
�URNAL FIZIQNIH DOSLID�EN^

t. 3, } 3 (1999) s. 331{336

JOURNAL OF PHYSICAL STUDIES

v. 3, No. 3 (1999) p. 331{336

EQUATIONS OF MOTION FOR FIELD OPERATORS AND ENERGY

SPECTRUM FOR SUPERFLUID ANISOTROPIC FERMI SYSTEMS

(\p" PAIRING)

Z. M. Galasiewiz

Wro law University of Tehnology, Institute of Physis,

Wybrze_ze Wyspia�nskiego 27, 50{370 Wro law, Poland

(Reeived June 21, 1999)

The investigation has been based on Hamiltonian quadrati in Fermi amplitudes or linear in

operators representing amplitude and phase of ondensate of pair (parallel spins). The latter rep-

resents the energy of a \spin" 1=2

^

L in some e�etive �eld. Simple variational proedure gives for

anisotropi ABM and \polar" phases single partile energy 
 with a suitable form of energy gap.

Amplitude and phase osillations are onneted with frequenies ! = 0;�2
. The �rst one repre-

sents Goldstone{Anderson mode. \Spins" dependene on time (

^

L

(i)

(t) = R

ij

(t)

^

L

(j)

(0)) is given by

rotation matrix R

ij

(t) used in He

3

{B theory. Here R

ij

desribes rotation of a \spin" around the

e�etive �eld.

Key words: superuidity, anisotropi phases, \p" pairing, Casimir operator.

PACS number: 67.57.{z, 05.30.Fk

I. THE EFFECTIVE HAMILTONIAN

In [1℄ we onsidered systems of fermions desribed in

terms of model Hamiltonian whih was a quadrati form

in Fermi �eld operators.

Interation between partiles led to \s" pairing giving

a simple model of the superondutor with the energy

spetrum having the isotropi gap.

Now we are interested in superuid Fermi systems with

the anisotropi energy gap. This is onneted with inter-

ation between partiles whih leads to \p" pairing.

We wish to onsider a simple model whih has some

properties similar to superuid He{3 in anisotropi

phases named now: polar or \one{dimensional" phase

and A.B.M. phase (see e.g. [2℄).

First model (\polar") of an anisotropi superuid

Fermi system has been investigated in [3℄. It was de-

sribed by the Hamiltonian:

^

H =

X

p;�

"(p)a

+

p�

a

p�

(1.1)

+

1

2V

X

p;p

0

;�

X

n

J

n

(p; p

0

)P

n

(os )a

+

p�

a

+

�p�

a

�p

0

�

a

p

0

�

where P

0

= 1, P

1

(os ) = os  = os � os �

0

+

os' sin � sin �

0

denotes the angle between p and p

0

ve-

tors, � and �

0

denote angles between the polar axis and

the vetors p and p

0

respetively, ' denotes the angle

around the polar axis.

A possible simple form of the interation onsistent

with \p" pairing is:

X

P

n

' J

1

(p

F

; p

F

)P

1

(os ) = J

1

(p

F

) os  (1.2)

(in [1℄ only the zero term has been retained i.e.:

P

n

P

n

'

J

0

(p

F

)). Instead of (1.1) we wish to onsider appropriate

model Hamiltonian, whih like in [1℄ will be a quadrati

form in Fermi amplitudes. We assume:

^

H

red

=

X

p;�

"(p)a

+

p�

a

p�

(1.3)

�

1

2V

X

p;p

0

;�

J

1

(p

F

) os 

�

ha

+

�p�

a

+

p�

ia

�p

0

�

a

p

0

�

+ ha

p�

a

�p�

ia

+

p

0

�

a

+

�p

0

�

o

+onst:

Here we have "(p) = E(p)��, E(p) means single partile

energy spetrum and � hemial potential, h: : :i denotes

ground state averaging.

We perform the anonial transformation:

a

p�

= u(p)�

p�

� v(p; �)�

+

�p�

; (1.4)

a

�p�

= u(p)�

�p�

+ v(p; �)�

+

p�

:

For the oeÆients fu; vgwhih an be omplex, we have:

ju(p)j

2

+ jv(p)j

2

= 1; (1.5)

v(p; �) = �v(�p; �):

For further onsiderations it is onvenient to introdue

new funtions F , �, �

�

(see e.g. [4℄):

F (p) = jv(p; �)j

2

= jv(p)j

2

(1.6)

�(p; �) = u(p)v(p; �) = ��(�p):
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They are onneted by an equation of the type (1.5):

F

2

� F + ��

�

= 0: (1.7)

In terms of �, �

+

amplitudes Hamiltonian (1.3) has the

form:

^

H

red

= h

^

H

0

i+

X

p;�


(p)�

+

p�

�

p�

+

X

p;�

�

R

p�

�

+

�p�

�

+

p�

+ R

�

p�

�

p�

�

�p�

�

(1.8)

where:

h

^

H

0

i = 2

X

p

"(p)F (p) (1.9)

+

X

p

(�

�

(p)�(p) + �(p)�

�

(p)) ;


(p) = "(p)(1 � F (p))

+ �

�

(p)�(p) + �(p)�

�

(p);

R

p�

= 2"(p)�

�

(p)��

�

(p)u

2

(p) + �(p)v

�

2

(p); (1.10)

R

�

p�

= 2"(p)�(p)��(p)u

�

2

(p) + �

�

(p)v

2

(p)

and

�(p; �) = �

1

2V

X

p

0

J

1

(p

F

)(os )ha

p

0

�

a

�p

0

�

i; (1.11)

�

�

(p; �) = �

1

2V

X

p

0

J

1

(p

F

)(os )ha

+

�p

0

�

a

+

�p

0

�

i:

One an hek that when h: : :i means averaging in va-

uum of �, �

+

quasipartiles, we have:

ha

p

0

�

a

�p

0

�

i = �(p

0

): (1.12)

When we put

R

p�

= R

�

p�

= 0 (1.13)

(the so alled equation of ompensation of dangerous dia-

grams) Eqs. (1.5) (or (1.7)) and (1.13) will give solutions

for F , �, desribing superuid phases of He{3. Unfortu-

nately it is not easy to express R

p�

in terms of F , �. We

an �nd equations equivalent to (1.13) from variational

proedure. We an perform variation of h

^

H

0

i, with re-

spet to F , �, �

�

onsidering (1.7) by introduing a La-

grange multiplier (p).

We de�ne a funtional W [4℄:

W [F; �℄ = h

^

H

0

i+ (F

2

� F + ��

�

); (1.14)

and have

ÆW

ÆF

= " + (2F � 1) = 0;

ÆW

Æ�

= �

�

+ �

�

= 0; (1.15)

ÆW

Æ�

�

= �+ � = 0:

From (1.15) it follows:

 = �

�

�

= �

�

�

�

�

(1.16)

and we have simple equations equivalent to (1.13)

2"� ��(2F � 1) = 0; (1.17)

2"�

�

��

�

(2F � 1) = 0:

Eqs. (1.7), (1.17) give �nally

� =

1

2

�=("

2

+ j�j

2

)

1=2

;

F =

1

2

[1� "=("

2

+ j�j

2

)

1=2

℄; (1.18)


 = ("

2

+ j�j

2

)

1=2

; � = 2
:

II. TIME DEPENDENCE OF THE

CONDENSATE AMPLITUDE AND PHASE.

AMPLITUDE AND PHASE MODES

With the help of (1.11) Hamiltonian (1.3) has now the

form

^

H

red

=

X

p;�

"(p)[a

+

p�

a

p�

+ a

+

�p�

a

�p�

℄

+

X

p;�

[�(p; �)a

+

p�

a

+

�p�

+�

�

(p; �)a

�p�

a

p�

℄; (2.1)

�(p; �) = �(p) = ��(�p);

�(p) = �

1

(p) + i�

2

(p):

Using (2.1) we an get the following equations of motion

for operators a

p�

, a

+

p�
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i�

t

a

p�

= "(p)a

p�

+�(p)a

+

�p�

; (2.2)

�i�

t

a

+

�p�

= "(p)a

+

�p�

��

�

(p)a

p�

:

Now we introdue reation and annihilation operators of

fermion pairs when \mates" have opposite momenta but

parallel spins

^

�

p

(�) = a

�p�

a

p�

= �

^

�

�p

(�); (2.3)

^

�

�p

(�) = a

+

�p�

a

+

p�

= �

^

�

p

(�):

We an de�ne, with the help of

^

�

p

(�),

^

�

+

�p

(�) the op-

erators whih an be onneted with an expression for

superuid phase (B

(1)

) and density of pairs ondensate

(B

(2)

) [5℄, (see also [6℄). Namely

^

B

(1)

p

(�) =

^

�

p

(�) +

^

�

+

�p

(�) =

^

B

(1)

+

p

(�); (2.4)

^

B

(2)

p

(�) = i(

^

�

p

(�) �

^

�

+

�p

(�)) =

^

B

(2)

+

p

(�):

Operators B

(1)

, B

(2)

depend on p (and not on p� q=2),

so they represent only a part of the expression for ampli-

tude and phase operators. De�nition (2.3) of

^

�,

^

�

+

leads

to the following properties [7℄

^

�

2

= 0;

^

�

^

�

+

^

� =

^

�: (2.5)

They give us a possibility to express Hamiltonian (2.1)

in terms of operators similar to B

(i)

but isomorphi to

Pauli matries. We introdue

^

L

(1)

p

(�) =

^

B

(1)

p

(�) =

^

�

+

�p

(�) +

^

�

p

(�);

^

L

(2)

p

(�) = �

^

B

(2)

p

(�) = i(

^

�

+

�p

(�) �

^

�

p

(�)); (2.6)

^

L

(3)

p

(�) =

^

�

p

(�)

^

�

+

�p

(�)�

^

�

+

�p

(�)

^

�

p

(�)

= 1� n

p�

� n

�p�

;

^

J

p

(�) =

^

�

+

�p

(�)

^

�

p

(�) +

^

�

p

(�)

^

�

+

�p

(�)

= (

^

J

p

(�))

2

=

^

L

(3)

p

(�) + 2n

p�

n

�p�

;

L

(3)

enters in a natural way to the ommutator of B

(1);(2)

(or L

(1);(2)

) with the Hamiltonian,

^

J plays the role of

unity.

Operators (2.6) have the following properties

[

^

L

(l)

p

;

^

L

(j)

p

℄ = 2i"

ljk

^

L

(k)

p

;

^

L

(j)

p

^

L

(k)

p

= i"

jkl

^

L

(l)

p

; (2.7)

(

^

L

(i)

p

)

2

=

^

J

p

;

^

L

(i)

p

^

J

p

=

^

J

p

^

L

(i)

p

=

^

L

(i)

p

; i = 1; 2; 3:

We mentioned earlier that L

(i)

,

^

J are isomorphi to Pauli

matries and unity matrix.

Introdution of L

(i)

into Hamiltonian (2.1) (we do not

perform unitary transformation) gives

^

H

red

=

X

p;�

h(p)

^

L

p

(�) =

X

p;�


(p)n(p)

^

L

p

(�);

=

X

p;�

^

H

p

(�) (2.8)

h(p) = (�

1

(p);�

2

(p);�"(p));

jh(p)j = 
(p) =

p

"

2

(p) + j�(p)j

2

;

where h(p) an be onsidered as e�etive magneti �eld

ating on \spin" (1=2)

^

L. We have here a situation sim-

pler than in [8℄ where e�etive �eld is partly an operator

and Hamiltonian is a quadrati form in spin operators.

In order to have information about the amplitude and

phase osillations let us �nd the time dependene of the

omponents of vetor

^

L. Comparatively a simple form of

the Hamiltonian (2.8) (linear form in

^

L

(i)

) suggests to

use the formula

^

L(t) = exp[�i

^

Ht℄

^

L(0) exp[i

^

Ht℄ (2.9)

=

1

X

n=0

t

n

n!

(�i)

n

0

�

[

^

H; [

^

H; : : : [

^

H;

^

L℄℄℄

| {z }

n

�

�

�

�

�

t=0

1

A

;

where ommutators represent suitable derivatives with

respet to time. We �nd

d

2n

dt

2n

^

L(t) = (�1)

n

(2
)

2n

"

^

L(t)�

h(h �

^

L)




2

#

; n 6= 0

d

2n+1

dt

2n+1

^

L(t) =

(�1)

n

2


(2
)

2n+1

d

^

L(t)

dt

: (2.10)

In a speial ase

d

3

^

L

dt

3

+ (2
)

2

d

^

L

dt

= 0: (2.11)

The solution of (2.11) should be a linear ombination of

e

i!t

with ! = 0;�2
. Further onsiderations will give a

more lear piture of this situation.

The ommutation relations give us

d

^

L

dt

= 2h�

^

L (2.12)

333



Z. M. GALASIEWICZ

whih is onsistent with onservation of energy, namely

h

d

^

L

dt

= 0 =

d

^

H

p

(�)

dt

: (2.13)

When we put (2.12) into the seond formula of (2.10)

we see that all time derivatives depend linearly on

^

L.

After use of (2.9) and (2.11) we have

^

L(t) = (

^

L(0) �n)n+ [

^

L(0) � (

^

L(0) � n)n℄ os(2
t)

+ (n�

^

L(0)) sin(2
t); (2.14)

^

L

(j)

(t) = (

^

L

(i)

(0)n

i

)n

j

+ [Æ

ij

^

L

(i)

(0) � (

^

L

(i)

(0)n

i

)n

j

℄ os(2
t) (2.15)

+ "

jki

n

k

^

L

(i)

(0) sin(2
t) = R

ji

[t℄

^

L

(i)

(0)

where

R

ji

[t℄ = os(2
t)(Æ

ij

� n

j

n

i

) + n

j

n

i

(2.16)

+ sin(2
t)"

jkl

n

k

;

R

ji

[0℄ = Æ

ji

:

We see that

n �

^

L(t) = n �

^

L(0);

i.e. terms in (2.14) proportional to sin and os are per-

pendiular to n. Matrix R

ji

desribes rotation around

axis de�ned by unit vetor njjh i.e. rotation in plane per-

pendiular to e�etive �eld. Suh form of R

ij

is reently

used very often in the theory of superuid He

3

{B.

From (2.11) and (2.14) follows that amplitude and

phase osillations are onneted with frequenies ! =

0;�2
. The mode ! = 0 is a Goldstone mode or as it

has been disussed more preisely in [9℄, the Anderson's

[7℄, rotating ground state mode.

From (2.6) it follows that L

(3)

has eigenvalues

L

3

= �1; 0; 0; 1; (2.17)

and orresponding eigenstates

a

+

p�

a

+

�p�

j0i; a

+

p�

j0i; a

+

�p�

j0i; j0i: (2.18)

We an introdue \spin" operators

^

S

^

S =

1

2

^

L: (2.19)

Component

^

S

(3)

has eigenvalues

m

s

= �

1

2

; 0; 0;

1

2

: (2.20)

The Casimir operator an be written

^

C

2

=

X

i

(

^

S

(i)

)

2

=

3

4

^

J

2

=

3

4

^

J = l(l + 1)I (2.21)

with l = 1=2; 0; 0; 1=2.

It is onvenient to onsider the subspae de�ned by

ondition n

p�

= n

�p�

[8℄. In this ase l = 1=2, m

s

=

�1=2.

We an easy diagonalise Hamiltonian (2.8) rotating

our system in suh a way that n ! n

0

(0; 0; 1) i.e.

n

^

L = n

0

^

L

0

= L

(3)

0

.

III. THE ENERGY SPECTRUM

After obtaining the formulae (1.11), (1.12) and (1.17)

we shall ouple them to the relation below, well known

as the equation for the energy gap.

In our ase it beomes

�(p; �) = �

1

2V

X

p

0

J

1

(p

F

)P

1

(os )�(p

0

; �)=("

2

(p)

+ j�(p; �)j

2

)

1=2

(3.1)

and suitable Eq. for �

�

. Now we shall study (3.1). For

that reason we an rewrite (1.2) in the form of the poly-

nomial series, where P

n

are the Legendre funtions:

P

1

(p̂ � p̂) = P

1

(os ) (3.2)

=

4�

3

m=1

X

m=�1

Y

1m

(�; ')Y

1m

(�

0

; '

0

)

where

Y

1�1

(�; ') =

�

3

8�

�

1=2

sin �(os '� i sin'); (3.3)

Y

10

(�; ') =

�

3

4�

�

1=2

os �:

Providing the alulations and disussion for (3.1) we

shall replae the summation by the integration with the

additional approximate assumption, that we are investi-

gating the states near the Fermi momentum:
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1

V

X

p

!

1

(2�)

3

Z

d

3

p

1

(2�)

3

Z

p�p

F

�

Z

0

2�

Z

0

jpj

2

dp sin� d�d' '

p

2

F

(2�)

3

Z

p�p

F

�

Z

0

2�

Z

0

dpd�d' sin �: (3.4)

That way (taking into aount (3.4) and following: �(p

F

; p̂; �) = �(p̂; �) = �(p̂), where
^
p = p=jpj), the Eq. for the

energy gap hanges as below:

�(p) =

J

1

12�

2

p

2

F

m=1

X

m=�1

Y

1m

(�; ')

Z

dp

0

�

Z

0

2�

Z

0

d�

0

d'

0

sin �

0

Y

�

1m

(�

0

; '

0

)�(�

0

; '

0

)

f"

2

(p) + j�(�

0

; '

0

)j

2

g

1=2

: (3.5)

We an look for the solution of �(p̂) in the form of a

linear ombination:

�(�

0

; '

0

) = �

m

0

Y

1m

0

(�

0

; '

0

): (3.6)

On the right hand side of (3.5) we will obtain:

Z

Y

�

1m

(�

0

; '

0

)Y

1m

0

(�

0

; '

0

)d'

0

= �(�

0

)Æ

mm

0

: (3.7)

Consideration of the \p" pairing is onneted with dis-

tinguishing of some orbital axis l, for whih l

z

= 1. In a

oordinate system with z{axis parallel to l, unit momen-

tum vetor has the omponents:

^

k

x

= sin � os';

^

k

y

= sin � sin';

^

k

z

= os �

and we see, that:

Y

1�1

'

^

k

x

� i

^

k

y

; Y

10

'

^

k

z

:

We will disuss the most interesting solutions, leading to

the anisotropi phases of superuid Fermi systems. If we

hoose (3.6) in the form:

� = �(�) = �

0

Y

10

(�) = �

0

os � = �

0

^

k

z

(3.8)

(m

0

= 0) we have the energy spetrum for a highly

anisotropi \polar" phase:


(p) = f(E(p) � �)

2

+�

2

0

os

2

�g

1=2

(3.9)

onsidered �rst in 1960 by Galasiewiz (see [3℄, [2℄ and

e.g. [11℄).

In this ase we shall say, that the system is \most su-

peruid" along the z{axis (� = �

0

).

Looking for the solution of (3.6) in the form:

� = �(�; ') = �

1

Y

11

(�; ') = �

1

sin� e

i'

(3.10)

= �

1

(

^

k

x

+ i

^

k

y

)

= �

1

(sin � os'+ i sin � sin')

we �nd the energy spetrum for anisotropi A.B.M.

phase


(p) = f(E(p) � �)

2

+�

2

1

sin

2

�g

1=2

(3.11)

onsidered �rst by Anderson and Morel (see e.g. [10℄) in

1961.

In this ase the spetrum desribes the system \most

superuid" in the plane perpendiular to l, whih leads

to the greater stability than in the \polar" phase. Then

we have � = �

1

. The expressions for �

0

and �

1

we an

�nd from (3.5).

We see, that simple assumption putting in the Hamil-

tonian (2.1) � � Y

00

leads to an isotropi BCS \s" de-

pendene in (2.13). Assuming, that � � Y

10

or � � Y

11

gives us the anisotropi (\polar") type \p" dependene

in (2.13) or A.B.M type in (2.10).
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R�VN�NN� RUHU DL� POL^OVIH OPERATOR�V TA

ENER�ETIQNI� SPEKTR DL� NADPLINNIH AN�ZOTROPNIH

FERM�{SISTEM (\p" SPAR�VANN�)

Z. M. �alasv�q

�nstitut f�ziki Vrolavs~kogo tehnolog�qnogo un�versitetu,

vul. Vib�e�e Visp�n~sk�o, 27, Vrolav, 50{370, Pol~wa

Dosl�d�enn� bazut~s� na gam�l~ton��n� kvadratiqnomu za ampl�tudami Ferm� abo l�n��nomu za opera-

torami, wo zobra�a�t~ ampl�tudu ta fazu kondensatu par (paralel~nih sp�n�v). Ostann�� zobra�a ener���

\sp�nu" 1=2

^

L u de�komu efektivnomu pol�. Prosta var����na proedura da dl� an�zotropnih AVM ta \po-

l�rnoÝ" faz odnoqastinkovu ener��� 
 z p�dho�o� formo� ener�etiqnoÝ w�lini. Kolivann� ampl�tudi ta

fazi pov'�zan� z qastotami ! = 0;�2
. Perxa z nih reprezentu modu �oldstouna{Andersona. Zale�n�st~

\sp�nu" v�d qasu (

^

L

(i)

(t) = R

ij

(t)

^

L

(j)

(0)) zadana matrie� obertann� R

ij

(t), �ku vikoristovu�t~ u He

3

{B

teor�Ý. Tut R

ij

opisu obertann� \sp�nu" navkolo efektivnogo pol�.
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