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The universal critical value g¢ of the renormalized sextic coupling constant entering the equation
of state of the two—dimensional Ising model is estimated within the renormalization—group approach.
Four-loop RG expansion for gs i1s calculated and resummed by means of the Padé-Borel-Leroy
technique. The estimated g& = 1.10 is obtained which agree quite well with that deduced recently
by Zinn, Lai, and Fisher from the high—temperature expansions.
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Although the two—dimensional (2D) Ising model in a
zero magnetic field was exactly solved by L. Onsager 55
years ago, an exact analytical description of its mag-
netized state has not been given up to now. On the
other hand, the critical behaviour of various systems
in ordering fields attracts permanent attention being of
prime interest both for theorists and experimentalists.
Recently, the free energy (effective action) and, in partic-
ular, higher—order renormalized coupling constants gog
for the basic models of phase transitions became the
target of intensive theoretical studies [1-15]. These con-
stants are related to the non—linear susceptibilities yag,
enter the scaling equation of state and thus play a very
important role at criticality. Together with critical expo-
nents and critical amplitude ratios, they are universal,
i.e. possess, under 7' — T, numerical values which are
not sensitive to the physical nature of phase transition
depending only on the system dimensionality and the
symmetry of the order parameter.

Calculation of the universal critical values of g¢, gs,
etc. for three-dimensional Ising and O(n)-symmetric
models by a number of analytical and numerical methods
showed that the field—theoretical renormalization group
(RG) approach in fixed dimensions yields most accurate
numerical estimates for these quantities. It is a conse-
quence of a rapid convergence of the iteration schemes
originating from renormalized perturbation theory. In-
deed, the resummation of four— and five-loop RG ex-
pansions by means of the Borel-transformation—based
procedures gave the values for g§ which differ from each
other by less than 0.5% [9,10] while the use of resummed
three—loop RG expansion enabled one to achieve an ap-
parent accuracy no worse than 1.6% [8,13].

The field—theoretical RG approach being very effective
in 3D (see, e.g., Refs. [16-18,13]) is known to be power-
ful enough also in two dimensions. Properly resummed
four—loop RG expansions lead to fair numerical estimates
for critical exponents of 2D Ising model [16] and give
reasonable results for its random counterpart [19]. Tt is
natural, therefore, to use the field theory for calculation
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of the renormalized higher—order coupling constant g¢ of
the 2D Ising model.

Within the field-theoretical language, the 2D Ising
model in the critical region is described by Euclidean
scalar field theory with the Hamiltonian

1 1
H = /le‘ [57”3%02 + §(V80)2 + Ao (1)

where a bare mass squared m2 is proportional to 7' —
TC(O), TC(O) being the phase transition temperature in
the absence of the order parameter fluctuations. Tak-
ing fluctuations into account results in renormalizations
of the mass my — m, the field ¢ = pprVZ, and the
coupling constant A = m?Z,Z2?g4. Moreover, ther-
mal fluctuations give rise to many—point correlations
(p(z1)e(x2)...p(x25)) and, correspondingly, to higher—
order terms in the expansion of the free energy in powers
of magnetization M :

+ Zgzk (M7)

k=3

In the critical region, where fluctuations are so strong
that they completely screen out the initial (bare) inter-
action, the behaviour of the system becomes universal
and dimensionless effective couplings go approach their
asymptotic limits g3, .

In order to estimate g% we will calculate RG expan-
sion for g and then apply Padé—Borel-Leroy resumma-
tion technique to get proper numerical results. Accurate
enough numerical estimates, as is well known, may be ex-
tracted only from sufficiently long RG series. Below we’ll
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find the expression for gg in the four—loop approximation
which will be shown to provide fair numerical estimates
for the quantity of interest.

The method of calculating the RG series we use here
is straightforward. Since in the two dimensions higher—
order bare couplings are believed to be irrelevant in the
RG sense, renormalized perturbational series for g¢ can
be obtained from conventional Feynman graph expansion
of this quantity in terms of the only bare coupling con-
stant — A. In its turn, A may be expressed perturbatively
as a function of renormalized dimensionless quartic cou-
pling constant g4. Substituting the corresponding power
series for A into original expansion we can obtain the
RG series for gs. As was recently shown [6,8,9] the one—,
two—, three— and four—loop contributions are formed by
1, 3, 16, and 94 one—particle irreducible Feynman graphs,
respectively. Their calculation gives:

/\?’Z6 A2 /\224
g6 = — 56 1—11.817855 ——1—110 3727
T
A
— 985575 |, 3)

The perturbational expansion for A emerges directly
from the normalizing condition A = m?Z,Z "¢, and the
well-known expansion for Z, [16]:

9
Za =1+ — ga+5.1288114 g3 4+ 10511670 ¢3 + O(g3).
(4)
Combining these expressions we obtain

36

g6 = — g3 (1 — 3.2234882 g4 (5)

+ 14.957539 g7 — 85.7810 gi’).

Being a field-theoretical perturbational expansion se-
ries (5) has factorially growing coefficients, i.e. it is diver-
gent (asymptotic). Hence, direct substitution of the fixed
point value g} into (5) would not lead to satisfactory re-
sults. To get reasonable numerical estimate for ¢ some
procedure making this expansion convergent should be
applied. As is well known, the Borel-Leroy transforma-
tion
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diminishing the coefficients by the factor (z—i—b) can play
a role of such a procedure. Since the RG series consid-
ered turns out to be alternating the analytical continu-
ation of the Borel transform may be then performed by
using Padé approximants. With the four-loop expansion
(5) in hand, we can construct three different Padé ap-
proximants: [2/1], [1/2], and [0/3]. To obtain proper ap-
proximation schemes, however, only diagonal [L/L] and
near—diagonal Padé approximants should be employed
[20]. That’s why further we limit ourselves with approx-
imants [2/1] and [1/2]. Moreover, the diagonal Padé ap-
proximant [1/1] will be also dealt with although this cor-
responds, in fact, to the usage of the lower—order, three—
loop RG approximation.

The algorithm of estimating g% we use here is as fol-
lows. Since the Taylor expansion for the free energy con-
tains as coefficients the ratios Rop = gzk/gi_l rather
than the renormalized coupling constants themselves:

m® [ 2 4 6 8
F(z)—F(O):g— 7—1—,2 + Rez° + Rsz+ ... |, (7)
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we work with the RG series for Rg. It is resummed in
three different ways based on the Borel-Leroy transfor-
mation and the Padé approximants just mentioned. The
Borel-Leroy integral is evaluated as a function of the pa-
rameter b under g4 = g3. For the fixed point coordinate
the value g5 = 0.6125 [7,21,22] is adopted which was ex-
tracted from lengthy high—temperature expansions and is
believed to be the most accurate estimate for g3 available
nowadays. The optimal value of b providing the fastest
convergence of the iteration scheme is then determined.
It is deduced from the condition that the Padé approxi-
mants employed should give, for b = b, the values of R
which are as close as possible to each other. Finally, the
average over three estimates for R is found and claimed
to be a numerical value of this universal ratio.

b 0 1 (124 2

3 5 7 10 | 15

1/1]]2.741{2.908|2.937{3.009

3.077|3.161(3.212{3.258|3.301

1/2]2.827| — |2.936|2.877

2.853|2.828|2.814|2.800|2.787

2/1]|3.270(2.988]2.936|2.800

2.667(2.491|2.380(2.273|2.171

Table 1. The values of R§ obtained by means of the Padé-Borel-Leroy technique for various b within three-loop (approximant
[1/1]) and four-loop (approximants [1/2] and [2/1]) RG approximations. The estimate for b = 1 in the middle line is absent
because corresponding Padé approximant turns out to be spoilt by a positive axis pole.
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The results of our calculations are presented in Ta-
ble 1. As one can see, for b = 1.24 all three working
approximants lead to practically identical values of Rf.
Hence, we conclude that for 2D Ising model at criticality

R:=294,  g:=110. (8)

How close to their exact counterparts may these num-
bers be? To clear up this point let us discuss the sen-
sitivity of numerical estimates given by RG expansion
(5) to the type of resummation. The content of Table 1
implies that, among others, the results given by Padé
approximant [2/1] turn out to be most strongly depen-
dent on the parameter b. This situation resembles that
for 3D O(n)-symmetric model where Padé approximants
of [L — 1/1] type for p—function and critical exponents
lead to numerical estimates demonstrating appreciable
variation with & while for diagonal and near-diagonal
approximants the dependence of the results on the shift
parameter is practically absent [13,16,18]. In our case,
Padé approximants [1/1] and [1/2] may be referred to
as generating such “stable” approximations for g&. Since
for b varying from 0 to 15 (i.e., for any reasonable b) the
magnitude of g averaged over these two approximations
remains within the segment (1.044, 1.142) it is hardly
believable that the values (8) can differ from the exact
ones by more than 5%.

Another way of judging the accuracy of our numeri-
cal results is based on the comparison of the values of
gs given by four subsequent RG approximations avail-
able. While within the one-loop order we get gg = 2.633
which 1s obviously a very bad estimate, the taking into
account of higher—order RG contributions to gg improve
the situation markedly. Indeed, two—, three—, and four—
loop RG series when resummed by means of the Padé-
Borel technique with the use of “most stable” approxi-
mants [0/1], [1/1], and [1/2] yield for g§ the values 0.981,
1.129, and 1.051, respectively. Since this set of numbers
demonstrates an oscillatory convergence one may expect
that the exact value of renormalized sextic coupling con-
stant lies between the higher—order — three—loop and
four—loop — estimates. It means that the deviation of
numbers (8) from the exact values would not exceed 5%.

Thus, we see that the four-loop RG expansion for
gs and elaborated approximation scheme lead to suf-
ficiently accurate numerical data. On the other hand,

the above arguments, as always when we deal with di-
verging series, should be interpreted as suggestive, i.e.
they would help us to fix only an apparent accuracy. It
is of prime importance therefore to compare our esti-
mates with those obtained by other methods. Recently,
S.—Y. Zinn, S.—N. Lai, and M. E. Fisher analyzing high
temperature series for various 2D Ising lattices found
that R§ = 2.943 &+ 0.007 [7]; an almost identical value
was obtained later in Ref. [14]. Our result for Rf is seen
to be in brilliant agreement with this number. Of course,
practical coincidence of the lattice and four-loop RG
estimates is occasional and cannot be considered as a
manifestation of extremely high accuracy of the methods
discussed. The closeness of these estimates to each an-
other, however, unambiguously demonstrates high power
of both the approaches. Moreover, such a closeness sheds
light on the role of a singular contribution to gs which
cannot be found perturbatively: this contribution is seen
to be numerically small.

It is instructive also to compare our results with those
given by another field—theoretical approach — the fa-
mous e—expansion. Today for the Ising systems only three
terms in the e—expansion for Rg are known [23]:

10
R} = 26(1 — 5 € +0.63795 62). (9)

Let us apply a simple Padé—Borel procedure to this se-
ries as a whole and to the series in brackets and then put
e = 2. We find R} = 3.19 and R} = 3.12 respectively, i.e.
the numbers which differ from our estimate by less than
9%. Keeping in mind lack of a small parameter these
values of Y may be referred to as consistent. Proper ac-
count for higher—order terms in the e—expansion for Rg
should make corresponding numerical estimates closer to
those extracted from 2D RG and high—temperature se-
ries. Very good agreement between the first number (8)
and the estimate Rf = 2.95+0.03 [14] obtained recently
by matching the e—expansion available with the exact re-
sults known for D = 1 and D = 0 may be considered as
an argument in favour of this belief.
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PEHOPMI'PVIIA TA IIECTIPHA EGEKTUBHA B3AEMO/IS OJI1sI ABOBUMIPHOI
MOJIEJI I3UHTA

A. I. Cokomos, €. B. OpJios
Canxm—Iemepbyprevxuts eaexmpomexrnivunud ynisepcumem, xagedpa Pizunror eaekmponixu,
ey.a. npod. Honosa, 5, Canxm—Ilemepbypr, 197376, Pocia

VHiBepcaabHe KpUTHYHE 3HAYEHHA ¢§ PEHOPMaJIi30BaHOl KOHCTAHTH IMECTIpHOI B3a€Momjl, 10 BXOIUTL Y PiB-
HAHH: CTaHy OBOBHMIPHOI Mojesi [3mHT'a, OIHIOETHCA B paMKaxX PEeHOPMIPYIIOBOTO IMaxody. YJoTupumersieBe
PEeHOPMTPYIOBE PO3BUHEHHA IJISA (¢ OOYMCIIeHe 1 mepecyMoBaHe 3a MeronoM llame-Bopensi—Jlepya. Orpumatne
sHaveHHd ¢ = 1.10 mobpe y3romKyeThcd 31 3Ha4YeHHAM, dKe HellogaBHO BusHaumau 1limm, Jlait Ta Qimep 3

BHUCOKOTEMIIEPATYPHUX PO3BUHEHD.
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