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The two{dimensional (2D) Ising model is reviewed as a theory of free fermions on a lattie. The

disussion inludes the fermionization proedure based on the mirror{ordered fatorization of the

density matrix, Gaussian fermioni integral representation for partition funtion, the momentum{

spae analysis and Onsager's result, the e�etive ontinuum{limit �eld theories and the ritial{

point singularities. The emergene of long{range fermioni orrelations in a nonzero magneti �eld

and the behaviour of the spei� heat along the ritial isotherm are ommented. Attention is given

to the hoie of rational omputational devies.
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I. INTRODUCTION

There are many remarkable analogues between the

physial onepts and mathematial methods in statis-

tial mehanis and quantum �eld theory. The two{

dimensional Ising model (2DIM) may be a good exam-

ple of this kind. In its original formulation, the 2D Ising

model is a disrete{spin lattie model for the seond{

order phase transitions in magnets, for whih the ana-

lyti results for the free energy and some other funtions

are available over the whole temperature range. At the

�rst stages, the 2DIM has been analyzed rather as a om-

pliated mathematial problem [1{8℄. The anonial ap-

proahes to the 2DIM are based on the transfer{matrix

and ombinatorial onsiderations [1{12℄. The fermioni

features in the 2DIM have been reognized already in

[2,6,7℄. Further developments in this diretion provided

new insight into the physial nature of the problem and

signi�antly simpli�ed the analysis in the tehnial as-

pet [13{20℄. The modern approahes to the 2DIM are

based on the interpretation of the problem in terms of

fermions [13{26℄. In this artile, we review some aspets

of a simple nonombinatorial fermioni approah to the

2D Ising model based on the appliation of the antiom-

muting Grassmann{variable integrals and the mirror{

ordered fatorization ideas for the density matrix [18{20℄.

The method is simple and is in a sense straightforward.

The transfer{matries and ombinatoris are not used.

The appearane of fermions in the 2D Ising model within

given approah rather resembles the hange of the basis

in quantummehanis. The artile is arranged as follows.

A short introdution to the rules of the fermioni inte-

gration is given in Setion II. The original spin{variable

formulation for the 2D Ising model is onsidered in Se-

tion III. We then diretly proeed with disussing the

fermionization proedure in Setion IV. The Grassmann

variables are �rst introdued by fatorization of the lo-

al bond Boltzmann weights in (15). The mirror{ordered

fatorized representation for the whole density matrix

is obtained at the next stage in (21). This is a mixed

spin{fermion representation for the density matrix, in

whih spin variables an be readily eliminated. This re-

sults the Gaussian fermioni integral for partition fun-

tion, Q, given in (24). Equivalently, the 2D Ising model

is reformulated as a theory of free fermions on a lat-

tie. The transformation of Q into a fermioni integral is

performed in Setion IV for the most general inhomoge-

neous distribution of the bond oupling parameters over

the lattie. In Setion V the 2D Ising model on the stan-

dard homogeneous retangular lattie is onsidered. Af-

ter transformation to the momentum spae for fermions,

the partition funtion is evaluated in a losed form, whih

results the Onsager's expression for the free energy. In

Setion VI, oming bak to previous disussion, we add

a few further remarks on the ordered produts of Grass-

mannian fators, like those arising by fatorization of

the density matrix in (21). The nonloal fermioni sums

arising in this ontext are of interest for the 2D Ising

model in a nonzero magneti �eld, as is ommented in

Setion IX. In Setion VII, a re�ned version of the basi

integral (24) for the partition funtion is obtained. The

resulting Gaussian integral for Q with two variables per

site is given in (57). It is interesting that the Majorana{

Dira strutures, somewhat mysteriously arising in the

2D Ising model, an be reognized in the fermioni ation

of the integral (57) already at the lattie level. The e�e-

tive ontinuum{limit �eld theories near T



orresponding

to the low{momentum setor of the exat lattie theory,

whih is responsible for the ritial{point singularities

in the thermodynami funtions and the large{distane

behaviour of the orrelation funtions, are onsidered in

Setion VIII. The e�etive Majorana like ation for two{

omponent massive fermions is obtained in (66). After

the uniformization transformation, the ation appears in

the standard Majorana form given in (67) and (79). By

doubling the number of fermions in the Majorana rep-

resentation, one an pass as well to the Dira theory of

harged fermions (80). In Setion IX, we make use of

the simpli�ed ontinuum{limit interpretation of 2DIM

in order to disuss the ritial{point singularities near

T



. The e�ets produed by a nonzero magneti �eld in
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the fermioni system of the 2DIM Ising model near T



are onsidered within approximating approah. It is ar-

gued the that swithing on of a nonzero magneti �eld

(h 6= 0) auses the long{range nonloal interations of

the fermions, on the bakbone of the loal part of the

ation orresponding to h = 0. Within adopted approx-

imation onjetures, the singularity in the spei� heat

at the ritial isotherm is expeted to be logarithmi. Fi-

nally, few onluding remarks are given in Setion X. In

the next setion, we start with a omment on the rules

of fermioni integration whih are relevant for the forth-

oming disussion.

II. GRASSMANN VARIABLES

Let us remember that Grassmann variables (non-

quantum fermioni �elds) are the purely antiommuting

fermioni symbols. Given a set of Grassmann variables,

a

1

; a

2

; a

3

; : : : ; a

N

, we have:

a

i

a

j

+ a

j

a

i

= 0 ; a

2

j

= 0 : (1)

The linear superpositions of Grassmann variables are

again purely antiommuting, their squares are zeros.

The �rst important identity of antiommuting analysis

is given as follows:

b

1

b

2

b

3

:::: b

N

= det

^

A � a

1

a

2

a

3

::: a

N

; (2)

b

i

=

N

X

j=1

A

ij

a

j

;

where we multiply the linearly transformed variables, the

determinant of the matrix of the transformation appears

as the oeÆient between the two produts. The relation

of the antiommuting algebra to the determinant ombi-

natoris expressed in the above identity is well known in

physis and mathematis already for a long time. The

rules of the integration for Grassmann variables have

been �rst introdued by Berezin [27℄. The elementary

rules for one variable are:

Z

da

j

� a

j

= 1 ;

Z

da

j

� 1 = 0 : (3)

In multiple fermioni integrals, the di�erential symbols

are again antiommuting with eah other and with the

variables [27℄. The integration then redues to the re-

peating use of the above elementary rules, keeping in

mind that the fermioni symbols antiommute. Due to

the nilpotent property of fermions, a

2

j

= 0, any natu-

ral (analyti) funtion de�nite a �nite set of Grassmann

variables an be represented, in priniple, as a �nite poly-

nomial in these variables:

f (a

1

; a

2

; :::; a

N

) = f

0

+

N

X

j=1

f

j

a

j

+ � � � (4)

+ f

123:::N

a

1

a

2

:::a

N

;

where f

0

; f

j

; ::: ; f

123:::N

are the numerial oeÆients.

In partiular, integrating polynomial (4) aording to the

rules (3), we �nd:

Z

da

N

: : :da

2

da

1

f (a

1

; a

2

; :::; a

N

) = f

123:::N

: (5)

The integration is thus a simple task if the integrand

funtion is already known in the polynomial form, how-

ever, this may be not the ase in appliations. The rules

of hange of variables under a linear substitution in the

fermioni integrals readily follow from (2) and (5). As

ompared with the rules of ommuting analysis, the only

di�erene is that the Jaobian will now appear in the

inverse power [27℄. In physial appliations, an impor-

tant role is played by Gaussian fermioni integrals. The

Gaussian fermioni integral of the �rst kind is given as

follows [27℄:

Z

N

Y

j=1

da

�

j

da

j

exp

0

�

N

X

i=1

N

X

j=1

a

i

A

ij

a

�

j

1

A

= det

^

A ; (6)

where all the variables in the total set are purely anti-

ommuting, the matrix

^

A is arbitrary. The appearane

of the determinant in (6) an be traed bak to (2). By

onvention, the variables a

j

and a

�

j

an be viewed as the

omplex onjugated variables, in physial ontexts this

orresponds to harged fermions, otherwise a

j

and a

�

j

are

simply independent variables. The Gaussian fermioni

integral of the seond kind, for real fermioni �elds, is

related to the PfaÆan [27℄:

Z

da

N

::: da

2

da

1

exp

0

�

1

2

N

X

i=1

N

X

j=1

a

i

A

ij

a

j

1

A

(7)

= Pfa�

^

A :

Matrix

^

A is now assumed to be skew{symmetri: A +

A

T

= 0, where A

T

is the transposed matrix. In ompo-

nents: A

ij

+ A

ji

= 0 ; A

ii

= 0. This property is ompli-

mentary to fermioni antiommutativity. By formal def-

inition, the PfaÆan is some ombinatorial polynomial

in elements A

ij

known in mathematis for a long time

[28,29℄. The ombinatoris of the PfaÆan is idential to

that of the fermioni version of Wik's theorem [28,29℄.

Notie that the number of the variables N in the inte-

gral (7) must be even, otherwise the integral is identially

zero. This property is again in aordane with the for-

mal de�nition of the PfaÆan with N odd [28,29℄. The

equation (7) an itself be assumed for an e�etive de�ni-
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tion of the PfaÆan, wherefrom its basi properties read-

ily follow. For any skew{symmetri matrix, the following

algebrai identity is known [28,29℄:

det

^

A = (Pfa�

^

A )

2

: (8)

The PfaÆan is thus the square root of the determinant

of a skew{symmetri matrix. The above identity most

easily an be proved just in terms of the integrals like

(6) and (7). Let N be even. Assuming that the matrix in

(6) is skew{symmetri, we make use of the substitution:

a

k

=

1

p

2

(�

k

+ i �

k

) ; a

�

k

=

1

p

2

(�

k

� i �

k

) ; (9)

where �

k

; �

k

are the new variables of the integration.

It is then easy to hek that the integral (6) deouples

into a produt of two idential integrals like (7), whih

is equivalent to (8). For the normalized multifermioni

averages assoiated with the Gaussian integrals like (6)

and (7) one an apply fermioni Wik's theorem in a

usual way. There are few notes in onlusion. In the �eld{

theoretial language, the fermioni form in the exponents

like in (6) and (7) is alled ation. Sine the ation is

quadrati, the integrals (6) and (7) are Gaussian inte-

grals. The fermioni exponents in (6) and (7) are to be

assumed in the sense of their series expansion. Due to

the nilpotent property of fermions, the exponential se-

ries de�nitely terminate at some stage. The above expo-

nents are thus �nite polynomials in the variables, f. (4).

These polynomial representations also follow by multi-

plying elementary exponential fators. For instane, the

exponential in (6) an be viewed as a produt of fators

like exp (a

i

A

ij

a

�

j

) = 1 + a

i

A

ij

a

�

j

. In physial interpre-

tations, the Gaussian fermioni integrals orrespond to

free{fermion �eld theories [21,22℄.

III. TWO{DIMENSIONAL ISING MODEL

In this setion the 2D Ising model is formulated in

terms of Ising spin variables. Among the goals we keep in

mind in the present exposition, one is to provide an illus-

tration for how the analyti results an be extrated by

means of Grassmann variables in Statistial Mehanis.

In partiular, this is realized in Setion V when we eval-

uate expliitly the partition funtion and free energy for

the 2DIM on the standard homogeneous (translationally

invariant) retangular lattie. The fermionization itself,

however, an be performed equally well for the 2DIM

with arbitrary distribution of the exhange energies over

the lattie. So, we start here with a generalized formula-

tion of the 2D Ising model, assuming arbitrary inhomoge-

neous distribution of the bond oupling parameters over

a retangular lattie net. The Ising spins, �

mn

= �1,

are disposed at the lattie sites, mn, labeled by pairs

of integers, m;n = 1; :::; L, with m and n running in

horizontal and vertial diretions, respetively. L is the

length of the lattie side. The total number of sites and

spins on the lattie is N = L

2

, at �nal stages we assume

N = L

2

!1. The hamiltonian is:

�� H(�) =

L

X

m=1

L

X

n=1

h

b

(1)

m+1n

�

mn

�

m+1n

+ b

(2)

mn+1

�

mn

�

mn+1

i

; (10)

where b

(�)

mn

= �J

(�)

mn

are the dimensionless bond oupling

parameters, J

(�)

mn

are the exhange energies, � = 1=kT is

the inverse temperature in the energy units. For L �nite,

to be de�nite, let us assume free boundary onditions

for spin variables: �

L+1n

= 0; �

mL+1

= 0. The parti-

tion funtion and the free energy per site are:

Z =

X

(�)

exp (��H(�)) ;

�� f

Z

= lim

N!1

1

N

ln Z ; (11)

� = 1=kT ;

where the sum in Z is taken over all possible spin on�gu-

rations provided by �

mn

= �1 at eah site. The internal

(average) energy and spei� heat follow by di�erenti-

ating the free energy with respet to the temperature.

The spei� heat per site is: C=k = �

2

�

2

(��f

Z

)=��

2

,

� = 1=kT , where C=k is the dimensionless spei� heat,

k is Boltzmann's onstant. For a typial bond Boltzmann

weight from (11), let us note the identity: exp (b ��

0

) =

osh b+ ��

0

sinh b, whih readily follows from ��

0

= �1.

The partition funtion then appears in the form:

Z = f

L

Y

m=1

L

Y

n=1

(2 osh b

(1)

m+1n

osh b

(2)

mn+1

g Q ; (12)

where Q is the redued partition funtion:
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Q = Sp

(�)

n

L

Y

m=1

L

Y

n=1

( 1 + t

(1)

m+1n

�

mn

�

m+1n

) (1 + t

(2)

mn+1

�

mn

�

mn+1

)

o

; (13)

with t

(1;2)

mn

= tanh b

(1;2)

mn

, and now we assume a properly normalized spin averaging:

Sp

(�)

(: : :) =

Y

mn

Sp

(�

mn

)

(: : :) ; Sp

(�

mn

)

(: : :) =

1

2

X

�

mn

=�1

(: : :) ; (14)

so that at eah site Sp (1) = 1, Sp (�

mn

) = 0. The redued partition funtion Q will be the main subjet of our

interest in what follows.

IV. FERMIONIZATION

In this setion we transform Q into a fermioni Gaussian integral. The method is based on the mirror{ordered

fatorization proedure for the density matrix [18{20℄. Let us start with a fatorization of the loal bond Boltzmann

weights from (13). For the whole lattie, we introdue a set of the purely antiommuting Grassmann variables,

a

mn

; a

�

mn

; b

mn

; b

�

mn

, a pair per bond, and write:

1 + t

(1)

m+1n

�

mn

�

m+1n

=

Z

da

�

mn

da

mn

e

a

mn

a

�

mn

(1 + a

mn

�

mn

) (1 + t

(1)

m+1n

a

�

mn

�

m+1n

)

= Sp

(a

mn

)

fA

mn

A

�

m+1n

g ;

1 + t

(2)

mn+1

�

mn

�

mn+1

=

Z

db

�

mn

db

mn

e

b

mn

b

�

mn

(1 + b

mn

�

mn

) (1 + t

(2)

mn+1

b

�

mn

�

mn+1

)

= Sp

(b

mn

)

fB

mn

B

�

mn+1

g ; (15)

where in the �nal lines we introdue the abbreviated notation for the arising fators, to be alled shortly Grassmann

fators:

A

mn

= 1 + a

mn

�

mn

; A

�

m+1n

= 1 + t

(1)

m+1n

a

�

mn

�

m+1n

;

B

mn

= 1 + b

mn

�

mn

; B

�

mn+1

= 1 + t

(2)

mn+1

b

�

mn

�

mn+1

; (16)

while Sp (:::) stand for the Gaussian averaging like

da

�

da e

aa

�

(:::) and

R

db

�

db e

bb

�

(:::). These loal averaging

symbols, whih are even in fermions, are totally ommut-

ing with any element of the algebra and an be gathered

in one plae, forming the symbol of the global Gaus-

sian averaging. The identities (15) an be heked mak-

ing use of the elementary rules of fermioni integration

like (3), taking into aount that exp (aa

�

) = 1 + aa

�

and exp (bb

�

) = 1 + bb

�

. Notie that the mn indies in

the above Grassmann fators are hosen to be equal to

the indies of the spin variables involved in these fators.

Thus, it will be easy to ontrol the position of any Grass-

mann fator with given spin variable among other suh

fators in their global produts.

The idea of the next step is to substitute (15) into

(13) and to eliminate the spin variables in the resulting

mixed representation for the density matrix, Q(�; a). To

perform the proedure, we have to group together, over

the whole lattie, the four fators with the same spin,

A

mn

; B

mn

; A

�

mn

; B

�

mn

, and to average over �

mn

= �1

in eah suh group of fators, independently. The above

four fators ome by fatorization of the four di�erent

bonds attahed to a given mn site. In the proess of the

spin averaging we have to keep these four fators nearby.

The separable Grassmann fators, however, are in gen-

eral neither ommuting nor antiommuting with eah

other, being the superpositions of ommuting and an-

tiommuting terms, and it might be diÆult, in general,

to keep these fators with the same mn nearby over the

whole lattie. Therefore, we have to take are of a speial
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ordering for the global produts of suh fators, in order

the elimination of spin variables be really possible. In two

dimensions, this problem is solvable [18{20℄. Though the

individual Grassmann fators are neither ommuting nor

antiommuting with eah other, what an really be used

in the ordering arrangements is the property that the

doublets like A

mn

A

�

m+1n

and B

mn

B

�

mn+1

representing

the loal bond weights in (15) an be treated as totally

ommuting objets, if taken as a whole, under the sign

of the Gaussian averaging arising by fatorization. Re-

ally, the nonommuting terms involved in these doublets,

whih are linear in fermions, are e�etively equal to zero

under the averaging, while the remaining terms are even

in fermions and are totally ommuting. In the reorder-

ing transformations we shall apply as well the two or-

dering priniples illustrated below by tutorial examples.

The �rst illustration (linear rearrangement) is:

(�

0

�

�

1

) (�

1

�

�

2

) (�

2

�

�

3

) (�

3

�

�

4

)

= �

0

(

�

�

1

�

1

) (

�

�

2

�

2

) (

�

�

3

�

3

)

�

�

4

; (17)

where we simply reread the produt joining together the

symbols with the same index. The ommutation prop-

erties of the symbols does not matter at this stage, as-

suming that we start with a produt already ordered as

is given in the �rst line. The seond illustration (mirror

rearrangement) is:

(�

1

�

�

1

) (�

2

�

�

2

) (�

3

�

�

3

) = (�

1

(�

2

(�

3

�

�

3

)

�

�

2

)

�

�

1

)

= �

1

�

2

�

3

�

�

�

3

�

�

2

�

�

1

; (18)

where we assume that the doublets like (�

j

�

�

j

) are totally

ommuting with any individual fator from the ommon

set, while the individual fators themselves may be non-

ommuting. Then we deouple proper and bar fators

into separable produts.

It is easy to guess that the linear ordering priniple

(17) is by itself enough to solve the 1D Ising hain via

fermionization. This is not the ase, however, in two di-

mensions, where there is a ontradition between prefer-

able m{ordering for the horizontal weights and prefer-

able n{ordering for the vertial weights, with respet to

the linear{ordering rule (17). Therefore, we shall apply

�rst the mirror{ordering priniple (18) to fatorize a hor-

izontal ladder of the vertial weights, B

mn

B

�

mn+1

, in a

horizontal{like fashion with respet to index m, with n

�xed. This will provide us with an opportunity to intro-

due properly the remaining horizontal weights at the

next stage, so that the spin variables an be �nally om-

pletely eliminated from the density matrix. With this

preliminary notes, let us diretly proeed to the ordering

arrangements for global produts of Grassmann fators

arising by fatorization of loal weights in (15). In trans-

formations from (19) to (20) we omit, for brevity, the

signs of the Gaussian averaging introdued by fatoriza-

tion of weights. The totally ommuting bond Boltzmann

weights are now given by A

mn

A

�

m+1n

and B

mn

B

�

mn+1

.

For the �rst step, let us multiply a subset of vertial

weights over m, with n �xed. Making use of the mirror{

ordering rule (18), we write:

L

Y

m=1

(1 + t

(2)

mn+1

�

mn

�

mn+1

) =

L

Y

m=1

B

mn

B

�

mn+1

=

L

Y

m=1

m

 ���

B

mn

�

L

Y

m=1

m

���!

B

�

mn+1

: (19)

In the �nal expression, there are two m{ordered prod-

uts with m = 1; : : : ; L going in the opposite dire-

tions (mirror ordering). Already at this stage the order-

ing is favourable for introduing the horizontal weights

A

mn

A

�

m+1n

into a one of the m{ordered produts. This

possibility is used below. Meanwhile, let us ontinue with

the vertial weights. Multiplying the above partial prod-

uts taken as a whole over n = 1; : : : ; L, with n inreasing

from left to right, and making use of the linear{ordering

rule (17) with respet to index n, we write:

L

Y

n=1

L

Y

m=1

(1 + t

mn+1

�

mn

�

mn+1

)

=

n

�!

L

Y

n=1

h

L

Y

m=1

m

 ��

B

mn

�

L

Y

m=1

m

��!

B

�

mn+1

i

=

n

�!

L

Y

n=1

h

L

Y

m=1

m

��!

B

�

mn

�

L

Y

m=1

m

 ��

B

mn

i

: (20)

When we pass to the last line, it was taken into

aount that B

�

mL+1

= 1, sine �

mL+1

= 0, aord-

ing to the free{boundary onditions we have assumed

above. Respetively, we have orreted the �nal expres-

sion in (20) at the left end, introduing the laking

produt of fators with n = 1, whih are of the form

B

�

m1

= 1+ t

m1

�

m1

b

�

m0

, where we put b

�

m0

= 0. Atually,

B

�

m1

= 1, with b

�

m0

= 0. In this way, the free boundary

onditions for spins are now elaborated into the analo-

gous onditions for fermions.

All vertial weights are already involved in the prod-

ut (20). It remains only to introdue properly the om-

muting horizontal weights, A

mn

A

�

m+1n

, into a one of the

m{ordered produts in (20). Evidently, the produts of

fators B

�

mn

are preferable. Making use of the linear rule

(18) for the subsequent transformations with respet to

m, for the omplete density matrix we get:
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Q (�) =

L

Y

n=1

L

Y

m=1

(1 + t

mn+1

�

mn

�

mn+1

) (1 + t

m+1n

�

mn

�

m+1n

)

= Sp

(a;b)

n

�!

L

Y

n=1

h

L

Y

m=1

m

��!

B

�

mn

A

mn

A

�

m+1n

�

L

Y

m=1

m

 ��

B

mn

i

= Sp

(a;b)

n

�!

L

Y

n=1

h

L

Y

m=1

m

��!

A

�

mn

B

�

mn

A

mn

�

L

Y

m=1

m

 ��

B

mn

i

: (21)

By analogy with the boundary transformations in (20), we eliminate in the �nal line the extra fators A

�

L+1n

= 1,

with �

L+1n

= 0, and insert, formally, the laking fators A

�

1n

= 1, assuming a

�

0n

= 0. In (21) we also restore the

symbol of the diagonal Gaussian averaging arising by fatorization of the loal weights:

Sp

(a;b)

�

:::

	

=

Z

L

Y

m=1

L

Y

n=1

da

�

mn

da

mn

db

�

mn

db

mn

exp

L

X

m=1

L

X

n=1

( a

mn

a

�

mn

+ b

mn

b

�

mn

)

�

:::

	

: (22)

The expression in the �nal line of (21) is what we all the mirror{ordered fatorized representation for the density

matrix. This representation is exat, assuming free{boundary onditions for fermions, a

�

0n

= 0, b

�

m0

= 0. The density

matrix is now ompletely prepared for the elimination of the spin variables. The partition funtion arises by summing

over the states �

mn

= �1 at eah site in (21).

The averaging over �

mn

= �1 is to be performed at the juntion of the two m{ordered produts in (21), with �xed

n. This is a step by step proedure. The loal averaging at the juntion is given by:

Sp

(�

mn

)

fA

�

mn

B

�

mn

A

mn

B

mn

g =

1

2

X

�

mn

=�1

(1 + t

(1)

mn

�

mn

a

�

m�1n

) (1 + t

(2)

mn

�

mn

b

�

mn�1

) (1 + �

mn

a

mn

) (1 + �

mn

b

mn

)

= 1 + a

mn

b

mn

+ t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

+ (t

(1)

mn

a

�

m�1n

+ t

(2)

mn

b

�

mn�1

) (a

mn

+ b

mn

) + t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

a

mn

b

mn

= exp

h

a

mn

b

mn

+ t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

+ (t

(1)

mn

a

�

m�1n

+ t

(2)

mn

b

�

mn�1

) (a

mn

+ b

mn

)

i

: (23)

The result of the averaging is a purely fermioni polynomial, even in the variables, whih is equivalent to the

Gaussian exponential fator given in the last line. This equivalene an be heked, for instane, by the series

expansion of the exponential, taking into aount the nilpotent property of fermions. Another way to see this

equivalene is explained in Setion 6. Let n be �xed, at the juntion of the two m{ordered produts in (21)

we just �nd the four relevant Grassmann fators (23) with the same index mn plaed nearby, with m = L,

given n. The loal averaging (23) results the Gaussian exponential fator from the last line, whih is even in

fermions, thus, totally ommuting with any element of the algebra. We then remove this ommuting Gaussian

fator from the juntion somewhere to the very left end of the remaining ordered produt, and �nd again at the

juntion a new set of four neighbouring fators like (23) with the same index mn and the same spin variable,

with m = L � 1, given n. We then repeat the same averaging proedure at the juntion for m = L�1 and then

for m = L�2; : : : ; 1 , for given n, and all over again for other values of n = 1; : : : ; L. The spin variables being

ompletely eliminated, over the whole lattie, the partition appears to be given by the produt of the partial Gaus-

sian exponential fators from (23) under the sign of the global Gaussian averaging (22). Thus we ome to the

result:

Q =

Z

L

Y

m=1

L

Y

n=1

db

�

mn

db

mn

da

�

mn

da

mn

exp

n

L

X

m=1

L

X

n=1

h

a

mn

a

�

mn

+ b

mn

b

�

mn

+ a

mn

b

mn

+ t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

+ (t

(1)

mn

a

�

m�1n

+ t

(2)

mn

b

�

mn�1

) (a

mn

+ b

mn

)

io

; (24)

317



V. N. PLECHKO

where a

�

0n

= 0 ; b

�

m0

= 0. The partition funtion is

now presented as a fermioni Gaussian integral. This

representation is exat. The fermioni integral (24) is

ompletely equivalent to the original expression (13) as-

suming the free boundary onditions both for spins and

fermions.

V. MOMENTUM{SPACE FERMIONS

In this setion we onsider the 2D Ising model set-

tled on the standard homogeneous lattie. The partition

funtion Q an be expliitly evaluated in this ase by

the transformation to the momentum spae for fermions.

This results in the Onsager expressions for the partition

funtion and free energy of the standard 2D Ising model.

For the homogeneous (though yet anisotropi) lattie, in

the Hamiltonian (10) we put: b

(1)

mn

; b

(2)

mn

! b

1

; b

2

, where

b

1;2

= �J

1;2

are the dimensionless oupling onstants in

the horizontal and vertial diretions, respetively. The

partition funtion beomes: Z = (2 osh b

1

osh b

2

)

L

2

Q,

with the redued partition funtion:

Q = Sp

(�)

n

L

Y

m=1

L

Y

n=1

(1 + t

1

�

mn

�

m+1n

) (1 + t

2

�

mn

�

mn+1

)

o

; (25)

where t

1;2

= tanh b

1;2

. From (24), the same partition funtion is given by the Gaussian integral:

Q =

Z

L

Y

m=1

L

Y

n=1

db

�

mn

db

mn

da

�

mn

da

mn

exp

n

L

X

m=1

L

X

n=1

h

a

mn

a

�

mn

+ b

mn

b

�

mn

+ a

mn

b

mn

+ t

1

t

2

a

�

m�1n

b

�

mn�1

+ (t

1

a

�

m�1n

+ t

2

b

�

mn�1

) (a

mn

+ b

mn

)

io

; (26)

with a

�

0n

= b

�

m0

= 0. The integral (26) is equivalent to (25) for any �nite lattie size L under the free boundary

onditions. In what follows, however, it will be more suitable to impose in (26) the periodi boundary onditions

for fermions, a

�

0n

= a

�

Ln

; b

�

m0

= b

�

mL

, whih are the most simple and ommonly used boundary onditions in order

to pass to the momentum spae for a �nite disrete lattie. This hange of onditions an be viewed as a boundary

approximation inessential for in�nite lattie, N = L

2

!1. Finally, we are interested in the free energy per site for

in�nite lattie. Assuming in (26) the periodi boundary onditions for fermions, we pass to the momentum spae by

the standard Fourier substitution:

a

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

a

pq

e

i

2�

L

mp+ i

2�

L

nq

; a

�

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

a

�

pq

e

� i

2�

L

mp� i

2�

L

nq

;

b

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

b

pq

e

i

2�

L

mp+ i

2�

L

nq

; b

�

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

b

�

pq

e

� i

2�

L

mp� i

2�

L

nq

: (27)

In the momentum spae, the integral beomes:

Q =

Z

L�1

Y

p=0

L�1

Y

q=0

da

�

pq

da

pq

db

�

pq

db

pq

exp

n

L�1

X

p=0

L�1

X

q=0

h

a

pq

a

�

pq

+ b

pq

b

�

pq

+ a

pq

b

L�pL�q

+ t

1

t

2

e

i

2�p

L

� i

2�q

L

a

�

pq

b

�

L�pL�q

+ (t

1

e

i

2�p

L

a

�

pq

+ t

2

e

i

2�q

L

b

�

pq

) (a

pq

+ b

pq

)

io

: (28)

where a

pq

; a

�

pq

; b

pq

; b

�

pq

are the new variables of the integration. In the above transformation, the orthogonality relations

for the Fourier exponents were taken into aount:

1

L

2

L

X

m=1

L

X

n=1

exp

h

i

2�

L

m(p � p

0

) + i

2�

L

(q � q

0

)n

i

= Æ (p� p

0

j q � q

0

)

mod L

; (29)
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where Æ (p j q)

mod L

is the Kroneker symbol modulo L

in both diretions. The fermioni measure in (28) trans-

forms in a trivial way (Jaobian equals to unity) due to

the unitarity of the ombined Fourier substitution (27),

whih property follows from (29). Thus we have to eval-

uate expliitly the momentum{spae integral (28).

The fermioni ation in the momentum spae admits a

blok{diagonal struture and the integral deouples into

a produt of low{dimensional integrals over the groups of

the variables with momenta p; q and L�p; L�q. Sine the

variables with onjugated momenta pq and L�pL�q are

interating, in order to single out expliitly the true inde-

pendent subsets of the variables in the ation, whih will

orrespond to fatorization of Q into the truly indepen-

dent integral fators, we have to ombine together in the

pq{sum in (28) the terms with onjugated momenta p; q

and L�p; L�q. Equivalently, the pq{sum is to be sym-

metrized with respet to onjugation p; q $ L�p; L�q.

After suh a symmetrization, the integral (28) fatorizes

into a produt of independent integral fators of the fol-

lowing kind:

Q

2

pq

=

Z

da

�

pq

da

pq

db

�

pq

db

pq

da

�

L�pL�q

da
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�
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exp

�

(a

pq
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�
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�
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�
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b

�

L�pL�q

) + (a

pq

b
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b

pq
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^
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�
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b

�

pq

) + (

^

t

1

a

�

pq

+

^

t

2

b

�

pq

) (a

pq

+ b

pq

)

+ (

^

t

�

1

a

�

L�pL�q
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^

t

�

2

b

�

L�pL�q

) (a

L�pL�q

+ b

L�pL�q

)

�

; (30)

where we assume abbreviations:

^

t

1

= t

1

e

i

2�p

L

;

^

t

2

= t

2

e

i

2�q

L

;

^

t

�

1

= t

1

e

�i

2�p

L

;

^

t

�

2

= t

2

e

�i

2�q

L

: (31)

The elementary Gaussian integral (30) an be evaluated in di�erent ways. The straightforward method is to expand

the nondiagonal part of the exponential into a series and to integrate step by step over the subsets of the onjugated

variables by means of elementary rules like (3). In the advaned version of this method, one makes use of the seletion

rules for the diagonal Gaussian averages that an be observed in the relations like (15) and (56). Another method

is to interpret (30) as determinantal Gaussian integral like (6) with N = 4. In suh representation, one assumes the

Gaussian ation in the form: S = a

^

Aa

�

, whih is possible, for instane, with the following hoie of the onjugated

�elds:

a

1

; a

2

; a

3

; a

4

$ a

pq

; b

pq

; a

�

L�pL�q

; b

�
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a

�

1
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�

2
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�

3
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�

4
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�

pq

; b

�

pq

; a

L�pL�q

; b

L�pL�q

: (32)

The integral fator (30) then equals to the determinant of matrix A given expliitly in (33). Thus, we �nd:

Q

2

pq

= det
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�
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�

: (33)

By a straightforward though somewhat lengthy alulation of the above determinant, we arrive to at the following

expressions:

Q

2

pq

= (1 + j

^

t

1

j

2

) (1 + j

^

t

2

j

2

) � (

^

t

1

+

^

t

�

1

) (1� j

^

t

2

j

2

) � (

^

t

2

+

^

t

�

2

) (1� j

^

t

1

j

2

)

= (1 + t

2

1

) (1 + t

2

2

) � 2t

1

(1� t

2

2

) os

2�p

L

� 2t

2

(1� t

2

1

) os

2�q

L

: (34)

To obtain the partition funtion, Q, we have to multiply the fators (34) over all distint pairs of the onjugated
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momentum{lattie points (p; q jL�p; L�q). That is, if the fator Q

2

pq

with given pq is already inluded into the

produt, then the fator Q

2

L�pL�q

is not to be inluded, and vie versa (notie by the way that Q

2

pq

= Q

2

L�pL�q

).

The above presription an be readily seen also omparing fermioni measures in (28) and (30). Respetively, if we

multiply the fators Q

2

pq

over all the points of the momentum lattie with no restritions, this will yield squared

partition funtion, Q

2

. Thus, we �nd:

Q

2

=

L�1

Y

p=0

L�1

Y

q=0

h

(1 + t

2

1

) (1 + t
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) os
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2

(1� t

2

1

) os

2�q

L

i

: (35)

In essene, this is equivalent to Onsager's solution for the 2D Ising model on the standard retangular lattie in

a zero magneti �eld [1℄. The trigonometri produt (35) is the exat solution for Q

2

in the limit L

2

! 1. The

orrespondent free energy per site readily follows:

�� f
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=
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=
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1

) os q

i

: (36)

This is the free energy for the redued partition funtion, Q, while the true free energy per site, for Z, is to be

realulated from Z = (2 osh b

1

osh b

2

)

L

2

Q, and we �nd:

�� f

Z

= ln 2 +

1

2
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2
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os p� sinh 2b

2

os q

i

; (37)

whih is Eq. (108) in [1℄. An interesting omment by Lars Onsager on the history of his remarkable solution an be

seen in [30℄. It is not neessary to say that the method we have applied above to obtain (37) signi�antly di�ers from

the original approah [1℄.

In onlusion to this setion, let us add few remarks on the properties of the 2D Ising model that follow from

the exat solution. [As regards the ritial behaviour near T



, there is no essential di�erene between (36) and (37)

sine the fator between Q and Z is nonsingular at all temperatures℄. In what follows, we assume ferromagneti ase,

b

1;2

> 0. From (36), it an be then dedued that the point of phase transition is given by the ondition:

1 � t

1

� t

2

� t

1

t

2

= 0 ; (38)

where t

1

= tanh b

1

; t

2

= tanh b

2

, with b

1

= J

1

=kT; b

2

= J

2

=kT . Equivalently, this ondition an be written in the

form:

sinh 2b

1

� sinh 2b

2

= 1 ; (39)

whih rather orresponds to the free energy in the form (37). The ondition (38) for T



an be readily reognized

from (36) by writing the pq {fator under the logarithm in the form:

Q
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(q=2) : (40)

Near the origin in the momentum spae, p = q = 0, we have:

Q

2

pq

= m

2

+ A

1

p
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+ A

2

q

2
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= t
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It is seen that typially the above fator is positive,

Q

2

pq

> 0, with the only exeption for the zero{momentum

mode fator, Q

2

p=0q=0

, whih vanishes at the point (38).

Respetively, there is the singularity in the integrand

funtion in (36) at this point as p; q ! 0. This gives

evidene for (38) to be the transition point. Beause

of the pq {integration there is no true singularity (in-

�nity) in the free and the internal energy even at the

transition point. The spei� heat, however, already ex-

hibits the true logarithmi singularity as T ! T



. The

spei� heat follows from (37) and/or (36) by di�eren-

tiating twie with respet to the temperature: C=k =

�

2

�

2

(��f

Z

)=��

2

, � = 1=kT . Near the ritial point,

we have:

C=k ' A



j log � j ! 1 ; � =

�

�

�

�

T � T



T



�

�

�

�

! 0 ; (42)

where C=k is the dimensionless spei� heat, k is Boltz-

mann's onstant. The parameter A



is alled the spei�{

heat ritial amplitude. The value of A



is the same by

approahing T



from above and from below even for the

anisotropi lattie, this is a partiular feature of the 2D

Ising model. In the isotropi ase (t

1

=t

2

=tanh b) the

spei�{heat amplitude is a �xed number: A



=

8

�

b

2



'

0:495, where b



=

1

2

ln(1 +

p

2) ' 0:441 is the inverse

ritial temperature, b



= J=kT



. The asymptotes (42)

an be derived substituting (41) into (36) and integrat-

ing over some area around the origin in the momentum

spae [notie that 0 � 2�℄. This will yield the singu-

lar (nonanalyti) part of the free energy, wherefrom (42)

immediately follows. The exat expression for spei�

heat, over the whole temperature range, also follows from

(37) by di�erentiating twie with respet to the temper-

ature. The resulting expression an be simpli�ed to be

expressed in terms of the omplete ellipti integrals of the

�rst and seond kind [1,9℄. Further simpli�ations are not

possible. The exat expression for C=k again on�rms the

asymptotes (42).

Below the ritial temperature, there is the sponta-

neous magnetization in the ferromagneti 2D Ising model

given as follows:

M =

�

1�

1

sinh

2

2b

1

sinh

2

2b

2

�

1=8

: (43)

Near the ritial point, M ' B �

1=8

, where � is tem-

perature deviation from T



, f. (42). Thus, the riti-

al exponent for magnetization at the ritial isobar is:

� = 1=8. The expliit solution for spontaneous magne-

tization (43) an be derived by di�erent methods. The

derivation given by Yang [3℄ is based on the transfer{

matrix method. In the ombinatorial approah by Mon-

troll, Potts and Ward [5℄ it is noted that the squared

spontaneous magnetization,M

2

, an be obtained as the

limiting value of the two{point spin orrelation funtion

for remote spins, h�(0)�(R)i = h�

mn

�

m+Rn

i, as R!1.

This spin orrelation funtion an be expressed in terms

of the perturbed partition funtion with some line of de-

fets onneting the points 0 and R [5℄. Therefore, the

result for M

2

an be also obtained starting with the in-

homogeneous fermioni expression for the partition fun-

tion (24). In this sheme, at the �nal stages of the alu-

lation, when extrating the asymptotes of the resulting

Toeplitz determinant for h�(0)�(R)i, one an follow, in

essene, the same lines as in [5℄. However, despite the for-

mal simpliity of the expression forM given in (43), the

derivation of this result by any known method, inlud-

ing that with Grassmann variables, remains to be several

times more ompliated as ompared with the deriva-

tion of the free{energy expression in the orrespondent

approah. This is yet an unsolved puzzle in the two{

dimensional Ising model [3℄. For related omments also

see [20,25℄. The analysis of more ompliated orrela-

tion funtions also have been performed and ontributed

muh to our knowledge of phase transition in the 2D

Ising model [8,11,31℄.

VI. THE ORDERED PRODUCTS OF

GRASSMANN FACTORS AND GAUSSIAN

EXPONENTS

In this setion we add few more remarks about the

ordered produts of Grassmann fators typially arising,

as we have seen, by the fermioni interpretation of the

2D Ising model within the fatorization method. Let L

1

and L

2

be arbitrary linear forms in Grassmann variables.

Then we have:

(1 + L

1

) (1 + L

2

) = e

L

1

L

2

(1 + L

1

+ L

2

) ; (44)

where the nilpotent properties of fermions where taken

into aount. In the above equation the two Grassmann

fators are ombined into a one Grassmann fator aom-

panied by a Gaussian exponential. The resulting identity

an be iterated further on, and we �nd:

(1 + L

1

) (1 + L

2

) (1 + L

3

) : : : (1 + L

N

)

=

 

1 +

N

X

i=1

L

i

!

exp

0

�

X

1�i<j�N

L

i

L

j

1

A

; (45)

where L

1

; : : : ; L

N

are arbitrary linear forms in Grass-

mann variables. Let �

0

= �1 be Ising spin, notie that

�

2

0

= 1. Making substitution L

j

! L

j

�

0

in (45), we

obtain the identity:

(1 + L

1

�

0

) (1 + L

2

�

0

) (1 + L

3

�

0

) : : : (1 + L

N

�

0

)

=

 

1 + �

0

N

X

i=1

L

i

!

exp

0

�

X

1�i<j�N

L

i

L

j

1

A

: (46)

The averaging over the spin states then results:
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Sp

(�

0

)

n

(1 + L

1

�

0

) (1 + L

2

�

0

) (1 + L

3

�

0

) : : : (1 + L

N

�

0

)

o

= exp

0

�

X

1�i<j�N

L

i

L

j

1

A

;

Sp

(�

0

)

(: : :) =

1

2

X

�

0

=�1

(: : :) : (47)

We see that the averaging of a produt of any number

of the Grassmannian fators like (47) over spin states,

�

0

= � 1, always results Gaussian fermioni exponen-

tial, assuming the Ising spin being the same in all the

fators. This property have been used already in the anal-

ysis of the 2D Ising models on irregular (in the geomet-

rial sense) planar latties [24℄. The appearane of the

Gaussian exponential when we average at the juntion

in (23) is also evident from (47).

In the same manner, we an elaborate the produts

of Grassmann fators with di�erent spins, like those ap-

pearing in (21):

(1 + L

1

�

1

) (1 + L

2

�

2

) (1 + L

3

�

3

) : : : (1 + L

N

�

N

)

=

 

1 +

N

X

i=1

L

i

�

i

!

exp

0

�

X

1�i<j�N

�

i

�

j

L

i

L

j

1

A

: (48)

This identity is a generalization (or a partiular ase)

of (45). In Eqs. (44){(48), it is only important that

L

1

; :::; L

N

are the purely antiommuting symbols, sat-

isfying also the nilpotent property. In priniple, in the

most general ase, we may assume in the above identi-

ties L

1

; :::; L

N

to be arbitrary odd polynomials in Grass-

mann variables.

The identities like (45) and (48) and related may be

of interest also with respet to the 2D Ising model in

a nonzero magneti �eld. The inlusion of the nonzero

magneti �eld orresponds to the additional terms :::+

h�

mn

in the hamiltonian (10), whih results in the ap-

pearane of the additional Boltzmann fators 1 + t

0

�

mn

in the partition funtion (13) and (21), whih are linear

in spin variables. Here t

0

= tanh(h), where h = �H and

H is a onventional magneti �eld in the energy units.

Being interested in the e�ets of small �eld, h ! 0, one

an regard t

0

' h and 1+ t

0

�

mn

' 1+ h�

mn

, as h! 0.

The appearane of suh fators prevents the exat solu-

tion sine the spin variables an not be easily eliminated

from the density matrix (21) in this ase. Within ap-

proximations, however, it an be expeted that h 6= 0

will make the spins in the ordered produts of Grass-

mann fators like in (21) and (48) to be \frozen", whih

will indue the nonloal terms in the ation like in (45).

With respet to the problem of a non{zero magneti �eld

in 2D Ising model, and in view of some other potential

appliations, it may be therefore of interest to onsider

the nonloal fermioni ation like the one arising in (45)

in the momentum spae representation.

For visual onveniene, let us hange the index in the

nonloal fermioni sum of (45) from ij to mm

0

, with

m;m

0

= 0; 1; :::;M � 1. The arising nonloal Gaussian

fermioni ation is of the form:

S

0

(L) =

M�2

X

m=0

L

m

(L

m+1

+ : : :+ L

M�1

)

=

M�2

X

m=0

M�1

X

m

0

=m+1

L

m

L

m

0

: (49)

It an be expanded over either periodi or aperiodi

Fourier exponents. Assuming the aperiodi Fourier sub-

stitution:

L

m

=

1

p

M

M�1

X

p=0

L

p

e

i

2�

M

m(p+1=2)

=

1

p

M

M�1

X

p=0

L

M�1�p

e

�i

2�

M

m(p+1=2)

; (50)

we �nd a partiularly simple expression:

S

0

(L) =

M�1

X

p=0

L

p

L

M�1�p

e

i

2�

M

m(p+1=2)

� 1

: (51)

Assuming the periodi Fourier deomposition:

L

m

=

1

p

M

M�1

X

p=0

L

p

e

i

2�

M

mp

=

1

p

M

M�1

X

p=0

L

M�p

e

�i

2�

M

mp

; (52)

we obtain a similar though somewhat more sophistiated

representation with a speial role of the p = 0 mode:

S

0

(L) =

M�1

X

p=1

�

�L

0

L

p

+

(L

p

� L

0

)(L

M�p

� L

0

)

e

i

2�

M

p

� 1

�

;

(53)
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where L

0

= L

p=0

. The sums in (51) and (53) an be

symmetrized by means of the identity:

1

e

i p

� 1

=

1

2

�

1

i tan(p=2)

� 1

�

: (54)

In the above identities it is essential that L

m

are the

purely antiommuting fermioni forms in Grassmann

variables. There are two remarkable features that an be

readily observed in the Fourier sums like (51) and (53).

First, we may note that (i) though the ation (49) is

highly nonloal in the real spae, it beomes diagonal in

the momentum spae, and the seond interesting feature

(ii) is the 1=ip singularity in the p{mode of the ation

near p = 0, as p ! 0. This 1=ip singularity is the essen-

tially fermioni e�et, related to the fat that fermions

antiommute. The reason for (ii) is that under p $ �p

symmetrization fermions just selet the skew{symmetri

part of the kernel (54), that is, 1=2i tan(p=2) , while the

ontribution of the symmetri part of that kernel van-

ishes. The situation will be the opposite for bosons. The

analog of the p $ �p symmetrization an as well be

performed in (49) in the real spae, and we get:

S

0

(L) =

1

2

M�1

X

m=0

M�1

X

m

0

=0

� (m�m

0

)L

m

L

m

0

;

� (m�m

0

) =

�

1; m < m

0

;

�1; m > m

0

:

(55)

This is the ation of the Gaussian fermioni integral of

the seond kind with skew{symmetri matrix given in its

anonial form, f. Eq. (7). At the diagonal, e�etively,

� (m�m

0

) = 0, sine L

2

m

= 0. The properties (i) and (ii)

an also be understood, more physially, in the sense that

the matrix in (49) is in essene the inverse to �

m

, the lat-

tie derivative matrix, �

m

x

m

= x

m

�x

m�1

. The ation

S

0

(L) thus is the sum of terms like L

m

�1

�

m

L

m

. Sine �

m

is diagonal in the momentum spae, the nonloal ker-

nel 1=�

m

also is diagonal in the momentum spae. In

the low{momentum region (ontinuum limit) �

m

! i p,

1=�

m

! 1=i p, and L

m

�1

�

m

L

m

! L

p

1

ip

L

�p

. The Fourier

images of lattie 1=�

m

an be seen from (51), (53) and

(54). The kernel

1

2

�(m � m

0

) from (55) is the skew{

symmetri part of �1=�

m

. For some appliations of the

above onsiderations to the 2DIM in a nonzero magneti

�eld see also the disussion in Setion IX.

VII. TWO VARIABLES PER SITE

In this setion we onsider some further modi�ations

for the lattie fermioni interpretation of the 2D Ising

model, eliminating part of the fermioni variables from

the basi Gaussian integral (24) for Q. The redued inte-

gral for Q appears to be again Gaussian fermioni inte-

gral, but now with only two variables per site, see (57).

We intend to apply the identity given below. Let a; b be

independent Grassmann variables, then:

Z

db da e

ab+aL

1

+bL

2

=

Z

db da e

ab

(1 + aL

1

)(1 + bL

2

)

= exp L

2

L

1

; (56)

where L

1

; L

2

are arbitrary linear forms in some other

Grassmann variables, not involved in the integration,

but antiommuting with a; b. Integrating out from (24)

the a

mn

; b

mn

�elds by means of identity (56), we obtain

a redued Gaussian integral expressed in terms of the

remaining variables a

�

mn

; b

�

mn

. Let us hange the nota-

tion for the �elds: a

�

mn

; b

�

mn

! 

mn

;� 

�

mn

, respetively,

da

�

mn

db

�

mn

! � d

mn

d

�

mn

! d

�

mn

d

mn

. The redued

integral for Q then appears in the form:

Q =

Z

L

Y

m=1

L

Y

n=1

d

�

mn

d

mn

exp

L

X

m=1

L

X

n=1

h



mn



�

mn

+ (

mn

+ 

�

mn

) (t

(1)

mn



m�1n

� t

(2)

mn



�

mn�1

) � t

(1)

mn

t

(2)

mn



m�1n



�

mn�1

i

(57)

where 

mn

; 

�

mn

are Grassmann variables, 

0n

= 0; 

�

m0

= 0. The integral (57) is equivalent to (13) and (24), assuming

the free boundary onditions in all the ases.

Sine the inhomogeneous distribution of the bond oupling parameters is still preserved, all the information on the

thermodynami funtions as well as the orrelation funtions of the 2D Ising model on a retangular lattie net is still

ontained in (57). Evidently, the redution of the number of the variables involved in the integration simpli�es the

tehnial aspets of the analysis for regular latties. This is illustrated below for the standard 2DIM on retangular

lattie. The integral (57) (as well as (24)) may be also of interest with respet to the problem of quenhed disorder

in the 2D Ising model [32,33℄. For related disussion also see [26℄.

For the homogeneous lattie, t

(1)

mn

; t

(2)

mn

! t

1

; t

2

, the integral (57) beomes:
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Q =

Z

L

Y

m=1

L

Y

n=1

d

�

mn

d

mn

exp

L

X

m=1

L

X

n=1

h



mn



�

mn

� t

1



m�1n



�

mn

� t

2



mn



�

mn�1

� t

1

t

2



m�1n



�

mn�1

+ t

1



mn



m�1n

+ t

2



�

mn�1



�

mn

i

: (58)

This integral an be alulated by analogy with (26). We assume again the periodi losing onditions for fermions

and pass to the momentum spae by Fourier substitution:



mn

=

1

p

L

2

L�1

X

p=0

L�1

X

q=0



pq

e

� i

2�p

L

m+i

2�q

L

n

; 

�

mn

=

1

p

L

2

L�1

X

p=0

L�1

X

q=0



�

pq

e

+ i

2�p

L

m�i

2�q

L

n

: (59)

The hoie of the signs of pq is here adopted for future onveniene in (60). The orthogonality relations (29) are to

be taken into aount. In the momentum spae, the integral (58) beomes:

Q =

Z

L�1

Y

p=0

L�1

Y

q=0

d

�

pq

d

pq

exp

n

L�1

X

p=0

L�1

X

q=0

h



pq



�

pq

�

1� t

1

e

i

2�p

L

� t

2

e

i

2�q

L

� t

1

t

2

e

i

2�p

L

+i

2�q

L

�

+ t

1

e

i

2�p

L



L�pL�q



pq

+ t

2

e

i

2�q

L



�

pq



�

L�pL�q

io

: (60)

Then we have to make the p; q $ L � p; L � q symmetrization of the ation in order to single out expliitly the

independent subsets of the variables. The integral then deouples into a produt of simplest Gaussian fermioni

integral fators:

Q

2

pq

=

Z

d

�

pq

d

pq

d

�

L�pL�q

d

L�pL�q

exp

h



pq



�

pq

(1� t

1

e

i

2�p

L

� t

2

e

i

2�q

L

� t

1

t

2

e

i

2�p

L

+i

2�q

L

)

+ 

L�pL�q



�

L�pL�q

(1� t

1

e

�i

2�p

L

� t

2

e

�i

2�q

L

� t

1

t

2

e

�i

2�p

L

�i

2�q

L

)

+ 2 i t

1

sin

2�p

L



L�pL�q



pq

+ 2 i t

2

sin

2�q

L



�

pq



�

L�pL�q

i

: (61)

This integral fator an be evaluated making use of the elementary rules like (3) and/or (56). Alternatively, if we

deide to interpret this integral as the determinant, then we have to present the ation in the form: S = aAa

�

,

where A is a two by two matrix. This is possible, for instane, assuming the orrespondene: a

1

; a

2

; a

�

1

; a

�

2

$



pq

; 

�

L�pL�q

; 

�

pq

;� 

L�pL�q

. The alulation is very simple in any ase, and we �nd:

Q

2

pq

=

�

�

�

1� t

1

e

i

2�p

L

� t

2

e

i

2�q

L

� t

1

t

2

e

i

2�p

L

+i

2�q

L

�

�

�

2

� 4t

1

t

2

sin

2�p

L

sin

2�q

L

= (1 + t

2

1

) (1 + t

2

2

)� 2 t

1

(1� t

2

2

) os

2�p

L

� 2 t

2

(1� t

2

1

) os

2�q

L

: (62)

The squared partition funtion follows as the produt

of fators (62) over the whole momentum{spae lattie.

The fator in the �nal line of (62) is the same as in

(34). So, we ome again to the same results for the par-

tition funtion and the free energy of the standard 2D

Ising model on a retangular lattie that have been om-

mented already in Setion V. An interesting new fea-

ture in (62) is the trigonometri expression in the �rst

line, wherefrom it is easy to reognize all the possible

ritial modes (zeroes of Q

2

pq

) in the ferromagneti as

well as antiferromagneti regimes. Assuming p; q to be

normalized to the 2� interval, there are four suh possi-

ble ritial modes: (p; q) = (0; 0); (0; �); (�; 0); (�; �). In

the ferromagneti ase, the only possible ritial mode

is that with p = q = 0, and the ritiality ondition

is given by (38) (notie that 0 � 2�). The other three

modes, being always positive in the ferromagneti ase

(t

1;2

> 0), de�ne the possible ritial points in the anti-

ferromagneti ases. The above four ritial modes and

the possible ritiality onditions an be reognized al-

ready in the momentum{spae ation (61). With some

experiene, the above four ritial modes an be guessed

even from the real{spae ation (58), without any seri-

ous alulation, f. (63) in Setion VIII. For a related
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disussion also see [20,25℄.

VIII. CONTINUUM LIMIT

Let us now onsider the ontinuum{spae limit (low

momenta setor) of the exat lattie theory near T



.

A suitable starting point is the integral (58) for Q.

In what follows, we assume the homogenous ase and

ferromagneti interations. Let x

mn

= 

mn

; 

�

mn

, we

de�ne lattie derivatives in a natural way: �

m

x

mn

=

x

mn

�x

m�1n

; �

n

x

mn

= x

mn

�x

mn�1

. Substituting



m�1n

= 

mn

� �

m



mn

; 

�

mn�1

= 

�

mn

� �

n



�

mn

into (58),

we �nd the ation in the form:

S =

X

mn

h

m

mn



�

mn

��

1



�

mn

�

m



mn

+ �

2



mn

�

n



�

mn

� t

1



mn

�

m



mn

+ t

2



�

mn

�

n



�

mn

� t

1

t

2

(�

m



mn

)(�

n



�

mn

)

i

; (63)

with the following set of parameters:

m = (1� t

1

� t

2

� t

1

t

2

) ;

�

1

= t

1

(1 + t

2

) ; �

2

= t

2

(1 + t

1

) : (64)

The lattie ation (63) is still the exat expression. In

this ation one an already distinguish the typial �eld{

theoretial like strutures, with the mass term and ki-

neti part. Evidently, the parameter m plays the role of

mass, while �

1

; �

2

and t

1

; t

2

are the kineti oeÆients.

The ritial point an be readily guessed to be m = 0, in

agreement with (38). Let us take the formal limit to the

ontinuum spae:

mn ! x = (x

1

; x

2

) ;

X

mn

!

Z

d

2

x =

Z

dx

1

dx

2

;

�

m

! �

1

= � = �x

1

; �

n

! �

2

= � = �x

2

;



mn

; 

�

mn

!  (x) ;

�

 (x) !  ;

�

 : (65)

The ontinuum{limit ounterpart for the lattie ation

(63) then appears in the form:

S =

Z

d

2

x

h

m  � �

1

 �

1

 + �

2

 �

2

 

� t

1

 �

1

 + t

2

 �

2

 

i

: (66)

This is the Majorana{like ontinuum ation for two{

omponent massive fermions. In the above ontinuum

ation we have dropped an interesting seond{order mo-

mentum term with �

1

�

2

. The mass and other param-

eters are the same as in (64). In presenting the a-

tion in the �nal form, we have as well applied the rule

R

d

2

x(a�b) =

R

d

2

x(b�a), where � = �

1

; �

2

and a; b are

any fermioni �elds. This simple rule an be heked by

integration by parts, taking into aount that fermions

antiommute and negleting the boundary e�ets. Al-

ternatively, one an hek the above rule in lattie in-

terpretation. In (66) the momenta operators �

1

; �

2

in

all ases at to the right. The ontinuum{spae ation

(66) aptures the basi features of the exat lattie the-

ory with ation (58) in the low{momentum setor near

the ritial point, whih is responsible for the ritial{

point singularities in the thermodynami funtions and

the large{distane behaviour of orrelations. In the mo-

mentum spae, this orresponds to approximation like

e

ip

� 1 ' ip; e

iq

� 1 ' iq, assuming also the ultraviolet

ut{o� in the momentum integrals, jpj � k

0

, with k

0

of

order 1 (or say �=4) or less.

The Majorana like ation (66), however, is not in the

anonial form. It an be brought into a anonial form

by a suitable linear transformation of the �elds, elimi-

nating the undesirable kineti terms like  

1

�

1

�

 ;  �

2

�

 .

In the anonial form, the 2D Majorana ation (66) is

given as follows:

S =

Z

d

2

x

h

�m 

1

 

2

+  

1

1

2

(�

1

+ i �

2

) 

1

+  

2

1

2

(��

1

+ i �

2

) 

2

i

; (67)

with the new Majorana omponents,  

1

;  

2

, and the

resaled mass:

�m =

1� t

1

� t

2

� t

1

t

2

p

2 (t

1

t

2

)



: (68)

In order to pass from (66) to (67), we have to transform

the fermioni �elds and the momenta operators �

1

; �

2

in

a suitable way. Here we omment shortly on this trans-

formation. For the �rst step, let us write the ation in

the form:

S =

Z

d

2

x

h

m 

1

�

 

2

+  (��

1

�

1

+ �

2

�

2

)

�

 

+

t

1

�

1

 (��

1

�

1

) +

t

2

�

2

�

 (�

2

�

2

)

�

 

i

: (69)

By the resaling of the �elds like  ! e

�

2

 ;

�

 ! e

�

�

2

�

 ,

with properly hosen �, we gain the same ation in a

slightly more symmetri form:

S =

Z

d

2

x

h

m 

1

�

 

2

+  (��

1

�

1

+ �

2

�

2

)

�

 

+ !

0

( (��

1

�

1

) +

�

 (�

2

�

2

)

�

 )

i

; (70)

with new kineti parameter:
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!

0

=

r

t

1

t

2

�

1

�

2

=

1

p

(1 + t

1

) (1 + t

2

)

! (!

0

)



=

1

p

2

: (71)

Exatly at T



, even independently of the rate of

the lattie anisotropy, we have (!

0

)



=

1

p

2

, sine

(1�t

1

�t�t

1

t

2

)



= 0 . Taking into aount that the

ontinuum{limit formulation by itself is reliable only

near T



, in what follows we put: !

0

= 1=

p

2 = (!

0

)



.

The ation (70) is already in a suitable form to be

transformed into the anonial Majorana ation (67).

The general idea is to introdue the new �elds by a linear

substitution like

 = u (a + ��a) ;

�

 = u (�a+ ���a) ; (72)

where ; �; �; �� are free parameters (four omplex num-

bers) and a; �a are the new antiommuting omponents

(we shall pass a; �a !  

1

;  

2

at next stages). Substitut-

ing (72) into (70), we then look for the uniformization

ondition that the undesirable terms like a �

1

�a; a �

2

�a do

not appear in transformed ation. In essene, the idea

is similar to that of the Bogoliubov transformation in

the theories of superuidity [34℄ and superondutivity

[35℄. It appears that the uniformization requirement, in

any ase, implies the ondition � = ��� (the above rule

a�b = b�a is not to be forgotten at this stage). We then

put � = ��� = 1, assuming the remaining normaliza-

tion parameter, u, to be �xed by the ondition  

�

 = a�a,

whene d

�

 d = d�ada. This is the ondition that trans-

formation (72) is anonial, that is, the fermioni mea-

sure is unhanged. In this way we ome to the uniformiza-

tion ondition in the form:

(�� + ��) + 2!

0

= 0 ; !

0

=

r

t

1

t

2

�

1

�

2

; (73)

while u is then �xed by the ondition:

u

2

(�� � ��) = 1 : (74)

The momenta �

1

; �

2

also will be transformed, in general,

under the transformation of the �elds like (72). The or-

respondent relations are not shown, however, sine in our

partiular ase, with !

0

= 1=

p

2, this momenta transfor-

mation appears to be idential. Assuming !

0

= 1=

p

2,

we �nd that a possible realization for (72){(74) is the

following substitution:

 =

a+ �a

p

2i sin(�=4)

;

�

 = �

a e

i(�=4)

+ e

�i(�=4)

�a

p

2i sin(�=4)

; (75)

whih orresponds to  = 1; � = �

1

p

2

(1 + i) in (73) and

(74). Substituting (75) into (70), the ation appears in

the form:

S =

Z

d

2

x

h

ma�a+

1

2

a (�

1

�

1

+ i �

2

�

2

) a

+

1

2

�a (��

1

�

1

+ i �

2

�

2

) �a

i

; (76)

where a; �a are the new Majorana �elds, and  

�

 ! a�a,

d

�

 d ! d�a da. A remarkable feature is that the mo-

menta omponents �

1

; �

2

in (76) are not e�eted, they

are the same as in the original ation (66) and in (70).

This feature is provided by a speial value of the ki-

neti parameter, !

0

! (!)



= 1=

p

2. The axis in the

d

2

x $ d

2

p spae will be resaled and rotated, in gen-

eral, by the uniformization transformation under substi-

tution like (72) with !

0

6= 1=

p

2. In fat, the uniformiza-

tion ondition (73) by itself still provides some freedom,

orresponding to the gauge rotation of the �elds: a !

a e

i�

; �a! �a e

�i�

in (76), or  

1

!  

1

e

i�

;  

2

!  

2

e

� i�

in (67) , aompanied by the ovariant orthogonal rota-

tion of the referene frame of momenta �

1

�

1

; �

2

�

2

. In

(75) and (76) this freedom is �xed in suh a way that

the axis of the d

2

x spae are not rotated.

Finally, let us resale the momenta in (76) as fol-

lows: �

1

! (�

2

=�

1

)

1=2

�

1

; �

2

! (�

1

=�

2

)

1=2

�

2

, whih

is anonial transformation (d

2

x ! d

2

x, d

2

p ! d

2

p).

The resaled momenta are those that �nally appear in

the anonial ation (67). By resaling, we gain a new

overall kineti fator, let us all it !

1

, given by:

!

1

=

p

�

1

�

2

=

p

t

1

t

2

(1 + t

1

)(1 + t

2

)

! (!

1

)



=

p

2 (t

1

t

2

)



; (77)

it is reasonable to �x !

1

at T = T



as is indiated above.

Finally, for the last step, we remove !

1

from the kineti

part by the following resaling of the �elds (�rst hang-

ing the notation for the omponents): a; �a !  

1

;  

2

!

 

1

=

p

!

1

;  

2

=

p

!

1

, and obtain the Majorana ation in the

anonial form given in (67). Respetively, the mass m

from (66) will get renormalized to give the resaled mass

�m (68).

Up to the stage of this �nal resaling of the �elds, all

the transformations we have applied were anonial, that

is, preserving the measure in the integrals of any kind.

The last resaling of the fermioni omponents, however,

is not the anonial transformation, it introdues a fator

in the fermionimeasure, d 

2

d 

1

! !

1

d 

2

d 

1

. The or-

respondent fator then appears in front of the partition

funtion and an be ignored, in essene, by analyzing the

ritial point. Atually, we have to take are of the in-

variane of the measure in the d

2

x spae integral (respe-

tively, in the d

2

p spae integral) in the ation, but not in

the fermioni measure. Notie that the momenta �

1

; �

2

are the same as in the original ation (66) up to (76),
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while in (67) there are already the resaled momenta

�

0

1

= (�

1

=�

2

)

1=2

�

1

; �

0

2

= (�

2

=�

1

)

1=2

�

2

, whih is not re-

eted in the notation of (67). This resaling, however,

is a anonial transformation, d

2

x = d

2

x

0

, respetively,

d

2

p = d

2

p

0

. This means that we have preserved the nor-

malization of the measure in the momentum spae, the

singularities near ritiality alulated from the anoni-

al ation (67) with the mass (68) are expeted to be the

same, in leading orders, as those provided by the exat

lattie theory (63) or its low{momenta approximation

(66). The ritial{point singularities are ommented in

Setion IX. Meanwhile, let us ontinue with the anoni-

al Majorana ation (67) we have just derived.

The anonial two{omponent Majorana ation (67)

an be written as well in matrix notation. Noting that

�m 

1

 

2

=

1

2

�m( 

1

 

2

� 

2

 

1

) and introduing the ma-

trix struture at eah spae point in the d

2

x integral,

we write:

S

major

=

1

2

Z

d

2

x

�

 

1

 

2

�

T

��

�

1

+ i�

2

�m

� �m ��

1

+ i�

2

���

 

1

 

2

�

; (78)

where ( )

T

stands for transposition of spinor. In terms of

the standard Pauli matries, �

1

; �

2

; �

3

, the matrix kernel

of this ation (the `inverse propagator', or `equation of

motion') an be written in the form: [ �m (i �

2

) +�

1

(�

3

)+

i �

2

(1) ℄ , or in the form: (i �

2

) [ �m + �

1

(�

1

) + �

2

(�

2

)℄.

Thus, we �nd:

S

major

=

1

2

Z

d

2

x

~

	 [ �m +

^

� ℄ 	 ;

~

	 = 	

T

(i �

2

) ;

^

� = 

1

�

1

+

2

�

2

;

^

�

2

=�

2

1

+ �

2

2

; (79)

with the 2D {matries 

1

=�

1

; 

2

=�

2

. This is the 2D

Majorana ation in the relativisti �eld{theoretial form.

The onjugated Majorana spinors

~

	 and 	 in (79) are

built in fat from the same omponent �elds,  

1

,  

2

,

so they are not the truly independent �elds in the path

integral. By doubling the number of fermions in the Ma-

jorana representation we an pass to the Dira ation

with four independent omponents:

S

dira

=

1

2

Z

d

2

x

�

	 (x) [ �m +

^

� ℄ 	 (x) ; (80)

where 	 = ( 

1

;  

2

) and

�

	 = ( 

�

1

;  

�

2

)

T

are now

harged Dira spinors with four independent antiom-

muting omponents:  

1

;  

2

;  

�

1

;  

�

2

. By onvention, one

an assume  

�

1

;  

�

2

to be omplex onjugates of  

1

;  

2

.

The propagator �m +

^

� in (80) is the same as in (79).

To obtain the Dira ation (80), we take two idential

opies S

0

and S

00

of the Majorana ation (79) and write:

S

dira

= (S

0

+ S

00

)

majorana

. Introduing the new Dira

�elds by means of substitution:

	 =

1

p

2

(	

0

+ i	

00

) ;

�

	 =

1

p

2

(

~

	

0

� i

~

	

00

) ; (81)

we obtain the ation (80). Mathematially, the transfor-

mation from (79) to (80) is in essene the same that

we have onsidered in relation to identity (8) in Se-

tion II, whih establishes the onnetion between the

fermioni Gaussian integrals of the �rst and seond

kind, or between the determinant and the PfaÆan of

a skew{symmetri matrix. Notie that the kernel like

�m(i�

2

) + �

1

(�

3

) + i�

2

(1) from (78) is a skew{symmetri

matrix, assuming that �

1

; �

2

are also onsidered as ma-

tries. The transformations from lattie to ontinuum in

2DIM are also disussed in [21,25℄.

IX. CRITICAL{POINT SINGULARITIES

The �eld{theoretial formulation for the 2D Ising

model near T



is a suitable representation to disuss, in

a simple way, the thermodynami singularities near the

transition point. Assuming that we start with the Dira

interpretation (squared partition funtion) and noting

that in the momentum spae det( �m +

^

�) = �m

2

+ p

2

,

the singular part of the free energy readily follows in the

form:

�� f

sing

=

1

2

Z

d

2

p

(2�)

2

ln( �m

2

+ p

2

)

=

1

8�

�m

2

ln

onst

�m

2

+ (:::) ; (82)

where the mass �m is that given in (68). This is the ex-

at expression for the most singular part of the free en-

ergy of the 2DIM in a zero magneti �eld (h = 0). The

same asymptotes follows from the exat solution. Noting

that near the ritial point �m � � = jT � T



j=T



, let

us assume �m for onventional temperature. The internal

(average) energy is then given as follows:

(E)

�m sing

=

�

� �m

(��f

sing

) =

Z

d

2

p

4�

2

�m

�m

2

+ p

2
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=

�m

4�

ln

onst

�m

2

+ (:::) ; (83)

and the dimensionless spei� heat is:

(C=k)

�m sing

=

1

4�

ln

onst

�m

2

+ (:::)

=

1

2�

ln

onst

j �mj

+ (:::) ; (84)

where we put the subsript �m to remember that the

derivatives are taken with respet to the onventional

temperature �m. For the isotropi lattie, �m ' 4 (b�b



) '

4b



� , with b



=

1

2

ln(1+

p

2), wherefrom one an reover,

for instane, the spei�{heat asymptotes (42) with the

orret value of the amplitude: (C=k)

sing

= A



j ln j� jj,

A



= (8=�) b

2



.

The asymptotes (82){(84) are to be ompared with

the hypothetial form of the ritial{point singularities

in the same funtions in a nonzero magneti �eld near

T



, whih subjet we intend to disuss, in short, in the re-

maining part of this setion. We are interesting merely in

what may be the singular behaviour of the spei� heat

in a nonzero magneti �eld along the ritial isotherm,

that is, when the temperature is �xed exatly at T



and

the deviation from the ritial point is realized by a small

nonzero magneti �eld, h 6= 0. [For �nal onlusion, see

(89) below℄. To start with, let us write the expeted form

for the singular part of the free energy near the ritial

isotherm, in the regime of the \strong" magneti �eld,

�

15=8

<< h << 1:

�� f

sing

=

1

2

Z

d

2

p

(2�)

2

ln

�

�m

2

+ p

2

+

�

2

p

2

�

+ (:::) ; (85)

with � / hM (�; h), where M (�; h) is magnetization,

� ! 0. More preisely, both � and h are assumed to

be small, but we are interesting in the situation near the

ritial isotherm, � = 0; h 6= 0, and introdue in�nitesi-

mal deviation from T



with respet to the temperature,

� << h

8=15

, merely to perform the di�erentiation, then

we put � ! 0. The same form of the free energy an be

onsidered for \weak" �eld, h

8=15

<< � . In this ase, how-

ever, the hoie of the form of � as funtion of �; h, due

to the strong temperature e�ets, may be more sophisti-

ated. This may be atual, in partiular, in the ordered

phase, where the e�ets of the external �eld are superim-

posed on the e�ets of the inherent moleular �eld [36℄.

We omment on singularities that follow from the free

energy (85) below, but now let us make few remarks on

its origin. A somewhat unusual perturbation term �

2

=p

2

whih appears in the propagator in (85) is the result of

an approximation in the mixed spin{fermion representa-

tion for Q

h6=0

. The insertion of the h > 0 weights like

1 + h�

mn

into the fatorized density matrix in (21) pre-

vents the exat solution at h 6= 0 sine the spin variables

an not be easily eliminated in this ase. We then have

elaborated the ordered produts of fators in the density

matrix (21) into an exponential form, f. the disussion

in Setion VI, and applied the simplest approximation of

the Hartree{Fok type for the spin subsystem. In parti-

ular, this kind of approximation implies � � hM (�; h).

The nonloal Gaussian exponents, like those onsidered

in Setion VI, then appear in ation. This, roughly, or-

responds to the modi�ation of the Majorana ation of

the following kind:

S =

1

2

Z

d

2

x

~

	 [ �m+

^

� + �=

^

� ℄ 	 : (86)

This form of the ation, however, is not to be understood

too literally, the less singular �{orretions are ignored

(or inorporated in �). There is no essential interferene

of �=

^

� with �m +

^

� near the line � = 0; h 6= 0 in (85)

within given approximations. The main statement is that

the free energy appears with the perturbed propagator

as is given in (85). Now, let us assume (85) to be true

and onsider what follows.

The onsequenes from (85) are interesting. In the

strong{oupling regime (� >>

1

2

�m

2

) the internal energy

per site is given by:

(E )

�m sing

=

�m

4�

Z

p

2

dp

2

�

2

+ �m

2

p

2

+ p

4

+

1

8

��

� �m

+ (:::) : (87)

Respetively, the spei� heat at the ritial isotherm

( �m! 0) appears in the form:

(C

�m

)

sing

=

1

4�

Z

p

2

dp

2

�

2

+ (p

2

)

2

+ (:::)

=

1

8�

ln

onst

�

2

+ (:::) =

1

2�

j ln

p

�j + (:::) ;

p

� / h

8=15

! 0 ; �m = 0 ; (88)

where �(0; h) / hM (0; h), or �(0; h) / h

16=15

, and we

have passed in the �nal line to

p

� / h

8=15

! 0 in or-

der to make the amplitude to be equal to that in (84).

It is known from saling and other onsiderations that

M (0; h) / h

1=15

, wherefrom �(0; h) / h

16=15

. Comparing

(88) with (84), we see that under given approximation

the spei� heat along the ritial isotherm is logarithmi

and an be formally reovered from (84) by replaing the

thermal mass �m = �m(�; 0) � � by the \magneti mass"

p

�(0; h) � h

8=15

. The amplitude in (88) remains the

same (with respet to the mass parameters) as in (84).

The spei� heat (88) is obtained by �

2

=� �m

2

, where �m is

given in (68). Formally, the asymptotes (88) inludes the

ase of the anisotropi lattie as well. For the isotropi

lattie, �m ' 4 (b� b



), b = J=kT , and we have to multi-

ply the amplitude from (88) by fator 16b

2



to obtain the

true spei� heat along the ritial isotherm:
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(C=k)

sing

=

8

�

b

2



j lnh

8=15

j = E



j lnh j ;

E



=

8

15

A



=

64

15�

b

2



; (89)

where A



= (8=�)b

2



is the thermal ritial amplitude

along the ritial isobar, � 6= 0; h = 0,A



= 0:494538589,

while E



= (8=15)A



= 0:263753914 is the amplitude

along the ritial isotherm, � = 0; h 6= 0, as it ap-

pears within given approximation. Here b



=

1

2

ln(1 +

p

2) = 0:440686793 is the inverse ritial temperature,

b



= J=kT



. It may be interesting to hek (89) by the

Monte{Carlo experiments and other numerial methods.

Let us add a remark. The spei� heat (88) is ob-

tained, formally, by di�erentiating with respet to �m

plaed in front of the integral in (87) and then tak-

ing the limit �m ! 0. The other orretions are ig-

nored. Evidently, the di�erentiation with respet to �m

2

from the propagator in the integral will yield vanish-

ing ontribution as �m ! 0. As regards the possible

ontribution from the term ��=� �m in the energy (87),

the ontribution of this term to the spei� heat (let

�m ! � ) is of order

�

2

��

2

�(�; h) � h

�

2

��

2

M (�; h) , but

�

2

��

2

M (�; h) �

�

�h

�

2

��

2

(��f

sing

) �

�

�h

C(�; h). Taking the

limit � ! 0, we see that

�

2

��

2

� / h

�

�h

lnh � 1, assuming

C(0; h) � lnh. So, the logarithmi asymptotes in (88)

and (89) is by itself onsistent with the less singular on-

tribution via �(�; h).

Curiously, we ould guess (88) from the most rude

phenomenologial onsiderations, simply replaing the

\thermal" mass m

�

� � from (84) by the \magneti"

mass �m

h

� h

8=15

. This replaement an not be done,

however, at least in a simple form, in the free energy like

(82), sine this will yield the expressions with the loga-

rithmi orretions in the funtions related to the magne-

tization at the ritial isotherm, whih is hardly the ase.

[For instane, at the ritial isobar M (�; 0) ' B �

1=8

,

and there is no any logarithmi orretion. The multi-

pliative logarithmi orretions are not expeted as well

neither in M (0; h) nor in E(0; h)℄. The unusual form

of the magneti{�eld orretion �

2

=p

2

in the propaga-

tor in (85), versus a naive modi�ation of mass term in

�m

2

+ p

2

, is in fat favourable with respet to the known

data about the Ising model. Merely, this onerns the

absene of the logarithms, observed or expeted, in the

�eld derivatives of the free energy.

The 2D Ising model at T



an also be onsidered

in terms of the onformal �eld theory (CFT) axioms

[37{40℄. Zamolodhikov [40℄ has onjetured the exis-

tene of the eight masses m

i

� h

8=15

(i = 1; 2; :::8)

in the perturbed CFT assumed to be in the same uni-

versality lass as the 2DIM at the ritial isotherm,

� = 0; h 6= 0. A remarkable feature is that the ratios

of these masses are predited from the symmetries as

the exat numbers up to the overall normalization on-

stant: m

2

=m

1

= 2 os

1

5

� ; m

3

=m

1

= 2 os

1

30

�, et [40℄.

The nature of these masses from the point of view of the

original lattie formulation of 2DIM is yet not well un-

derstood. If these masses are thought out as the result of

some kind of �ne splitting of the � term in the propaga-

tor in (85), their e�et on the behaviour of the orrela-

tions might be di�erent, as ompared with the thermal

mass e�et, sine �

2

is not the same that �m

2

in (85).

If so, the naive expetation that the asymptotes of the

two{point orrelation funtions will be given, by anal-

ogy with thermal deay of orrelations, by the sum of

the terms like K

0

(m

i

R), where K

0

is modi�ed Bessel

funtion, may not be the ase. It is diÆult to make def-

inite preditions, however, at present stage, what may be

the modi�ations. The approximations like (85) seem to

be two rude in this respet. It might be onjetured, for

instane, that some of the masses (probably all exept

the lightest or the heaviest one) might have imaginary

parts and will then ontribute only either more rapidly

deaying additive orretions to the leading term (with

extra fators 1=R) or the orretions with the osillating

formfators (with the same periods R

i

� m

�1

i

as the

deay rates in the aompanying exponents) to the term

with `normal' deay, like K

0

(m

1

R), whih is what an

also be expeted from ommon saling.

It may be noted that the parameter � in (85) and (86)

is rather harge then mass. The free energy in the form

(85) might be of interest also at D6=2. In priniple, tak-

ing the free energy in the form (85) as it is, one an

try to analyze other thermodynami funtions. However,

this will laim for further �ne detailing of the meaning

of � as a funtion of both � and h. In partiular, the ef-

fets related to the possible spontaneous ordering are to

be taken into aount properly below T



. An interesting

feature is that at a speial line � =

1

2

�m

2

the free energy

(85) reprodues, in essene, the same results (82){(84)

as at � = 0, that is, at h = 0. This might be an evi-

dene for the possibility to inorporate the e�ets of the

spontaneous ordering in this sheme. We are going to

disuss these subjets in a more detail elsewhere. In fat,

the line � =

1

2

�m

2

distinguishes between the weak{�eld

and strong{�eld regimes, with respet to � , in the inte-

gral (85). At this boundary, � � h

8=15

, this is just what

one an expet for this boundary from saling and other

onsiderations [36℄.

X. CONCLUSIONS

In the above disussion, the two{dimensional Ising

model (2DIM) has been treated as a theory of free

fermions on a lattie. The antiommuting (Grassmann)

variables and integrals were made use of. The fermioniza-

tion proedure is based on the mirror{ordered fermioni

fatorization of the density matrix. Following this

method, the original spin{variable partition funtion Q

with arbitrary inhomogeneous set of bond oupling pa-

rameters was transformed into a Gaussian fermioni inte-

gral. The subsequent disussion inludes the momentum{

spae analysis and the exat solution for the standard

(translationally invariant) retangular 2D Ising lattie,

the free fermion representation for Q with two variables

per site, the Majorana{Dira �eld theory interpretation

of the 2DIM near T



(ontinuum limit). The e�ets of the
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long{range fermioni orrelations in a nonzero magneti

�eld and the behaviour of the spei� heat along the

ritial isotherm also have been disussed. Grassmann

variables provide a powerful tool to analyze the 2DIM.

In physial aspet, it seems to be important to under-

stand better the mehanism of the spontaneous ordering

in 2DIM in terms of fermions. The fermioni interpre-

tation of the 2D Ising model provides grounds for this

model to be treated in a ommon range with some other

typial models in ondensed matter physis and quantum

�eld theory.
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V�L^N� FERM�ONI U DVOVIM�RN�� MODEL� �ZIN�A

V. N. Plqko

Ob'dnani� �nstitut �dernih dosl�d�en~, Laborator�� teoretiqnoÝ f�ziki �m. Bogol�bova,

Dubna, Moskovs~ka oblast~, 141980, Ros��

Peregl�nuto dvovim�rnu (2D) model~ �zin�a �k teor�� v�l~nih ferm�on�v na �rat�. Obgovorenn� vkl�-

qa proeduru ferm�on�za�Ý, wo �runtut~s� na dzerkal~no vpor�dkovan�� faktoriza�Ý matri� gustini,

zobra�enn� statistiqnoÝ sumi �aus�vs~kim ferm�onnim �nte�ralom, anal�z v �mpul~snomu prostor� ta re-

zul~tat Onza�era, efektivn� teor�Ý pol� v grani� kontinuumu ta sin�ul�rnosti v kritiqn�� toq�. Pro-

komentovano po�vu dalekos��nih ferm�onnih korel��� u nenul~ovomu magnetnomu pol� � poved�nku tep-

lomnosti vzdov� kritiqnih �zoterm. Prid�leno uvagu viborov� ra�onal~nih shem rozrahunku.
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