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The two{dimensional (2D) Ising model is reviewed as a theory of free fermions on a latti
e. The

dis
ussion in
ludes the fermionization pro
edure based on the mirror{ordered fa
torization of the

density matrix, Gaussian fermioni
 integral representation for partition fun
tion, the momentum{

spa
e analysis and Onsager's result, the e�e
tive 
ontinuum{limit �eld theories and the 
riti
al{

point singularities. The emergen
e of long{range fermioni
 
orrelations in a nonzero magneti
 �eld

and the behaviour of the spe
i�
 heat along the 
riti
al isotherm are 
ommented. Attention is given

to the 
hoi
e of rational 
omputational devi
es.
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I. INTRODUCTION

There are many remarkable analogues between the

physi
al 
on
epts and mathemati
al methods in statis-

ti
al me
hani
s and quantum �eld theory. The two{

dimensional Ising model (2DIM) may be a good exam-

ple of this kind. In its original formulation, the 2D Ising

model is a dis
rete{spin latti
e model for the se
ond{

order phase transitions in magnets, for whi
h the ana-

lyti
 results for the free energy and some other fun
tions

are available over the whole temperature range. At the

�rst stages, the 2DIM has been analyzed rather as a 
om-

pli
ated mathemati
al problem [1{8℄. The 
anoni
al ap-

proa
hes to the 2DIM are based on the transfer{matrix

and 
ombinatorial 
onsiderations [1{12℄. The fermioni


features in the 2DIM have been re
ognized already in

[2,6,7℄. Further developments in this dire
tion provided

new insight into the physi
al nature of the problem and

signi�
antly simpli�ed the analysis in the te
hni
al as-

pe
t [13{20℄. The modern approa
hes to the 2DIM are

based on the interpretation of the problem in terms of

fermions [13{26℄. In this arti
le, we review some aspe
ts

of a simple non
ombinatorial fermioni
 approa
h to the

2D Ising model based on the appli
ation of the anti
om-

muting Grassmann{variable integrals and the mirror{

ordered fa
torization ideas for the density matrix [18{20℄.

The method is simple and is in a sense straightforward.

The transfer{matri
es and 
ombinatori
s are not used.

The appearan
e of fermions in the 2D Ising model within

given approa
h rather resembles the 
hange of the basis

in quantumme
hani
s. The arti
le is arranged as follows.

A short introdu
tion to the rules of the fermioni
 inte-

gration is given in Se
tion II. The original spin{variable

formulation for the 2D Ising model is 
onsidered in Se
-

tion III. We then dire
tly pro
eed with dis
ussing the

fermionization pro
edure in Se
tion IV. The Grassmann

variables are �rst introdu
ed by fa
torization of the lo-


al bond Boltzmann weights in (15). The mirror{ordered

fa
torized representation for the whole density matrix

is obtained at the next stage in (21). This is a mixed

spin{fermion representation for the density matrix, in

whi
h spin variables 
an be readily eliminated. This re-

sults the Gaussian fermioni
 integral for partition fun
-

tion, Q, given in (24). Equivalently, the 2D Ising model

is reformulated as a theory of free fermions on a lat-

ti
e. The transformation of Q into a fermioni
 integral is

performed in Se
tion IV for the most general inhomoge-

neous distribution of the bond 
oupling parameters over

the latti
e. In Se
tion V the 2D Ising model on the stan-

dard homogeneous re
tangular latti
e is 
onsidered. Af-

ter transformation to the momentum spa
e for fermions,

the partition fun
tion is evaluated in a 
losed form, whi
h

results the Onsager's expression for the free energy. In

Se
tion VI, 
oming ba
k to previous dis
ussion, we add

a few further remarks on the ordered produ
ts of Grass-

mannian fa
tors, like those arising by fa
torization of

the density matrix in (21). The nonlo
al fermioni
 sums

arising in this 
ontext are of interest for the 2D Ising

model in a nonzero magneti
 �eld, as is 
ommented in

Se
tion IX. In Se
tion VII, a re�ned version of the basi


integral (24) for the partition fun
tion is obtained. The

resulting Gaussian integral for Q with two variables per

site is given in (57). It is interesting that the Majorana{

Dira
 stru
tures, somewhat mysteriously arising in the

2D Ising model, 
an be re
ognized in the fermioni
 a
tion

of the integral (57) already at the latti
e level. The e�e
-

tive 
ontinuum{limit �eld theories near T





orresponding

to the low{momentum se
tor of the exa
t latti
e theory,

whi
h is responsible for the 
riti
al{point singularities

in the thermodynami
 fun
tions and the large{distan
e

behaviour of the 
orrelation fun
tions, are 
onsidered in

Se
tion VIII. The e�e
tive Majorana like a
tion for two{


omponent massive fermions is obtained in (66). After

the uniformization transformation, the a
tion appears in

the standard Majorana form given in (67) and (79). By

doubling the number of fermions in the Majorana rep-

resentation, one 
an pass as well to the Dira
 theory of


harged fermions (80). In Se
tion IX, we make use of

the simpli�ed 
ontinuum{limit interpretation of 2DIM

in order to dis
uss the 
riti
al{point singularities near

T




. The e�e
ts produ
ed by a nonzero magneti
 �eld in

312



FREE FERMIONS IN TWO{DIMENSIONAL ISING MODEL

the fermioni
 system of the 2DIM Ising model near T




are 
onsidered within approximating approa
h. It is ar-

gued the that swit
hing on of a nonzero magneti
 �eld

(h 6= 0) 
auses the long{range nonlo
al intera
tions of

the fermions, on the ba
kbone of the lo
al part of the

a
tion 
orresponding to h = 0. Within adopted approx-

imation 
onje
tures, the singularity in the spe
i�
 heat

at the 
riti
al isotherm is expe
ted to be logarithmi
. Fi-

nally, few 
on
luding remarks are given in Se
tion X. In

the next se
tion, we start with a 
omment on the rules

of fermioni
 integration whi
h are relevant for the forth-


oming dis
ussion.

II. GRASSMANN VARIABLES

Let us remember that Grassmann variables (non-

quantum fermioni
 �elds) are the purely anti
ommuting

fermioni
 symbols. Given a set of Grassmann variables,

a

1

; a

2

; a

3

; : : : ; a

N

, we have:

a

i

a

j

+ a

j

a

i

= 0 ; a

2

j

= 0 : (1)

The linear superpositions of Grassmann variables are

again purely anti
ommuting, their squares are zeros.

The �rst important identity of anti
ommuting analysis

is given as follows:

b

1

b

2

b

3

:::: b

N

= det

^

A � a

1

a

2

a

3

::: a

N

; (2)

b

i

=

N

X

j=1

A

ij

a

j

;

where we multiply the linearly transformed variables, the

determinant of the matrix of the transformation appears

as the 
oeÆ
ient between the two produ
ts. The relation

of the anti
ommuting algebra to the determinant 
ombi-

natori
s expressed in the above identity is well known in

physi
s and mathemati
s already for a long time. The

rules of the integration for Grassmann variables have

been �rst introdu
ed by Berezin [27℄. The elementary

rules for one variable are:

Z

da

j

� a

j

= 1 ;

Z

da

j

� 1 = 0 : (3)

In multiple fermioni
 integrals, the di�erential symbols

are again anti
ommuting with ea
h other and with the

variables [27℄. The integration then redu
es to the re-

peating use of the above elementary rules, keeping in

mind that the fermioni
 symbols anti
ommute. Due to

the nilpotent property of fermions, a

2

j

= 0, any natu-

ral (analyti
) fun
tion de�nite a �nite set of Grassmann

variables 
an be represented, in prin
iple, as a �nite poly-

nomial in these variables:

f (a

1

; a

2

; :::; a

N

) = f

0

+

N

X

j=1

f

j

a

j

+ � � � (4)

+ f

123:::N

a

1

a

2

:::a

N

;

where f

0

; f

j

; ::: ; f

123:::N

are the numeri
al 
oeÆ
ients.

In parti
ular, integrating polynomial (4) a

ording to the

rules (3), we �nd:

Z

da

N

: : :da

2

da

1

f (a

1

; a

2

; :::; a

N

) = f

123:::N

: (5)

The integration is thus a simple task if the integrand

fun
tion is already known in the polynomial form, how-

ever, this may be not the 
ase in appli
ations. The rules

of 
hange of variables under a linear substitution in the

fermioni
 integrals readily follow from (2) and (5). As


ompared with the rules of 
ommuting analysis, the only

di�eren
e is that the Ja
obian will now appear in the

inverse power [27℄. In physi
al appli
ations, an impor-

tant role is played by Gaussian fermioni
 integrals. The

Gaussian fermioni
 integral of the �rst kind is given as

follows [27℄:

Z

N

Y

j=1

da

�

j

da

j

exp

0

�

N

X

i=1

N

X

j=1

a

i

A

ij

a

�

j

1

A

= det

^

A ; (6)

where all the variables in the total set are purely anti-


ommuting, the matrix

^

A is arbitrary. The appearan
e

of the determinant in (6) 
an be tra
ed ba
k to (2). By


onvention, the variables a

j

and a

�

j


an be viewed as the


omplex 
onjugated variables, in physi
al 
ontexts this


orresponds to 
harged fermions, otherwise a

j

and a

�

j

are

simply independent variables. The Gaussian fermioni


integral of the se
ond kind, for real fermioni
 �elds, is

related to the PfaÆan [27℄:

Z

da

N

::: da

2

da

1

exp

0

�

1

2

N

X

i=1

N

X

j=1

a

i

A

ij

a

j

1

A

(7)

= Pfa�

^

A :

Matrix

^

A is now assumed to be skew{symmetri
: A +

A

T

= 0, where A

T

is the transposed matrix. In 
ompo-

nents: A

ij

+ A

ji

= 0 ; A

ii

= 0. This property is 
ompli-

mentary to fermioni
 anti
ommutativity. By formal def-

inition, the PfaÆan is some 
ombinatorial polynomial

in elements A

ij

known in mathemati
s for a long time

[28,29℄. The 
ombinatori
s of the PfaÆan is identi
al to

that of the fermioni
 version of Wi
k's theorem [28,29℄.

Noti
e that the number of the variables N in the inte-

gral (7) must be even, otherwise the integral is identi
ally

zero. This property is again in a

ordan
e with the for-

mal de�nition of the PfaÆan with N odd [28,29℄. The

equation (7) 
an itself be assumed for an e�e
tive de�ni-
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tion of the PfaÆan, wherefrom its basi
 properties read-

ily follow. For any skew{symmetri
 matrix, the following

algebrai
 identity is known [28,29℄:

det

^

A = (Pfa�

^

A )

2

: (8)

The PfaÆan is thus the square root of the determinant

of a skew{symmetri
 matrix. The above identity most

easily 
an be proved just in terms of the integrals like

(6) and (7). Let N be even. Assuming that the matrix in

(6) is skew{symmetri
, we make use of the substitution:

a

k

=

1

p

2

(�

k

+ i �

k

) ; a

�

k

=

1

p

2

(�

k

� i �

k

) ; (9)

where �

k

; �

k

are the new variables of the integration.

It is then easy to 
he
k that the integral (6) de
ouples

into a produ
t of two identi
al integrals like (7), whi
h

is equivalent to (8). For the normalized multifermioni


averages asso
iated with the Gaussian integrals like (6)

and (7) one 
an apply fermioni
 Wi
k's theorem in a

usual way. There are few notes in 
on
lusion. In the �eld{

theoreti
al language, the fermioni
 form in the exponents

like in (6) and (7) is 
alled a
tion. Sin
e the a
tion is

quadrati
, the integrals (6) and (7) are Gaussian inte-

grals. The fermioni
 exponents in (6) and (7) are to be

assumed in the sense of their series expansion. Due to

the nilpotent property of fermions, the exponential se-

ries de�nitely terminate at some stage. The above expo-

nents are thus �nite polynomials in the variables, 
f. (4).

These polynomial representations also follow by multi-

plying elementary exponential fa
tors. For instan
e, the

exponential in (6) 
an be viewed as a produ
t of fa
tors

like exp (a

i

A

ij

a

�

j

) = 1 + a

i

A

ij

a

�

j

. In physi
al interpre-

tations, the Gaussian fermioni
 integrals 
orrespond to

free{fermion �eld theories [21,22℄.

III. TWO{DIMENSIONAL ISING MODEL

In this se
tion the 2D Ising model is formulated in

terms of Ising spin variables. Among the goals we keep in

mind in the present exposition, one is to provide an illus-

tration for how the analyti
 results 
an be extra
ted by

means of Grassmann variables in Statisti
al Me
hani
s.

In parti
ular, this is realized in Se
tion V when we eval-

uate expli
itly the partition fun
tion and free energy for

the 2DIM on the standard homogeneous (translationally

invariant) re
tangular latti
e. The fermionization itself,

however, 
an be performed equally well for the 2DIM

with arbitrary distribution of the ex
hange energies over

the latti
e. So, we start here with a generalized formula-

tion of the 2D Ising model, assuming arbitrary inhomoge-

neous distribution of the bond 
oupling parameters over

a re
tangular latti
e net. The Ising spins, �

mn

= �1,

are disposed at the latti
e sites, mn, labeled by pairs

of integers, m;n = 1; :::; L, with m and n running in

horizontal and verti
al dire
tions, respe
tively. L is the

length of the latti
e side. The total number of sites and

spins on the latti
e is N = L

2

, at �nal stages we assume

N = L

2

!1. The hamiltonian is:

�� H(�) =

L

X

m=1

L

X

n=1

h

b

(1)

m+1n

�

mn

�

m+1n

+ b

(2)

mn+1

�

mn

�

mn+1

i

; (10)

where b

(�)

mn

= �J

(�)

mn

are the dimensionless bond 
oupling

parameters, J

(�)

mn

are the ex
hange energies, � = 1=kT is

the inverse temperature in the energy units. For L �nite,

to be de�nite, let us assume free boundary 
onditions

for spin variables: �

L+1n

= 0; �

mL+1

= 0. The parti-

tion fun
tion and the free energy per site are:

Z =

X

(�)

exp (��H(�)) ;

�� f

Z

= lim

N!1

1

N

ln Z ; (11)

� = 1=kT ;

where the sum in Z is taken over all possible spin 
on�gu-

rations provided by �

mn

= �1 at ea
h site. The internal

(average) energy and spe
i�
 heat follow by di�erenti-

ating the free energy with respe
t to the temperature.

The spe
i�
 heat per site is: C=k = �

2

�

2

(��f

Z

)=��

2

,

� = 1=kT , where C=k is the dimensionless spe
i�
 heat,

k is Boltzmann's 
onstant. For a typi
al bond Boltzmann

weight from (11), let us note the identity: exp (b ��

0

) =


osh b+ ��

0

sinh b, whi
h readily follows from ��

0

= �1.

The partition fun
tion then appears in the form:

Z = f

L

Y

m=1

L

Y

n=1

(2 
osh b

(1)

m+1n


osh b

(2)

mn+1

g Q ; (12)

where Q is the redu
ed partition fun
tion:

314



FREE FERMIONS IN TWO{DIMENSIONAL ISING MODEL

Q = Sp

(�)

n

L

Y

m=1

L

Y

n=1

( 1 + t

(1)

m+1n

�

mn

�

m+1n

) (1 + t

(2)

mn+1

�

mn

�

mn+1

)

o

; (13)

with t

(1;2)

mn

= tanh b

(1;2)

mn

, and now we assume a properly normalized spin averaging:

Sp

(�)

(: : :) =

Y

mn

Sp

(�

mn

)

(: : :) ; Sp

(�

mn

)

(: : :) =

1

2

X

�

mn

=�1

(: : :) ; (14)

so that at ea
h site Sp (1) = 1, Sp (�

mn

) = 0. The redu
ed partition fun
tion Q will be the main subje
t of our

interest in what follows.

IV. FERMIONIZATION

In this se
tion we transform Q into a fermioni
 Gaussian integral. The method is based on the mirror{ordered

fa
torization pro
edure for the density matrix [18{20℄. Let us start with a fa
torization of the lo
al bond Boltzmann

weights from (13). For the whole latti
e, we introdu
e a set of the purely anti
ommuting Grassmann variables,

a

mn

; a

�

mn

; b

mn

; b

�

mn

, a pair per bond, and write:

1 + t

(1)

m+1n

�

mn

�

m+1n

=

Z

da

�

mn

da

mn

e

a

mn

a

�

mn

(1 + a

mn

�

mn

) (1 + t

(1)

m+1n

a

�

mn

�

m+1n

)

= Sp

(a

mn

)

fA

mn

A

�

m+1n

g ;

1 + t

(2)

mn+1

�

mn

�

mn+1

=

Z

db

�

mn

db

mn

e

b

mn

b

�

mn

(1 + b

mn

�

mn

) (1 + t

(2)

mn+1

b

�

mn

�

mn+1

)

= Sp

(b

mn

)

fB

mn

B

�

mn+1

g ; (15)

where in the �nal lines we introdu
e the abbreviated notation for the arising fa
tors, to be 
alled shortly Grassmann

fa
tors:

A

mn

= 1 + a

mn

�

mn

; A

�

m+1n

= 1 + t

(1)

m+1n

a

�

mn

�

m+1n

;

B

mn

= 1 + b

mn

�

mn

; B

�

mn+1

= 1 + t

(2)

mn+1

b

�

mn

�

mn+1

; (16)

while Sp (:::) stand for the Gaussian averaging like

da

�

da e

aa

�

(:::) and

R

db

�

db e

bb

�

(:::). These lo
al averaging

symbols, whi
h are even in fermions, are totally 
ommut-

ing with any element of the algebra and 
an be gathered

in one pla
e, forming the symbol of the global Gaus-

sian averaging. The identities (15) 
an be 
he
ked mak-

ing use of the elementary rules of fermioni
 integration

like (3), taking into a

ount that exp (aa

�

) = 1 + aa

�

and exp (bb

�

) = 1 + bb

�

. Noti
e that the mn indi
es in

the above Grassmann fa
tors are 
hosen to be equal to

the indi
es of the spin variables involved in these fa
tors.

Thus, it will be easy to 
ontrol the position of any Grass-

mann fa
tor with given spin variable among other su
h

fa
tors in their global produ
ts.

The idea of the next step is to substitute (15) into

(13) and to eliminate the spin variables in the resulting

mixed representation for the density matrix, Q(�; a). To

perform the pro
edure, we have to group together, over

the whole latti
e, the four fa
tors with the same spin,

A

mn

; B

mn

; A

�

mn

; B

�

mn

, and to average over �

mn

= �1

in ea
h su
h group of fa
tors, independently. The above

four fa
tors 
ome by fa
torization of the four di�erent

bonds atta
hed to a given mn site. In the pro
ess of the

spin averaging we have to keep these four fa
tors nearby.

The separable Grassmann fa
tors, however, are in gen-

eral neither 
ommuting nor anti
ommuting with ea
h

other, being the superpositions of 
ommuting and an-

ti
ommuting terms, and it might be diÆ
ult, in general,

to keep these fa
tors with the same mn nearby over the

whole latti
e. Therefore, we have to take 
are of a spe
ial
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ordering for the global produ
ts of su
h fa
tors, in order

the elimination of spin variables be really possible. In two

dimensions, this problem is solvable [18{20℄. Though the

individual Grassmann fa
tors are neither 
ommuting nor

anti
ommuting with ea
h other, what 
an really be used

in the ordering arrangements is the property that the

doublets like A

mn

A

�

m+1n

and B

mn

B

�

mn+1

representing

the lo
al bond weights in (15) 
an be treated as totally


ommuting obje
ts, if taken as a whole, under the sign

of the Gaussian averaging arising by fa
torization. Re-

ally, the non
ommuting terms involved in these doublets,

whi
h are linear in fermions, are e�e
tively equal to zero

under the averaging, while the remaining terms are even

in fermions and are totally 
ommuting. In the reorder-

ing transformations we shall apply as well the two or-

dering prin
iples illustrated below by tutorial examples.

The �rst illustration (linear rearrangement) is:

(�

0

�

�

1

) (�

1

�

�

2

) (�

2

�

�

3

) (�

3

�

�

4

)

= �

0

(

�

�

1

�

1

) (

�

�

2

�

2

) (

�

�

3

�

3

)

�

�

4

; (17)

where we simply reread the produ
t joining together the

symbols with the same index. The 
ommutation prop-

erties of the symbols does not matter at this stage, as-

suming that we start with a produ
t already ordered as

is given in the �rst line. The se
ond illustration (mirror

rearrangement) is:

(�

1

�

�

1

) (�

2

�

�

2

) (�

3

�

�

3

) = (�

1

(�

2

(�

3

�

�

3

)

�

�

2

)

�

�

1

)

= �

1

�

2

�

3

�

�

�

3

�

�

2

�

�

1

; (18)

where we assume that the doublets like (�

j

�

�

j

) are totally


ommuting with any individual fa
tor from the 
ommon

set, while the individual fa
tors themselves may be non-


ommuting. Then we de
ouple proper and bar fa
tors

into separable produ
ts.

It is easy to guess that the linear ordering prin
iple

(17) is by itself enough to solve the 1D Ising 
hain via

fermionization. This is not the 
ase, however, in two di-

mensions, where there is a 
ontradi
tion between prefer-

able m{ordering for the horizontal weights and prefer-

able n{ordering for the verti
al weights, with respe
t to

the linear{ordering rule (17). Therefore, we shall apply

�rst the mirror{ordering prin
iple (18) to fa
torize a hor-

izontal ladder of the verti
al weights, B

mn

B

�

mn+1

, in a

horizontal{like fashion with respe
t to index m, with n

�xed. This will provide us with an opportunity to intro-

du
e properly the remaining horizontal weights at the

next stage, so that the spin variables 
an be �nally 
om-

pletely eliminated from the density matrix. With this

preliminary notes, let us dire
tly pro
eed to the ordering

arrangements for global produ
ts of Grassmann fa
tors

arising by fa
torization of lo
al weights in (15). In trans-

formations from (19) to (20) we omit, for brevity, the

signs of the Gaussian averaging introdu
ed by fa
toriza-

tion of weights. The totally 
ommuting bond Boltzmann

weights are now given by A

mn

A

�

m+1n

and B

mn

B

�

mn+1

.

For the �rst step, let us multiply a subset of verti
al

weights over m, with n �xed. Making use of the mirror{

ordering rule (18), we write:

L

Y

m=1

(1 + t

(2)

mn+1

�

mn

�

mn+1

) =

L

Y

m=1

B

mn

B

�

mn+1

=

L

Y

m=1

m

 ���

B

mn

�

L

Y

m=1

m

���!

B

�

mn+1

: (19)

In the �nal expression, there are two m{ordered prod-

u
ts with m = 1; : : : ; L going in the opposite dire
-

tions (mirror ordering). Already at this stage the order-

ing is favourable for introdu
ing the horizontal weights

A

mn

A

�

m+1n

into a one of the m{ordered produ
ts. This

possibility is used below. Meanwhile, let us 
ontinue with

the verti
al weights. Multiplying the above partial prod-

u
ts taken as a whole over n = 1; : : : ; L, with n in
reasing

from left to right, and making use of the linear{ordering

rule (17) with respe
t to index n, we write:

L

Y

n=1

L

Y

m=1

(1 + t

mn+1

�

mn

�

mn+1

)

=

n

�!

L

Y

n=1

h

L

Y

m=1

m

 ��

B

mn

�

L

Y

m=1

m

��!

B

�

mn+1

i

=

n

�!

L

Y

n=1

h

L

Y

m=1

m

��!

B

�

mn

�

L

Y

m=1

m

 ��

B

mn

i

: (20)

When we pass to the last line, it was taken into

a

ount that B

�

mL+1

= 1, sin
e �

mL+1

= 0, a

ord-

ing to the free{boundary 
onditions we have assumed

above. Respe
tively, we have 
orre
ted the �nal expres-

sion in (20) at the left end, introdu
ing the la
king

produ
t of fa
tors with n = 1, whi
h are of the form

B

�

m1

= 1+ t

m1

�

m1

b

�

m0

, where we put b

�

m0

= 0. A
tually,

B

�

m1

= 1, with b

�

m0

= 0. In this way, the free boundary


onditions for spins are now elaborated into the analo-

gous 
onditions for fermions.

All verti
al weights are already involved in the prod-

u
t (20). It remains only to introdu
e properly the 
om-

muting horizontal weights, A

mn

A

�

m+1n

, into a one of the

m{ordered produ
ts in (20). Evidently, the produ
ts of

fa
tors B

�

mn

are preferable. Making use of the linear rule

(18) for the subsequent transformations with respe
t to

m, for the 
omplete density matrix we get:
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Q (�) =

L

Y

n=1

L

Y

m=1

(1 + t

mn+1

�

mn

�

mn+1

) (1 + t

m+1n

�

mn

�

m+1n

)

= Sp

(a;b)

n

�!

L

Y

n=1

h

L

Y

m=1

m

��!

B

�

mn

A

mn

A

�

m+1n

�

L

Y

m=1

m

 ��

B

mn

i

= Sp

(a;b)

n

�!

L

Y

n=1

h

L

Y

m=1

m

��!

A

�

mn

B

�

mn

A

mn

�

L

Y

m=1

m

 ��

B

mn

i

: (21)

By analogy with the boundary transformations in (20), we eliminate in the �nal line the extra fa
tors A

�

L+1n

= 1,

with �

L+1n

= 0, and insert, formally, the la
king fa
tors A

�

1n

= 1, assuming a

�

0n

= 0. In (21) we also restore the

symbol of the diagonal Gaussian averaging arising by fa
torization of the lo
al weights:

Sp

(a;b)

�

:::

	

=

Z

L

Y

m=1

L

Y

n=1

da

�

mn

da

mn

db

�

mn

db

mn

exp

L

X

m=1

L

X

n=1

( a

mn

a

�

mn

+ b

mn

b

�

mn

)

�

:::

	

: (22)

The expression in the �nal line of (21) is what we 
all the mirror{ordered fa
torized representation for the density

matrix. This representation is exa
t, assuming free{boundary 
onditions for fermions, a

�

0n

= 0, b

�

m0

= 0. The density

matrix is now 
ompletely prepared for the elimination of the spin variables. The partition fun
tion arises by summing

over the states �

mn

= �1 at ea
h site in (21).

The averaging over �

mn

= �1 is to be performed at the jun
tion of the two m{ordered produ
ts in (21), with �xed

n. This is a step by step pro
edure. The lo
al averaging at the jun
tion is given by:

Sp

(�

mn

)

fA

�

mn

B

�

mn

A

mn

B

mn

g =

1

2

X

�

mn

=�1

(1 + t

(1)

mn

�

mn

a

�

m�1n

) (1 + t

(2)

mn

�

mn

b

�

mn�1

) (1 + �

mn

a

mn

) (1 + �

mn

b

mn

)

= 1 + a

mn

b

mn

+ t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

+ (t

(1)

mn

a

�

m�1n

+ t

(2)

mn

b

�

mn�1

) (a

mn

+ b

mn

) + t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

a

mn

b

mn

= exp

h

a

mn

b

mn

+ t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

+ (t

(1)

mn

a

�

m�1n

+ t

(2)

mn

b

�

mn�1

) (a

mn

+ b

mn

)

i

: (23)

The result of the averaging is a purely fermioni
 polynomial, even in the variables, whi
h is equivalent to the

Gaussian exponential fa
tor given in the last line. This equivalen
e 
an be 
he
ked, for instan
e, by the series

expansion of the exponential, taking into a

ount the nilpotent property of fermions. Another way to see this

equivalen
e is explained in Se
tion 6. Let n be �xed, at the jun
tion of the two m{ordered produ
ts in (21)

we just �nd the four relevant Grassmann fa
tors (23) with the same index mn pla
ed nearby, with m = L,

given n. The lo
al averaging (23) results the Gaussian exponential fa
tor from the last line, whi
h is even in

fermions, thus, totally 
ommuting with any element of the algebra. We then remove this 
ommuting Gaussian

fa
tor from the jun
tion somewhere to the very left end of the remaining ordered produ
t, and �nd again at the

jun
tion a new set of four neighbouring fa
tors like (23) with the same index mn and the same spin variable,

with m = L � 1, given n. We then repeat the same averaging pro
edure at the jun
tion for m = L�1 and then

for m = L�2; : : : ; 1 , for given n, and all over again for other values of n = 1; : : : ; L. The spin variables being


ompletely eliminated, over the whole latti
e, the partition appears to be given by the produ
t of the partial Gaus-

sian exponential fa
tors from (23) under the sign of the global Gaussian averaging (22). Thus we 
ome to the

result:

Q =

Z

L

Y

m=1

L

Y

n=1

db

�

mn

db

mn

da

�

mn

da

mn

exp

n

L

X

m=1

L

X

n=1

h

a

mn

a

�

mn

+ b

mn

b

�

mn

+ a

mn

b

mn

+ t

(1)

mn

t

(2)

mn

a

�

m�1n

b

�

mn�1

+ (t

(1)

mn

a

�

m�1n

+ t

(2)

mn

b

�

mn�1

) (a

mn

+ b

mn

)

io

; (24)
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where a

�

0n

= 0 ; b

�

m0

= 0. The partition fun
tion is

now presented as a fermioni
 Gaussian integral. This

representation is exa
t. The fermioni
 integral (24) is


ompletely equivalent to the original expression (13) as-

suming the free boundary 
onditions both for spins and

fermions.

V. MOMENTUM{SPACE FERMIONS

In this se
tion we 
onsider the 2D Ising model set-

tled on the standard homogeneous latti
e. The partition

fun
tion Q 
an be expli
itly evaluated in this 
ase by

the transformation to the momentum spa
e for fermions.

This results in the Onsager expressions for the partition

fun
tion and free energy of the standard 2D Ising model.

For the homogeneous (though yet anisotropi
) latti
e, in

the Hamiltonian (10) we put: b

(1)

mn

; b

(2)

mn

! b

1

; b

2

, where

b

1;2

= �J

1;2

are the dimensionless 
oupling 
onstants in

the horizontal and verti
al dire
tions, respe
tively. The

partition fun
tion be
omes: Z = (2 
osh b

1


osh b

2

)

L

2

Q,

with the redu
ed partition fun
tion:

Q = Sp

(�)

n

L

Y

m=1

L

Y

n=1

(1 + t

1

�

mn

�

m+1n

) (1 + t

2

�

mn

�

mn+1

)

o

; (25)

where t

1;2

= tanh b

1;2

. From (24), the same partition fun
tion is given by the Gaussian integral:

Q =

Z

L

Y

m=1

L

Y

n=1

db

�

mn

db

mn

da

�

mn

da

mn

exp

n

L

X

m=1

L

X

n=1

h

a

mn

a

�

mn

+ b

mn

b

�

mn

+ a

mn

b

mn

+ t

1

t

2

a

�

m�1n

b

�

mn�1

+ (t

1

a

�

m�1n

+ t

2

b

�

mn�1

) (a

mn

+ b

mn

)

io

; (26)

with a

�

0n

= b

�

m0

= 0. The integral (26) is equivalent to (25) for any �nite latti
e size L under the free boundary


onditions. In what follows, however, it will be more suitable to impose in (26) the periodi
 boundary 
onditions

for fermions, a

�

0n

= a

�

Ln

; b

�

m0

= b

�

mL

, whi
h are the most simple and 
ommonly used boundary 
onditions in order

to pass to the momentum spa
e for a �nite dis
rete latti
e. This 
hange of 
onditions 
an be viewed as a boundary

approximation inessential for in�nite latti
e, N = L

2

!1. Finally, we are interested in the free energy per site for

in�nite latti
e. Assuming in (26) the periodi
 boundary 
onditions for fermions, we pass to the momentum spa
e by

the standard Fourier substitution:

a

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

a

pq

e

i

2�

L

mp+ i

2�

L

nq

; a

�

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

a

�

pq

e

� i

2�

L

mp� i

2�

L

nq

;

b

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

b

pq

e

i

2�

L

mp+ i

2�

L

nq

; b

�

mn

=

1

L

L�1

X

p=0

L�1

X

q=0

b

�

pq

e

� i

2�

L

mp� i

2�

L

nq

: (27)

In the momentum spa
e, the integral be
omes:

Q =

Z

L�1

Y

p=0

L�1

Y

q=0

da

�

pq

da

pq

db

�

pq

db

pq

exp

n

L�1

X

p=0

L�1

X

q=0

h

a

pq

a

�

pq

+ b

pq

b

�

pq

+ a

pq

b

L�pL�q

+ t

1

t

2

e

i

2�p

L

� i

2�q

L

a

�

pq

b

�

L�pL�q

+ (t

1

e

i

2�p

L

a

�

pq

+ t

2

e

i

2�q

L

b

�

pq

) (a

pq

+ b

pq

)

io

: (28)

where a

pq

; a

�

pq

; b

pq

; b

�

pq

are the new variables of the integration. In the above transformation, the orthogonality relations

for the Fourier exponents were taken into a

ount:

1

L

2

L

X

m=1

L

X

n=1

exp

h

i

2�

L

m(p � p

0

) + i

2�

L

(q � q

0

)n

i

= Æ (p� p

0

j q � q

0

)

mod L

; (29)
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where Æ (p j q)

mod L

is the Krone
ker symbol modulo L

in both dire
tions. The fermioni
 measure in (28) trans-

forms in a trivial way (Ja
obian equals to unity) due to

the unitarity of the 
ombined Fourier substitution (27),

whi
h property follows from (29). Thus we have to eval-

uate expli
itly the momentum{spa
e integral (28).

The fermioni
 a
tion in the momentum spa
e admits a

blo
k{diagonal stru
ture and the integral de
ouples into

a produ
t of low{dimensional integrals over the groups of

the variables with momenta p; q and L�p; L�q. Sin
e the

variables with 
onjugated momenta pq and L�pL�q are

intera
ting, in order to single out expli
itly the true inde-

pendent subsets of the variables in the a
tion, whi
h will


orrespond to fa
torization of Q into the truly indepen-

dent integral fa
tors, we have to 
ombine together in the

pq{sum in (28) the terms with 
onjugated momenta p; q

and L�p; L�q. Equivalently, the pq{sum is to be sym-

metrized with respe
t to 
onjugation p; q $ L�p; L�q.

After su
h a symmetrization, the integral (28) fa
torizes

into a produ
t of independent integral fa
tors of the fol-

lowing kind:

Q

2

pq

=

Z

da

�

pq

da

pq

db

�

pq

db

pq

da

�

L�pL�q

da

L�pL�q

db

�

L�pL�q

db

L�pL�q

exp

�

(a

pq

a

�

pq

+ b

pq

b

�

pq

+ a

L�pL�q

a

�

L�pL�q

+ b

L�pL�q

b

�

L�pL�q

) + (a

pq

b

L�pL�q

+ a

L�pL�q

b

pq

)

+ (

^

t

1

^

t

�

2

a

�

pq

b

�

L�pL�q

+

^

t

�

1

^

t

2

a

�

L�pL�q

b

�

pq

) + (

^

t

1

a

�

pq

+

^

t

2

b

�

pq

) (a

pq

+ b

pq

)

+ (

^

t

�

1

a

�

L�pL�q

+

^

t

�

2

b

�

L�pL�q

) (a

L�pL�q

+ b

L�pL�q

)

�

; (30)

where we assume abbreviations:

^

t

1

= t

1

e

i

2�p

L

;

^

t

2

= t

2

e

i

2�q

L

;

^

t

�

1

= t

1

e

�i

2�p

L

;

^

t

�

2

= t

2

e

�i

2�q

L

: (31)

The elementary Gaussian integral (30) 
an be evaluated in di�erent ways. The straightforward method is to expand

the nondiagonal part of the exponential into a series and to integrate step by step over the subsets of the 
onjugated

variables by means of elementary rules like (3). In the advan
ed version of this method, one makes use of the sele
tion

rules for the diagonal Gaussian averages that 
an be observed in the relations like (15) and (56). Another method

is to interpret (30) as determinantal Gaussian integral like (6) with N = 4. In su
h representation, one assumes the

Gaussian a
tion in the form: S = a

^

Aa

�

, whi
h is possible, for instan
e, with the following 
hoi
e of the 
onjugated

�elds:

a

1

; a

2

; a

3

; a

4

$ a

pq

; b

pq

; a

�

L�pL�q

; b

�

L�pL�q

;

a

�

1

; a

�

2

; a

�

3

; a

�

4

$ a

�

pq

; b

�

pq

; a

L�pL�q

; b

L�pL�q

: (32)

The integral fa
tor (30) then equals to the determinant of matrix A given expli
itly in (33). Thus, we �nd:

Q

2

pq

= det

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1�

^

t

1

�

^

t

2

0 1

�

^

t

1

1�

^

t

2

�1 0

0

^

t

�

1

^

t

2

�1 +

^

t

�

1

^

t

�

1

�

^

t

1

^

t

�

2

0

^

t

�

2

�1 +

^

t

�

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

: (33)

By a straightforward though somewhat lengthy 
al
ulation of the above determinant, we arrive to at the following

expressions:

Q

2

pq

= (1 + j

^

t

1

j

2

) (1 + j

^

t

2

j

2

) � (

^

t

1

+

^

t

�

1

) (1� j

^

t

2

j

2

) � (

^

t

2

+

^

t

�

2

) (1� j

^

t

1

j

2

)

= (1 + t

2

1

) (1 + t

2

2

) � 2t

1

(1� t

2

2

) 
os

2�p

L

� 2t

2

(1� t

2

1

) 
os

2�q

L

: (34)

To obtain the partition fun
tion, Q, we have to multiply the fa
tors (34) over all distin
t pairs of the 
onjugated
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momentum{latti
e points (p; q jL�p; L�q). That is, if the fa
tor Q

2

pq

with given pq is already in
luded into the

produ
t, then the fa
tor Q

2

L�pL�q

is not to be in
luded, and vi
e versa (noti
e by the way that Q

2

pq

= Q

2

L�pL�q

).

The above pres
ription 
an be readily seen also 
omparing fermioni
 measures in (28) and (30). Respe
tively, if we

multiply the fa
tors Q

2

pq

over all the points of the momentum latti
e with no restri
tions, this will yield squared

partition fun
tion, Q

2

. Thus, we �nd:

Q

2

=

L�1

Y

p=0

L�1

Y

q=0

h

(1 + t

2

1

) (1 + t

2

2

)� 2t

1

(1� t

2

2

) 
os

2�p

L

� 2t

2

(1� t

2

1

) 
os

2�q

L

i

: (35)

In essen
e, this is equivalent to Onsager's solution for the 2D Ising model on the standard re
tangular latti
e in

a zero magneti
 �eld [1℄. The trigonometri
 produ
t (35) is the exa
t solution for Q

2

in the limit L

2

! 1. The


orrespondent free energy per site readily follows:

�� f

Q

=

1

L

2

lnQ

�

�

�

�

L!1

=

1

2

2�

Z

0

2�

Z

0

dp

2�

dq

2�

ln

h

(1 + t

2

1

)(1 + t

2

2

)� 2t

1

(1� t

2

2

) 
os p� 2t

2

(1� t

2

1

) 
os q

i

: (36)

This is the free energy for the redu
ed partition fun
tion, Q, while the true free energy per site, for Z, is to be

re
al
ulated from Z = (2 
osh b

1


osh b

2

)

L

2

Q, and we �nd:

�� f

Z

= ln 2 +

1

2

2�

Z

0

2�

Z

0

dp

2�

dq

2�

ln

h


osh 2b

1


osh 2b

2

� sinh 2b

1


os p� sinh 2b

2


os q

i

; (37)

whi
h is Eq. (108) in [1℄. An interesting 
omment by Lars Onsager on the history of his remarkable solution 
an be

seen in [30℄. It is not ne
essary to say that the method we have applied above to obtain (37) signi�
antly di�ers from

the original approa
h [1℄.

In 
on
lusion to this se
tion, let us add few remarks on the properties of the 2D Ising model that follow from

the exa
t solution. [As regards the 
riti
al behaviour near T




, there is no essential di�eren
e between (36) and (37)

sin
e the fa
tor between Q and Z is nonsingular at all temperatures℄. In what follows, we assume ferromagneti
 
ase,

b

1;2

> 0. From (36), it 
an be then dedu
ed that the point of phase transition is given by the 
ondition:

1 � t

1

� t

2

� t

1

t

2

= 0 ; (38)

where t

1

= tanh b

1

; t

2

= tanh b

2

, with b

1

= J

1

=kT; b

2

= J

2

=kT . Equivalently, this 
ondition 
an be written in the

form:

sinh 2b

1

� sinh 2b

2

= 1 ; (39)

whi
h rather 
orresponds to the free energy in the form (37). The 
ondition (38) for T





an be readily re
ognized

from (36) by writing the pq {fa
tor under the logarithm in the form:

Q

2

pq

= (1 + t

2

1

)(1 + t

2

2

) � 2t

1

(1� t

2

2

) 
os p� 2t

2

(1� t

2

1

) 
os q

= (1�t

1

�t

2

�t

1

t

2

)

2

+ 4 t

1

(1�t

2

2

) sin

2

(p=2) + 4t

2

(1�t

2

1

) sin

2

(q=2) : (40)

Near the origin in the momentum spa
e, p = q = 0, we have:

Q

2

pq

= m

2

+ A

1

p

2

+ A

2

q

2

; A

1

= t

1

(1�t

2

2

) ; A

2

= t

2

(1�t

2

1

) ;

m = 1� t

1

� t

2

� t

1

t

2

: (41)
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It is seen that typi
ally the above fa
tor is positive,

Q

2

pq

> 0, with the only ex
eption for the zero{momentum

mode fa
tor, Q

2

p=0q=0

, whi
h vanishes at the point (38).

Respe
tively, there is the singularity in the integrand

fun
tion in (36) at this point as p; q ! 0. This gives

eviden
e for (38) to be the transition point. Be
ause

of the pq {integration there is no true singularity (in-

�nity) in the free and the internal energy even at the

transition point. The spe
i�
 heat, however, already ex-

hibits the true logarithmi
 singularity as T ! T




. The

spe
i�
 heat follows from (37) and/or (36) by di�eren-

tiating twi
e with respe
t to the temperature: C=k =

�

2

�

2

(��f

Z

)=��

2

, � = 1=kT . Near the 
riti
al point,

we have:

C=k ' A




j log � j ! 1 ; � =

�

�

�

�

T � T




T




�

�

�

�

! 0 ; (42)

where C=k is the dimensionless spe
i�
 heat, k is Boltz-

mann's 
onstant. The parameter A




is 
alled the spe
i�
{

heat 
riti
al amplitude. The value of A




is the same by

approa
hing T




from above and from below even for the

anisotropi
 latti
e, this is a parti
ular feature of the 2D

Ising model. In the isotropi
 
ase (t

1

=t

2

=tanh b) the

spe
i�
{heat amplitude is a �xed number: A




=

8

�

b

2




'

0:495, where b




=

1

2

ln(1 +

p

2) ' 0:441 is the inverse


riti
al temperature, b




= J=kT




. The asymptotes (42)


an be derived substituting (41) into (36) and integrat-

ing over some area around the origin in the momentum

spa
e [noti
e that 0 � 2�℄. This will yield the singu-

lar (nonanalyti
) part of the free energy, wherefrom (42)

immediately follows. The exa
t expression for spe
i�


heat, over the whole temperature range, also follows from

(37) by di�erentiating twi
e with respe
t to the temper-

ature. The resulting expression 
an be simpli�ed to be

expressed in terms of the 
omplete ellipti
 integrals of the

�rst and se
ond kind [1,9℄. Further simpli�
ations are not

possible. The exa
t expression for C=k again 
on�rms the

asymptotes (42).

Below the 
riti
al temperature, there is the sponta-

neous magnetization in the ferromagneti
 2D Ising model

given as follows:

M =

�

1�

1

sinh

2

2b

1

sinh

2

2b

2

�

1=8

: (43)

Near the 
riti
al point, M ' B �

1=8

, where � is tem-

perature deviation from T




, 
f. (42). Thus, the 
riti-


al exponent for magnetization at the 
riti
al isobar is:

� = 1=8. The expli
it solution for spontaneous magne-

tization (43) 
an be derived by di�erent methods. The

derivation given by Yang [3℄ is based on the transfer{

matrix method. In the 
ombinatorial approa
h by Mon-

troll, Potts and Ward [5℄ it is noted that the squared

spontaneous magnetization,M

2

, 
an be obtained as the

limiting value of the two{point spin 
orrelation fun
tion

for remote spins, h�(0)�(R)i = h�

mn

�

m+Rn

i, as R!1.

This spin 
orrelation fun
tion 
an be expressed in terms

of the perturbed partition fun
tion with some line of de-

fe
ts 
onne
ting the points 0 and R [5℄. Therefore, the

result for M

2


an be also obtained starting with the in-

homogeneous fermioni
 expression for the partition fun
-

tion (24). In this s
heme, at the �nal stages of the 
al
u-

lation, when extra
ting the asymptotes of the resulting

Toeplitz determinant for h�(0)�(R)i, one 
an follow, in

essen
e, the same lines as in [5℄. However, despite the for-

mal simpli
ity of the expression forM given in (43), the

derivation of this result by any known method, in
lud-

ing that with Grassmann variables, remains to be several

times more 
ompli
ated as 
ompared with the deriva-

tion of the free{energy expression in the 
orrespondent

approa
h. This is yet an unsolved puzzle in the two{

dimensional Ising model [3℄. For related 
omments also

see [20,25℄. The analysis of more 
ompli
ated 
orrela-

tion fun
tions also have been performed and 
ontributed

mu
h to our knowledge of phase transition in the 2D

Ising model [8,11,31℄.

VI. THE ORDERED PRODUCTS OF

GRASSMANN FACTORS AND GAUSSIAN

EXPONENTS

In this se
tion we add few more remarks about the

ordered produ
ts of Grassmann fa
tors typi
ally arising,

as we have seen, by the fermioni
 interpretation of the

2D Ising model within the fa
torization method. Let L

1

and L

2

be arbitrary linear forms in Grassmann variables.

Then we have:

(1 + L

1

) (1 + L

2

) = e

L

1

L

2

(1 + L

1

+ L

2

) ; (44)

where the nilpotent properties of fermions where taken

into a

ount. In the above equation the two Grassmann

fa
tors are 
ombined into a one Grassmann fa
tor a

om-

panied by a Gaussian exponential. The resulting identity


an be iterated further on, and we �nd:

(1 + L

1

) (1 + L

2

) (1 + L

3

) : : : (1 + L

N

)

=

 

1 +

N

X

i=1

L

i

!

exp

0

�

X

1�i<j�N

L

i

L

j

1

A

; (45)

where L

1

; : : : ; L

N

are arbitrary linear forms in Grass-

mann variables. Let �

0

= �1 be Ising spin, noti
e that

�

2

0

= 1. Making substitution L

j

! L

j

�

0

in (45), we

obtain the identity:

(1 + L

1

�

0

) (1 + L

2

�

0

) (1 + L

3

�

0

) : : : (1 + L

N

�

0

)

=

 

1 + �

0

N

X

i=1

L

i

!

exp

0

�

X

1�i<j�N

L

i

L

j

1

A

: (46)

The averaging over the spin states then results:

321



V. N. PLECHKO

Sp

(�

0

)

n

(1 + L

1

�

0

) (1 + L

2

�

0

) (1 + L

3

�

0

) : : : (1 + L

N

�

0

)

o

= exp

0

�

X

1�i<j�N

L

i

L

j

1

A

;

Sp

(�

0

)

(: : :) =

1

2

X

�

0

=�1

(: : :) : (47)

We see that the averaging of a produ
t of any number

of the Grassmannian fa
tors like (47) over spin states,

�

0

= � 1, always results Gaussian fermioni
 exponen-

tial, assuming the Ising spin being the same in all the

fa
tors. This property have been used already in the anal-

ysis of the 2D Ising models on irregular (in the geomet-

ri
al sense) planar latti
es [24℄. The appearan
e of the

Gaussian exponential when we average at the jun
tion

in (23) is also evident from (47).

In the same manner, we 
an elaborate the produ
ts

of Grassmann fa
tors with di�erent spins, like those ap-

pearing in (21):

(1 + L

1

�

1

) (1 + L

2

�

2

) (1 + L

3

�

3

) : : : (1 + L

N

�

N

)

=

 

1 +

N

X

i=1

L

i

�

i

!

exp

0

�

X

1�i<j�N

�

i

�

j

L

i

L

j

1

A

: (48)

This identity is a generalization (or a parti
ular 
ase)

of (45). In Eqs. (44){(48), it is only important that

L

1

; :::; L

N

are the purely anti
ommuting symbols, sat-

isfying also the nilpotent property. In prin
iple, in the

most general 
ase, we may assume in the above identi-

ties L

1

; :::; L

N

to be arbitrary odd polynomials in Grass-

mann variables.

The identities like (45) and (48) and related may be

of interest also with respe
t to the 2D Ising model in

a nonzero magneti
 �eld. The in
lusion of the nonzero

magneti
 �eld 
orresponds to the additional terms :::+

h�

mn

in the hamiltonian (10), whi
h results in the ap-

pearan
e of the additional Boltzmann fa
tors 1 + t

0

�

mn

in the partition fun
tion (13) and (21), whi
h are linear

in spin variables. Here t

0

= tanh(h), where h = �H and

H is a 
onventional magneti
 �eld in the energy units.

Being interested in the e�e
ts of small �eld, h ! 0, one


an regard t

0

' h and 1+ t

0

�

mn

' 1+ h�

mn

, as h! 0.

The appearan
e of su
h fa
tors prevents the exa
t solu-

tion sin
e the spin variables 
an not be easily eliminated

from the density matrix (21) in this 
ase. Within ap-

proximations, however, it 
an be expe
ted that h 6= 0

will make the spins in the ordered produ
ts of Grass-

mann fa
tors like in (21) and (48) to be \frozen", whi
h

will indu
e the nonlo
al terms in the a
tion like in (45).

With respe
t to the problem of a non{zero magneti
 �eld

in 2D Ising model, and in view of some other potential

appli
ations, it may be therefore of interest to 
onsider

the nonlo
al fermioni
 a
tion like the one arising in (45)

in the momentum spa
e representation.

For visual 
onvenien
e, let us 
hange the index in the

nonlo
al fermioni
 sum of (45) from ij to mm

0

, with

m;m

0

= 0; 1; :::;M � 1. The arising nonlo
al Gaussian

fermioni
 a
tion is of the form:

S

0

(L) =

M�2

X

m=0

L

m

(L

m+1

+ : : :+ L

M�1

)

=

M�2

X

m=0

M�1

X

m

0

=m+1

L

m

L

m

0

: (49)

It 
an be expanded over either periodi
 or aperiodi


Fourier exponents. Assuming the aperiodi
 Fourier sub-

stitution:

L

m

=

1

p

M

M�1

X

p=0

L

p

e

i

2�

M

m(p+1=2)

=

1

p

M

M�1

X

p=0

L

M�1�p

e

�i

2�

M

m(p+1=2)

; (50)

we �nd a parti
ularly simple expression:

S

0

(L) =

M�1

X

p=0

L

p

L

M�1�p

e

i

2�

M

m(p+1=2)

� 1

: (51)

Assuming the periodi
 Fourier de
omposition:

L

m

=

1

p

M

M�1

X

p=0

L

p

e

i

2�

M

mp

=

1

p

M

M�1

X

p=0

L

M�p

e

�i

2�

M

mp

; (52)

we obtain a similar though somewhat more sophisti
ated

representation with a spe
ial role of the p = 0 mode:

S

0

(L) =

M�1

X

p=1

�

�L

0

L

p

+

(L

p

� L

0

)(L

M�p

� L

0

)

e

i

2�

M

p

� 1

�

;

(53)
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where L

0

= L

p=0

. The sums in (51) and (53) 
an be

symmetrized by means of the identity:

1

e

i p

� 1

=

1

2

�

1

i tan(p=2)

� 1

�

: (54)

In the above identities it is essential that L

m

are the

purely anti
ommuting fermioni
 forms in Grassmann

variables. There are two remarkable features that 
an be

readily observed in the Fourier sums like (51) and (53).

First, we may note that (i) though the a
tion (49) is

highly nonlo
al in the real spa
e, it be
omes diagonal in

the momentum spa
e, and the se
ond interesting feature

(ii) is the 1=ip singularity in the p{mode of the a
tion

near p = 0, as p ! 0. This 1=ip singularity is the essen-

tially fermioni
 e�e
t, related to the fa
t that fermions

anti
ommute. The reason for (ii) is that under p $ �p

symmetrization fermions just sele
t the skew{symmetri


part of the kernel (54), that is, 1=2i tan(p=2) , while the


ontribution of the symmetri
 part of that kernel van-

ishes. The situation will be the opposite for bosons. The

analog of the p $ �p symmetrization 
an as well be

performed in (49) in the real spa
e, and we get:

S

0

(L) =

1

2

M�1

X

m=0

M�1

X

m

0

=0

� (m�m

0

)L

m

L

m

0

;

� (m�m

0

) =

�

1; m < m

0

;

�1; m > m

0

:

(55)

This is the a
tion of the Gaussian fermioni
 integral of

the se
ond kind with skew{symmetri
 matrix given in its


anoni
al form, 
f. Eq. (7). At the diagonal, e�e
tively,

� (m�m

0

) = 0, sin
e L

2

m

= 0. The properties (i) and (ii)


an also be understood, more physi
ally, in the sense that

the matrix in (49) is in essen
e the inverse to �

m

, the lat-

ti
e derivative matrix, �

m

x

m

= x

m

�x

m�1

. The a
tion

S

0

(L) thus is the sum of terms like L

m

�1

�

m

L

m

. Sin
e �

m

is diagonal in the momentum spa
e, the nonlo
al ker-

nel 1=�

m

also is diagonal in the momentum spa
e. In

the low{momentum region (
ontinuum limit) �

m

! i p,

1=�

m

! 1=i p, and L

m

�1

�

m

L

m

! L

p

1

ip

L

�p

. The Fourier

images of latti
e 1=�

m


an be seen from (51), (53) and

(54). The kernel

1

2

�(m � m

0

) from (55) is the skew{

symmetri
 part of �1=�

m

. For some appli
ations of the

above 
onsiderations to the 2DIM in a nonzero magneti


�eld see also the dis
ussion in Se
tion IX.

VII. TWO VARIABLES PER SITE

In this se
tion we 
onsider some further modi�
ations

for the latti
e fermioni
 interpretation of the 2D Ising

model, eliminating part of the fermioni
 variables from

the basi
 Gaussian integral (24) for Q. The redu
ed inte-

gral for Q appears to be again Gaussian fermioni
 inte-

gral, but now with only two variables per site, see (57).

We intend to apply the identity given below. Let a; b be

independent Grassmann variables, then:

Z

db da e

ab+aL

1

+bL

2

=

Z

db da e

ab

(1 + aL

1

)(1 + bL

2

)

= exp L

2

L

1

; (56)

where L

1

; L

2

are arbitrary linear forms in some other

Grassmann variables, not involved in the integration,

but anti
ommuting with a; b. Integrating out from (24)

the a

mn

; b

mn

�elds by means of identity (56), we obtain

a redu
ed Gaussian integral expressed in terms of the

remaining variables a

�

mn

; b

�

mn

. Let us 
hange the nota-

tion for the �elds: a

�

mn

; b

�

mn

! 


mn

;� 


�

mn

, respe
tively,

da

�

mn

db

�

mn

! � d


mn

d


�

mn

! d


�

mn

d


mn

. The redu
ed

integral for Q then appears in the form:

Q =

Z

L

Y

m=1

L

Y

n=1

d


�

mn

d


mn

exp

L

X

m=1

L

X

n=1

h




mn




�

mn

+ (


mn

+ 


�

mn

) (t

(1)

mn




m�1n

� t

(2)

mn




�

mn�1

) � t

(1)

mn

t

(2)

mn




m�1n




�

mn�1

i

(57)

where 


mn

; 


�

mn

are Grassmann variables, 


0n

= 0; 


�

m0

= 0. The integral (57) is equivalent to (13) and (24), assuming

the free boundary 
onditions in all the 
ases.

Sin
e the inhomogeneous distribution of the bond 
oupling parameters is still preserved, all the information on the

thermodynami
 fun
tions as well as the 
orrelation fun
tions of the 2D Ising model on a re
tangular latti
e net is still


ontained in (57). Evidently, the redu
tion of the number of the variables involved in the integration simpli�es the

te
hni
al aspe
ts of the analysis for regular latti
es. This is illustrated below for the standard 2DIM on re
tangular

latti
e. The integral (57) (as well as (24)) may be also of interest with respe
t to the problem of quen
hed disorder

in the 2D Ising model [32,33℄. For related dis
ussion also see [26℄.

For the homogeneous latti
e, t

(1)

mn

; t

(2)

mn

! t

1

; t

2

, the integral (57) be
omes:
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Q =

Z

L

Y

m=1

L

Y

n=1

d


�

mn

d


mn

exp

L

X

m=1

L

X

n=1

h




mn




�

mn

� t

1




m�1n




�

mn

� t

2




mn




�

mn�1

� t

1

t

2




m�1n




�

mn�1

+ t

1




mn




m�1n

+ t

2




�

mn�1




�

mn

i

: (58)

This integral 
an be 
al
ulated by analogy with (26). We assume again the periodi
 
losing 
onditions for fermions

and pass to the momentum spa
e by Fourier substitution:




mn

=

1

p

L

2

L�1

X

p=0

L�1

X

q=0




pq

e

� i

2�p

L

m+i

2�q

L

n

; 


�

mn

=

1

p

L

2

L�1

X

p=0

L�1

X

q=0




�

pq

e

+ i

2�p

L

m�i

2�q

L

n

: (59)

The 
hoi
e of the signs of pq is here adopted for future 
onvenien
e in (60). The orthogonality relations (29) are to

be taken into a

ount. In the momentum spa
e, the integral (58) be
omes:

Q =

Z

L�1

Y

p=0

L�1

Y

q=0

d


�

pq

d


pq

exp

n

L�1

X

p=0

L�1

X

q=0

h




pq




�

pq

�

1� t

1

e

i

2�p

L

� t

2

e

i

2�q

L

� t

1

t

2

e

i

2�p

L

+i

2�q

L

�

+ t

1

e

i

2�p

L




L�pL�q




pq

+ t

2

e

i

2�q

L




�

pq




�

L�pL�q

io

: (60)

Then we have to make the p; q $ L � p; L � q symmetrization of the a
tion in order to single out expli
itly the

independent subsets of the variables. The integral then de
ouples into a produ
t of simplest Gaussian fermioni


integral fa
tors:

Q

2

pq

=

Z

d


�

pq

d


pq

d


�

L�pL�q

d


L�pL�q

exp

h




pq




�

pq

(1� t

1

e

i

2�p

L

� t

2

e

i

2�q

L

� t

1

t

2

e

i

2�p

L

+i

2�q

L

)

+ 


L�pL�q




�

L�pL�q

(1� t

1

e

�i

2�p

L

� t

2

e

�i

2�q

L

� t

1

t

2

e

�i

2�p

L

�i

2�q

L

)

+ 2 i t

1

sin

2�p

L




L�pL�q




pq

+ 2 i t

2

sin

2�q

L




�

pq




�

L�pL�q

i

: (61)

This integral fa
tor 
an be evaluated making use of the elementary rules like (3) and/or (56). Alternatively, if we

de
ide to interpret this integral as the determinant, then we have to present the a
tion in the form: S = aAa

�

,

where A is a two by two matrix. This is possible, for instan
e, assuming the 
orresponden
e: a

1

; a

2

; a

�

1

; a

�

2

$




pq

; 


�

L�pL�q

; 


�

pq

;� 


L�pL�q

. The 
al
ulation is very simple in any 
ase, and we �nd:

Q

2

pq

=

�

�

�

1� t

1

e

i

2�p

L

� t

2

e

i

2�q

L

� t

1

t

2

e

i

2�p

L

+i

2�q

L

�

�

�

2

� 4t

1

t

2

sin

2�p

L

sin

2�q

L

= (1 + t

2

1

) (1 + t

2

2

)� 2 t

1

(1� t

2

2

) 
os

2�p

L

� 2 t

2

(1� t

2

1

) 
os

2�q

L

: (62)

The squared partition fun
tion follows as the produ
t

of fa
tors (62) over the whole momentum{spa
e latti
e.

The fa
tor in the �nal line of (62) is the same as in

(34). So, we 
ome again to the same results for the par-

tition fun
tion and the free energy of the standard 2D

Ising model on a re
tangular latti
e that have been 
om-

mented already in Se
tion V. An interesting new fea-

ture in (62) is the trigonometri
 expression in the �rst

line, wherefrom it is easy to re
ognize all the possible


riti
al modes (zeroes of Q

2

pq

) in the ferromagneti
 as

well as antiferromagneti
 regimes. Assuming p; q to be

normalized to the 2� interval, there are four su
h possi-

ble 
riti
al modes: (p; q) = (0; 0); (0; �); (�; 0); (�; �). In

the ferromagneti
 
ase, the only possible 
riti
al mode

is that with p = q = 0, and the 
riti
ality 
ondition

is given by (38) (noti
e that 0 � 2�). The other three

modes, being always positive in the ferromagneti
 
ase

(t

1;2

> 0), de�ne the possible 
riti
al points in the anti-

ferromagneti
 
ases. The above four 
riti
al modes and

the possible 
riti
ality 
onditions 
an be re
ognized al-

ready in the momentum{spa
e a
tion (61). With some

experien
e, the above four 
riti
al modes 
an be guessed

even from the real{spa
e a
tion (58), without any seri-

ous 
al
ulation, 
f. (63) in Se
tion VIII. For a related
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dis
ussion also see [20,25℄.

VIII. CONTINUUM LIMIT

Let us now 
onsider the 
ontinuum{spa
e limit (low

momenta se
tor) of the exa
t latti
e theory near T




.

A suitable starting point is the integral (58) for Q.

In what follows, we assume the homogenous 
ase and

ferromagneti
 intera
tions. Let x

mn

= 


mn

; 


�

mn

, we

de�ne latti
e derivatives in a natural way: �

m

x

mn

=

x

mn

�x

m�1n

; �

n

x

mn

= x

mn

�x

mn�1

. Substituting




m�1n

= 


mn

� �

m




mn

; 


�

mn�1

= 


�

mn

� �

n




�

mn

into (58),

we �nd the a
tion in the form:

S =

X

mn

h

m


mn




�

mn

��

1




�

mn

�

m




mn

+ �

2




mn

�

n




�

mn

� t

1




mn

�

m




mn

+ t

2




�

mn

�

n




�

mn

� t

1

t

2

(�

m




mn

)(�

n




�

mn

)

i

; (63)

with the following set of parameters:

m = (1� t

1

� t

2

� t

1

t

2

) ;

�

1

= t

1

(1 + t

2

) ; �

2

= t

2

(1 + t

1

) : (64)

The latti
e a
tion (63) is still the exa
t expression. In

this a
tion one 
an already distinguish the typi
al �eld{

theoreti
al like stru
tures, with the mass term and ki-

neti
 part. Evidently, the parameter m plays the role of

mass, while �

1

; �

2

and t

1

; t

2

are the kineti
 
oeÆ
ients.

The 
riti
al point 
an be readily guessed to be m = 0, in

agreement with (38). Let us take the formal limit to the


ontinuum spa
e:

mn ! x = (x

1

; x

2

) ;

X

mn

!

Z

d

2

x =

Z

dx

1

dx

2

;

�

m

! �

1

= � = �x

1

; �

n

! �

2

= � = �x

2

;




mn

; 


�

mn

!  (x) ;

�

 (x) !  ;

�

 : (65)

The 
ontinuum{limit 
ounterpart for the latti
e a
tion

(63) then appears in the form:

S =

Z

d

2

x

h

m  � �

1

 �

1

 + �

2

 �

2

 

� t

1

 �

1

 + t

2

 �

2

 

i

: (66)

This is the Majorana{like 
ontinuum a
tion for two{


omponent massive fermions. In the above 
ontinuum

a
tion we have dropped an interesting se
ond{order mo-

mentum term with �

1

�

2

. The mass and other param-

eters are the same as in (64). In presenting the a
-

tion in the �nal form, we have as well applied the rule

R

d

2

x(a�b) =

R

d

2

x(b�a), where � = �

1

; �

2

and a; b are

any fermioni
 �elds. This simple rule 
an be 
he
ked by

integration by parts, taking into a

ount that fermions

anti
ommute and negle
ting the boundary e�e
ts. Al-

ternatively, one 
an 
he
k the above rule in latti
e in-

terpretation. In (66) the momenta operators �

1

; �

2

in

all 
ases a
t to the right. The 
ontinuum{spa
e a
tion

(66) 
aptures the basi
 features of the exa
t latti
e the-

ory with a
tion (58) in the low{momentum se
tor near

the 
riti
al point, whi
h is responsible for the 
riti
al{

point singularities in the thermodynami
 fun
tions and

the large{distan
e behaviour of 
orrelations. In the mo-

mentum spa
e, this 
orresponds to approximation like

e

ip

� 1 ' ip; e

iq

� 1 ' iq, assuming also the ultraviolet


ut{o� in the momentum integrals, jpj � k

0

, with k

0

of

order 1 (or say �=4) or less.

The Majorana like a
tion (66), however, is not in the


anoni
al form. It 
an be brought into a 
anoni
al form

by a suitable linear transformation of the �elds, elimi-

nating the undesirable kineti
 terms like  

1

�

1

�

 ;  �

2

�

 .

In the 
anoni
al form, the 2D Majorana a
tion (66) is

given as follows:

S =

Z

d

2

x

h

�m 

1

 

2

+  

1

1

2

(�

1

+ i �

2

) 

1

+  

2

1

2

(��

1

+ i �

2

) 

2

i

; (67)

with the new Majorana 
omponents,  

1

;  

2

, and the

res
aled mass:

�m =

1� t

1

� t

2

� t

1

t

2

p

2 (t

1

t

2

)




: (68)

In order to pass from (66) to (67), we have to transform

the fermioni
 �elds and the momenta operators �

1

; �

2

in

a suitable way. Here we 
omment shortly on this trans-

formation. For the �rst step, let us write the a
tion in

the form:

S =

Z

d

2

x

h

m 

1

�

 

2

+  (��

1

�

1

+ �

2

�

2

)

�

 

+

t

1

�

1

 (��

1

�

1

) +

t

2

�

2

�

 (�

2

�

2

)

�

 

i

: (69)

By the res
aling of the �elds like  ! e

�

2

 ;

�

 ! e

�

�

2

�

 ,

with properly 
hosen �, we gain the same a
tion in a

slightly more symmetri
 form:

S =

Z

d

2

x

h

m 

1

�

 

2

+  (��

1

�

1

+ �

2

�

2

)

�

 

+ !

0

( (��

1

�

1

) +

�

 (�

2

�

2

)

�

 )

i

; (70)

with new kineti
 parameter:
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!

0

=

r

t

1

t

2

�

1

�

2

=

1

p

(1 + t

1

) (1 + t

2

)

! (!

0

)




=

1

p

2

: (71)

Exa
tly at T




, even independently of the rate of

the latti
e anisotropy, we have (!

0

)




=

1

p

2

, sin
e

(1�t

1

�t�t

1

t

2

)




= 0 . Taking into a

ount that the


ontinuum{limit formulation by itself is reliable only

near T




, in what follows we put: !

0

= 1=

p

2 = (!

0

)




.

The a
tion (70) is already in a suitable form to be

transformed into the 
anoni
al Majorana a
tion (67).

The general idea is to introdu
e the new �elds by a linear

substitution like

 = u (
a + �
�a) ;

�

 = u (�a+ ���a) ; (72)

where 
; �
; �; �� are free parameters (four 
omplex num-

bers) and a; �a are the new anti
ommuting 
omponents

(we shall pass a; �a !  

1

;  

2

at next stages). Substitut-

ing (72) into (70), we then look for the uniformization


ondition that the undesirable terms like a �

1

�a; a �

2

�a do

not appear in transformed a
tion. In essen
e, the idea

is similar to that of the Bogoliubov transformation in

the theories of super
uidity [34℄ and super
ondu
tivity

[35℄. It appears that the uniformization requirement, in

any 
ase, implies the 
ondition 
�
 = ��� (the above rule

a�b = b�a is not to be forgotten at this stage). We then

put 
�
 = ��� = 1, assuming the remaining normaliza-

tion parameter, u, to be �xed by the 
ondition  

�

 = a�a,

when
e d

�

 d = d�ada. This is the 
ondition that trans-

formation (72) is 
anoni
al, that is, the fermioni
 mea-

sure is un
hanged. In this way we 
ome to the uniformiza-

tion 
ondition in the form:

(
�� + �
�) + 2!

0

= 0 ; !

0

=

r

t

1

t

2

�

1

�

2

; (73)

while u is then �xed by the 
ondition:

u

2

(
�� � �
�) = 1 : (74)

The momenta �

1

; �

2

also will be transformed, in general,

under the transformation of the �elds like (72). The 
or-

respondent relations are not shown, however, sin
e in our

parti
ular 
ase, with !

0

= 1=

p

2, this momenta transfor-

mation appears to be identi
al. Assuming !

0

= 1=

p

2,

we �nd that a possible realization for (72){(74) is the

following substitution:

 =

a+ �a

p

2i sin(�=4)

;

�

 = �

a e

i(�=4)

+ e

�i(�=4)

�a

p

2i sin(�=4)

; (75)

whi
h 
orresponds to 
 = 1; � = �

1

p

2

(1 + i) in (73) and

(74). Substituting (75) into (70), the a
tion appears in

the form:

S =

Z

d

2

x

h

ma�a+

1

2

a (�

1

�

1

+ i �

2

�

2

) a

+

1

2

�a (��

1

�

1

+ i �

2

�

2

) �a

i

; (76)

where a; �a are the new Majorana �elds, and  

�

 ! a�a,

d

�

 d ! d�a da. A remarkable feature is that the mo-

menta 
omponents �

1

; �

2

in (76) are not e�e
ted, they

are the same as in the original a
tion (66) and in (70).

This feature is provided by a spe
ial value of the ki-

neti
 parameter, !

0

! (!)




= 1=

p

2. The axis in the

d

2

x $ d

2

p spa
e will be res
aled and rotated, in gen-

eral, by the uniformization transformation under substi-

tution like (72) with !

0

6= 1=

p

2. In fa
t, the uniformiza-

tion 
ondition (73) by itself still provides some freedom,


orresponding to the gauge rotation of the �elds: a !

a e

i�

; �a! �a e

�i�

in (76), or  

1

!  

1

e

i�

;  

2

!  

2

e

� i�

in (67) , a

ompanied by the 
ovariant orthogonal rota-

tion of the referen
e frame of momenta �

1

�

1

; �

2

�

2

. In

(75) and (76) this freedom is �xed in su
h a way that

the axis of the d

2

x spa
e are not rotated.

Finally, let us res
ale the momenta in (76) as fol-

lows: �

1

! (�

2

=�

1

)

1=2

�

1

; �

2

! (�

1

=�

2

)

1=2

�

2

, whi
h

is 
anoni
al transformation (d

2

x ! d

2

x, d

2

p ! d

2

p).

The res
aled momenta are those that �nally appear in

the 
anoni
al a
tion (67). By res
aling, we gain a new

overall kineti
 fa
tor, let us 
all it !

1

, given by:

!

1

=

p

�

1

�

2

=

p

t

1

t

2

(1 + t

1

)(1 + t

2

)

! (!

1

)




=

p

2 (t

1

t

2

)




; (77)

it is reasonable to �x !

1

at T = T




as is indi
ated above.

Finally, for the last step, we remove !

1

from the kineti


part by the following res
aling of the �elds (�rst 
hang-

ing the notation for the 
omponents): a; �a !  

1

;  

2

!

 

1

=

p

!

1

;  

2

=

p

!

1

, and obtain the Majorana a
tion in the


anoni
al form given in (67). Respe
tively, the mass m

from (66) will get renormalized to give the res
aled mass

�m (68).

Up to the stage of this �nal res
aling of the �elds, all

the transformations we have applied were 
anoni
al, that

is, preserving the measure in the integrals of any kind.

The last res
aling of the fermioni
 
omponents, however,

is not the 
anoni
al transformation, it introdu
es a fa
tor

in the fermioni
measure, d 

2

d 

1

! !

1

d 

2

d 

1

. The 
or-

respondent fa
tor then appears in front of the partition

fun
tion and 
an be ignored, in essen
e, by analyzing the


riti
al point. A
tually, we have to take 
are of the in-

varian
e of the measure in the d

2

x spa
e integral (respe
-

tively, in the d

2

p spa
e integral) in the a
tion, but not in

the fermioni
 measure. Noti
e that the momenta �

1

; �

2

are the same as in the original a
tion (66) up to (76),
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while in (67) there are already the res
aled momenta

�

0

1

= (�

1

=�

2

)

1=2

�

1

; �

0

2

= (�

2

=�

1

)

1=2

�

2

, whi
h is not re-


e
ted in the notation of (67). This res
aling, however,

is a 
anoni
al transformation, d

2

x = d

2

x

0

, respe
tively,

d

2

p = d

2

p

0

. This means that we have preserved the nor-

malization of the measure in the momentum spa
e, the

singularities near 
riti
ality 
al
ulated from the 
anoni-


al a
tion (67) with the mass (68) are expe
ted to be the

same, in leading orders, as those provided by the exa
t

latti
e theory (63) or its low{momenta approximation

(66). The 
riti
al{point singularities are 
ommented in

Se
tion IX. Meanwhile, let us 
ontinue with the 
anoni-


al Majorana a
tion (67) we have just derived.

The 
anoni
al two{
omponent Majorana a
tion (67)


an be written as well in matrix notation. Noting that

�m 

1

 

2

=

1

2

�m( 

1

 

2

� 

2

 

1

) and introdu
ing the ma-

trix stru
ture at ea
h spa
e point in the d

2

x integral,

we write:

S

major

=

1

2

Z

d

2

x

�

 

1

 

2

�

T

��

�

1

+ i�

2

�m

� �m ��

1

+ i�

2

���

 

1

 

2

�

; (78)

where ( )

T

stands for transposition of spinor. In terms of

the standard Pauli matri
es, �

1

; �

2

; �

3

, the matrix kernel

of this a
tion (the `inverse propagator', or `equation of

motion') 
an be written in the form: [ �m (i �

2

) +�

1

(�

3

)+

i �

2

(1) ℄ , or in the form: (i �

2

) [ �m + �

1

(�

1

) + �

2

(�

2

)℄.

Thus, we �nd:

S

major

=

1

2

Z

d

2

x

~

	 [ �m +

^

� ℄ 	 ;

~

	 = 	

T

(i �

2

) ;

^

� = 


1

�

1

+


2

�

2

;

^

�

2

=�

2

1

+ �

2

2

; (79)

with the 2D 
{matri
es 


1

=�

1

; 


2

=�

2

. This is the 2D

Majorana a
tion in the relativisti
 �eld{theoreti
al form.

The 
onjugated Majorana spinors

~

	 and 	 in (79) are

built in fa
t from the same 
omponent �elds,  

1

,  

2

,

so they are not the truly independent �elds in the path

integral. By doubling the number of fermions in the Ma-

jorana representation we 
an pass to the Dira
 a
tion

with four independent 
omponents:

S

dira


=

1

2

Z

d

2

x

�

	 (x) [ �m +

^

� ℄ 	 (x) ; (80)

where 	 = ( 

1

;  

2

) and

�

	 = ( 

�

1

;  

�

2

)

T

are now


harged Dira
 spinors with four independent anti
om-

muting 
omponents:  

1

;  

2

;  

�

1

;  

�

2

. By 
onvention, one


an assume  

�

1

;  

�

2

to be 
omplex 
onjugates of  

1

;  

2

.

The propagator �m +

^

� in (80) is the same as in (79).

To obtain the Dira
 a
tion (80), we take two identi
al


opies S

0

and S

00

of the Majorana a
tion (79) and write:

S

dira


= (S

0

+ S

00

)

majorana

. Introdu
ing the new Dira


�elds by means of substitution:

	 =

1

p

2

(	

0

+ i	

00

) ;

�

	 =

1

p

2

(

~

	

0

� i

~

	

00

) ; (81)

we obtain the a
tion (80). Mathemati
ally, the transfor-

mation from (79) to (80) is in essen
e the same that

we have 
onsidered in relation to identity (8) in Se
-

tion II, whi
h establishes the 
onne
tion between the

fermioni
 Gaussian integrals of the �rst and se
ond

kind, or between the determinant and the PfaÆan of

a skew{symmetri
 matrix. Noti
e that the kernel like

�m(i�

2

) + �

1

(�

3

) + i�

2

(1) from (78) is a skew{symmetri


matrix, assuming that �

1

; �

2

are also 
onsidered as ma-

tri
es. The transformations from latti
e to 
ontinuum in

2DIM are also dis
ussed in [21,25℄.

IX. CRITICAL{POINT SINGULARITIES

The �eld{theoreti
al formulation for the 2D Ising

model near T




is a suitable representation to dis
uss, in

a simple way, the thermodynami
 singularities near the

transition point. Assuming that we start with the Dira


interpretation (squared partition fun
tion) and noting

that in the momentum spa
e det( �m +

^

�) = �m

2

+ p

2

,

the singular part of the free energy readily follows in the

form:

�� f

sing

=

1

2

Z

d

2

p

(2�)

2

ln( �m

2

+ p

2

)

=

1

8�

�m

2

ln


onst

�m

2

+ (:::) ; (82)

where the mass �m is that given in (68). This is the ex-

a
t expression for the most singular part of the free en-

ergy of the 2DIM in a zero magneti
 �eld (h = 0). The

same asymptotes follows from the exa
t solution. Noting

that near the 
riti
al point �m � � = jT � T




j=T




, let

us assume �m for 
onventional temperature. The internal

(average) energy is then given as follows:

(E)

�m sing

=

�

� �m

(��f

sing

) =

Z

d

2

p

4�

2

�m

�m

2

+ p

2
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=

�m

4�

ln


onst

�m

2

+ (:::) ; (83)

and the dimensionless spe
i�
 heat is:

(C=k)

�m sing

=

1

4�

ln


onst

�m

2

+ (:::)

=

1

2�

ln


onst

j �mj

+ (:::) ; (84)

where we put the subs
ript �m to remember that the

derivatives are taken with respe
t to the 
onventional

temperature �m. For the isotropi
 latti
e, �m ' 4 (b�b




) '

4b




� , with b




=

1

2

ln(1+

p

2), wherefrom one 
an re
over,

for instan
e, the spe
i�
{heat asymptotes (42) with the


orre
t value of the amplitude: (C=k)

sing

= A




j ln j� jj,

A




= (8=�) b

2




.

The asymptotes (82){(84) are to be 
ompared with

the hypotheti
al form of the 
riti
al{point singularities

in the same fun
tions in a nonzero magneti
 �eld near

T




, whi
h subje
t we intend to dis
uss, in short, in the re-

maining part of this se
tion. We are interesting merely in

what may be the singular behaviour of the spe
i�
 heat

in a nonzero magneti
 �eld along the 
riti
al isotherm,

that is, when the temperature is �xed exa
tly at T




and

the deviation from the 
riti
al point is realized by a small

nonzero magneti
 �eld, h 6= 0. [For �nal 
on
lusion, see

(89) below℄. To start with, let us write the expe
ted form

for the singular part of the free energy near the 
riti
al

isotherm, in the regime of the \strong" magneti
 �eld,

�

15=8

<< h << 1:

�� f

sing

=

1

2

Z

d

2

p

(2�)

2

ln

�

�m

2

+ p

2

+

�

2

p

2

�

+ (:::) ; (85)

with � / hM (�; h), where M (�; h) is magnetization,

� ! 0. More pre
isely, both � and h are assumed to

be small, but we are interesting in the situation near the


riti
al isotherm, � = 0; h 6= 0, and introdu
e in�nitesi-

mal deviation from T




with respe
t to the temperature,

� << h

8=15

, merely to perform the di�erentiation, then

we put � ! 0. The same form of the free energy 
an be


onsidered for \weak" �eld, h

8=15

<< � . In this 
ase, how-

ever, the 
hoi
e of the form of � as fun
tion of �; h, due

to the strong temperature e�e
ts, may be more sophisti-


ated. This may be a
tual, in parti
ular, in the ordered

phase, where the e�e
ts of the external �eld are superim-

posed on the e�e
ts of the inherent mole
ular �eld [36℄.

We 
omment on singularities that follow from the free

energy (85) below, but now let us make few remarks on

its origin. A somewhat unusual perturbation term �

2

=p

2

whi
h appears in the propagator in (85) is the result of

an approximation in the mixed spin{fermion representa-

tion for Q

h6=0

. The insertion of the h > 0 weights like

1 + h�

mn

into the fa
torized density matrix in (21) pre-

vents the exa
t solution at h 6= 0 sin
e the spin variables


an not be easily eliminated in this 
ase. We then have

elaborated the ordered produ
ts of fa
tors in the density

matrix (21) into an exponential form, 
f. the dis
ussion

in Se
tion VI, and applied the simplest approximation of

the Hartree{Fo
k type for the spin subsystem. In parti
-

ular, this kind of approximation implies � � hM (�; h).

The nonlo
al Gaussian exponents, like those 
onsidered

in Se
tion VI, then appear in a
tion. This, roughly, 
or-

responds to the modi�
ation of the Majorana a
tion of

the following kind:

S =

1

2

Z

d

2

x

~

	 [ �m+

^

� + �=

^

� ℄ 	 : (86)

This form of the a
tion, however, is not to be understood

too literally, the less singular �{
orre
tions are ignored

(or in
orporated in �). There is no essential interferen
e

of �=

^

� with �m +

^

� near the line � = 0; h 6= 0 in (85)

within given approximations. The main statement is that

the free energy appears with the perturbed propagator

as is given in (85). Now, let us assume (85) to be true

and 
onsider what follows.

The 
onsequen
es from (85) are interesting. In the

strong{
oupling regime (� >>

1

2

�m

2

) the internal energy

per site is given by:

(E )

�m sing

=

�m

4�

Z

p

2

dp

2

�

2

+ �m

2

p

2

+ p

4

+

1

8

��

� �m

+ (:::) : (87)

Respe
tively, the spe
i�
 heat at the 
riti
al isotherm

( �m! 0) appears in the form:

(C

�m

)

sing

=

1

4�

Z

p

2

dp

2

�

2

+ (p

2

)

2

+ (:::)

=

1

8�

ln


onst

�

2

+ (:::) =

1

2�

j ln

p

�j + (:::) ;

p

� / h

8=15

! 0 ; �m = 0 ; (88)

where �(0; h) / hM (0; h), or �(0; h) / h

16=15

, and we

have passed in the �nal line to

p

� / h

8=15

! 0 in or-

der to make the amplitude to be equal to that in (84).

It is known from s
aling and other 
onsiderations that

M (0; h) / h

1=15

, wherefrom �(0; h) / h

16=15

. Comparing

(88) with (84), we see that under given approximation

the spe
i�
 heat along the 
riti
al isotherm is logarithmi


and 
an be formally re
overed from (84) by repla
ing the

thermal mass �m = �m(�; 0) � � by the \magneti
 mass"

p

�(0; h) � h

8=15

. The amplitude in (88) remains the

same (with respe
t to the mass parameters) as in (84).

The spe
i�
 heat (88) is obtained by �

2

=� �m

2

, where �m is

given in (68). Formally, the asymptotes (88) in
ludes the


ase of the anisotropi
 latti
e as well. For the isotropi


latti
e, �m ' 4 (b� b




), b = J=kT , and we have to multi-

ply the amplitude from (88) by fa
tor 16b

2




to obtain the

true spe
i�
 heat along the 
riti
al isotherm:
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(C=k)

sing

=

8

�

b

2




j lnh

8=15

j = E




j lnh j ;

E




=

8

15

A




=

64

15�

b

2




; (89)

where A




= (8=�)b

2




is the thermal 
riti
al amplitude

along the 
riti
al isobar, � 6= 0; h = 0,A




= 0:494538589,

while E




= (8=15)A




= 0:263753914 is the amplitude

along the 
riti
al isotherm, � = 0; h 6= 0, as it ap-

pears within given approximation. Here b




=

1

2

ln(1 +

p

2) = 0:440686793 is the inverse 
riti
al temperature,

b




= J=kT




. It may be interesting to 
he
k (89) by the

Monte{Carlo experiments and other numeri
al methods.

Let us add a remark. The spe
i�
 heat (88) is ob-

tained, formally, by di�erentiating with respe
t to �m

pla
ed in front of the integral in (87) and then tak-

ing the limit �m ! 0. The other 
orre
tions are ig-

nored. Evidently, the di�erentiation with respe
t to �m

2

from the propagator in the integral will yield vanish-

ing 
ontribution as �m ! 0. As regards the possible


ontribution from the term ��=� �m in the energy (87),

the 
ontribution of this term to the spe
i�
 heat (let

�m ! � ) is of order

�

2

��

2

�(�; h) � h

�

2

��

2

M (�; h) , but

�

2

��

2

M (�; h) �

�

�h

�

2

��

2

(��f

sing

) �

�

�h

C(�; h). Taking the

limit � ! 0, we see that

�

2

��

2

� / h

�

�h

lnh � 1, assuming

C(0; h) � lnh. So, the logarithmi
 asymptotes in (88)

and (89) is by itself 
onsistent with the less singular 
on-

tribution via �(�; h).

Curiously, we 
ould guess (88) from the most 
rude

phenomenologi
al 
onsiderations, simply repla
ing the

\thermal" mass m

�

� � from (84) by the \magneti
"

mass �m

h

� h

8=15

. This repla
ement 
an not be done,

however, at least in a simple form, in the free energy like

(82), sin
e this will yield the expressions with the loga-

rithmi
 
orre
tions in the fun
tions related to the magne-

tization at the 
riti
al isotherm, whi
h is hardly the 
ase.

[For instan
e, at the 
riti
al isobar M (�; 0) ' B �

1=8

,

and there is no any logarithmi
 
orre
tion. The multi-

pli
ative logarithmi
 
orre
tions are not expe
ted as well

neither in M (0; h) nor in E(0; h)℄. The unusual form

of the magneti
{�eld 
orre
tion �

2

=p

2

in the propaga-

tor in (85), versus a naive modi�
ation of mass term in

�m

2

+ p

2

, is in fa
t favourable with respe
t to the known

data about the Ising model. Merely, this 
on
erns the

absen
e of the logarithms, observed or expe
ted, in the

�eld derivatives of the free energy.

The 2D Ising model at T





an also be 
onsidered

in terms of the 
onformal �eld theory (CFT) axioms

[37{40℄. Zamolod
hikov [40℄ has 
onje
tured the exis-

ten
e of the eight masses m

i

� h

8=15

(i = 1; 2; :::8)

in the perturbed CFT assumed to be in the same uni-

versality 
lass as the 2DIM at the 
riti
al isotherm,

� = 0; h 6= 0. A remarkable feature is that the ratios

of these masses are predi
ted from the symmetries as

the exa
t numbers up to the overall normalization 
on-

stant: m

2

=m

1

= 2 
os

1

5

� ; m

3

=m

1

= 2 
os

1

30

�, et
 [40℄.

The nature of these masses from the point of view of the

original latti
e formulation of 2DIM is yet not well un-

derstood. If these masses are thought out as the result of

some kind of �ne splitting of the � term in the propaga-

tor in (85), their e�e
t on the behaviour of the 
orrela-

tions might be di�erent, as 
ompared with the thermal

mass e�e
t, sin
e �

2

is not the same that �m

2

in (85).

If so, the naive expe
tation that the asymptotes of the

two{point 
orrelation fun
tions will be given, by anal-

ogy with thermal de
ay of 
orrelations, by the sum of

the terms like K

0

(m

i

R), where K

0

is modi�ed Bessel

fun
tion, may not be the 
ase. It is diÆ
ult to make def-

inite predi
tions, however, at present stage, what may be

the modi�
ations. The approximations like (85) seem to

be two 
rude in this respe
t. It might be 
onje
tured, for

instan
e, that some of the masses (probably all ex
ept

the lightest or the heaviest one) might have imaginary

parts and will then 
ontribute only either more rapidly

de
aying additive 
orre
tions to the leading term (with

extra fa
tors 1=R) or the 
orre
tions with the os
illating

formfa
tors (with the same periods R

i

� m

�1

i

as the

de
ay rates in the a

ompanying exponents) to the term

with `normal' de
ay, like K

0

(m

1

R), whi
h is what 
an

also be expe
ted from 
ommon s
aling.

It may be noted that the parameter � in (85) and (86)

is rather 
harge then mass. The free energy in the form

(85) might be of interest also at D6=2. In prin
iple, tak-

ing the free energy in the form (85) as it is, one 
an

try to analyze other thermodynami
 fun
tions. However,

this will 
laim for further �ne detailing of the meaning

of � as a fun
tion of both � and h. In parti
ular, the ef-

fe
ts related to the possible spontaneous ordering are to

be taken into a

ount properly below T




. An interesting

feature is that at a spe
ial line � =

1

2

�m

2

the free energy

(85) reprodu
es, in essen
e, the same results (82){(84)

as at � = 0, that is, at h = 0. This might be an evi-

den
e for the possibility to in
orporate the e�e
ts of the

spontaneous ordering in this s
heme. We are going to

dis
uss these subje
ts in a more detail elsewhere. In fa
t,

the line � =

1

2

�m

2

distinguishes between the weak{�eld

and strong{�eld regimes, with respe
t to � , in the inte-

gral (85). At this boundary, � � h

8=15

, this is just what

one 
an expe
t for this boundary from s
aling and other


onsiderations [36℄.

X. CONCLUSIONS

In the above dis
ussion, the two{dimensional Ising

model (2DIM) has been treated as a theory of free

fermions on a latti
e. The anti
ommuting (Grassmann)

variables and integrals were made use of. The fermioniza-

tion pro
edure is based on the mirror{ordered fermioni


fa
torization of the density matrix. Following this

method, the original spin{variable partition fun
tion Q

with arbitrary inhomogeneous set of bond 
oupling pa-

rameters was transformed into a Gaussian fermioni
 inte-

gral. The subsequent dis
ussion in
ludes the momentum{

spa
e analysis and the exa
t solution for the standard

(translationally invariant) re
tangular 2D Ising latti
e,

the free fermion representation for Q with two variables

per site, the Majorana{Dira
 �eld theory interpretation

of the 2DIM near T




(
ontinuum limit). The e�e
ts of the
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long{range fermioni
 
orrelations in a nonzero magneti


�eld and the behaviour of the spe
i�
 heat along the


riti
al isotherm also have been dis
ussed. Grassmann

variables provide a powerful tool to analyze the 2DIM.

In physi
al aspe
t, it seems to be important to under-

stand better the me
hanism of the spontaneous ordering

in 2DIM in terms of fermions. The fermioni
 interpre-

tation of the 2D Ising model provides grounds for this

model to be treated in a 
ommon range with some other

typi
al models in 
ondensed matter physi
s and quantum

�eld theory.
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V�L^N� FERM�ONI U DVOVIM�RN�� MODEL� �ZIN�A

V. N. Pl
qko

Ob'
dnani� �nstitut �dernih dosl�d�en~, Laborator�� teoretiqnoÝ f�ziki �m. Bogol�bova,

Dubna, Moskovs~ka oblast~, 141980, Ros��

Peregl�nuto dvovim�rnu (2D) model~ �zin�a �k teor�� v�l~nih ferm�on�v na �rat
�. Obgovorenn� vkl�-

qa
 pro
eduru ferm�on�za
�Ý, wo �runtu
t~s� na dzerkal~no vpor�dkovan�� faktoriza
�Ý matri
� gustini,

zobra�enn� statistiqnoÝ sumi �aus�vs~kim ferm�onnim �nte�ralom, anal�z v �mpul~snomu prostor� ta re-

zul~tat Onza�era, efektivn� teor�Ý pol� v grani
� kontinuumu ta sin�ul�rnosti v kritiqn�� toq
�. Pro-

komentovano po�vu dalekos��nih ferm�onnih korel�
�� u nenul~ovomu magnetnomu pol� � poved�nku tep-

lo
mnosti vzdov� kritiqnih �zoterm. Prid�leno uvagu viborov� ra
�onal~nih shem rozrahunku.
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