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The importan
e of N. N. Bogoliubov's ground{braking

paper On the Theory of Super
uidity [1℄ in the devel-

opment of an understanding of super
uidity 
annot be

underestimated [2℄. More than 50 years after the publi-


ation of this seminal work, it 
ontinues to play a domi-

nant role in 
ontemporary 
ondensed matter physi
s. It

therefore seems appropriate on the o

asion of 
ommem-

orating Bogoliubov's 90th birthday to submit a short es-

say dis
ussing a modern appli
ation of his theory in the


ontext of quantum phase transitions. Some of the ma-

terial presented here is more extensively dis
ussed in the

review [3℄. Other re
ent reviews 
an be found in Refs.

[4{6℄.

Bogoliubov's theory of super
uidity starts with the

Lagrangian

L = �

�

�

i�

0

� �(�ir) + �

0

�

�� �

0

j�j

4

; (1)

where the 
omplex s
alar �eld �(x) des
ribes the atoms

of mass m 
onstituting the liquid, i�

0

is the total energy

operator, while �(�ir) = �r

2

=2m is the kineti
 energy

operator, and �

0

the 
hemi
al potential. The last term

with a positive 
oupling 
onstant, �

0

> 0, represents a

weak repulsive 
onta
t intera
tion.

The theory features a global U(1) symmetry, under

whi
h the matter �eld a
quires an extra phase fa
tor

�(x) ! e

i�

�(x), with � the transformation parameter.

Depending on the ground state, whi
h is determined by

the minimum of the potential energy, the symmetry 
an

be realized in two di�erent ways. When �

0

< 0, the

ground state is at � = 0, and the system is in the sym-

metri
al state. As the 
hemi
al potential tends to zero,

the theory be
omes 
riti
al, and when �

0

> 0, the global

U(1) symmetry is spontaneously broken by a nontriv-

ial ground state, given by j

�

�j

2

= �

0

=2�

0

. This quantity

physi
ally denotes the number density �n

0

of parti
les re-

siding in the Bose{Einstein 
ondensate.

The spe
trum of the single{parti
le ex
itations in this

state is given by the 
elebrated Bogoliubov form [1℄,

E(k) =

p

�

2

(k) + 2�

0

�(k); (2)

whose most important signature is that at low momen-

tum it takes the phonon form E(k) �

p

�

0

=m jkj pre-

di
ted by Landau. The spe
trum was shown by Beliaev

[7℄ to remain gapless when one{loop quantum 
orre
tions

are in
luded. And this was subsequently proven to hold

to all orders in perturbation theory by Hugenholtz and

Pines [8℄, meaning that the Bogoliubov theory des
ribes

a gapless mode. This mode is nothing but the Goldstone

mode a

ompanying the spontaneous symmetry break-

down of the global U(1) symmetry, and is the only de-

gree of freedom present in this state. In other words, the

Bogoliubov theory is a phase{only theory. At zero tem-

perature and in the absen
e of impurities, the phase �eld

is governed by the e�e
tive Lagrangian [9℄

L

e�

= ��n

�

�

0

'+

1

2m

(r')

2

�

(3)

+

�n

2m


2

�

�

0

' +

1

2m

(r')

2

�

2

;

where �n is the average parti
le number density of the

system at rest 
hara
terized by a 
onstant phase �eld

'(x) = 
onst, and 
 is the sound velo
ity, whi
h to a �rst

approximation equals 
 =

p

�

0

=m. The phase rigidity in

the spatial dire
tions, i.e., the 
oeÆ
ient of

1

2

(r')

2

, is

seen to be given by �n=m, while that in the temporal di-

re
tion is given by the 
ompressibility � be
ause

�n

m


2

= �n

2

�: (4)

Both these rigidities are response fun
tions. Sin
e the


hemi
al potential � is represented in the e�e
tive the-

ory (3) by [10℄
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�(x) = ��

0

'(x); (5)

a single di�erentiation of the e�e
tive Lagrangian with

respe
t to � yields the parti
le number density n(x) =

�n� (�n=m


2

)[�

0

'+(r')

2

=2m℄ of the system slowly vary-

ing in spa
e and time

�L

e�

��(x)

= n(x); (6)

while a se
ond di�erentiation yields the 
ompressibility

�

2

L

e�

��

2

= �n

2

�; (7)

as required. It also follows from Eqs. (5) and (6) that

n and � are 
anoni
ally 
onjugate variables [11℄. The

form of the e�e
tive theory (3), espe
ially the 
ombina-

tion �

0

' + (r')

2

=2m in square bra
kets is di
tated by

Galilei invarian
e [12℄. In 
ases where this symmetry is

expli
itly broken, as in the presen
e of impurities and

at �nite temperature, we expe
t 
hanges in the relative

weights of the 
oeÆ
ients (see below).

Another, for the further development of the theory of

super
uidity [2℄, momentous observation made by Bo-

goliubov was the so{
alled depletion of the 
ondensate.

He showed that even at the absolute zero of temperature

not all the parti
les reside in the ground state, but [1℄

�n

�n

0

� 1 �

8

3

�

�na

3

�

�

1=2

; (8)

where we repla
ed the 
oupling 
onstant with the s{


hannel s
attering length a = m�=2� [13,14℄. (Remem-

ber that �n

0

denotes the density of parti
les in the 
on-

densate.) Due to the interparti
le repulsion, parti
les are

removed from the 
ondensate and put in states of �nite

momentum. In a strongly intera
ting system like super-


uid

4

He, the depletion is su
h that no more than about

8% of the parti
les 
ondense in the zero{momentumstate

[15℄.

Despite the depletion of the 
ondensate, the phase

rigidity in the spatial dire
tions was found in Eq. (3)

to be given at the absolute zero of temperature and in

the absen
e of impurities by the total average parti
le

number density �n=m. Sin
e this 
oeÆ
ient denotes the

super
uid parti
le number density �

s

(divided by m

2

),

all the parti
les | not just those residing in the 
onden-

sate | parti
ipate in the super
uid motion [16℄. This


hanges at �nite temperature and also when impurities

are in
luded: Galilei invarian
e is broken then and �

s

no

longer equals m�n. On the other hand, the phase rigid-

ity in the temporal dire
tion as well as the �rst term in

the e�e
tive Lagrangian (3) stay the same. This is be-


ause relation (5) remains true. In general we thus have

as e�e
tive theory [17℄

L

e�

= ��n�

0

'�

�

s

2m

2

(r')

2

+

1

2

�n

2

�(�

0

')

2

+ � � � : (9)

Up to this point we have not spe
i�ed the external pa-

rameter whi
h must be varied to tune the 
hemi
al po-

tential to its 
riti
al value where the system undergoes a

phase transition. In the 
onventional appli
ation of the

Bogoliubov theory, the 
ontrol parameter is the temper-

ature T . The 
riti
al temperature T





an be determined

within the theory by 
al
ulating the �nite{temperature

e�e
tive potential and identifying the temperature at

whi
h the minimum starts to shift away from the ori-

gin. At the one{loop level, one �nds [9℄:

T




= �

�

p

2 �(

3

2

)

�

�2=3

1

m

�

�

�

�

2=3

�

2

3

�(

1

2

)

�(

3

2

)

�; (10)

where in obtaining this result a high{temperature expan-

sion has been used. This is justi�ed be
ause the lead-

ing term is of the order �

�2=3

, whi
h is large for weak{


oupling. Equation (10) expresses the 
riti
al tempera-

ture in terms of the 
hemi
al potential. From the experi-

mental point of view, however, it is more realisti
 to have

the parti
le number density as an independent variable.

One then �nds instead [9℄:

T




� T

0

T

0

= 


0

�

�na

3

�




; (11)

where we again repla
ed � with the s
attering length

a, 


0

= �

8

3

�(

1

2

)=�(

3

2

) � 2:82, 
 =

1

3

, and T

0

=

(2�=m)

�

�n=�(

3

2

)

�

2=3

is the 
riti
al temperature of a free

Bose gas (� = 0). It follows that the 
riti
al temperature

is in
reased by the weak repulsive intera
tion. This is

qualitatively di�erent from the strongly intera
ting

4

He

system. A free gas with

4

He parameters at vapour pres-

sure would have a 
riti
al temperature of about 3.1 K,

whereas liquid

4

He be
omes super
uid at a lower tem-

perature of 2.2 K. A similar pi
ture emerges from path{

integral Monte Carlo simulations 
arried out by Gr�uter,

Ceperley, and Lalo�e [18℄. They found that at low densi-

ties, 
orresponding to small a, the 
riti
al temperature

is in
reased by the repulsive intera
tion, while at higher

densities it is de
reased. In the weak{
oupling limit, they

found numeri
ally the same exponent 
 = 0:34 � 0:03

as in Eq. (11), while the value of 


0

was found to be

an order of magnitude smaller: 


0

= 0:34 � 0:06. As

argued by these authors, a moderate repulsive intera
-

tion suppresses density 
u
tuations, resulting in a more

homogeneous system. This fa
ilitates the formation of

large so{
alled ex
hange rings ne
essary to form a Bose{

Einstein 
ondensate. These ex
hange rings, as they ap-

pear in Feynman's theory of Bose{Einstein 
ondensation

[19℄, 
onsist of bosons whi
h are 
y
li
ally permuted in

imaginary time (see Ref. [20℄ for a re
ent a

ount). At

higher densities, the ex
hange is obstru
ted be
ause due

to the strong repulsive intera
tion it is more diÆ
ult for

the parti
les to move. This leads to a lower 
riti
al tem-
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perature.

We now turn to the main subje
t of this essay, and


onsider the quantum 
riti
al behaviour of the Bogoli-

ubov theory �rst studied by Uzunov [21℄. The 
riti
al

behaviour of a system 
lose to a quantum phase tran-

sition is dominated not by thermal 
u
tuations as in a


lassi
al phase transition at �nite temperature, but by

quantum 
u
tuations. In this 
ontext, the Bogoliubov

theory is 
onsidered to be a phenomenologi
al theory

similar to the Landau theory of 
lassi
al phase transi-

tions. The system undergoes a quantum transition at the

absolute zero of temperature when the 
hemi
al potential

approa
hes the 
riti
al values �




, whi
h is not ne
essar-

ily zero as in the 
ase of the �nite{temperature 
lassi
al

transition. The �ne tuning of the 
hemi
al potential 
an

be a
hieved by varying a number of external parameters,

su
h as the 
harge 
arrier density, the applied magneti


�eld, or the impurity strength. For values of the renor-

malized parameter larger than the 
riti
al value � > �




,

the global U(1) symmetry is spontaneously broken and

the system is super
uid with a single{parti
le spe
trum

given by the gapless Bogoliubov spe
trum, implying that

the system is 
ompressible. On lowering �, this state is

destroyed and repla
ed by an insulating state [17℄.

In the absen
e of impurities, the insulating state is the

so{
alled Mott{insulator, 
hara
terized by the absen
e

of phase rigidity in both spatial and temporal dire
tions,

and by an energy gap in the single{parti
le spe
trum.

This insulating state, whi
h arises solely due to the re-

pulsive intera
tion, is 
onsequently in
ompressible.

On the other hand, in the presen
e of impurities, the

bosons be
ome trapped by the impurities, i.e., Anderson

lo
alized. The resulting insulating state is the so{
alled

Bose glass 
hara
terized by a single{parti
le spe
trum

that is | as in the super
uid state | gapless. This state

is therefore also 
ompressible, so that the 
ompressibility

remains �nite at the transition.

To a

ount for (quen
hed) impurities, the following

term is added to the Bogoliubov theory:

L

�

=  (x) j�(x)j

2

; (12)

with  (x) a real random �eld whose distribution is as-

sumed to be Gaussian [22℄

P ( ) = exp

�

�

1

�

0

Z

d

d

x 

2

(x)

�

; (13)

and 
hara
terized by the impurity strength �

0

. Phys-

i
ally,  des
ribes impurities randomly distributed in

spa
e. These impurities lead to an additional depletion

of the 
ondensate given in d spa
e dimensions by [23,24℄

�n

�

= 2

d=2�5

�

�d=2

�(2� d=2)m

d=2

�

d=2�2

�n

d=2�1

0

�: (14)

The super
uid and normal mass density �

s

and �

n

, re-

spe
tively now be
ome at the absolute zero of tempera-

ture [24℄

�

s

= m

�

�n�

4

d

�n

�

�

; �

n

=

4

d

m�n

�

: (15)

It follows that the normal density is a fa
tor 4=d larger

than the mass density m�n

�

kno
ked out of the 
onden-

sate by the impurities. (For d = 3 this gives the fa
tor

4

3

�rst found in Ref. [25℄.) As argued by Huang and Meng

[25℄, this implies that part of the zero{momentum states

belongs (for d < 4) not to the 
ondensate, but to the

normal 
uid. Being trapped by the impurities, this fra
-

tion of the zero{momentum states are lo
alized. In other

words, the phenomenon of Anderson lo
alization 
an be

a

ounted for in the Bogoliubov theory of super
uidity

by in
luding a random �eld.

The universality 
lass de�ned by the zero{temperature

Bogoliubov theory is not only relevant to des
ribe the


riti
al behaviour of super
uid �lms (either with or

without impurities), but also to des
ribe that of other

systems, in
luding Josephson jun
tion arrays and su-

per
ondu
ting �lms. In the so{
alled 
omposite{boson

limit, where Cooper pairs form tightly bound states, the

BCS theory dire
tly maps onto the Bogoliubov theory

[26,3℄, whi
h is as we argued a phase{only theory. But

even a weakly intera
ting BCS system was argued to be

in the same universality 
lass [27℄. The reason is that

the amplitude 
u
tuations of the order parameter are

not 
riti
al at the transition, not even in the 
lassi
al

super
ondu
tor{to{normal transition in d = 3 [28℄, only

the phase 
u
tuations are. The phase of the order param-

eter therefore 
onstitutes the relevant degree of freedom,

whi
h is pre
isely the one des
ribed by the Bogoliubov

theory. (See, however, Ref. [29℄, where it is argued that

the amplitude 
u
tuations 
annot be negle
ted, when


onsidering quantum phase transitions in impure super-


ondu
ting �lms.) The Bogoliubov theory presumably

also forms the basis for the des
ription of the 
riti
al

behaviour of fra
tional quantized Hall systems [30℄.

To investigate the role of quantum 
u
tuations in the

Bogoliubov theory we start with a dimensional anal-

ysis. Sin
e, as far as the quantum 
riti
al behaviour

of this theory is 
on
erned, the mass m is an irrele-

vant parameter, it 
an be s
aled away by introdu
ing

t

0

= t=m; �

0

0

= m�; �

0

0

= �

0

m. The engineering dimen-

sion of the various variables is then easily determined

as:

[x℄ = �1; [t℄ = �2; [�

0

℄ = 2; [�

0

℄ = 2� d; [�℄ =

1

2

d;

(16)

with d the number of spa
e dimensions, and where we

dropped the primes again. Note that the time dimension


ounts double as 
ompared with the spa
e dimensions.

This is typi
al for nonrelativisti
 theories where the time

derivative is a

ompanied by two spa
e derivatives [see

Eq. (1)℄. In two spa
e dimensions, the 
oupling 
onstant

�

0

has a zero engineering dimension, showing that the
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j�j

4

{term is a marginal operator, and that d




= 2 is the

upper 
riti
al spa
e dimension above whi
h the quan-

tum 
riti
al behaviour of the Bogoliubov theory be
omes

Gaussian. For d > d




quantum 
u
tuations are irrele-

vant, while for d < d




these 
u
tuations be
ome 
ru
ial.

Let us next 
ompute the one{loop e�e
tive potential

V

e�

= �

�

2

0

4�

0

+

1

2

Z

d

d

k

(2�)

d

E(k); (17)

with E(k) the gapless Bogoliubov spe
trum (2). The in-

tegral over the loop momentum yields 
lose to the upper


riti
al dimension d = 2:

V

e�

= �

�

2

0

4�

0

�

1

4��

m�

2

0

�

�

+O(�

0

); (18)

where � = 2 � d, and � is an arbitrary renormalization

group s
ale parameter, with the dimension of an inverse

length. The right{hand side of Eq. (18) is seen to diverge

when the upper 
riti
al dimension is approa
hed. The

theory 
an be rendered ultraviolet �nite by introdu
ing

a renormalized 
oupling 
onstant �

1

^

�

=

�

�

�

0

+

m

��

; (19)

where

^

� = �=�

�

. Its de�nition is su
h that for arbitrary

d,

^

� has the same engineering dimension as �

0

in the

upper 
riti
al dimension d = 2. As renormalization pre-

s
ription we used the modi�ed minimal subtra
tion. The

beta fun
tion �(

^

�) follows as [21℄

�(

^

�) = �

�

^

�

��

�

�

�

�

�

�

0

= ��

^

� +

m

�

^

�

2

: (20)

In the upper 
riti
al dimension, this yields only one �xed

point, viz. the infrared{stable (IR) �xed point

^

�

�

= 0.

Below d = 2, this �xed point is shifted to

^

�

�

= ��=m,

implying that the system undergoes a 2nd{order quan-

tum phase transition. Above the upper 
riti
al dimen-

sion, there is no (nontrivial) renormalization of the 
ou-

pling 
onstant, whi
h explains why we omitted the sub-

s
ript 0 on � and � in Eq. (10).

Sin
e Eq. (18) 
ould be rendered �nite solely by a

renormalization of the 
oupling 
onstant, it follows that

the 
hemi
al potential is not renormalized to this order.

As shown by Uzunov these results remain true to all

orders in perturbation theory [21℄. The reason for this

behaviour is the spe
ial analyti
 stru
ture of the nonrel-

ativisti
 propagator at 
riti
ality, representing only par-

ti
les propagating forward in time. As a result, the self{

energy (and 
onsequently �) is not renormalized and the

full 4{point vertex fun
tion is given by a geometri
 se-

ries, leading to the same beta fun
tion (20) found at the

one{loop order. For a similar reason, the 
riti
al indi
es


hara
terizing it are Gaussian, despite the nontrivialness

of the IR �xed point in d < 2 [21℄. This 
on
lusion was


on�rmed by numeri
al simulations in d = 1 [31℄.

This 
hanges when impurities are in
luded. A dire
t

appli
ation of the renormalization group [32℄ lead to the


on
lusion that the IR �xed point be
omes unstable.

A more 
areful analysis, using the so{
alled double ep-

silon expansion, shows that the �xed point remains sta-

ble upon in
luding impurities. The double epsilon expan-

sion was originally introdu
ed in statisti
al me
hani
s by

Dorogovtsev [33℄ to treat impurities of �nite extend in a


lassi
al system. To 
onsistently a

ount for these in per-

turbation theory, one must assume their dimensionality

�

d

to be small, and perform in addition to the usual ep-

silon expansion, also an expansion in �

d

. The impurities

des
ribed by Eq. (12) are stati
 grains whi
h tra
e out

straight worldlines when time is in
luded. In other words,

the impurities are line{like in spa
etime, and have also

to be treated in a double epsilon expansion, assuming

that their dimensionality �

d

is not 1, but small instead.

The quantum 
riti
al behaviour of the Bogoliubov theory

in d spa
e dimensions with randomly distributed stati


impurities tra
ing out \worldlines" of dimensionality �

d

falls in the universality 
lass of a d{dimensional 
lassi
al

system with randomly distributed extended impurities of

dimensionality 2�

d

| at least to the one{loop order [24℄.

The fa
tor 2 arises be
ause, as we mentioned before, in

the nonrelativisti
 Bogoliubov theory, time dimensions


ount double as 
ompared with spa
e dimensions.

Besides having a diverging 
orrelation length �, 2nd{

order quantum phase transitions also have a diverging


orrelation time �

t

, indi
ating the time period over whi
h

the system 
u
tuates 
oherently. The way the diverg-

ing 
orrelation time s
ales with the diverging 
orrelation

length,

�

t

� �

z

; (21)

de�nes the so{
alled dynami
 exponent z. The tradi-

tional s
aling theory of 
lassi
al 2nd{order phase transi-

tions is easily extended so as to in
lude the time dimen-

sion [22℄. Let Æ / K�K




, withK the external 
ontrol pa-

rameter, denote the distan
e from the phase transition,

so that � � jÆj

��

, with � the 
orrelation length exponent.

At the absolute zero of temperature, a physi
al observ-

able O(k

0

; jkj;K) at �nite energy k

0

and momentum k


an in the 
riti
al region be written as

O(k

0

; jkj;K) = �

d

O

O(�

t

k

0

; �jkj); (T = 0); (22)

where d

O

is the s
aling dimension of the observable O.

The right{hand side does depend not expli
itly on K,

but only impli
itly through � and �

t

.

Sin
e a physi
al system is always at some �nite tem-

perature, we have to investigate how the s
aling law (22)


hanges when the temperature be
omes nonzero. The

easiest way to in
lude temperature in a quantum �eld

theory is to go over to imaginary time � = it, with � re-

stri
ted to the interval 0 � � � �, where � = 1=T is the

inverse temperature. The time dimension thus be
omes
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ompa
ti�ed. The 
riti
al behaviour of a phase transition

at �nite temperature is still 
ontrolled by the quantum


riti
al point provided �

t

< �, so that the system does

not noti
e the �nite extend of the time dimension. In-

stead of the zero{temperature s
aling (22), we now have

the �nite{size s
aling

O(k

0

; jkj;K; �) = �

d

O

=z

O(�k

0

; �

1=z

jkj; �=�

t

); (T 6= 0):

(23)

The distan
e to the quantum 
riti
al point is measured

by the ratio �=�

t

� jÆj

z�

=T .

Let us apply these general 
onsiderations to the ef-

fe
tive theory (9) [34,17℄. The singular part of the free

energy density f

sing

, whi
h s
ales near the transition as

f

sing

� �

�(d+z)

; (24)

arises from the low{energy, long{wavelength 
u
tuations

of the Goldstone �eld. The ensemble averages give

h(r')

2

i � �

�2

; h(�

0

')

2

i � �

�2

t

� �

�2z

: (25)

Combined, these hypers
aling arguments yield the fol-

lowing s
aling of the rigidity 
onstants:

�

s

� �

�(d+z�2)

; �n

2

� � �

�(d�z)

� jÆj

(d�z)�

: (26)

The �rst 
on
lusion is 
onsistent with the universal jump

in the super
uid density predi
ted by Nelson and Koster-

litz [35℄ for a Kosterlitz{Thouless phase transition whi
h


orresponds to taking z = 0 and d = 2.

In an impure system undergoing an Anderson transi-

tion, the 
ompressibility �n

2

� is nonsingular at the 
riti
al

point and hen
e z = d for repulsively intera
ting bosons

in an impure media [34℄. Surprisingly, the same 
on
lu-

sion holds for an impure fermioni
 system [6℄. For d = 1

it follows that spa
e and time appear symmetri
 as in a

relativisti
 theory.

In a 
lean system, on the other hand, with a density{

driven Mott transition, i.e., Æ / � � �




, f

sing


an also

be dire
tly di�erentiated with respe
t to the 
hemi
al

potential to yield for the singular part of the 
ompress-

ibility

�n

2

�

sing

� jÆj

(d+z)��2

: (27)

In this 
ase �n

2

� � �n

2

�

sing

, so that z� = 1 [17℄ in a

ord

with the Gaussian values � =

1

2

; z = 2 found by Uzunov

[21℄ for the pure 
ase in d < 2.

The above hypers
aling arguments have been extended

by Fisher, Grinstein, and Girvin [36℄ to in
lude a 1=jxj{

Coulomb potential. This potential is important for quan-

tum phase transitions in 
harged systems be
ause the

Coulomb repulsion suppresses 
u
tuations in the 
harge

density and simultaneously enhan
es those in the 
anon-

i
ally 
onjugate variable �, thereby disordering the or-

dered state. The quadrati
 terms of the e�e
tive theory

in Fourier spa
e after the 1=jxj{Coulomb potential is in-


luded be
ome [36℄

L

(2)

e�

=

1

2

�

�

s

k

2

�

1

ê

2

k

2

0

jkj

d�1

�

j'(k

0

;k)j

2

; (28)

where ê is the renormalized 
harge. Using similar hyper-

s
aling arguments as before, one �nds that this 
harge

s
ales as

ê

2

� �

1�z

: (29)

Arguing that in the presen
e of random impurities the


harge is nonsingular at the transition, the authors of

Ref. [36℄ 
on
luded that

z = 1: (30)

This again is an exa
t result whi
h repla
es the value

z = d of the neutral system in an impure media.

Most experiments on quantum phase transitions in


harged systems measure the 
ondu
tivity �. To de-

s
ribe su
h type of systems, we minimally 
ouple the

Bogoliubov theory to an ele
tromagneti
 ve
tor poten-

tial (A

0

;A). The 
ondu
tivity turns out to be related to

the super
uid mass density via [27℄

�(k) = i

�

e

m

�

2

�

s

(k)

k

0

: (31)

On a

ount of the s
aling relation (26), it then follows

that

� � �

�(d�2)

; (32)

implying that the 
ondu
tivity and therefore the resis-

tivity is a marginal operator in two spa
e dimensions

[37℄.

The magneti
 �eld H s
ales with � as H � �

0

=�

2

,

where �

0

= 2�=e is the magneti
 
ux quantum. This

implies that the s
aling dimension d

A

of A is unity,

d

A

= 1; (33)

so that jAj � �

�1

. From this it in turn follows that the

ele
tri
 �eld E = jEj s
ales as E � �

�1

t

�

�1

� �

�(z+1)

,

and that the s
aling dimension d

A

0

of A

0

is z,

d

A

0

= z; (34)

so that A

0

� �

�1

t

� �

�z

.

Let us now be spe
i�
 and 
onsider quantum phase

transitions triggered by 
hanging either the applied mag-

neti
 �eld, i.e., Æ / H�H




, or the 
harge 
arrier density,
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i.e., Æ / n � n




. For DC (k

0

= 0) 
ondu
tivities in the

presen
e of an external ele
tri
 �eld E we have on a
-


ount of the general �nite{size s
aling form (23) with

k

0

= jkj = 0:

�(K;T;E) = &(jÆj

�z

=T; jÆj

�(z+1)

=E): (35)

This shows that 
ondu
tivity measurements 
lose to a

quantum 
riti
al point of the kind dis
ussed here should

in general 
ollapse onto two bran
hes when plotted as

fun
tion of the dimensionless 
ombinations jÆj

�z

=T and

jÆj

�(z+1)

=E: a lower bran
h bending down for the insulat-

ing state and an upper bran
h tending to in�nity for the

other state. The best 
ollapse of the data determines the

values of �z and �(z + 1). In other words, the tempera-

ture and ele
tri
{�eld dependen
e determine the 
riti
al

exponents � and z independently.

The table below shows experimental data for the


riti
al exponents z and � of the super
ondu
tor{to{

insulator transition in thin �lms, the Hall{liquid{to{

insulator transition in fra
tional quantized Hall sys-

tems, and the 
ondu
tor{to{insulator transition in sil-

i
on MOSFET's at extremely low ele
tron number den-

sities.

Transition z �

Super
ondu
tor{to{Insulator [38,39℄ 1:0� 0:1 1:36� 0:05

Hall{Liquid{to{Insulator [40,41℄ � 1:0 � 2:3

Condu
tor{to{Insulator [42,43℄ 0:8� 0:1 1:5� 0:1

A few remarks seem expedient here. First, the val-

ues for the dynami
 exponent z found in these systems

are in a

ordan
e with the predi
tion z = 1 re
orded

in Eq. (30), whi
h was obtained using general hyper-

s
aling arguments for an impure system with a 1=jxj{

Coulomb potential. Se
ond, the values of the 
riti
al ex-

ponents 
hara
terizing the Hall{liquid{to{insulator tran-

sition are universal and independent of the �lling fa
tor

| whether an integer or a fra
tion. Third, earlier experi-

ments on sili
on MOSFET's at lower densities seemed to


on�rm the general belief, based on the work by Abra-

hams et al. [44℄, that su
h two{dimensional ele
tron sys-

tems do not undergo a quantum phase transition. In

that paper, where ele
tron{ele
tron intera
tions were ig-

nored, it was demonstrated that impurities always lo
al-

ize the ele
trons at the absolute zero of temperature, thus

ex
luding 
ondu
ting behaviour. Apparently, the situa-

tion 
hanges drasti
ally at low ele
tron number densi-

ties, where the 1=jxj{Coulomb intera
tion be
omes im-

portant. The values of the 
riti
al exponents found for

this transition are surprisingly 
lose to those found for

the super
ondu
tor{to{insulator transition. Sin
e fur-

ther experiments in an applied magneti
 �eld [45℄ also

revealed a behaviour 
losely resembling that near the

super
ondu
tor{to{insulator transition, it is spe
ulated

that the 
ondu
ting state in sili
on MOSFET's is in fa
t

super
ondu
ting.
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