause the used expression for g(r) given by Eq. (11) is

valid to the next{to{leading order [6℄. So, Eq. (19) should

be rewritten as
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Equation (20) is an equation of the Bethe{Goldstone

type or, in other words, the in{medium Shr�odinger

equation for the pair wave funtion. As 2
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 (k)) is the produt of the Fourier transforms of �(r)

and n(g(r) � 1), we an rewrite Eq. (20) in a more us-

tomary form
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The struture of Eq. (21) is disussed in the papers [5,7℄.

Here we only remark that the right{hand side (r.h.s.)

of Eq. (21) is the in{medium potential of the boson{

boson interation in the weak{oupling approximation.

The system of equations (12) and (20) an easily be

solved, whih leads to the familiar results [1℄:
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III. A DILUTE BOSE GAS WITHIN THE

BOGOLIUBOV MODEL

As already mentioned, the aim of our paper lies in in-

vestigating the ase of a dilute Bose gas with an arbitrary

strong repulsion between bosons. So, onsidering a dilute

Bose gas in the weak{oupling approximation an be a

good exerise providing us with useful information. Let

us investigate the thermodynamis of a dilute Bose gas

within the Bogoliubov model. With Eqs. (7), (11) and

(22) we derive
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The well{known argument of Landau (see the footnote

in Ref. [1℄ and disussion in Ref. [2℄) testi�es that the

properties of dilute quantum gases are ruled by the sat-

tering length. Within the Bogoliubov model this length

is usually assumed to be equal to m

e

�(0)=4��h

2

. If so,

when expanding " in powers of the boson density n, one

ould replae

e

�(k) by

e

�(0) in Eq. (23), introduing the

low{momentum approximation. However, this leads to

a divergeny beause at large k the integrand behaves
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Now, substituting k = (2mny)
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=�h in the integral, we

obtain the expression
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The derived integral is readily alulated. The result is

given by
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In turn, the �rst term in the r.h.s. of Eq. (24) an be

represented as
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where '

(0)

is the solution of Eq. (21) in the limit n! 0.

This is nothing else but the Shr�odinger equation in the
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Born approximation. Aording to relations (25) and

(26) we have to onlude that the sattering length in

the ase of interest is expressed in the form

a
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One an easily be onvined that

e

�(0) annot be repre-

sented only in terms of a

B

and, hene, the dependene

on the shape of the interation potential appears in the

series expansion for the mean energy in the �rst orre-

tion to the term 2��h

2
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n=m. To rewrite our result for "

in a graphi form, we introdue one more harateristi

length b > 0 whih obeys the relation
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where  

(0)
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(r) � 1. Further, with the help of

Eqs. (24)-(28), we arrive at
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here the ondition b � a

B

is of use. It is not diÆult

to see that the expression (28) taken with negative sign

is the next orretion to the sattering length alulated

within the Born approximation. As for Eq. (27), it is re-

lated to the next{to{Born approximation. Note that in

the Bogoliubovmodel the energy term n

e

�(0)=2 is treated

as the major one [1℄, whih implies that the ondition

b� a

B

is ful�lled. This qualitative riterion an be writ-

ten as
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Beyond this inequality the model may be thermodynam-

ially unstable. In partiular, the opposite ase
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leads to the negative sattering length (27) whih at suÆ-

iently low densities results in ��

2

E=�V

2

= �p=�V > 0.

Thus, investigated within the Bogoliubov model, the

thermodynamis of a dilute Bose gas is ruled by the sat-

tering length only in the zero{density limit. While the

next{to{leading term in the series expansion given by

Eq. (29) depends on the shape of the interation, whih

is expressed in the appearane of the additional hara-

teristi length b. This onlusion di�ers from the results

of several papers [2℄ aording to whih the series expan-

sion for " taken to the same order as that of Eq. (29), is

fully determined by the sattering length. To larify the

situation onerning this di�erene, we should go to the

strong{oupling regime.

IV. THE STRONG{COUPLING REGIME

Now, after the detailed investigations of the Bogoli-

ubov model within the sheme proposed, we are able

to demonstrate that the investigation of the strong{

oupling ase based on the Bogoliubov model with the

e�etive boson{boson interation, results in a loss of the

thermodynami onsisteny. Indeed, as shown in the pre-

vious setion, any alulating sheme using the basi re-

lations of the Bogoliubov model (11), (12) onlusively

leads to Eqs. (20){(22) provided this sheme does yield

the minimum of the mean energy. In this ase Eqs. (20){

(22) ertainly inludes the quantity �(r) whih is the

\bare" interation potential appearing in Eq. (7). The

use of the Bogoliubov model with the e�etive intera-

tion potential substituted for �(r) an in no way disturb

the relations given by Eqs. (11) and (12). And Eq. (7) is

the same in both the weak{ and strong{oupling regimes.

Thus, any attempts of replaing �(r) by the e�etive

\dressed" potential without modi�ations of Eqs. (11)

and (12) results in a alulating proedure whih does

not really provide the minimumof the mean energy. It is

nothing else but a loss of the thermodynami onsisteny.

We remark that we do not mean, of ourse, that the t{

matrix approah or the pseudopotential method annot

be applied in the quantum sattering problem. It is only

stated that the usual way of ombining the ladder dia-

grams with the random phase approximation faes the

trouble mentioned above. Though our present investiga-

tion is limited to the onsideration of the many{boson

systems, the derived result gives a hint that a similar

situation is likely to take plae in the Fermi ase, too. In

this onnetion it is worth noting the problem assoiated

with the lak of self{onsisteny of the standard method

of treating the dilute Fermi gas [8℄.

The strong{oupling regime is haraterized by sig-

ni�ant spatial orrelations. So, Eq. (10) resulting in

Eq. (11) is not relevant for an arbitrary strong repul-

sion between bosons at small separations when we have

 (0) = �1;  

p

(0) = �

p

2 (see Refs. [4,5℄). There-

fore, to investigate the strong{oupling regime, Eq. (11)

should be abandoned in favour of Eq. (3). Expression (3)

is aurate to the next{to{leading order in (n � n

0

)=n.

So, using Eqs. (3) and (8), we an write
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Let us now perturb

e

 (k) and n(k). Working to the �rst

order in the perturbation and keeping in mind onditions

(12) and (31), from Eq. (7) we derive:
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k

e
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e

U (k)(1 + 2n

k

) + 2n
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with
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U(k) =
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Using Eqs. (33), (34) as well as the relation  

k

(r) !

p

2 (r) (k ! 0) (see boundary onditions (4)) [9℄,

we obtain

e

U (0) 6=

e

U

0

(0): This implies that the sys-

tem of Eqs. (12) and (32) annot to yield the relation

n

k

/ 1=k (k ! 0) following from the \1=k

2

" theorem

of Bogoliubov for the zero temperature [10℄. Indeed, let

us assume n

k

! 1 for k ! 0: Then, from Eq. (12) at

n = n

0

we �nd nj
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 (k)j=n

k

! 1 when k ! 0: On the

ontrary, Eq. (32) gives nj
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 (k)j=n

k

!

e

U (0)=

e

U

0

(0) 6= 1

for k ! 0: So, onsideration of the Bose gas based on

Eqs. (3) and (12) does not produe satisfatory results.

Nevertheless, it is worth noting that Eq. (32) has an im-

portant peuliarity whih di�erentiates it from Eq. (20)

in an advantageous way. The point is that in both the

limits n! 0 and k!1 Eq. (32) is redued to

�

�h

2

m

r

2

'(r) + �(r)'(r) = 0: (35)

As one an see, this is the exat \bare" (not in{medium)

Shr�odinger equation, other than its Born approximation

following from Eq. (21). Thus, we an expet the line of

our investigation to be right.

As we have shown in the previous paragraph, an ap-

proah adequate for a dilute Bose gas with an arbitrary

strong interation an not be onstruted without mod-

i�ations of Eq. (12). This is also in agreement with a

onsequene of the relation

jha

k

a

�k

ij

2

� ha

k

a

y

k

iha

y

�k

a

�k

i (36)

resulting from the inequality of Cauhy{Shwarz{

Bogoliubov [10℄

jh

b

A

b

Bij

2

� h

b

A

b

A

y

ih

b

B

y

b

Bi:

With Eqs. (5) and (36) one an easily derive n

2

0

e

 

2

(k) �

n

k

(n

k

+1). Thus, it is reasonable to assume that Eq. (12)

takes into aount only the ondensate{ondensate han-

nel and ignores the supraondensate{ondensate ones.

Now the question arises how to �nd orretions to the

r.h.s. of Eq. (12). At present we have no regular proe-

dure allowing us to do this in any order of (n � n

0

)=n.

However, there exists an argument whih makes it possi-

ble to realize the �rst step in this diretion. The matter

is that the alterations needed have to produe the equa-

tion for

e

 

p

(k) whih is redued to the equation for

e

 (k)

in the limit p ! 0: Though this requirement does not

uniquely determine the orretions to Eq. (12), it turns

out to be signi�antly restritive. In partiular, even the

simplest variant of orreting Eq. (12) in this way, leads

to promising results. Indeed, this variant is spei�ed by

the expression

n

k

(n

k

+ 1) = n

2

0

e

 

2

(k) + 2n

0

Z

d

3

q

(2�)

3

n

q

e

 

2

q=2

(k): (37)

Eq. (37) is valid to the next{to{leading order in (n �

n

0

)=n. So, we may rewrite it as

n

k

(n

k

+ 1) = n

2

e

 

2

(k) + 2n

Z

d

3

q

(2�)

3

n

q

�

e

 

2

q=2

(k) �

e

 

2

(k)

�

:

(38)

Perturbing

e

 (k) and n

k

and bearing in mind onditions

(31) and (38), Eq. (7) gives Eq. (32) again. However, now

e

U

0

(k) obeys the new relation

e

U

0

(k) =

Z

�

'

2

k=2

(r)� '

2

(r)

�

�(r) d

3

r (39)

�

Z

d

3

q

(2�)

3

e

U (q)

�

e

 

2

k=2

(q)�

e

 

2

(q)

�

e

 (q)

whih signi�antly di�ers from Eq. (34). Indeed, the

hoie of the pair wave funtions as real quantities im-

plies that operating with integrands in Eqs. (33) and

(39), one an exploit  

p

(r)�

p

2 (r) / p

2

at small p [11℄.

For k ! 0 this provides

e

U

0

(k)�

e

U (k) = t

k

=  k

4

+ � � �.

Note that for k ! 1 we have t

k

! �

e

U (0). Similar to

Eq. (20), Eq. (32) an yield results orret only to the

leading order in (n � n

0

)=n. So, it has to be solved to-

gether with Eq. (12) where n

2

0

should be replaed by n

2

,

rather than with Eq. (38). This leads to the following

relations:

n

k

=

1

2

0

�

e

T

k

+ n

e

U (k)

q

e

T

2

k

+ 2n

e

T

k

e

U (k)

� 1

1

A

; (40)

e

 (k) = �

e

U (k)

2

q

e

T

2

k

+ 2n

e

T

k

e

U (k)

; (41)

where

e

T

k

= T

k

+ nt

k

, with the limit

e

T

k

=T

k

! 1 at k !

1. For k ! 0 Eq. (40) gives n

k

' (

q

nm

e

U (0)=�hk�1)=2,

whih is fully onsistent with the \1=k

2

" theorem of Bo-

goliubov for the zero temperature [10℄.

As one an see, the strong{oupling regime is more

ompliated than the Bogoliubov one beause we do not

know the quantity

e

U (k) ab initio. To �nd it, one should

solve Eqs. (33) and (41) in a self{onsistent manner.
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Equations (33) and (41) lead to one more interesting

relation

e

U (k) =

e

�(k)�

1

2

Z

d

3

q

(2�)

3

e

�(jk� qj)

e

U (q)

q

e

T

2

q

+ 2n

e

T

q

e

U (q)

(42)

whih an be alled the in{mediumLippmann{Shwinger

equation for the sattering amplitude. To obtain the ex-

pansion for the energy at low densities, we must solve

Eq. (42) at n! 0. Let us rewrite it in the form

e

U (k) =

e

�(k) �

1

2

Z

d

3

q

(2�)

3

e

�(jk� qj)

e

U (q)

T

q

� I

1

;

where for I

1

we have

I

1

=

1

2

Z

d

3

q

(2�)

3

8

<

:

e

�(jk� qj)

e

U (q)

q

e

T

2

q

+ 2n

e

T

q

e

U (q)

�

e

�(jk� qj)

e

U(q)

T

q

9

=

;

:

Operating with I

1

in the same manner as we dealt with

I in setion III and taking into aount that t

k

= 0 at

k = 0, for n! 0 we derive

I

1

= ��

e

�(k); � =

p

nm

3

�

2

�h

3

e

U

3=2

(0): (43)

From Eqs. (42) and (43) it now follows that

e

U (k)�

e

U

(0)

(k) = �

e

�(k) (44)

�

Z

d

3

q

(2�)

3

e

�(jk� qj)

2T

q

�

e

U (q)�

e

U

(0)

(q)

�

:

Here

e

U

(0)

(k) =

R

'

(0)

(r)�(r) exp(�ikr)d

3

r but now

'

(0)

(r) obeys Eq. (35) rather than Eq. (21) taken in the

limit n ! 0 like in the setion III. Let us introdue the

new quantity

e

�(q) = �(

e

U (q) �

e

U

(0)

(q))=2T

q

. Then, for

its Fourier transform �(r) we obtain

�

�h

2

m

r

2

�

�+ �(r)

�

+�(r)

�

�+ �(r)

�

= 0; (45)

here �(r) ! 0 when r ! 1. Comparing Eq. (45) with

Eq. (35), we �nd �(r) = � 

(0)

(r). Hene, for n ! 0 we

have

e

U (k) '

e

U

(0)

(k)

�

1 + (k; n)

8

p

�

p

na

3

�

: (46)

Here (k; n) ! 1 when n ! 0. Besides, the relation

e

U

(0)

(0) = 4��h

2

a=m is used in Eq. (46), where a is the

sattering length.

Having in our disposal Eq. (46), we are able to alu-

late the expansion in powers of n for the ondensate de-

pletion and energy of a dilute Bose gas with an arbitrary

strong interpartile potential. Considering the onden-

sate depletion (n � n

0

)=n = 1=(2�)

3

R

+1

0

dk 4�k

2

n

k

=n,

with the help of Eq. (40) we obtain

n� n

0

n

=

8

3

p

�

p

na

3

+ � � � : (47)

Notie that aording to Eq. (46) one an expet that

among the omitted terms in Eq. (47) there is one pro-

portional to na

3

.

The most simple way of deriving the expansion for the

mean energy per partile is based on using the hemial

potential whih, in the presene of the Bose ondensate,

is given by

� =

1

p

n

0

Z

d

3

r

0

�(jr� r

0

j)h 

y

(r

0

) (r

0

) (r)i: (48)

This formula follows from the well{known expression

Æ
 = hÆ

�

^

H � �

^

N

�

i; where Æ
 is an in�nitesimal hange

of the grand anonial potential, and relation (see Ref.

[10℄)

�
(N

0

; �; T )

�N

0

= 0:

Using the spei� expressions for the sattering parts

of the ondensate{ondensate and supraondensate{

ondensate pair wave funtions [4℄ given by Eqs. (5) and

(6) one an represent Eq. (48) in the following form:

� = n

0

e

U (0) +

p

2

Z

d

3

q

(2�)

3

n

q

e

U

q=2

(q=2); (49)

here

e

U

p

(k) =

Z

'

p

(r)�(r) exp(�ikr)d

3

r:

Now, for n ! 0 (see the proedure of alulating the

integral I in setion II one an rewrite Eq. (49) as

� = n

e

U (0)

�

1 +

n� n

0

n

+ � � �

�

: (50)

Inserting Eqs. (46) and (47) into Eq. (50), we arrive at

� =

4��h

2

an

m

�

1 +

32

3

p

�

p

na

3

+ � � �

�

: (51)

This result for the hemial potential implies, due to the

basi thermodynami formula � = �("n)=�n, the follow-

ing expansion for the mean energy per partile:

" =

2��h

2

an

m

�

1 +

128

15

p

�

p

na

3

+ � � �

�

: (52)
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Relation (52) oinides with the well{known result of

the approah in [2℄ redued to the Bogoliubov model

with the \dressed" interation. It is not a surprise be-

ause aording to the onlusions of setion II, we know

that the numerial fator 128=(15

p

�) appears in the se-

ries expansion for the mean energy per partile within

the Bogoliubov model (see Eq. (29)). Replaing the bare

interation potential by the \dressed" one results in re-

plaing the sattering length a

B

in Eq.(29) by its exat

value a. The only problem of doing so onerns the pa-

rameter b. Indeed, it follows from Eq. (28) that substi-

tuting the hard{sphere potential

e

U(0) = 4��h

2

a=m for

e

�(k) leads to the familiar divergeny (see, e.g. Ref. [8℄,

p. 314). This obstale has been overome with the help of

the well{known argument of Landau (see the footnote in

the paper [1℄) stating that the thermodynamis of dilute

quantum gases is only ruled by the vauum sattering

amplitude. Aording to this reasoning one an expet

that the dependene on the shape of the interation po-

tential should not appear in the �rst orders of the den-

sity series expansion of the thermodynami quantities.

So, various regularizing proedures, more or less speu-

lative, have been worked out in order to exlude this di-

vergene (together with parameter b). On the ontrary,

there are no problems like this within the approah of

the present paper. Here Eq. (52) is derived on the solid

theoretial basis rather than with the help of Landau's

argument. In spite of its reasonable harater, it needed

to be orroborated, and the results of this paper given

by Eqs. (47), (50) and (52) have proved the validity of

Landau's argument beyond any inonsistenies and di-

vergenies. In the weak{oupling ase when j�(r)j � 1,

the energy per partile alulated within our sheme is

expressed by Eq. (52) with a replaed by a

B

. So, the ap-

pearane of the parameter b in the results of setion II

is an artefat following from the neglet of sattering in

the supraondensate{ondensate pair wave hannel.

The divergene mentioned in the previous paragraph

is not typial of the strong{oupling perturbation the-

ory for the many{boson systems but results from, say,

the weak{oupling spirit of the approah of Ref. [2℄. A

simple way to be onvined of this is to onsider the spa-

tial boson orrelations. Taken to the lowest{order with

respet to the density, the strutural fator (see the last

paper in Ref. [2℄) is of the form

S(k) =

T

k

q

T

2

k

+ 2nT

k

e

U

(0)

(k)

: (53)

By de�nition we have

g(r) = 1 +

1

n

Z

d

3

k

(2�)

3

(S(k) � 1) exp(ikr): (54)

Using Eqs. (53) and (54), for n! 0 one an readily �nd

g(r)! 1 + 2 

(0)

(r); (55)

where  

(0)

(r) obeys Eq. (35). This result answers ap-

proximation (11) while  

(0)

(r) is not related to the weak{

oupling regime and obeys the exat \bare" Shr�odinger

equation. In the situation �(r) ! 1 for r ! 0 one has

 

(0)

(r = 0) = �1, whih implies, aording to Eq. (55),

g(r = 0) ! �1 for n ! 0: It is not onsistent with the

physial sense of g(r) and has nothing to do with the

strong{oupling ase orresponding to Eq. (31) when for

n! 0

g(r)! (1 +  

(0)

(r))

2

:

Notie that the zero{density limits for the thermody-

nami quantities of a strongly interating dilute Bose gas

were �rst found in the Bogoliubov original paper [1℄:

(n � n

0

)=n! 0; g(r)! ('

(0)

(r))

2

; "=n!

e

U

(0)

(0)=2:

At last, we remark that due to the inorret piture of

the spatial boson orrelations found in papers [2℄, one

an expet signi�ant alterations for the spetrum of the

elementary exitations too. However, to larify these or-

retions we should onlusively solve the problem on-

erning relation between the momentumdistribution and

sattering parts of the pair wave funtions. Indeed, it

has been mentioned that there exist various possibili-

ties of generalizing Eq. (12) so as to obtain the equa-

tion for

e

 

p

(k) redued to the equation for

e

 (k) in the

limit p! 0: These possibilities result in the same series

expansions for the thermodynami quantities (47), (51)

and (52) but produe di�erent data for the long{range

spatial boson orrelations. Here we limited ourselves to

onsidering the most simple variant of generalizing Eq.

(12), whih makes it possible to investigate only the ther-

modynamis of a strongly interating Bose gas. The in-

teresting and important problem of the spetrum of the

elementary exitations is thus beyond the sope of this

paper and will be the subjet of future investigations.

V. CONCLUSION

Conluding, let us take notie of the important

points of this paper one more. It was demonstrated

that thermodynamially onsistent alulations based

on Eqs. (11) and (12) onlusively result in Eqs. (20){

(22). Therefore, using the Bogoliubov model with the

\dressed" interation does not provide the satisfatory

solution of the problem of the strong{oupling Bose gas.

As it was shown, when investigating this subjet, one

should go beyond the Bogoliubov sheme. To do this,

we developed the approah redued to the system of

Eqs. (33), (39), (40) and (41). These equations leading

to the in{medium Lippmann{Shwinger equation (42),

reprodue the familiar results (47), (50) and (52) for the

ondensate depletion, hemial potential and mean en-

ergy but yield a ompletely di�erent piture of the spa-

tial boson orrelations. This di�erene should manifest

itself in the next orders of the density series expansions
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for the thermodynami quantities and in the exitation

spetrum as well.
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DO UZAGAL^NENN� MODEL� BOGOL�BOVA NA VIPADOK SIL^NOGO ZV'�ZKU
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1

, A. A. Xanenko

2
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Laborator�� ne�tronnoÝ f�ziki �m. Franka, Ob'dnani� �nstitut �dernih dosl�d�en~

141980, Dubna, Moskovs~ka obl., Ros��

2

Laborator�� teoretiqnoÝ f�ziki �m. Bogol�bova, Ob'dnani� �nstitut �dernih dosl�d�en~

141980, Dubna, Moskovs~ka obl., Ros��

V�dom� rezul~tati pro rozr�d�eni� boze{gaz z korotkos��no� v�dxtovhuval~no� vzamod�� vimaga�t~

peregl�du qerez termodinam�qnu neposl�dovn�st~ metodu, �ki� znaqno� m�ro� sklada osnovu s~ogodn�x-

n~ogo rozum�nn� ~ogo �viwa, a tako� qerez neadekvatnu poved�nku parnoÝ funk�Ý rozpod�lu na malih

m��bozonnih v�ddal�h. Statt� poda novi� pogl�d na rozr�d�eni� boze{gaz z� vzamod�� dov�l~noÝ sili,

vikoristovu�qi zvedenu matri� gustini drugogo por�dku ta var����nu proeduru. Taki� p�dh�d dozvo-

l� uniknuti zgadanoÝ neposl�dovnosti ta operuvati sin�ul�rnimi poten��lami, takimi, �k poten��l

Lennarda{D�onsa. Uves~ rozgl�d stosut~s� nul~ovoÝ temperaturi.
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