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The two—dimensional (2D) Ising model is reviewed as a theory of free fermions on a lattice. The
discussion includes the fermionization procedure based on the mirror—ordered factorization of the
density matrix, Gaussian fermionic integral representation for partition function, the momentum—
space analysis and Onsager’s result, the effective continuum-limit field theories and the critical-
point singularities. The emergence of long-range fermionic correlations in a nonzero magnetic field
and the behaviour of the specific heat along the critical isotherm are commented. Attention is given

to the choice of rational computational devices.
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I. INTRODUCTION

There are many remarkable analogues between the
physical concepts and mathematical methods in statis-
tical mechanics and quantum field theory. The two—
dimensional Ising model (2DIM) may be a good exam-
ple of this kind. In its original formulation, the 2D Ising
model is a discrete—spin lattice model for the second—
order phase transitions in magnets, for which the ana-
lytic results for the free energy and some other functions
are available over the whole temperature range. At the
first stages, the 2DIM has been analyzed rather as a com-
plicated mathematical problem [1-8]. The canonical ap-
proaches to the 2DIM are based on the transfer—matrix
and combinatorial considerations [1-12]. The fermionic
features in the 2DIM have been recognized already in
[2,6,7]. Further developments in this direction provided
new insight into the physical nature of the problem and
significantly simplified the analysis in the technical as-
pect [13-20]. The modern approaches to the 2DIM are
based on the interpretation of the problem in terms of
fermions [13-26]. In this article, we review some aspects
of a simple noncombinatorial fermionic approach to the
2D Ising model based on the application of the anticom-
muting Grassmann—variable integrals and the mirror—
ordered factorization ideas for the density matrix [18-20].
The method is simple and is in a sense straightforward.
The transfer-matrices and combinatorics are not used.
The appearance of fermions in the 2D Ising model within
given approach rather resembles the change of the basis
in quantum mechanics. The article is arranged as follows.
A short introduction to the rules of the fermionic inte-
gration is given in Section II. The original spin—variable
formulation for the 2D Ising model is considered in Sec-
tion III. We then directly proceed with discussing the
fermionization procedure in Section IV. The Grassmann
variables are first introduced by factorization of the lo-
cal bond Boltzmann weights in (15). The mirror—ordered
factorized representation for the whole density matrix
is obtained at the next stage in (21). This is a mixed
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spin—fermion representation for the density matrix, in
which spin variables can be readily eliminated. This re-
sults the Gaussian fermionic integral for partition func-
tion, @, given in (24). Equivalently, the 2D Ising model
is reformulated as a theory of free fermions on a lat-
tice. The transformation of @) into a fermionic integral is
performed in Section IV for the most general inhomoge-
neous distribution of the bond coupling parameters over
the lattice. In Section V the 2D Ising model on the stan-
dard homogeneous rectangular lattice is considered. Af-
ter transformation to the momentum space for fermions,
the partition function is evaluated in a closed form, which
results the Onsager’s expression for the free energy. In
Section VI, coming back to previous discussion, we add
a few further remarks on the ordered products of Grass-
mannian factors, like those arising by factorization of
the density matrix in (21). The nonlocal fermionic sums
arising in this context are of interest for the 2D Ising
model in a nonzero magnetic field, as is commented in
Section IX. In Section VII, a refined version of the basic
integral (24) for the partition function is obtained. The
resulting Gaussian integral for @ with two variables per
site is given in (57). It is interesting that the Majorana—
Dirac structures, somewhat mysteriously arising in the
2D Ising model, can be recognized in the fermionic action
of the integral (57) already at the lattice level. The effec-
tive continuum-limit field theories near 7, corresponding
to the low—momentum sector of the exact lattice theory,
which 1s responsible for the critical-point singularities
in the thermodynamic functions and the large-distance
behaviour of the correlation functions, are considered in
Section VIII. The effective Majorana like action for two—
component massive fermions is obtained in (66). After
the uniformization transformation, the action appears in
the standard Majorana form given in (67) and (79). By
doubling the number of fermions in the Majorana rep-
resentation, one can pass as well to the Dirac theory of
charged fermions (80). In Section IX, we make use of
the simplified continuum-limit interpretation of 2DIM
in order to discuss the critical-point singularities near
T.. The effects produced by a nonzero magnetic field in
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the fermionic system of the 2DIM Ising model near 7,
are considered within approximating approach. It is ar-
gued the that switching on of a nonzero magnetic field
(h # 0) causes the long-range nonlocal interactions of
the fermions, on the backbone of the local part of the
action corresponding to h = 0. Within adopted approx-
imation conjectures, the singularity in the specific heat
at the critical isotherm is expected to be logarithmic. Fi-
nally, few concluding remarks are given in Section X. In
the next section, we start with a comment on the rules
of fermionic integration which are relevant for the forth-
coming discussion.

II. GRASSMANN VARIABLES

Let us remember that Grassmann variables (non-
quantum fermionic fields) are the purely anticommuting
fermionic symbols. Given a set of Grassmann variables,
ai,as, ds,...,ax, we have:

al =0. (1)

a;a; +aja; = 0,
The linear superpositions of Grassmann variables are
again purely anticommuting, their squares are zeros.
The first important identity of anticommuting analysis
is given as follows:

bl bz bng = detfl a1 asasz...anN , (2)
N

b= Ay
j=1

where we multiply the linearly transformed variables, the
determinant of the matrix of the transformation appears
as the coefficient between the two products. The relation
of the anticommuting algebra to the determinant combi-
natorics expressed in the above identity is well known in
physics and mathematics already for a long time. The
rules of the integration for Grassmann variables have
been first introduced by Berezin [27]. The elementary
rules for one variable are:

/daj~aj:1, /daj~1:0. (3)

In multiple fermionic integrals, the differential symbols
are again anticommuting with each other and with the
variables [27]. The integration then reduces to the re-
peating use of the above elementary rules, keeping in
mind that the fermionic symbols anticommute. Due to
the nilpotent property of fermions, a? = 0, any natu-
ral (analytic) function definite a finite set of Grassmann
variables can be represented, in principle, as a finite poly-
nomial in these variables:

N
f(al,az,...,aN) = fo +ijaj 4+ .- (4)

j=1

+ f123. N a1as..an ,

where fo, f;,..., fi2a..~ are the numerical coefficients.
In particular, integrating polynomial (4) according to the

rules (3), we find:
/daN~~~dazdalf(al,az,~~~,aN) = fi23.N . (5)

The integration is thus a simple task if the integrand
function is already known in the polynomial form, how-
ever, this may be not the case in applications. The rules
of change of variables under a linear substitution in the
fermionic integrals readily follow from (2) and (5). As
compared with the rules of commuting analysis, the only
difference is that the Jacobian will now appear in the
inverse power [27]. In physical applications, an impor-
tant role 1s played by Gaussian fermionic integrals. The
Gaussian fermionic integral of the first kind is given as

follows [27]:

N N
ZZaiAzja;‘ = det/l ; (6)

i=1j=1

N
/H da;da; exp
j=1

where all the variables in the total set are purely anti-
commuting, the matrix A is arbitrary. The appearance
of the determinant in (6) can be traced back to (2). By
convention, the variables a; and a} can be viewed as the
complex conjugated variables; in physical contexts this
corresponds to charged fermions, otherwise a; and a} are
simply independent variables. The Gaussian fermionic
integral of the second kind, for real fermionic fields, is

related to the Pfaffian [27]:

N N
1
/daN...daz daq exp 3 ZZ“iAiJ“J (7)

i=1j=1

= Pfaff A.

Matrix A is now assumed to be skew—symmetric: A +
AT =0, where AT is the transposed matrix. In compo-
nents: A;; + A;; =0, A;; = 0. This property is compli-
mentary to fermionic anticommutativity. By formal def-
inition, the Pfaffian is some combinatorial polynomial
in elements A;; known in mathematics for a long time
[28,29]. The combinatorics of the Pfaffian is identical to
that of the fermionic version of Wick’s theorem [28,29].
Notice that the number of the variables N in the inte-
gral (7) must be even, otherwise the integral is identically
zero. This property is again in accordance with the for-
mal definition of the Pfaffian with N odd [28,29]. The

equation (7) can itself be assumed for an effective defini-
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tion of the Pfaffian, wherefrom its basic properties read-
ily follow. For any skew—symmetric matrix, the following
algebraic identity is known [28,29]:

det A = (Pfaff A)?. (8)

The Pfaffian is thus the square root of the determinant
of a skew—symmetric matrix. The above identity most
easily can be proved just in terms of the integrals like
(6) and (7). Let N be even. Assuming that the matrix in
(6) is skew—symmetric, we make use of the substitution:

1

1 . w1 _
ag = ﬁ(gk + an)’ ag = \/5(& Uk), (9)

where &, 7 are the new variables of the integration.
It is then easy to check that the integral (6) decouples
into a product of two identical integrals like (7), which
is equivalent to (8). For the normalized multifermionic
averages associated with the Gaussian integrals like (6)
and (7) one can apply fermionic Wick’s theorem in a
usual way. There are few notes in conclusion. In the field—
theoretical language, the fermionic form in the exponents
like in (6) and (7) is called action. Since the action is
quadratic, the integrals (6) and (7) are Gaussian inte-
grals. The fermionic exponents in (6) and (7) are to be
assumed in the sense of their series expansion. Due to
the nilpotent property of fermions, the exponential se-
ries definitely terminate at some stage. The above expo-
nents are thus finite polynomials in the variables, cf. (4).

_BH

m=1n=1

(

where bmoﬁl) = ﬁJn(@Oﬁ) are the dimensionless bond coupling
parameters, Jn(ﬁl) are the exchange energies, § = 1/kT is
the inverse temperature in the energy units. For L finite,
to be definite, let us assume free boundary conditions
for spin variables: op41, = 0, @mr41 = 0. The parti-
tion function and the free energy per site are:
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These polynomial representations also follow by multi-
plying elementary exponential factors. For instance, the
exponential in (6) can be viewed as a product of factors
like exp (a;Ajja]) = 1+ a;Ajza;. In physical interpre-
tations, the Gaussian fermionic integrals correspond to
free—fermion field theories [21,22].

III. TWO-DIMENSIONAL ISING MODEL

In this section the 2D Ising model is formulated in
terms of Ising spin variables. Among the goals we keep in
mind in the present exposition, one is to provide an illus-
tration for how the analytic results can be extracted by
means of Grassmann variables in Statistical Mechanics.
In particular, this is realized in Section V when we eval-
uate explicitly the partition function and free energy for
the 2DIM on the standard homogeneous (translationally
invariant) rectangular lattice. The fermionization itself,
however, can be performed equally well for the 2DIM
with arbitrary distribution of the exchange energies over
the lattice. So, we start here with a generalized formula-
tion of the 2D Ising model, assuming arbitrary inhomoge-
neous distribution of the bond coupling parameters over
a rectangular lattice net. The Ising spins, 0, = %1,
are disposed at the lattice sites, mn, labeled by pairs
of integers, m,n = 1,..., L, with m and n running in
horizontal and vertical directions, respectively. L is the
length of the lattice side. The total number of sites and
spins on the lattice is N = L?, at final stages we assume
N = L? — co. The hamiltonian is:

L L
Z Z |: m+1n OmnOm+1n + b7§wz+1 OmnOmn+1 | (10)

where the sum in 7 is taken over all possible spin configu-
rations provided by ¢,,, = %1 at each site. The internal
(average) energy and specific heat follow by differenti-
ating the free energy with respect to the temperature.
The specific heat per site is: C'/k = 3202 (—3fz)/082,
B = 1/kT, where C/k is the dimensionless specific heat,
k 1s Boltzmann’s constant. For a typical bond Boltzmann
weight from (11), let us note the identity: exp (boo') =
cosh b 4+ oo’ sinh b, which readily follows from oo’ = £1.
The partition function then appears in the form:

L L
= H H 2coshbm+1n coshbmn_l_l} Q, (12)

where () 1s the reduced partition function:
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L L
= $p { TL L0+ t0llinomomnesc) (14 40 10nnn) (13)
with tﬁﬁz) = tanh bﬁ,f) , and now we assume a properly normalized spin averaging:
sp()=I1 Sp ()0 Sp ()=3 3 (), (14)
mn mn mn Cmn==11

so that at each site Sp(1) = 1, Sp(mn) = 0. The reduced partition function @ will be the main subject of our
interest in what follows.

IV. FERMIONIZATION

In this section we transform @ into a fermionic Gaussian integral. The method is based on the mirror—ordered
factorization procedure for the density matrix [18-20]. Let us start with a factorization of the local bond Boltzmann
weights from (13). For the whole lattice, we introduce a set of the purely anticommuting Grassmann variables,

Gy, @ b, b, , a pair per bond, and write:

*
mn? mn

(1)

1 + tm+1n TmnOm+1n

Amn)

2
1 + t7§173+10-mn0-mn+1

/da da,,, e Uy G,

/db;,;ndbmn e bmnbin (14 byyn) (1412,

S B __B*
(bmli){ mn mn+1}’

(1+ @) (145010 @ O 1)

Sp { Amn Am+1 n}

(2)

b:’m Um”+1)

(15)

where in the final lines we introduce the abbreviated notation for the arising factors, to be called shortly Grassmann

factors:

— A*

m+1n

B,,=1+1b

*
mn%mn > mn+1

while Sp(...) stand for the Gaussian averaging like
da*dae® (...)and [ db*dbe®®” (...). These local averaging
symbols, which are even in fermions, are totally commut-
ing with any element of the algebra and can be gathered
in one place, forming the symbol of the global Gaus-
sian averaging. The identities (15) can be checked mak-
ing use of the elementary rules of fermionic integration
like (3), taking into account that exp (aa*) = 1 + aa*
and exp (bb*) = 1 + bb*. Notice that the mn indices in
the above Grassmann factors are chosen to be equal to
the indices of the spin variables involved in these factors.
Thus, it will be easy to control the position of any Grass-
mann factor with given spin variable among other such
factors in their global products.

The idea of the next step is to substitute (15) into

(1)

*
1 + tm+1n amno-m+1n ’

1 + trng+1 ;mo-mn{—l ’

(13) and to eliminate the spin variables in the resulting
mixed representation for the density matrix, Q(o, a). To
perform the procedure, we have to group together, over
the whole lattice, the four factors with the same spin,
Apmn, B ATTm,Bn”;n, and to average over o, = =1
in each such group of factors, independently. The above
four factors come by factorization of the four different
bonds attached to a given mn site. In the process of the
spin averaging we have to keep these four factors nearby.
The separable Grassmann factors, however, are in gen-
eral neither commuting nor anticommuting with each
other, being the superpositions of commuting and an-
ticommuting terms, and it might be difficult, in general,
to keep these factors with the same mn nearby over the
whole lattice. Therefore, we have to take care of a special

mn
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ordering for the global products of such factors, in order
the elimination of spin variables be really possible. In two
dimensions, this problem is solvable [18-20]. Though the
individual Grassmann factors are neither commuting nor
anticommuting with each other, what can really be used
in the ordering arrangements is the property that the
doublets like A,, Am-l—ln and B,,, B, representing
the local bond Welghts in (15) can be treated as totally
commuting objects, if taken as a whole, under the sign
of the Gaussian averaging arising by factorization. Re-
ally, the noncommuting terms involved in these doublets,
which are linear in fermions, are effectively equal to zero
under the averaging, while the remaining terms are even
in fermions and are totally commuting. In the reorder-
ing transformations we shall apply as well the two or-
dering principles illustrated below by tutorial examples.
The first illustration (linear rearrangement) is:

(dod1) (1 02) (d203) (d304)
= 6o (¢161)(9262) (P3d3) Pa, (17)

where we simply reread the product joining together the
symbols with the same index. The commutation prop-
erties of the symbols does not matter at this stage, as-
suming that we start with a product already ordered as
is given in the first line. The second illustration (mirror
rearrangement) is:

(61 (62 (¢303) 2) 61)
- G301, (18)

(¢1¢;1) (¢2¢;2) (¢3¢;3) =
= $1020¢3

where we assume that the doublets like (¢;¢;) are totally
commuting with any individual factor from the common
set, while the individual factors themselves may be non-
commuting. Then we decouple proper and bar factors
into separable products.

It is easy to guess that the linear ordering principle
(17) is by itself enough to solve the 1D Ising chain via
fermionization. This is not the case, however, in two di-
mensions, where there is a contradiction between prefer-
able m-ordering for the horizontal weights and prefer-
able n—ordering for the vertical weights, with respect to
the linear—ordering rule (17). Therefore, we shall apply
first the mirror-ordering principle (18) to factorize a hor-
izontal ladder of the vertical weights, B,,, By, 1, in a
horizontal-like fashion with respect to index m, with n
fixed. This will provide us with an opportunity to intro-
duce properly the remaining horizontal weights at the
next stage, so that the spin variables can be finally com-
pletely eliminated from the density matrix. With this
preliminary notes, let us directly proceed to the ordering
arrangements for global products of Grassmann factors
arising by factorization of local weights in (15). In trans-
formations from (19) to (20) we omit, for brevity, the
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signs of the Gaussian averaging introduced by factoriza-
tion of weights. The totally commuting bond Boltzmann
weights are now given by A, A%, and B, B, ..

For the first step, let us multiply a subset of vertical
weights over m, with n fixed. Making use of the mirror—
ordering rule (18), we write:

L L
H 1 +tmn+10-mn mn+1 = H B B;m+1
m=1

H H 1 (19)

In the final expression, there are two m—ordered prod-
ucts with m = 1,...,L going in the opposite direc-
tions (mirror ordering). Already at this stage the order-
ing is favourable for introducing the horizontal weights
A, Am-l—ln into a one of the m—ordered products. This
p0881b111ty 1s used below. Meanwhile, let us continue with
the vertical weights. Multiplying the above partial prod-
ucts taken as a wholeover n = 1, ..., L, with n increasing
from left to right, and making use of the linear—ordering
rule (17) with respect to index n, we write:

L L
H H (1 + tmn+10-mn0-mn+1)

=1m=1

3

m

ni

m=

[l
o DNE

3
1
-
-
3
1
-

!:1%3

[HBZHEm} (20)

3
1
-

When we pass to the last line, it was taken into
account that Br,., = 1, since o,,;,, = 0, accord-
ing to the free-boundary conditions we have assumed
above. Respectively, we have corrected the final expres-
sion in (20) at the left end, introducing the lacking
product of factors with n = 1, which are of the form
Bri=141,,0m1b}, where we put b, = 0. Actually,
B, =1, with b}, = 0. In this way, the free boundary
conditions for spins are now elaborated into the analo-
gous conditions for fermions.

All vertical weights are already involved in the prod-
uct (20). It remains only to introduce properly the com-
muting horizontal weights, A,,, Ay, .4, , into a one of the
m-ordered products in (20). EV1dently, the products of
factors B}, are preferable. Making use of the linear rule
(18) for the subsequent transformations with respect to
m, for the complete density matrix we get:
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L L
Q (U) = H (1 +tmn+10-mn0-mn+1) (1 +tm+1n0-mn0-m+1n)
n=1m=1
=4 =4
L L _m_> L <_m_ L L _f‘_> L <_m_
= sp IT [T BinAwa e I B | = S0 T [ TT AneBin A 1 B |- 21
a,b a,b
’ n=1 m=1 m=1 ’ n=1 m=1 m=1

By analogy with the boundary transformations in (20), we eliminate in the final line the extra factors A7, = 1,
with or41, = 0, and insert, formally, the lacking factors A7, = 1, assuming aj, = 0. In (21) we also restore the
symbol of the diagonal Gaussian averaging arising by factorization of the local weights:

L

L L L
(SIZ) [} = / II I dasndanmdbyndby, exp > "> (i, + bpnbi, ) {1 (22)

m=1n=1 m=1n=1

The expression in the final line of (21) is what we call the mirror—ordered factorized representation for the density
matrix. This representation is exact, assuming free-boundary conditions for fermions, ag, = 0, b}, = 0. The density
matrix is now completely prepared for the elimination of the spin variables. The partition function arises by summing
over the states o, = 1 at each site in (21).

The averaging over ¢,,,,, = £1 is to be performed at the junction of the two m-ordered products in (21), with fixed

n. This 1s a step by step procedure. The local averaging at the junction is given by:

1
Sp (AL Bl Amn Brn } = 5 30 (L4400 Omnfian) (L4 43 b 1) (LF rantn) (LF Tnbia)

o
mn Omn==+1

=1+ amnbmn + trgzlrgtrgzzrg U170 —1 + (trgzlrga;@—ln + trgzzrg :m—l) (amn + bmn) + trgzlrgtrgzzrg A 11Oy —1@mn b

= exp amnbmn + trgzlrgtrgzzrg a;@—lnb;@n—l + (tmlrga;@—ln + trgzzrg ;’m—l) (Clmn + bm”) . (23)

The result of the averaging i1s a purely fermionic polynomial, even in the variables, which is equivalent to the
Gaussian exponential factor given in the last line. This equivalence can be checked, for instance, by the series
expansion of the exponential, taking into account the nilpotent property of fermions. Another way to see this
equivalence is explained in Section 6. Let n be fixed, at the junction of the two m-—ordered products in (21)
we just find the four relevant Grassmann factors (23) with the same index mn placed nearby, with m = I,
given n. The local averaging (23) results the Gaussian exponential factor from the last line, which is even in
fermions, thus, totally commuting with any element of the algebra. We then remove this commuting Gaussian
factor from the junction somewhere to the very left end of the remaining ordered product, and find again at the
junction a new set of four neighbouring factors like (23) with the same index mn and the same spin variable,
with m = L — 1, given n. We then repeat the same averaging procedure at the junction for m = L—1 and then
for m = L—2,...,1, for given n, and all over again for other values of n = 1,..., L. The spin variables being
completely eliminated, over the whole lattice, the partition appears to be given by the product of the partial Gaus-
sian exponential factors from (23) under the sign of the global Gaussian averaging (22). Thus we come to the
result:

L L L L

m=1n=1 m=1n=1

+ amnbmn + trgzlrgtrgzzra a:w—lnb;@n—l + (trgzlrga:@—ln + trgzzrgb;@n—l) (amn + bmn) i|} ’ (24)
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where af, = 0,05}, = 0. The partition function is
now presented as a fermionic Gaussian integral. This
representation is exact. The fermionic integral (24) is
completely equivalent to the original expression (13) as-
suming the free boundary conditions both for spins and
fermions.

V. MOMENTUM-SPACE FERMIONS

In this section we consider the 2D Ising model set-
tled on the standard homogeneous lattice. The partition

function @ can be explicitly evaluated in this case by
the transformation to the momentum space for fermions.
This results in the Onsager expressions for the partition
function and free energy of the standard 2D Ising model.
For the homogeneous (though yet anisotropic) lattice, in
the Hamiltonian (10) we put: bﬁg, b,Ef,% — by, by, where
b1,2 = BJ1,2 are the dimensionless coupling constants in
the horizontal and vertical directions, respectively. The
partition function becomes: Z = (2 cosh by cosh b2) L’ Q,
with the reduced partition function:

L L
Q= (ch { H H(1+t1 O-mno-m+1n) (1+t2 O-mno-m”‘H)}’ (25)
m=1n=1

where t; » = tanh by 5. From (24), the same partition function is given by the Gaussian integral:

L L L L
Q= / II I dbsndbyndas,da,,, exp { >3 {amna;n +bb*
m=1n=1

m=1n=1

+ amnbmn + tito a;@—lnb;@n—l + (tl a;@—ln +i2 b;’m—l) (amn + bmn) i| } ) (26)

with af, = 0%, = 0. The integral (26) is equivalent to (25) for any finite lattice size L under the free boundary
conditions. In what follows, however, it will be more suitable to impose in (26) the periodic boundary conditions
for fermions, ag, = aj,,, byg = by, which are the most simple and commonly used boundary conditions in order
to pass to the momentum space for a finite discrete lattice. This change of conditions can be viewed as a boundary
approximation inessential for infinite lattice, N = L? — oc. Finally, we are interested in the free energy per site for
infinite lattice. Assuming in (26) the periodic boundary conditions for fermions, we pass to the momentum space by
the standard Fourier substitution:

| Lri-t | Lri-t
_ i2%mp +i2ng * x —i2%mp —i2Tng
G = T D D g @ TN ag, = 7YY agen EMPTTEN,
p=0 g=0 p=0 ¢g=0
| L=ri=t | Lri-t
_ iZZmp +iZng * * —iZmp —i2Tng
boan = D D bug o EIIHIENbh = 2 DY e T E I (27)
p=0 ¢g=0 p=0 g=0
In the momentum space, the integral becomes:
L-1L-1 L-1L-1
_ * * * *
Q= / H H dapgdap,dbyedby, exp { Z Z {apqapq F bpgbpg + tpgbr_pr—g
p=0 ¢g=0 p=0 g=0
§2TP 5 2md b* PRI i Qﬂb* b
+ titee’ T L a,, L_pL_q—l—(tle L ay +t2e' T pq) (apq—l— pq) . (28)

where a,., a5, b,,, by, are the new variables of the integration. In the above transformation, the orthogonality relations

for the Fourier exponents were taken into account:

L L
1 2T 27
= Y exp [iFmpEp) + i Tt dIn] =8 (pEp 144 4") moar, (29)

m=1n=1
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where ¢ (p|¢) moa £ is the Kronecker symbol modulo L
in both directions. The fermionic measure in (28) trans-
forms in a trivial way (Jacobian equals to unity) due to
the unitarity of the combined Fourier substitution (27),
which property follows from (29). Thus we have to eval-
uate explicitly the momentum-space integral (28).

The fermionic action in the momentum space admits a
block-diagonal structure and the integral decouples into
a product of low—dimensional integrals over the groups of
the variables with momenta p, ¢ and L—p, L—q. Since the

interacting, in order to single out explicitly the true inde-
pendent subsets of the variables in the action, which will
correspond to factorization of () into the truly indepen-
dent integral factors, we have to combine together in the
pg—sum in (28) the terms with conjugated momenta p, ¢
and L—p, L—q. Equivalently, the pg—sum is to be sym-
metrized with respect to conjugation p, ¢ <+ L—p, L—q.
After such a symmetrization, the integral (28) factorizes
into a product of independent integral factors of the fol-
lowing kind:

variables with conjugated momenta pq and L—plL —q are

pa — /da;qdapqdb;qdbpqdaf—pL—qdaL—pL—qdbL*—pL—qdbL—pL—q exp [ (a,q0,
+ bpgbpg T @rpr-q@ipr—gF bropr-gbi-pr—g) + (Gpebrpr—g+ar_pr_gbyg)

+ (185 apgbf—pr—q + 1207y 1o gbyy) + (fragy +2870) (a0 + )

+ (tl* al*/—pL—q +t2* bl*/—pL—q) (aL—pL—q +bL—pL—q)] ’ (30)
where we assume abbreviations:
{1Itlei2%, izztzeiiﬂ, ff:tle_i?, i;:tze_iiﬂ (31)

The elementary Gaussian integral (30) can be evaluated in different ways. The straightforward method is to expand
the nondiagonal part of the exponential into a series and to integrate step by step over the subsets of the conjugated
variables by means of elementary rules like (3). In the advanced version of this method, one makes use of the selection
rules for the diagonal Gaussian averages that can be observed in the relations like (15) and (56). Another method
is to interpret (30) as determinantal Gaussian integral like (6) with N = 4. In such representation, one assumes the
Gaussian action in the form: S = a A a*, which is possible, for instance, with the following choice of the conjugated

fields:

* *
ai, az, dz, a4 & Qpg, bpg, Ap _pL—gq> bL—pL—qa

a; ,a;,ai,a; a;q, b;q, Ar—plL—q, br—pr—q- (32)
The integral factor (30) then equals to the determinant of matrix A given explicitly in (33). Thus, we find:
L=t —ts 0 1
—t 11—ty -1 0
oy = det o A A (33)
0 it —1 415 t
—tity 0 ty 1415

By a straightforward though somewhat lengthy calculation of the above determinant, we arrive to at the following
expressions:

pg = (L1011 (L4 [2]7) = (L +47) (L= 2] ®) = (2 +15) (1= [t2]7)

2 2
= (L) (1+12) — 2t (1—12) cos?—?tz(l—tf) cos%.

(34)
To obtain the partition function, @, we have to multiply the factors (34) over all distinct pairs of the conjugated
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momentum-lattice points (p, ¢ | L—p, L—¢). That is, if the factor with given pq is already included into the

pq
product, then the factor QZL_pL_q is not to be included, and vice versa (notice by the way that Q%q = QL_pL_q).
The above prescription can be readily seen also comparing fermionic measures in (28) and (30). Respectively, if we
multiply the factors szq over all the points of the momentum lattice with no restrictions, this will yield squared

partition function, @%. Thus, we find:

2 2
(1412) (1+12) — 21(1 — t2) cos % — 2t5(1 — t2) cos % . (35)

<
I

—

—

In essence, this is equivalent to Onsager’s solution for the 2D Ising model on the standard rectangular lattice in
a zero magnetic field [1]. The trigonometric product (35) is the exact solution for @? in the limit L? — co. The
correspondent free energy per site readily follows:

Blq= 75 Q

27 27
1
:—//—p—q 1+t)(1+t§)_2t1(1_tg)cosp_ztzu_tf)cosq . (36)
Lo 2 272

This is the free energy for the reduced partition function, ), while the true free energy per site, for Z, is to be
recalculated from Z = (2 cosh by cosh bz)L2Q, and we find:

o7 2
1
—Bfz=In2+ 5 / / 2_])2_(] In cosh 2b1 cosh 2b5 — sinh 261 cos p — sinh 2b5 cos g (37)
00

which is Eq. (108) in [1]. An interesting comment by Lars Onsager on the history of his remarkable solution can be
seen in [30]. Tt is not necessary to say that the method we have applied above to obtain (37) significantly differs from
the original approach [1].

In conclusion to this section, let us add few remarks on the properties of the 2D Ising model that follow from
the exact solution. [As regards the critical behaviour near T, there is no essential difference between (36) and (37)
since the factor between @) and Z is nonsingular at all temperatures]. In what follows, we assume ferromagnetic case,
b1,2 > 0. From (36), it can be then deduced that the point of phase transition is given by the condition:

1 —ty —ty — ity =0, (38)

where t; = tanh by, {5 = tanhbs, with by = J, /kT, bs = Jo/kT. Equivalently, this condition can be written in the
form:

sinh 2b; - sinh 265 = 1, (39)

which rather corresponds to the free energy in the form (37). The condition (38) for T can be readily recognized
from (36) by writing the pg —factor under the logarithm in the form:

pzq =(1+t3)(1+13) —2t1(1 —t2) cosp — 2to(1 — t¥) cos q
= (I—ty—tg—ty t2)? + 4ty (1—13) sin®(p/2) + 4t (1—t7) sin®(¢/2) . (40)
Near the origin in the momentum space, p = ¢ = 0, we have:

QL=m>+ A1 p* + Asg®, Ay =1(1-13), As=1s(1—12),

m:l—tl—tz—tltz. (41)
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It is seen that typically the above factor is positive,

pzq > 0, with the only exception for the zero-momentum
mode factor, Qp2:0q:0a which vanishes at the point (38).
Respectively, there is the singularity in the integrand
function in (36) at this point as p,¢ — 0. This gives
evidence for (38) to be the transition point. Because
of the pg-integration there is no true singularity (in-
finity) in the free and the internal energy even at the
transition point. The specific heat, however, already ex-
hibits the true logarithmic singularity as 7' — T,. The
specific heat follows from (37) and/or (36) by differen-
tiating twice with respect to the temperature: C/k =
B202(—Bfz)/082, B = 1/kT. Near the critical point,

we have:

T-1T
T

C/k~ Ac|logr| — 0, TI‘ =0, (42)

where C/k is the dimensionless specific heat, k is Boltz-
mann’s constant. The parameter A, is called the specific—
heat critical amplitude. The value of A. is the same by
approaching 7, from above and from below even for the
anisotropic lattice, this is a particular feature of the 2D
Ising model. In the isotropic case (t;=t;=tanhb) the
specific-heat amplitude i1s a fixed number: A. = %bcz ~

0.495, where b. = % In(1 + \/5) ~ 0.441 is the inverse
critical temperature, b, = J/kT;. The asymptotes (42)
can be derived substituting (41) into (36) and integrat-
ing over some area around the origin in the momentum
space [notice that 0 = 2x]. This will yield the singu-
lar (nonanalytic) part of the free energy, wherefrom (42)
immediately follows. The exact expression for specific
heat, over the whole temperature range, also follows from
(37) by differentiating twice with respect to the temper-
ature. The resulting expression can be simplified to be
expressed in terms of the complete elliptic integrals of the
first and second kind [1,9]. Further simplifications are not
possible. The exact expression for C'/k again confirms the
asymptotes (42).

Below the critical temperature, there is the sponta-
neous magnetization in the ferromagnetic 2D Ising model
given as follows:

1 1/8
M=]1-— — . (43)
sinh” 2b; sinh” 26+

Near the critical point, M ~ B7!/% where r is tem-
perature deviation from T, cf. (42). Thus, the criti-
cal exponent for magnetization at the critical isobar is:
B = 1/8. The explicit solution for spontaneous magne-
tization (43) can be derived by different methods. The
derivation given by Yang [3] is based on the transfer—
matrix method. In the combinatorial approach by Mon-
troll, Potts and Ward [5] it is noted that the squared
spontaneous magnetization, M ?, can be obtained as the
limiting value of the two—point spin correlation function
for remote spins, {(¢(0)o(R)) = {(GmnOm+an), as B = 0.
This spin correlation function can be expressed in terms

of the perturbed partition function with some line of de-
fects connecting the points 0 and R [5]. Therefore, the
result for M? can be also obtained starting with the in-
homogeneous fermionic expression for the partition func-
tion (24). In this scheme, at the final stages of the calcu-
lation, when extracting the asymptotes of the resulting
Toeplitz determinant for (¢(0)c(R)), one can follow, in
essence, the same lines as in [5]. However, despite the for-
mal simplicity of the expression for M given in (43), the
derivation of this result by any known method, includ-
ing that with Grassmann variables, remains to be several
times more complicated as compared with the deriva-
tion of the free—energy expression in the correspondent
approach. This i1s yet an unsolved puzzle in the two-—
dimensional Ising model [3]. For related comments also
see [20,25]. The analysis of more complicated correla-
tion functions also have been performed and contributed
much to our knowledge of phase transition in the 2D

Ising model [8,11,31].

VI. THE ORDERED PRODUCTS OF
GRASSMANN FACTORS AND GAUSSIAN
EXPONENTS

In this section we add few more remarks about the
ordered products of Grassmann factors typically arising,
as we have seen, by the fermionic interpretation of the
2D Ising model within the factorization method. Let L,
and Ls be arbitrary linear forms in Grassmann variables.
Then we have:

(14 L) (14 Ly) =elrb2(1 4 1) 4 o), (44)

where the nilpotent properties of fermions where taken
into account. In the above equation the two Grassmann
factors are combined into a one Grassmann factor accom-
panied by a Gaussian exponential. The resulting identity
can be iterated further on, and we find:

(14 L) (14 L) (1 +Ls) ... (1+ Ln)

— (1+§:Li) exp Z LiL; |, (45)

1<i<jEN

where Ly,..., Ly are arbitrary linear forms in Grass-
mann variables. Let 0y = £1 be Ising spin, notice that
o = 1. Making substitution L; — L;og in (45), we
obtain the identity:

(1 —|—L10’0) (1 —|—L20’0) (1 —|—L30’0) .

N
= (1 + 0'02[/2') €XpP
i=1

. (1 —|—LNO'0)

> LiLj| . (46)

1<i<j<N

The averaging over the spin states then results:
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op {1+ La0o) (14 Looo) (1 + Laoo) ...

We see that the averaging of a product of any number
of the Grassmannian factors like (47) over spin states,
oy = =1, always results Gaussian fermionic exponen-
tial, assuming the Ising spin being the same in all the
factors. This property have been used already in the anal-
ysis of the 2D Ising models on irregular (in the geomet-
rical sense) planar lattices [24]. The appearance of the
Gaussian exponential when we average at the junction
n (23) is also evident from (47).

In the same manner, we can elaborate the products
of Grassmann factors with different spins, like those ap-
pearing in (21):

(1 + L10'1) (1 + LQO'Q) (1 + L30’3) N

N
= (1 + ZLZ'O'Z') ex
i=1

(1 + LNO'N)

Z 005 LZ'L]' . (48)

1<i<jEN

This identity is a generalization (or a particular case)
of (45). In Egs. (44)-(48), it is only important that
Ly, ..., Ly are the purely anticommuting symbols, sat-
1sfying also the nilpotent property. In principle, in the
most general case, we may assume in the above identi-
ties L1, ..., Ly to be arbitrary odd polynomials in Grass-
mann variables.

The identities like (45) and (48) and related may be
of interest also with respect to the 2D Ising model in
a nonzero magnetic field. The inclusion of the nonzero
magnetic field corresponds to the additional terms ... 4+
h oy in the hamiltonian (10), which results in the ap-
pearance of the additional Boltzmann factors 1 + tg opmn
in the partition function (13) and (21), which are linear
in spin variables. Here ¢ty = tanh(h), where h = §H and
H is a conventional magnetic field in the energy units.
Being interested in the effects of small field, h — 0, one
can regard tg ~ hand 1 +tyom, = 1+ hogp,, as h — 0.
The appearance of such factors prevents the exact solu-
tion since the spin variables can not be easily eliminated
from the density matrix (21) in this case. Within ap-
proximations, however, it can be expected that A # 0
will make the spins in the ordered products of Grass-
mann factors like in (21) and (48) to be “frozen”, which
will induce the nonlocal terms in the action like in (45).
With respect to the problem of a non—zero magnetic field
in 2D Ising model, and in view of some other potential
applications, it may be therefore of interest to consider
the nonlocal fermionic action like the one arising in (45)
in the momentum space representation.
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(14 Lyog) } = exp

o LiLy |,

1<i<j<N

For visual convenience, let us change the index in the
nonlocal fermionic sum of (45) from ij to mm’, with
m,m’ = 0,1,...,M — 1. The arising nonlocal Gaussian
fermionic action is of the form:

M-2
So(L) = Z Lon (L1 + -+ Lar—1)
m=0
M-2 M-1
= YL (49)
m=0 m'=m+1

It can be expanded over either periodic or aperiodic
Fourier exponents. Assuming the aperiodic Fourier sub-
stitution:

1 M-1
Lm = — Lpe Vﬂ- (p+1/2)
v M p=0
1 M-1 )
= 7 2 Lamape T HRIR, (50)
p=0

we find a particularly simple expression:

S (L) _ 1‘42_:1 LpLM—l—p (51)
PN LGz
p:

Assuming the periodic Fourier decomposition:

'_7"
am

ﬁ\

M-

p=0
M-
ZLMpe e, (52)
we obtain a similar though somewhat more sophisticated
representation with a special role of the p = 0 mode:

M-1
L,—Lo)(Lpg—p — L
[—LoLp—i—( L 0)25 M=p 0) ,

e'™mP — 1

p=1



FREE FERMIONS IN TWO-DIMENSIONAL [SING MODEL

where Ly = L,—p. The sums in (51) and (53) can be
symmetrized by means of the identity:

13 [ﬁ—l] (54)
(p/2)

In the above identities it 1s essential that L,, are the
purely anticommuting fermionic forms in Grassmann
variables. There are two remarkable features that can be
readily observed in the Fourier sums like (51) and (53).
First, we may note that (i) though the action (49) is
highly nonlocal in the real space, it becomes diagonal in
the momentum space, and the second interesting feature
(ii) is the 1/ép singularity in the p—mode of the action
near p = 0, as p — 0. This 1/ip singularity is the essen-
tially fermionic effect, related to the fact that fermions
anticommute. The reason for (ii) is that under p & —p
symmetrization fermions just select the skew—symmetric
part of the kernel (54), that is, 1/2itan(p/2), while the
contribution of the symmetric part of that kernel van-
ishes. The situation will be the opposite for bosons. The
analog of the p < —p symmetrization can as well be
performed in (49) in the real space, and we get:

1M 1 -1
=3 > el ) Ln Ly
m=0 m’=0
1, m<m,
€<m—m'>={_1, N &

This is the action of the Gaussian fermionic integral of
the second kind with skew—symmetric matrix given in its
canonical form, cf. Eq. (7). At the diagonal, effectively,
e(m—m') =0, since L2, = 0. The properties (i) and (ii)
can also be understood, more physically, in the sense that
the matrix in (49) is in essence the inverse to dy,, the lat-

tice derivative matrix, O, €y = Tmym—2m_1. The action
SO( ) thus is the sum of terms like L, = 5 =L 7,,. Since 8,,
is diagonal in the momentum space, the nonlocal ker-
nel 1/9,, also is diagonal in the momentum space. In
the low—momentum region (continuum limit) d,, — @ p,
1/0m — 1/ip, and Lm%Lm — LP%L_Z,. The Fouriler
images of lattice 1/8,, can be seen from (51), (53) and
(54). The kernel 1e(m — m’) from (55) is the skew—
symmetric part of —1/8,,. For some applications of the
above considerations to the 2DIM in a nonzero magnetic
field see also the discussion in Section IX.

VII. TWO VARIABLES PER SITE

In this section we consider some further modifications
for the lattice fermionic interpretation of the 2D Ising
model, eliminating part of the fermionic variables from
the basic Gaussian integral (24) for ). The reduced inte-
gral for ) appears to be again GGaussian fermionic inte-
gral, but now with only two variables per site, see (57).
We intend to apply the identity given below. Let a, b be
independent Grassmann variables, then:

/dbdae“b+aL1+bL2 = /dbdae“b(l—l—aLl)(l +bLs)
—exp LoLy, (56)

where Ly, Lo are arbitrary linear forms in some other
Grassmann variables, not involved in the integration,
but anticommuting with a, b. Integrating out from (24)
the amn, bmn fields by means of identity (56), we obtain
a reduced Gaussian integral expressed in terms of the
remaining variables amn,bmn Let us change the nota-
tion for the fields: a,,, b5, = ¢mn, — ¢y , Lespectively,
da},,dby  — —dc,,, dcy., — dcf, dey,. The reduced

integral for @ then appears in the form:

L L L L
Q - / H H dC;,demn eXpZ Z |:CmnC (Cm” + C;;m) (trgllrgcm—l trgwg Crmn— 1) - trgllrgtrglzrgcm—ln‘::@n—l
m=1n=1 m=1n=1
(57)
where ¢,,,,, ¢, are Grassmann variables, ¢y, = 0, ¢, = 0. The integral (57) is equivalent to (13) and (24), assuming

the free boundary conditions in all the cases.

Since the inhomogeneous distribution of the bond coupling parameters is still preserved, all the information on the
thermodynamic functions as well as the correlation functions of the 2D Ising model on a rectangular lattice net is still
contained in (57). Evidently, the reduction of the number of the variables involved in the integration simplifies the
technical aspects of the analysis for regular lattices. This is illustrated below for the standard 2DIM on rectangular
lattice. The integral (57) (as well as (24)) may be also of interest with respect to the problem of quenched disorder
in the 2D Tsing model [32,33]. For related discussion also see [26].

(1) 4(2)

For the homogeneous lattice, tyy, tmn — 11,2, the integral (57) becomes:
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L L L
:/ H H dcmn exp E § |:Cmncmn t1 cm—1nc mn — 13 Cmncmn 1
m=1n=1 m=1n=1

— {1ts Cm—lncmn—l + 11 cmntm—1n + %2 Cmn—lcmn

(58)

This integral can be calculated by analogy with (26). We assume again the periodic closing conditions for fermions
and pass to the momentum space by Fourier substitution:

L-1L-1 L-1L-1
27'rq p 2frq
—z—m+z n * +z—m i=7dn
E E Cpq € . C E E Cpg © . (59)
p=0 ¢=0 p=0 ¢=0

The choice of the signs of pg is here adopted for future convenience in (60). The orthogonality relations (29) are to
be taken into account. In the momentum space, the integral (58) becomes:

L-1L-1 L-1L-1 . .
Q= /H Hdc dc exp{zz [ Cpg pq( —tye’ Lp—tze z* —tltze Tht q)
p0q0 quO

T otelt CL_pL—qCpqg +12€" o cpch_pL_q} } (60)

Then we have to make the p,q & L — p, L — ¢ symmetrization of the action in order to single out explicitly the
independent subsets of the variables. The integral then decouples into a product of simplest Gaussian fermionic
integral factors:

9 « " " ;2me 2rg z—+z 27'rq
= —_ L p— T —
o /dcpqdcpqch_pL_qch_pL_q exp cpqcpq(l tie tye! tita e )
. 27wp - 2mg - 2mp 2mg
* —i =72 —i ==L R
+ CL—pL—qCL—pL—q (1—t1e —ise I —ttge L L )
2w 2mq
+ 2ity sin ——¢;_ 1y + 2112 SI0 == CpgCLpL—q | - (61)

This integral factor can be evaluated making use of the elementary rules like (3) and/or (56). Alternatively, if we
decide to interpret this integral as the determinant, then we have to present the action in the form: S = a Aa*,
where A is a two by two matrix. This is possible, for instance, assuming the correspondence: ai, as, ay, a5 <

Cpg» Cl—pL—q» Cpq» — CL—pL—q- Lhe calculation is very simple in any case, and we find:

27p - 27g : 2ﬂ'q 2 . 2
p2q: 1—te' T8 —tye’ T —tltze Thtit —4t1tzsm¥sm%
2 2
= (L+ 3 (14 12) — 24, (1 — 12) cos % — 2, (1 — 12) cos%. (62)
I
The squared partition function follows as the product  ble critical modes: (p, ¢) = (0,0), (0,x), (7, 0), (7, 7). In

of factors (62) over the whole momentum-space lattice.
The factor in the final line of (62) is the same as in
(34). So, we come again to the same results for the par-
tition function and the free energy of the standard 2D
Ising model on a rectangular lattice that have been com-
mented already in Section V. An interesting new fea-
ture in (62) is the trigonometric expression in the first
line, wherefrom it 1s easy to recognize all the possible
critical modes (zeroes of szq) in the ferromagnetic as
well as antiferromagnetic regimes. Assuming p,q to be
normalized to the 2x interval, there are four such possi-
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the ferromagnetic case, the only possible critical mode
is that with p = ¢ = 0, and the criticality condition
is given by (38) (notice that 0 = 2r). The other three
modes, being always positive in the ferromagnetic case
(t1,2 > 0), define the possible critical points in the anti-
ferromagnetic cases. The above four critical modes and
the possible criticality conditions can be recognized al-
ready in the momentum-space action (61). With some
experience, the above four critical modes can be guessed
even from the real-space action (58), without any seri-
ous calculation, cf. (63) in Section VIII. For a related



FREE FERMIONS IN TWO-DIMENSIONAL [SING MODEL

discussion also see [20,25].

VIII. CONTINUUM LIMIT

Let us now consider the continuum-space limit (low
momenta sector) of the exact lattice theory near Te.
A suitable starting point is the integral (58) for Q.
In what follows, we assume the homogenous case and
ferromagnetic interactions. Let Zpmn = ¢mn, ¢h,, We
define lattice derivatives in a natural way: Opemn =
Ton—Tm—-1n, On®mn = Tmn—Tmp—1. Substituting
Cm—1n = Cmn— OmCmn s Coon_1 = Cn— OnCly, into (58),
we find the action in the form:

* * *
S = g {mcmncmn -\ Cmnﬁmcmn + Ay Cmnancmn
mn

* *
- tl Cmnﬁmcmn + t2 Crmn ancmn

— Lts (Omemn) (Oncimn) |, (63)
with the following set of parameters:

m=(1—-t —ts—t1t9),

M=t (1+6), A=t (1+1). (64)

The lattice action (63) is still the exact expression. In
this action one can already distinguish the typical field—
theoretical like structures, with the mass term and ki-
netic part. Evidently, the parameter m plays the role of
mass, while A, Ay and 1,5 are the kinetic coefficients.
The critical point can be readily guessed to be m = 0, in
agreement with (38). Let us take the formal limit to the
continuum space:

mn — ¢ = (£1,22), Z — /dzx:/dxldxz,

3m —)81:3/81‘1, 8n —)8223/81‘2,

Cn s Copn = (@), V(@) = ¥, 0. (65)

The continuum-limit counterpart for the lattice action
(63) then appears in the form:

S :/dzl‘ {mlﬁE—Alﬂ)alE‘i‘/\Zd)aZE

—t YRVt Ot . (66)

This is the Majorana—like continuum action for two-—
component massive fermions. In the above continuum
action we have dropped an interesting second—order mo-
mentum term with J10>. The mass and other param-
eters are the same as in (64). In presenting the ac-

tion in the final form, we have as well applied the rule
[ d*z(adb) = [ d*z(bda), where & = 91,05 and a,b are
any fermionic fields. This simple rule can be checked by
integration by parts, taking into account that fermions
anticommute and neglecting the boundary effects. Al-
ternatively, one can check the above rule in lattice in-
terpretation. In (66) the momenta operators Ji,ds in
all cases act to the right. The continuum-—space action
(66) captures the basic features of the exact lattice the-
ory with action (58) in the low—momentum sector near
the critical point, which is responsible for the critical—-
point singularities in the thermodynamic functions and
the large—distance behaviour of correlations. In the mo-
mentum space, this corresponds to approximation like
e’ — 1~ ip, e’ — 1~ ig, assuming also the ultraviolet
cut—off in the momentum integrals, |p| < ko, with k¢ of
order 1 (or say m/4) or less.

The Majorana like action (66), however, is not in the
canonical form. It can be brought into a canonical form
by a suitable linear transformation of the fields, elimi-
nating the undesirable kinetic terms like 101, 1021).
In the canonical form, the 2D Majorana action (66) is
given as follows:

S = /dzx {ﬁ“/)ﬂ/)z + 1 %(31 +ida) i
s (=04 i02) s ], (67)

with the new Majorana components, 11,2, and the
rescaled mass:

11—ty —to —1t1 ¢
m = 1Lz 12 (68)
2 (t1t2)e

In order to pass from (66) to (67), we have to transform
the fermionic fields and the momenta operators 0y, 02 in
a suitable way. Here we comment shortly on this trans-
formation. For the first step, let us write the action in
the form:

S = /dzl‘ {mﬂ)ﬂ/;z + Y (=A0h + A202) %
+ 0 (=X0) U+ 2 (Ma0a) ¥ | (69)

By the rescaling of the fields like ¥ — eT Y, h e 5,
with properly chosen pu, we gain the same action in a
slightly more symmetric form:

S = /dzl‘ {mﬂ)ﬂ/;z + U (=A101 + Aa0a) Y
+ wo (¥ (=A10h) ¥ + 2 (A202) ¥) | (70)
with new kinetic parameter:
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t1ts 1
Wy = =
"TVNN T Ot )

— (wo)e = % (71)

Exactly at 7., even independently of the rate of

the lattice anisotropy, we have (wgp). = %, since

(1—t;—t—t1t2). = 0. Taking into account that the
continuum-limit formulation by itself is reliable only
near 7, in what follows we put: wy = 1/\/5 = (wo)e.

The action (70) is already in a suitable form to be
transformed into the canonical Majorana action (67).
The general idea is to introduce the new fields by a linear
substitution like

Y=u(ya+7a), ¢ =u(na+na), (72)

where 7, ¥, n, 77 are free parameters (four complex num-
bers) and a,a are the new anticommuting components
(we shall pass a,a — 1,12 at next stages). Substitut-
ing (72) into (70), we then look for the uniformization
condition that the undesirable terms like a §1a, a 92a do
not appear in transformed action. In essence, the idea
is similar to that of the Bogoliubov transformation in
the theories of superfluidity [34] and superconductivity
[35]. Tt appears that the uniformization requirement, in
any case, implies the condition v¥ = 97 (the above rule
adb = bda is not to be forgotten at this stage). We then
put vy = i = 1, assuming the remaining normaliza-
tion parameter, u, to be fixed by the condition ¥ = aa,
whence di diy = dada. This is the condition that trans-
formation (72) is canonical, that is, the fermionic mea-
sure is unchanged. In this way we come to the uniformiza-
tion condition in the form:

1t
(Y +30) +2wo =0, wo= 4/, (73)
A1 Ao

while u is then fixed by the condition:

u? (yg —n) = 1. (74)

The momenta 0y, d» also will be transformed, in general,
under the transformation of the fields like (72). The cor-
respondent relations are not shown, however, since in our
particular case, with wo = 1//2, this momenta transfor-
mation appears to be identical. Assuming wy = 1/\/5,
we find that a possible realization for (72)—(74) is the
following substitution:

Y= a+a
~ \isin(n/4)
aei(ﬂ—/4) _|_e_i(7r/4)fl

¥=- 2isin(m/4) ’ (75)
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which corresponds to y =1, = —%(1 +4) in (73) and
(74). Substituting (75) into (70), the action appears in
the form:

1
S = dzx{maé—i—ia(/\l@l—i—i/\z@z)a

—

+-a(-dh+ixd)al, (76)

1
2

where a, @ are the new Majorana fields, and ¥+ — aa,
didy — dada. A remarkable feature is that the mo-
menta components di, d; in (76) are not effected, they
are the same as in the original action (66) and in (70).
This feature is provided by a special value of the ki-
netic parameter, wy — (w)e = 1/+/2. The axis in the
d’z + d?p space will be rescaled and rotated, in gen-
eral, by the uniformization transformation under substi-
tution like (72) with wy # 1/v/2. In fact, the uniformiza-
tion condition (73) by itself still provides some freedom,
corresponding to the gauge rotation of the fields: a —
ae'® @— ae~iin (76), or iy — Yy e’ by — Yge” i@
in (67), accompanied by the covariant orthogonal rota-
tion of the reference frame of momenta A101, A2d-. In
(75) and (76) this freedom is fixed in such a way that
the axis of the d?z space are not rotated.

Finally, let us rescale the momenta in (76) as fol-
lows: 81 — (/\2//\1)1/2 81, 82 — (/\1//\2)1/2 82, which
is canonical transformation (d?z — d?z, d*p — d%p).
The rescaled momenta are those that finally appear in
the canonical action (67). By rescaling, we gain a new
overall kinetic factor, let us call it wy, given by:

Wy = \/AlAz = \/tltz(l —|—t1)(1 —|—t2)

= (wi)e = V2 (tit2)e, (77)

1t 1s reasonable to fix wy at 7" = T, as is indicated above.
Finally, for the last step, we remove w; from the kinetic
part by the following rescaling of the fields (first chang-
ing the notation for the components): a,a@ — 1, 2 —
Y1 /\/wi, 2/ /w1, and obtain the Majorana action in the
canonical form given in (67). Respectively, the mass m
from (66) will get renormalized to give the rescaled mass
m (68).

Up to the stage of this final rescaling of the fields, all
the transformations we have applied were canonical, that
is, preserving the measure in the integrals of any kind.
The last rescaling of the fermionic components, however,
is not the canonical transformation, it introduces a factor
in the fermionic measure, dysdi; — wq dsdipy. The cor-
respondent factor then appears in front of the partition
function and can be ignored, in essence, by analyzing the
critical point. Actually, we have to take care of the in-
variance of the measure in the d*z space integral (respec-
tively, in the d?p space integral) in the action, but not in
the fermionic measure. Notice that the momenta 01, 02
are the same as in the original action (66) up to (76),
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while in (67) there are already the rescaled momenta
3y = (M/A2)20,, 8y = (Aa/A1)M2 8y, which is not re-
flected in the notation of (67). This rescaling, however,
is a canonical transformation, d?z = dz’, respectively,
d’p = d?p’. This means that we have preserved the nor-
malization of the measure in the momentum space, the
singularities near criticality calculated from the canoni-
cal action (67) with the mass (68) are expected to be the
same, in leading orders, as those provided by the exact

Smajor =

N | —

where ()T stands for transposition of spinor. In terms of
the standard Pauli matrices, o1, 03, 03, the matrix kernel
of this action (the ‘inverse propagator’, or ‘equation of
motion’) can be written in the form: [m (io3) +01 (03)+
id2(1)], or in the form: (io2)[m + 91 (01) + 02 (02)].
Thus, we find:

1 ~ .
Smajorzi/dzx\ll[ﬁz—i—@]\l!, \IJI\IJT(iO'Z),

=7 O+y2 02, 0°=02+082, (79)
with the 2D y-matrices y;=01, y2=03. This 1s the 2D
Majorana action in the relativistic field—theoretical form.
The conjugated Majorana spinors ¥ and ¥ in (79) are
built in fact from the same component fields, ¥y, s,
so they are not the truly independent fields in the path
integral. By doubling the number of fermions in the Ma-
jorana representation we can pass to the Dirac action
with four independent components:

S =5 [0 W @) [m 0] ¥ @), (30

where ¥ = (¢1,¢2) and ¥ = (¢, %) are now
charged Dirac spinors with four independent anticom-
muting components: 1,92, 1%7, ¥4 . By convention, one
can assume ¥, ¥ to be complex conjugates of i, ¢a.
The propagator m + 0 in (80) is the same as in (79).
To obtain the Dirac action (80), we take two identical
copies S’ and S” of the Majorana action (79) and write:
S dirac = (SI + S”) majorana- Introducing the new Dirac
fields by means of substitution:

1 1 1
U=—U +iv"),
ﬁ( )

_ 1 -0~
\p:ﬁ(qf—up), (81)

we obtain the action (80). Mathematically, the transfor-
mation from (79) to (80) is in essence the same that

lattice theory (63) or its low—momenta approximation
(66). The critical-point singularities are commented in
Section IX. Meanwhile, let us continue with the canoni-
cal Majorana action (67) we have just derived.

The canonical two—component Majorana action (67)
can be written as well in matrix notation. Noting that
my1s = %m(d)u/)z—ﬂ)y/)l) and introducing the ma-
trix structure at each space point in the d%z integral,
we write:

/dzx (ii )T [(81:282 —8173—1'82)] (i;) / (78)

we have considered in relation to identity (8) in Sec-
tion II, which establishes the connection between the
fermionic Gaussian integrals of the first and second
kind, or between the determinant and the Pfaffian of
a skew—symmetric matrix. Notice that the kernel like
m(ioca) + d1(o3) + i02(1) from (78) is a skew—symmetric
matrix, assuming that dq, d» are also considered as ma-
trices. The transformations from lattice to continuum in
2DIM are also discussed in [21,25].

IX. CRITICAL-POINT SINGULARITIES

The field—theoretical formulation for the 2D Ising
model near T, is a suitable representation to discuss, in
a simple way, the thermodynamic singularities near the
transition point. Assuming that we start with the Dirac
interpretation (squared partition function) and noting
that in the momentum space det(m + 5) =m? + p?,
the singular part of the free energy readily follows in the
form:

d2
_6 fsing = l/ (—pz ln(ﬁlz +p2)

2 2m)
1 _, const
= 8_7rm In — + (), (82)

where the mass m is that given in (68). This is the ex-
act expression for the most singular part of the free en-
ergy of the 2DIM in a zero magnetic field (h = 0). The
same asymptotes follows from the exact solution. Noting
that near the critical point m ~ 7 = |T — T, |/T¢, let
us assume m for conventional temperature. The internal
(average) energy is then given as follows:

d’*p m

0
(E) M osing — a_m (_sting) - / m m
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SN (), (83)

and the dimensionless specific heat 1s:

1 const
(C’/k’)msingzﬂln? +()
1 const

where we put the subscript m to remember that the
derivatives are taken with respect to the conventional
temperature /m. For the isotropic lattice, m ~ 4 (b—b.) ~
4b. 7, with b. = % In(14-+/2), wherefrom one can recover,
for instance, the specific-heat asymptotes (42) with the
correct value of the amplitude: (C/k)ging = Ac|In|7]],
Ae = (8/m) b2,

The asymptotes (82)—(84) are to be compared with
the hypothetical form of the critical-point singularities
in the same functions in a nonzero magnetic field near
Te, which subject we intend to discuss, in short, in the re-
maining part of this section. We are interesting merely in
what may be the singular behaviour of the specific heat
in a nonzero magnetic field along the critical isotherm,
that is, when the temperature is fixed exactly at 7. and
the deviation from the critical point is realized by a small
nonzero magnetic field, A # 0. [For final conclusion, see
(89) below]. To start with, let us write the expected form
for the singular part of the free energy near the critical
isotherm, in the regime of the “strong” magnetic field,
T8« h < 1

1 d? A2
—B Foing = 3 / (%]))2 In (ﬁﬂ +p? 4+ p_2) + (...), (85)

with A o« h M(r, h), where M(r, h) is magnetization,
7 — 0. More precisely, both 7 and h are assumed to
be small, but we are interesting in the situation near the
critical isotherm, 7 = 0, A # 0, and introduce infinitesi-
mal deviation from T, with respect to the temperature,
T << B85 merely to perform the differentiation, then
we put 7 — 0. The same form of the free energy can be
considered for “weak” field, h®/15 << 7. In this case, how-
ever, the choice of the form of A as function of 7, h, due
to the strong temperature effects, may be more sophisti-
cated. This may be actual, in particular, in the ordered
phase, where the effects of the external field are superim-
posed on the effects of the inherent molecular field [36].

We comment on singularities that follow from the free
energy (85) below, but now let us make few remarks on
its origin. A somewhat unusual perturbation term A\?/p?
which appears in the propagator in (85) is the result of
an approximation in the mixed spin—fermion representa-
tion for Qnxo. The insertion of the h > 0 weights like
14+ ko, into the factorized density matrix in (21) pre-
vents the exact solution at & # 0 since the spin variables
can not be easily eliminated in this case. We then have
elaborated the ordered products of factors in the density
matrix (21) into an exponential form, cf. the discussion
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in Section VI, and applied the simplest approximation of
the Hartree—Fock type for the spin subsystem. In partic-
ular, this kind of approximation implies A ~ hM (7, h).
The nonlocal Gaussian exponents, like those considered
in Section VI, then appear in action. This, roughly, cor-
responds to the modification of the Majorana action of
the following kind:

S:%/dzx\i[m—ké—i—/\/é]\ll. (86)

This form of the action, however, is not to be understood
too literally, the less singular A—corrections are ignored
(or incorporated in A). There is no essential interference
of A/& with m + O near the line 7 = 0,h # 0 in (85)
within given approximations. The main statement is that
the free energy appears with the perturbed propagator
as is given in (85). Now, let us assume (85) to be true
and consider what follows.

The consequences from (85) are interesting. In the

strong—coupling regime (A >> %ﬁlz) the internal energy
per site is given by:
1 0A
- — ) 87
bt () (87)

Respectively, the specific heat at the critical isotherm
(m — 0) appears in the form:

B 1 pde2
(Cm)smg— E/Az_i_(pz_)z +()
1 const 1
= —1In—— L) = —|InvA
SIS () = o VAL (),
VAx h¥ 50, m=0, (88)

where A(0,h) o< h M(0,h), or A(0,h) o< h'/15 and we
have passed in the final line to VA o< h3/15 5 () in or-
der to make the amplitude to be equal to that in (84).
It is known from scaling and other considerations that
M (0, h) < h'/*3 wherefrom (0, h) o< h'8/15. Comparing
(88) with (84), we see that under given approximation
the specific heat along the critical isotherm is logarithmic
and can be formally recovered from (84) by replacing the
thermal mass m = m(r,0) ~ 7 by the “magnetic mass”
\/X(O,h) ~ h¥/15 The amplitude in (88) remains the
same (with respect to the mass parameters) as in (84).
The specific heat (88) is obtained by §%/9m?, where m is
given in (68). Formally, the asymptotes (88) includes the
case of the anisotropic lattice as well. For the isotropic
lattice, m ~ 4 (b —b.), b = J/kT, and we have to multi-
ply the amplitude from (88) by factor 162 to obtain the
true specific heat along the critical isotherm:
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(C/k) sing = 82| W13 = B, | Inh |,
T

8 64,
Be= 154 = 150 (89)

where A, = (8/m)b? is the thermal critical amplitude
along the critical isobar, 7 # 0,h = 0, A, = 0.494538589,
while E. = (8/15)A. = 0.263753914 is the amplitude
along the critical isotherm, 7 = 0,h # 0, as it ap-
pears within given approximation. Here b. = %ln(l +
\/5) = 0.440686793 1s the inverse critical temperature,
be = J/kT. Tt may be interesting to check (89) by the
Monte—Carlo experiments and other numerical methods.

Let us add a remark. The specific heat (88) is ob-
tained, formally, by differentiating with respect to m
placed in front of the integral in (87) and then tak-
ing the limit m — 0. The other corrections are ig-
nored. Evidently, the differentiation with respect to m?
from the propagator in the integral will yield vanish-
ing contribution as m — 0. As regards the possible
contribution from the term dA/9m in the energy (87),
the contribution of this term to the specific heat (let
m — 7) is of order %/\(T, h) ~ h%M(T, h) , but
LM (7, h) ~ B2 (=B sing) ~ £ C(, h). Taking the
limit 7 — 0, we see that %/\ o h% Inh ~ 1, assuming
C(0,h) ~ Inh. So, the logarithmic asymptotes in (88)
and (89) is by itself consistent with the less singular con-
tribution via A(r, h).

Curiously, we could guess (88) from the most crude
phenomenological considerations, simply replacing the
“thermal” mass m, ~ 7 from (84) by the “magnetic”
mass my ~ k815 This replacement can not be done,
however, at least in a simple form, in the free energy like
(82), since this will yield the expressions with the loga-
rithmic corrections in the functions related to the magne-
tization at the critical isotherm, which is hardly the case.
[For instance, at the critical isobar M(7,0) ~ Br'/%,
and there is no any logarithmic correction. The multi-
plicative logarithmic corrections are not expected as well
neither in AM(0,h) nor in E(0,k)]. The unusual form
of the magnetic—field correction A?/p? in the propaga-
tor in (85), versus a naive modification of mass term in
m? + p?, is in fact favourable with respect to the known
data about the Ising model. Merely, this concerns the
absence of the logarithms, observed or expected, in the
field derivatives of the free energy.

The 2D Ising model at 7, can also be considered
in terms of the conformal field theory (CFT) axioms
[37-40]. Zamolodchikov [40] has conjectured the exis-
tence of the eight masses m; ~ h%15 (i = 1,2,...8)
in the perturbed CFT assumed to be in the same uni-
versality class as the 2DIM at the critical isotherm,
T = 0,h # 0. A remarkable feature is that the ratios
of these masses are predicted from the symmetries as
the exact numbers up to the overall normalization con-
stant: my/my = 2cos t7, ms/my = 2cos -, ete [40].
The nature of these masses from the point of view of the
original lattice formulation of 2DIM is yet not well un-
derstood. If these masses are thought out as the result of

some kind of fine splitting of the A term in the propaga-
tor in (85), their effect on the behaviour of the correla-
tions might be different, as compared with the thermal
mass effect, since A\? is not the same that m? in (85).
If so, the naive expectation that the asymptotes of the
two—point correlation functions will be given, by anal-
ogy with thermal decay of correlations, by the sum of
the terms like Ko(my; R), where Ky is modified Bessel
function, may not be the case. It 1s difficult to make def-
inite predictions, however, at present stage, what may be
the modifications. The approximations like (85) seem to
be two crude in this respect. It might be conjectured, for
instance, that some of the masses (probably all except
the lightest or the heaviest one) might have imaginary
parts and will then contribute only either more rapidly
decaying additive corrections to the leading term (with
extra factors 1/R) or the corrections with the oscillating
formfactors (with the same periods R; ~ mi_1 as the
decay rates in the accompanying exponents) to the term
with ‘normal’ decay, like Ky(my R), which is what can
also be expected from common scaling.

It may be noted that the parameter A in (85) and (86)
is rather charge then mass. The free energy in the form
(85) might be of interest also at D#2. In principle, tak-
ing the free energy in the form (85) as it is, one can
try to analyze other thermodynamic functions. However,
this will claim for further fine detailing of the meaning
of A as a function of both 7 and A. In particular, the ef-
fects related to the possible spontaneous ordering are to
be taken into account properly below T.. An interesting
feature 1s that at a special line A = %ﬁﬂ the free energy
(85) reproduces, in essence, the same results (82)—(84)
as at A = 0, that is, at A = 0. This might be an evi-
dence for the possibility to incorporate the effects of the
spontaneous ordering in this scheme. We are going to
discuss these subjects in a more detail elsewhere. In fact,
the line A = %ﬁﬂ distinguishes between the weak—field
and strong—field regimes, with respect to 7, in the inte-
gral (85). At this boundary, 7 ~ h3/13 this is just what
one can expect for this boundary from scaling and other
considerations [36].

X. CONCLUSIONS

In the above discussion, the two-dimensional Ising
model (2DIM) has been treated as a theory of free
fermions on a lattice. The anticommuting (Grassmann)
variables and integrals were made use of. The fermioniza-
tion procedure is based on the mirror—ordered fermionic
factorization of the density matrix. Following this
method, the original spin—variable partition function @
with arbitrary inhomogeneous set of bond coupling pa-
rameters was transformed into a Gaussian fermionic inte-
gral. The subsequent discussion includes the momentum-—
space analysis and the exact solution for the standard
(translationally invariant) rectangular 2D TIsing lattice,
the free fermion representation for () with two variables
per site, the Majorana—Dirac field theory interpretation
of the 2DIM near T; (continuum limit). The effects of the
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long-range fermionic correlations in a nonzero magnetic
field and the behaviour of the specific heat along the
critical 1sotherm also have been discussed. Grassmann
variables provide a powerful tool to analyze the 2DIM.
In physical aspect, it seems to be important to under-
stand better the mechanism of the spontaneous ordering

in 2DIM in terms of fermions. The fermionic interpre-
tation of the 2D Ising model provides grounds for this
model to be treated in a common range with some other
typical models in condensed matter physics and quantum

field theory.
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BLJILHI ®EPMIOHM ¥V IBOBUMIPHII MO/JEJII I3UHI'A

B. H. Ilneuko
06 ednanuti tncmumym adeprux docaidncens, Jlabopamopia meopemuunor dizuxu im. Boeoarobosa,
Hybna, Mockoscovxa obaacmo, 141980, Pocia

IMeperasinyro nsoBuMipry (2D) Momess [sunra gk reopito Binpaux depmionis Ha rparui. OBroBopeHH:s BKIIIO-
Jae mporeaypy (gpepMioHizalil, 1Mo I'PpyHTYEThCA Ha J3epKaibHO BIIOPAIKOBaHIA dhakTopH3alil MaTpHIll I'yCTHHH,
300pazkeHHd CTATUCTUYHOI CYMHU I'aycCiBCHbKUM (HbepMIOHHUM IHTEr'paJioM, aHa I3 B IMIIyJIbCHOMY HPOCTOPI Ta pe-

sysbrar OH3arepa, edpeKTUBHI Teopil MOJIA B TPAHUIN KOHTUHYYMY Ta CHHTYJIAPHOCTA B KpATWYHIK Tourm. [Ipo-
KOMEHTOBAHO TOABY TaleKOCHKHUX (HPepMIOHHUX KOPeJIAIiii y HEHyIbOBOMY MArHETHOMY IOJ1 i MOBEmiHKY Ter-
JIOEMHOCTH B3IIOBXK KPUTHYHHUX i30TepM. [IpumijgeHo yBary BubOpOBI pallloHaJIbHIUX CXeM PO3paXyHKY.
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