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The well{known results 
on
erning a dilute Bose gas with the short{range repulsive intera
tion

should be re
onsidered due to a thermodynami
 in
onsisten
y of the method as basi
 to mu
h of the

present understanding of this subje
t and nonrelevant behaviour of the pair distribution fun
tion at

small boson separations. The aim of our paper is to propose a new way of treating the dilute Bose

gas with an arbitrary strong intera
tion. Using the redu
ed density matrix of the se
ond order and

a variational pro
edure, this way allows us to es
ape the in
onsisten
y mentioned and operate with

singular potentials like the Lennard{Jones one. All the 
onsideration 
on
erns the zero temperature.
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I. INTRODUCTION AND BASIC EQUATIONS

It is well{known that to investigate a dilute Bose

gas of parti
les with an arbitrary strong repulsion (the

strong{
oupling regime), one should go beyond the Bo-

goliubov approa
h [1℄ (the weak{
oupling 
ase) and treat

the short{range boson 
orrelations in a more a

urate

way. An ordinary manner of doing so is the use of the

Bogoliubov model with the \dressed", or e�e
tive, inter-

a
tion potential 
ontaining \information" on the short{

range boson 
orrelations (see Ref. [2℄). Below it is demon-

strated that this manner leads to a loss of the thermody-

nami
 
onsisten
y. To over
ome this trouble, we propose

a new way of investigating the strong{
oupling regime

whi
h 
on
erns the redu
ed density matrix of the se
-

ond order (the 2{matrix) and is based on the variational

method.

The 2{matrix for the many{body system of spinless

bosons 
an be represented as [3℄:
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where the pair 
orrelation fun
tion is given by
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Here  (r) and  

y

(r) denote the boson �eld operators.

Re
ently it has been found [4,5℄ that for the uniform

system with a small depletion of the zero{momentum

state the 
orrelation fun
tion (2) 
an be written in the

thermodynami
 limit as follows:
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where r = r

1

� r

2

; R = (r

1

+ r

2

)=2 and similar rela-

tions take pla
e for r

0

and R

0

, respe
tively. In Eq. (3)

n

0

= N

0

=V is the density of the parti
les in the zero{

momentum state, n

q

= ha

y

q

a

q

i stands for the distribu-

tion of the un
ondensed bosons over momenta. Besides,

'(r) is the wave fun
tion of a pair of parti
les being

both 
ondensed. In turn, '

q=2

(r) denotes the wave fun
-

tion of the relative motion in a pair of bosons with the

total momentum �hq, this pair in
luding one 
ondensed

and one un
ondensed parti
le. So, Eq. (3) takes into a
-


ount the 
ondensate{
ondensate and supra
ondensate{


ondensate pair states and is related to the situation of a

small depletion of the zero{momentum one{boson state.

For the wave fun
tions '(r) and '

p

(r) we have

'(r) = 1 +  (r); (4)

'
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with the boundary 
onditions  (r) ! 0 and  

p

(r) ! 0

for r !1: The fun
tions  (r) and  

p

(r) 
an expli
itly

be expressed in terms of the Bose operators a

y
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and a

p

[4℄:
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Having in our disposal the distribution fun
tion n

k

and

the set of the pair wave fun
tions '(r) and '

p

(r), we

are able to 
al
ulate the main thermodynami
 quantities

of the system of interest. In parti
ular, the mean energy

per parti
le is expressed in terms of n

k

and g(r) via the

well{known formula
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where T
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=2m is the one{parti
le kineti
 energy,

n = N=V stands for the boson density and the relation
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: (8)

is valid for the pair distribution fun
tion g(r).

II. THE BOGOLIUBOV MODEL

The starting point of our investigation is the weak{


oupling regime whi
h implies weak spatial 
orrelations

of parti
les and, thus, is 
hara
terized by the set of the

inequalities

j (r)j � 1; j 

p

(r)j � 1 : (9)

Spe
i�
ally, the Bogoliubov model 
orresponds to the


hoi
e [4,5℄

j (r)j � 1;  

p

(r) = 0 : (10)

Besides, owing to a small depletion of the Bose 
onden-

sate (n�n
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)=n we have for the one{parti
le density ma-
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So, investigating the Bose gas within the Bogoliubov

s
heme, we have two small quantities:  (r) and F

1

(r)=n.

This enables us to write Eq. (8) with the help of (3) as

follows:

g(r) = 1 + 2 (r) +

2

n

Z
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exp(ikr); (11)

where we restri
ted ourselves to the terms linear in  (r)

and F

1

(r)=n and put  

�

(r) =  (r) be
ause the pair wave

fun
tions 
an be 
hosen as real quantities. Equations

for

e

 (k) and n

k


an be found varying the mean energy

(7) with Eq. (11) taken into a

ount. However, before

that one should realize an important point, namely: n

k

and

e

 (k) 
annot be independent variables. Indeed, when

there is no intera
tion between parti
les, there are no

spatial parti
le 
orrelations either. So,

e

 (k) = 0 and,

sin
e the zero{temperature 
ase is 
onsidered, all the

bosons are 
ondensed, n

k

= 0. While \swit
hing on"

the intera
tion results in appearing the spatial 
orrela-

tions and 
ondensate depletion:

e

 (k) 6= 0 together with

n

k

6= 0. In the framework of the Bogoliubov s
heme
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by the expression
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Indeed, the 
anoni
al Bogoliubov transformation [1℄ im-

plies that
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At zero temperature h�
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With Eqs. (14) and (15) one 
an readily obtain Eq. (12).

Now, let us show that all the results on the thermo-

dynami
s of a weak{
oupling Bose gas 
an be derived

for the Bogoliubov s
heme with variation of the mean

energy (7) under the 
onditions (11) and (12). Inserting

Eq. (11) into Eq. (7) and, then, varying the obtained

expression, we arrive at
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Relation (12) 
onne
ting

e

 (k) with n
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is taken into 
onsideration. Setting Æ" = 0 and using

Eqs. (16) and (17), we derive the following expression:

�2T

k

e

 (k) =

n

2

n

2

0

e

�(k)(1 + 2n

k

) (19)

+ 2n

e

 (k)

�

e

�(k) +

n

n

0

Z

d

3

q

(2�)

3

e

�(q)

e

 (q)

�

:

273



A. YU. CHERNY, A. A. SHANENKO

Here one should realize that Eq. (19) is able to yield a
-


urate results only to the leading order in (n � n

0

)=n

be
ause the used expression for g(r) given by Eq. (11) is

valid to the next{to{leading order [6℄. So, Eq. (19) should

be rewritten as

�2T

k

e

 (k) =

e

�(k)(1 + 2n

k

) + 2n

e

 (k)�(k): (20)

Equation (20) is an equation of the Bethe{Goldstone

type or, in other words, the in{medium S
hr�odinger

equation for the pair wave fun
tion. As 2

e

�(k)(n

k

+

n

e

 (k)) is the produ
t of the Fourier transforms of �(r)

and n(g(r) � 1), we 
an rewrite Eq. (20) in a more 
us-

tomary form
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The stru
ture of Eq. (21) is dis
ussed in the papers [5,7℄.

Here we only remark that the right{hand side (r.h.s.)

of Eq. (21) is the in{medium potential of the boson{

boson intera
tion in the weak{
oupling approximation.

The system of equations (12) and (20) 
an easily be

solved, whi
h leads to the familiar results [1℄:
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III. A DILUTE BOSE GAS WITHIN THE

BOGOLIUBOV MODEL

As already mentioned, the aim of our paper lies in in-

vestigating the 
ase of a dilute Bose gas with an arbitrary

strong repulsion between bosons. So, 
onsidering a dilute

Bose gas in the weak{
oupling approximation 
an be a

good exer
ise providing us with useful information. Let

us investigate the thermodynami
s of a dilute Bose gas

within the Bogoliubov model. With Eqs. (7), (11) and

(22) we derive
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The well{known argument of Landau (see the footnote

in Ref. [1℄ and dis
ussion in Ref. [2℄) testi�es that the

properties of dilute quantum gases are ruled by the s
at-

tering length. Within the Bogoliubov model this length

is usually assumed to be equal to m

e

�(0)=4��h

2

. If so,

when expanding " in powers of the boson density n, one


ould repla
e

e

�(k) by

e

�(0) in Eq. (23), introdu
ing the

low{momentum approximation. However, this leads to

a divergen
y be
ause at large k the integrand behaves

as �n
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e
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k

. To properly 
al
ulate the integral in

Eq. (23), we should rewrite Eq. (23) in the following

form:
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Now, substituting k = (2mny)

1=2

=�h in the integral, we

obtain the expression
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The derived integral is readily 
al
ulated. The result is

given by

I =

8

15�
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In turn, the �rst term in the r.h.s. of Eq. (24) 
an be

represented as
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where '

(0)

is the solution of Eq. (21) in the limit n! 0.

This is nothing else but the S
hr�odinger equation in the
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Born approximation. A

ording to relations (25) and

(26) we have to 
on
lude that the s
attering length in

the 
ase of interest is expressed in the form

a

B

=

m

4��h

2

Z

'
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(r)�(r)d

3

r: (27)

One 
an easily be 
onvin
ed that

e

�(0) 
annot be repre-

sented only in terms of a

B

and, hen
e, the dependen
e

on the shape of the intera
tion potential appears in the

series expansion for the mean energy in the �rst 
orre
-

tion to the term 2��h

2

a

B

n=m. To rewrite our result for "

in a graphi
 form, we introdu
e one more 
hara
teristi


length b > 0 whi
h obeys the relation
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where  

(0)

(r) = '
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(r) � 1. Further, with the help of

Eqs. (24)-(28), we arrive at
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here the 
ondition b � a

B

is of use. It is not diÆ
ult

to see that the expression (28) taken with negative sign

is the next 
orre
tion to the s
attering length 
al
ulated

within the Born approximation. As for Eq. (27), it is re-

lated to the next{to{Born approximation. Note that in

the Bogoliubovmodel the energy term n

e

�(0)=2 is treated

as the major one [1℄, whi
h implies that the 
ondition

b� a

B

is ful�lled. This qualitative 
riterion 
an be writ-

ten as

e
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Beyond this inequality the model may be thermodynam-

i
ally unstable. In parti
ular, the opposite 
ase

e
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leads to the negative s
attering length (27) whi
h at suÆ-


iently low densities results in ��

2

E=�V

2

= �p=�V > 0.

Thus, investigated within the Bogoliubov model, the

thermodynami
s of a dilute Bose gas is ruled by the s
at-

tering length only in the zero{density limit. While the

next{to{leading term in the series expansion given by

Eq. (29) depends on the shape of the intera
tion, whi
h

is expressed in the appearan
e of the additional 
hara
-

teristi
 length b. This 
on
lusion di�ers from the results

of several papers [2℄ a

ording to whi
h the series expan-

sion for " taken to the same order as that of Eq. (29), is

fully determined by the s
attering length. To 
larify the

situation 
on
erning this di�eren
e, we should go to the

strong{
oupling regime.

IV. THE STRONG{COUPLING REGIME

Now, after the detailed investigations of the Bogoli-

ubov model within the s
heme proposed, we are able

to demonstrate that the investigation of the strong{


oupling 
ase based on the Bogoliubov model with the

e�e
tive boson{boson intera
tion, results in a loss of the

thermodynami
 
onsisten
y. Indeed, as shown in the pre-

vious se
tion, any 
al
ulating s
heme using the basi
 re-

lations of the Bogoliubov model (11), (12) 
on
lusively

leads to Eqs. (20){(22) provided this s
heme does yield

the minimum of the mean energy. In this 
ase Eqs. (20){

(22) 
ertainly in
ludes the quantity �(r) whi
h is the

\bare" intera
tion potential appearing in Eq. (7). The

use of the Bogoliubov model with the e�e
tive intera
-

tion potential substituted for �(r) 
an in no way disturb

the relations given by Eqs. (11) and (12). And Eq. (7) is

the same in both the weak{ and strong{
oupling regimes.

Thus, any attempts of repla
ing �(r) by the e�e
tive

\dressed" potential without modi�
ations of Eqs. (11)

and (12) results in a 
al
ulating pro
edure whi
h does

not really provide the minimumof the mean energy. It is

nothing else but a loss of the thermodynami
 
onsisten
y.

We remark that we do not mean, of 
ourse, that the t{

matrix approa
h or the pseudopotential method 
annot

be applied in the quantum s
attering problem. It is only

stated that the usual way of 
ombining the ladder dia-

grams with the random phase approximation fa
es the

trouble mentioned above. Though our present investiga-

tion is limited to the 
onsideration of the many{boson

systems, the derived result gives a hint that a similar

situation is likely to take pla
e in the Fermi 
ase, too. In

this 
onne
tion it is worth noting the problem asso
iated

with the la
k of self{
onsisten
y of the standard method

of treating the dilute Fermi gas [8℄.

The strong{
oupling regime is 
hara
terized by sig-

ni�
ant spatial 
orrelations. So, Eq. (10) resulting in

Eq. (11) is not relevant for an arbitrary strong repul-

sion between bosons at small separations when we have

 (0) = �1;  

p

(0) = �

p

2 (see Refs. [4,5℄). There-

fore, to investigate the strong{
oupling regime, Eq. (11)

should be abandoned in favour of Eq. (3). Expression (3)

is a

urate to the next{to{leading order in (n � n

0

)=n.

So, using Eqs. (3) and (8), we 
an write

g(r) = '

2

(r) +

2

n
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�

: (31)

Let us now perturb

e

 (k) and n(k). Working to the �rst

order in the perturbation and keeping in mind 
onditions

(12) and (31), from Eq. (7) we derive:
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with

e
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r (33)

and
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Using Eqs. (33), (34) as well as the relation  

k

(r) !

p

2 (r) (k ! 0) (see boundary 
onditions (4)) [9℄,

we obtain

e

U (0) 6=

e

U

0

(0): This implies that the sys-

tem of Eqs. (12) and (32) 
annot to yield the relation

n

k

/ 1=k (k ! 0) following from the \1=k

2

" theorem

of Bogoliubov for the zero temperature [10℄. Indeed, let

us assume n

k

! 1 for k ! 0: Then, from Eq. (12) at

n = n

0

we �nd nj

e

 (k)j=n

k

! 1 when k ! 0: On the


ontrary, Eq. (32) gives nj

e

 (k)j=n

k

!

e

U (0)=

e

U

0

(0) 6= 1

for k ! 0: So, 
onsideration of the Bose gas based on

Eqs. (3) and (12) does not produ
e satisfa
tory results.

Nevertheless, it is worth noting that Eq. (32) has an im-

portant pe
uliarity whi
h di�erentiates it from Eq. (20)

in an advantageous way. The point is that in both the

limits n! 0 and k!1 Eq. (32) is redu
ed to

�

�h

2

m

r

2

'(r) + �(r)'(r) = 0: (35)

As one 
an see, this is the exa
t \bare" (not in{medium)

S
hr�odinger equation, other than its Born approximation

following from Eq. (21). Thus, we 
an expe
t the line of

our investigation to be right.

As we have shown in the previous paragraph, an ap-

proa
h adequate for a dilute Bose gas with an arbitrary

strong intera
tion 
an not be 
onstru
ted without mod-

i�
ations of Eq. (12). This is also in agreement with a


onsequen
e of the relation

jha

k

a

�k

ij

2

� ha

k

a

y

k

iha

y

�k

a

�k

i (36)

resulting from the inequality of Cau
hy{S
hwarz{

Bogoliubov [10℄

jh

b

A

b

Bij

2

� h

b

A

b

A

y

ih

b

B

y

b

Bi:

With Eqs. (5) and (36) one 
an easily derive n

2

0

e

 

2

(k) �

n

k

(n

k

+1). Thus, it is reasonable to assume that Eq. (12)

takes into a

ount only the 
ondensate{
ondensate 
han-

nel and ignores the supra
ondensate{
ondensate ones.

Now the question arises how to �nd 
orre
tions to the

r.h.s. of Eq. (12). At present we have no regular pro
e-

dure allowing us to do this in any order of (n � n

0

)=n.

However, there exists an argument whi
h makes it possi-

ble to realize the �rst step in this dire
tion. The matter

is that the alterations needed have to produ
e the equa-

tion for

e

 

p

(k) whi
h is redu
ed to the equation for

e

 (k)

in the limit p ! 0: Though this requirement does not

uniquely determine the 
orre
tions to Eq. (12), it turns

out to be signi�
antly restri
tive. In parti
ular, even the

simplest variant of 
orre
ting Eq. (12) in this way, leads

to promising results. Indeed, this variant is spe
i�ed by

the expression

n

k

(n

k

+ 1) = n

2

0

e

 

2

(k) + 2n

0

Z

d

3

q

(2�)

3

n

q

e

 

2

q=2

(k): (37)

Eq. (37) is valid to the next{to{leading order in (n �

n

0

)=n. So, we may rewrite it as

n

k

(n

k

+ 1) = n

2

e

 

2

(k) + 2n

Z

d

3

q

(2�)

3

n

q

�

e

 

2

q=2

(k) �

e

 

2

(k)

�

:

(38)

Perturbing

e

 (k) and n

k

and bearing in mind 
onditions

(31) and (38), Eq. (7) gives Eq. (32) again. However, now

e

U

0

(k) obeys the new relation

e

U

0

(k) =

Z

�

'

2

k=2

(r)� '

2

(r)

�

�(r) d

3

r (39)

�

Z

d

3

q

(2�)

3

e

U (q)

�

e

 

2

k=2

(q)�

e

 

2

(q)

�

e

 (q)

whi
h signi�
antly di�ers from Eq. (34). Indeed, the


hoi
e of the pair wave fun
tions as real quantities im-

plies that operating with integrands in Eqs. (33) and

(39), one 
an exploit  

p

(r)�

p

2 (r) / p

2

at small p [11℄.

For k ! 0 this provides

e

U

0

(k)�

e

U (k) = t

k

= 
 k

4

+ � � �.

Note that for k ! 1 we have t

k

! �

e

U (0). Similar to

Eq. (20), Eq. (32) 
an yield results 
orre
t only to the

leading order in (n � n

0

)=n. So, it has to be solved to-

gether with Eq. (12) where n

2

0

should be repla
ed by n

2

,

rather than with Eq. (38). This leads to the following

relations:

n

k

=

1

2

0

�

e

T

k

+ n

e

U (k)

q

e

T

2

k

+ 2n

e

T

k

e

U (k)

� 1

1

A

; (40)

e

 (k) = �

e

U (k)

2

q

e

T

2

k

+ 2n

e

T

k

e

U (k)

; (41)

where

e

T

k

= T

k

+ nt

k

, with the limit

e

T

k

=T

k

! 1 at k !

1. For k ! 0 Eq. (40) gives n

k

' (

q

nm

e

U (0)=�hk�1)=2,

whi
h is fully 
onsistent with the \1=k

2

" theorem of Bo-

goliubov for the zero temperature [10℄.

As one 
an see, the strong{
oupling regime is more


ompli
ated than the Bogoliubov one be
ause we do not

know the quantity

e

U (k) ab initio. To �nd it, one should

solve Eqs. (33) and (41) in a self{
onsistent manner.
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Equations (33) and (41) lead to one more interesting

relation

e

U (k) =

e

�(k)�

1

2

Z

d

3

q

(2�)

3

e

�(jk� qj)

e

U (q)

q

e

T

2

q

+ 2n

e

T

q

e

U (q)

(42)

whi
h 
an be 
alled the in{mediumLippmann{S
hwinger

equation for the s
attering amplitude. To obtain the ex-

pansion for the energy at low densities, we must solve

Eq. (42) at n! 0. Let us rewrite it in the form

e

U (k) =

e

�(k) �

1

2

Z

d

3

q

(2�)

3

e

�(jk� qj)

e

U (q)

T

q

� I

1

;

where for I

1

we have

I

1

=

1

2

Z

d

3

q

(2�)

3

8

<

:

e

�(jk� qj)

e

U (q)

q

e

T

2

q

+ 2n

e

T

q

e

U (q)

�

e

�(jk� qj)

e

U(q)

T

q

9

=

;

:

Operating with I

1

in the same manner as we dealt with

I in se
tion III and taking into a

ount that t

k

= 0 at

k = 0, for n! 0 we derive

I

1

= ��

e

�(k); � =

p

nm

3

�

2

�h

3

e

U

3=2

(0): (43)

From Eqs. (42) and (43) it now follows that

e

U (k)�

e

U

(0)

(k) = �

e

�(k) (44)

�

Z

d

3

q

(2�)

3

e

�(jk� qj)

2T

q

�

e

U (q)�

e

U

(0)

(q)

�

:

Here

e

U

(0)

(k) =

R

'

(0)

(r)�(r) exp(�ikr)d

3

r but now

'

(0)

(r) obeys Eq. (35) rather than Eq. (21) taken in the

limit n ! 0 like in the se
tion III. Let us introdu
e the

new quantity

e

�(q) = �(

e

U (q) �

e

U

(0)

(q))=2T

q

. Then, for

its Fourier transform �(r) we obtain

�

�h

2

m

r

2

�

�+ �(r)

�

+�(r)

�

�+ �(r)

�

= 0; (45)

here �(r) ! 0 when r ! 1. Comparing Eq. (45) with

Eq. (35), we �nd �(r) = � 

(0)

(r). Hen
e, for n ! 0 we

have

e

U (k) '

e

U

(0)

(k)

�

1 + 
(k; n)

8

p

�

p

na

3

�

: (46)

Here 
(k; n) ! 1 when n ! 0. Besides, the relation

e

U

(0)

(0) = 4��h

2

a=m is used in Eq. (46), where a is the

s
attering length.

Having in our disposal Eq. (46), we are able to 
al
u-

late the expansion in powers of n for the 
ondensate de-

pletion and energy of a dilute Bose gas with an arbitrary

strong interparti
le potential. Considering the 
onden-

sate depletion (n � n

0

)=n = 1=(2�)

3

R

+1

0

dk 4�k

2

n

k

=n,

with the help of Eq. (40) we obtain

n� n

0

n

=

8

3

p

�

p

na

3

+ � � � : (47)

Noti
e that a

ording to Eq. (46) one 
an expe
t that

among the omitted terms in Eq. (47) there is one pro-

portional to na

3

.

The most simple way of deriving the expansion for the

mean energy per parti
le is based on using the 
hemi
al

potential whi
h, in the presen
e of the Bose 
ondensate,

is given by

� =

1

p

n

0

Z

d

3

r

0

�(jr� r

0

j)h 

y

(r

0

) (r

0

) (r)i: (48)

This formula follows from the well{known expression

Æ
 = hÆ

�

^

H � �

^

N

�

i; where Æ
 is an in�nitesimal 
hange

of the grand 
anoni
al potential, and relation (see Ref.

[10℄)

�
(N

0

; �; T )

�N

0

= 0:

Using the spe
i�
 expressions for the s
attering parts

of the 
ondensate{
ondensate and supra
ondensate{


ondensate pair wave fun
tions [4℄ given by Eqs. (5) and

(6) one 
an represent Eq. (48) in the following form:

� = n

0

e

U (0) +

p

2

Z

d

3

q

(2�)

3

n

q

e

U

q=2

(q=2); (49)

here

e

U

p

(k) =

Z

'

p

(r)�(r) exp(�ikr)d

3

r:

Now, for n ! 0 (see the pro
edure of 
al
ulating the

integral I in se
tion II one 
an rewrite Eq. (49) as

� = n

e

U (0)

�

1 +

n� n

0

n

+ � � �

�

: (50)

Inserting Eqs. (46) and (47) into Eq. (50), we arrive at

� =

4��h

2

an

m

�

1 +

32

3

p

�

p

na

3

+ � � �

�

: (51)

This result for the 
hemi
al potential implies, due to the

basi
 thermodynami
 formula � = �("n)=�n, the follow-

ing expansion for the mean energy per parti
le:

" =

2��h

2

an

m

�

1 +

128

15

p

�

p

na

3

+ � � �

�

: (52)
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Relation (52) 
oin
ides with the well{known result of

the approa
h in [2℄ redu
ed to the Bogoliubov model

with the \dressed" intera
tion. It is not a surprise be-


ause a

ording to the 
on
lusions of se
tion II, we know

that the numeri
al fa
tor 128=(15

p

�) appears in the se-

ries expansion for the mean energy per parti
le within

the Bogoliubov model (see Eq. (29)). Repla
ing the bare

intera
tion potential by the \dressed" one results in re-

pla
ing the s
attering length a

B

in Eq.(29) by its exa
t

value a. The only problem of doing so 
on
erns the pa-

rameter b. Indeed, it follows from Eq. (28) that substi-

tuting the hard{sphere potential

e

U(0) = 4��h

2

a=m for

e

�(k) leads to the familiar divergen
y (see, e.g. Ref. [8℄,

p. 314). This obsta
le has been over
ome with the help of

the well{known argument of Landau (see the footnote in

the paper [1℄) stating that the thermodynami
s of dilute

quantum gases is only ruled by the va
uum s
attering

amplitude. A

ording to this reasoning one 
an expe
t

that the dependen
e on the shape of the intera
tion po-

tential should not appear in the �rst orders of the den-

sity series expansion of the thermodynami
 quantities.

So, various regularizing pro
edures, more or less spe
u-

lative, have been worked out in order to ex
lude this di-

vergen
e (together with parameter b). On the 
ontrary,

there are no problems like this within the approa
h of

the present paper. Here Eq. (52) is derived on the solid

theoreti
al basis rather than with the help of Landau's

argument. In spite of its reasonable 
hara
ter, it needed

to be 
orroborated, and the results of this paper given

by Eqs. (47), (50) and (52) have proved the validity of

Landau's argument beyond any in
onsisten
ies and di-

vergen
ies. In the weak{
oupling 
ase when j�(r)j � 1,

the energy per parti
le 
al
ulated within our s
heme is

expressed by Eq. (52) with a repla
ed by a

B

. So, the ap-

pearan
e of the parameter b in the results of se
tion II

is an artefa
t following from the negle
t of s
attering in

the supra
ondensate{
ondensate pair wave 
hannel.

The divergen
e mentioned in the previous paragraph

is not typi
al of the strong{
oupling perturbation the-

ory for the many{boson systems but results from, say,

the weak{
oupling spirit of the approa
h of Ref. [2℄. A

simple way to be 
onvin
ed of this is to 
onsider the spa-

tial boson 
orrelations. Taken to the lowest{order with

respe
t to the density, the stru
tural fa
tor (see the last

paper in Ref. [2℄) is of the form

S(k) =

T

k

q

T

2

k

+ 2nT

k

e

U

(0)

(k)

: (53)

By de�nition we have

g(r) = 1 +

1

n

Z

d

3

k

(2�)

3

(S(k) � 1) exp(ikr): (54)

Using Eqs. (53) and (54), for n! 0 one 
an readily �nd

g(r)! 1 + 2 

(0)

(r); (55)

where  

(0)

(r) obeys Eq. (35). This result answers ap-

proximation (11) while  

(0)

(r) is not related to the weak{


oupling regime and obeys the exa
t \bare" S
hr�odinger

equation. In the situation �(r) ! 1 for r ! 0 one has

 

(0)

(r = 0) = �1, whi
h implies, a

ording to Eq. (55),

g(r = 0) ! �1 for n ! 0: It is not 
onsistent with the

physi
al sense of g(r) and has nothing to do with the

strong{
oupling 
ase 
orresponding to Eq. (31) when for

n! 0

g(r)! (1 +  

(0)

(r))

2

:

Noti
e that the zero{density limits for the thermody-

nami
 quantities of a strongly intera
ting dilute Bose gas

were �rst found in the Bogoliubov original paper [1℄:

(n � n

0

)=n! 0; g(r)! ('

(0)

(r))

2

; "=n!

e

U

(0)

(0)=2:

At last, we remark that due to the in
orre
t pi
ture of

the spatial boson 
orrelations found in papers [2℄, one


an expe
t signi�
ant alterations for the spe
trum of the

elementary ex
itations too. However, to 
larify these 
or-

re
tions we should 
on
lusively solve the problem 
on-


erning relation between the momentumdistribution and

s
attering parts of the pair wave fun
tions. Indeed, it

has been mentioned that there exist various possibili-

ties of generalizing Eq. (12) so as to obtain the equa-

tion for

e

 

p

(k) redu
ed to the equation for

e

 (k) in the

limit p! 0: These possibilities result in the same series

expansions for the thermodynami
 quantities (47), (51)

and (52) but produ
e di�erent data for the long{range

spatial boson 
orrelations. Here we limited ourselves to


onsidering the most simple variant of generalizing Eq.

(12), whi
h makes it possible to investigate only the ther-

modynami
s of a strongly intera
ting Bose gas. The in-

teresting and important problem of the spe
trum of the

elementary ex
itations is thus beyond the s
ope of this

paper and will be the subje
t of future investigations.

V. CONCLUSION

Con
luding, let us take noti
e of the important

points of this paper on
e more. It was demonstrated

that thermodynami
ally 
onsistent 
al
ulations based

on Eqs. (11) and (12) 
on
lusively result in Eqs. (20){

(22). Therefore, using the Bogoliubov model with the

\dressed" intera
tion does not provide the satisfa
tory

solution of the problem of the strong{
oupling Bose gas.

As it was shown, when investigating this subje
t, one

should go beyond the Bogoliubov s
heme. To do this,

we developed the approa
h redu
ed to the system of

Eqs. (33), (39), (40) and (41). These equations leading

to the in{medium Lippmann{S
hwinger equation (42),

reprodu
e the familiar results (47), (50) and (52) for the


ondensate depletion, 
hemi
al potential and mean en-

ergy but yield a 
ompletely di�erent pi
ture of the spa-

tial boson 
orrelations. This di�eren
e should manifest

itself in the next orders of the density series expansions
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for the thermodynami
 quantities and in the ex
itation

spe
trum as well.
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DO UZAGAL^NENN� MODEL� BOGOL�BOVA NA VIPADOK SIL^NOGO ZV'�ZKU
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1

, A. A. Xanenko
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Laborator�� ne�tronnoÝ f�ziki �m. Franka, Ob'
dnani� �nstitut �dernih dosl�d�en~

141980, Dubna, Moskovs~ka obl., Ros��

2

Laborator�� teoretiqnoÝ f�ziki �m. Bogol�bova, Ob'
dnani� �nstitut �dernih dosl�d�en~

141980, Dubna, Moskovs~ka obl., Ros��

V�dom� rezul~tati pro rozr�d�eni� boze{gaz z korotkos��no� v�dxtovhuval~no� vza
mod�
� vimaga�t~

peregl�du qerez termodinam�qnu neposl�dovn�st~ metodu, �ki� znaqno� m�ro� sklada
 osnovu s~ogodn�x-

n~ogo rozum�nn� 
~ogo �viwa, a tako� qerez neadekvatnu poved�nku parnoÝ funk
�Ý rozpod�lu na malih

m��bozonnih v�ddal�h. Statt� poda
 novi� pogl�d na rozr�d�eni� boze{gaz z� vza
mod�
� dov�l~noÝ sili,

vikoristovu�qi zvedenu matri
� gustini drugogo por�dku ta var��
��nu pro
eduru. Taki� p�dh�d dozvo-

l�
 uniknuti zgadanoÝ neposl�dovnosti ta operuvati sin�ul�rnimi poten
��lami, takimi, �k poten
��l

Lennarda{D�onsa. Uves~ rozgl�d stosu
t~s� nul~ovoÝ temperaturi.

279


