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The importane of N. N. Bogoliubov's ground{braking

paper On the Theory of Superuidity [1℄ in the devel-

opment of an understanding of superuidity annot be

underestimated [2℄. More than 50 years after the publi-

ation of this seminal work, it ontinues to play a domi-

nant role in ontemporary ondensed matter physis. It

therefore seems appropriate on the oasion of ommem-

orating Bogoliubov's 90th birthday to submit a short es-

say disussing a modern appliation of his theory in the

ontext of quantum phase transitions. Some of the ma-

terial presented here is more extensively disussed in the

review [3℄. Other reent reviews an be found in Refs.

[4{6℄.

Bogoliubov's theory of superuidity starts with the

Lagrangian

L = �

�

�

i�

0

� �(�ir) + �

0

�

�� �

0

j�j

4

; (1)

where the omplex salar �eld �(x) desribes the atoms

of mass m onstituting the liquid, i�

0

is the total energy

operator, while �(�ir) = �r

2

=2m is the kineti energy

operator, and �

0

the hemial potential. The last term

with a positive oupling onstant, �

0

> 0, represents a

weak repulsive ontat interation.

The theory features a global U(1) symmetry, under

whih the matter �eld aquires an extra phase fator

�(x) ! e

i�

�(x), with � the transformation parameter.

Depending on the ground state, whih is determined by

the minimum of the potential energy, the symmetry an

be realized in two di�erent ways. When �

0

< 0, the

ground state is at � = 0, and the system is in the sym-

metrial state. As the hemial potential tends to zero,

the theory beomes ritial, and when �

0

> 0, the global

U(1) symmetry is spontaneously broken by a nontriv-

ial ground state, given by j

�

�j

2

= �

0

=2�

0

. This quantity

physially denotes the number density �n

0

of partiles re-

siding in the Bose{Einstein ondensate.

The spetrum of the single{partile exitations in this

state is given by the elebrated Bogoliubov form [1℄,

E(k) =

p

�

2

(k) + 2�

0

�(k); (2)

whose most important signature is that at low momen-

tum it takes the phonon form E(k) �

p

�

0

=m jkj pre-

dited by Landau. The spetrum was shown by Beliaev

[7℄ to remain gapless when one{loop quantum orretions

are inluded. And this was subsequently proven to hold

to all orders in perturbation theory by Hugenholtz and

Pines [8℄, meaning that the Bogoliubov theory desribes

a gapless mode. This mode is nothing but the Goldstone

mode aompanying the spontaneous symmetry break-

down of the global U(1) symmetry, and is the only de-

gree of freedom present in this state. In other words, the

Bogoliubov theory is a phase{only theory. At zero tem-

perature and in the absene of impurities, the phase �eld

is governed by the e�etive Lagrangian [9℄

L

e�

= ��n

�

�

0

'+

1

2m

(r')

2

�

(3)

+

�n

2m

2

�

�

0

' +

1

2m

(r')

2

�

2

;

where �n is the average partile number density of the

system at rest haraterized by a onstant phase �eld

'(x) = onst, and  is the sound veloity, whih to a �rst

approximation equals  =

p

�

0

=m. The phase rigidity in

the spatial diretions, i.e., the oeÆient of

1

2

(r')

2

, is

seen to be given by �n=m, while that in the temporal di-

retion is given by the ompressibility � beause

�n

m

2

= �n

2

�: (4)

Both these rigidities are response funtions. Sine the

hemial potential � is represented in the e�etive the-

ory (3) by [10℄
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�(x) = ��

0

'(x); (5)

a single di�erentiation of the e�etive Lagrangian with

respet to � yields the partile number density n(x) =

�n� (�n=m

2

)[�

0

'+(r')

2

=2m℄ of the system slowly vary-

ing in spae and time

�L

e�

��(x)

= n(x); (6)

while a seond di�erentiation yields the ompressibility

�

2

L

e�

��

2

= �n

2

�; (7)

as required. It also follows from Eqs. (5) and (6) that

n and � are anonially onjugate variables [11℄. The

form of the e�etive theory (3), espeially the ombina-

tion �

0

' + (r')

2

=2m in square brakets is ditated by

Galilei invariane [12℄. In ases where this symmetry is

expliitly broken, as in the presene of impurities and

at �nite temperature, we expet hanges in the relative

weights of the oeÆients (see below).

Another, for the further development of the theory of

superuidity [2℄, momentous observation made by Bo-

goliubov was the so{alled depletion of the ondensate.

He showed that even at the absolute zero of temperature

not all the partiles reside in the ground state, but [1℄

�n

�n

0

� 1 �

8

3

�

�na

3

�

�

1=2

; (8)

where we replaed the oupling onstant with the s{

hannel sattering length a = m�=2� [13,14℄. (Remem-

ber that �n

0

denotes the density of partiles in the on-

densate.) Due to the interpartile repulsion, partiles are

removed from the ondensate and put in states of �nite

momentum. In a strongly interating system like super-

uid

4

He, the depletion is suh that no more than about

8% of the partiles ondense in the zero{momentumstate

[15℄.

Despite the depletion of the ondensate, the phase

rigidity in the spatial diretions was found in Eq. (3)

to be given at the absolute zero of temperature and in

the absene of impurities by the total average partile

number density �n=m. Sine this oeÆient denotes the

superuid partile number density �

s

(divided by m

2

),

all the partiles | not just those residing in the onden-

sate | partiipate in the superuid motion [16℄. This

hanges at �nite temperature and also when impurities

are inluded: Galilei invariane is broken then and �

s

no

longer equals m�n. On the other hand, the phase rigid-

ity in the temporal diretion as well as the �rst term in

the e�etive Lagrangian (3) stay the same. This is be-

ause relation (5) remains true. In general we thus have

as e�etive theory [17℄

L

e�

= ��n�

0

'�

�

s

2m

2

(r')

2

+

1

2

�n

2

�(�

0

')

2

+ � � � : (9)

Up to this point we have not spei�ed the external pa-

rameter whih must be varied to tune the hemial po-

tential to its ritial value where the system undergoes a

phase transition. In the onventional appliation of the

Bogoliubov theory, the ontrol parameter is the temper-

ature T . The ritial temperature T



an be determined

within the theory by alulating the �nite{temperature

e�etive potential and identifying the temperature at

whih the minimum starts to shift away from the ori-

gin. At the one{loop level, one �nds [9℄:

T



= �

�

p

2 �(

3

2

)

�

�2=3

1

m

�

�

�

�

2=3

�

2

3

�(

1

2

)

�(

3

2

)

�; (10)

where in obtaining this result a high{temperature expan-

sion has been used. This is justi�ed beause the lead-

ing term is of the order �

�2=3

, whih is large for weak{

oupling. Equation (10) expresses the ritial tempera-

ture in terms of the hemial potential. From the experi-

mental point of view, however, it is more realisti to have

the partile number density as an independent variable.

One then �nds instead [9℄:

T



� T

0

T

0

= 

0

�

�na

3

�



; (11)

where we again replaed � with the sattering length

a, 

0

= �

8

3

�(

1

2

)=�(

3

2

) � 2:82,  =

1

3

, and T

0

=

(2�=m)

�

�n=�(

3

2

)

�

2=3

is the ritial temperature of a free

Bose gas (� = 0). It follows that the ritial temperature

is inreased by the weak repulsive interation. This is

qualitatively di�erent from the strongly interating

4

He

system. A free gas with

4

He parameters at vapour pres-

sure would have a ritial temperature of about 3.1 K,

whereas liquid

4

He beomes superuid at a lower tem-

perature of 2.2 K. A similar piture emerges from path{

integral Monte Carlo simulations arried out by Gr�uter,

Ceperley, and Lalo�e [18℄. They found that at low densi-

ties, orresponding to small a, the ritial temperature

is inreased by the repulsive interation, while at higher

densities it is dereased. In the weak{oupling limit, they

found numerially the same exponent  = 0:34 � 0:03

as in Eq. (11), while the value of 

0

was found to be

an order of magnitude smaller: 

0

= 0:34 � 0:06. As

argued by these authors, a moderate repulsive intera-

tion suppresses density utuations, resulting in a more

homogeneous system. This failitates the formation of

large so{alled exhange rings neessary to form a Bose{

Einstein ondensate. These exhange rings, as they ap-

pear in Feynman's theory of Bose{Einstein ondensation

[19℄, onsist of bosons whih are ylially permuted in

imaginary time (see Ref. [20℄ for a reent aount). At

higher densities, the exhange is obstruted beause due

to the strong repulsive interation it is more diÆult for

the partiles to move. This leads to a lower ritial tem-
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perature.

We now turn to the main subjet of this essay, and

onsider the quantum ritial behaviour of the Bogoli-

ubov theory �rst studied by Uzunov [21℄. The ritial

behaviour of a system lose to a quantum phase tran-

sition is dominated not by thermal utuations as in a

lassial phase transition at �nite temperature, but by

quantum utuations. In this ontext, the Bogoliubov

theory is onsidered to be a phenomenologial theory

similar to the Landau theory of lassial phase transi-

tions. The system undergoes a quantum transition at the

absolute zero of temperature when the hemial potential

approahes the ritial values �



, whih is not neessar-

ily zero as in the ase of the �nite{temperature lassial

transition. The �ne tuning of the hemial potential an

be ahieved by varying a number of external parameters,

suh as the harge arrier density, the applied magneti

�eld, or the impurity strength. For values of the renor-

malized parameter larger than the ritial value � > �



,

the global U(1) symmetry is spontaneously broken and

the system is superuid with a single{partile spetrum

given by the gapless Bogoliubov spetrum, implying that

the system is ompressible. On lowering �, this state is

destroyed and replaed by an insulating state [17℄.

In the absene of impurities, the insulating state is the

so{alled Mott{insulator, haraterized by the absene

of phase rigidity in both spatial and temporal diretions,

and by an energy gap in the single{partile spetrum.

This insulating state, whih arises solely due to the re-

pulsive interation, is onsequently inompressible.

On the other hand, in the presene of impurities, the

bosons beome trapped by the impurities, i.e., Anderson

loalized. The resulting insulating state is the so{alled

Bose glass haraterized by a single{partile spetrum

that is | as in the superuid state | gapless. This state

is therefore also ompressible, so that the ompressibility

remains �nite at the transition.

To aount for (quenhed) impurities, the following

term is added to the Bogoliubov theory:

L

�

=  (x) j�(x)j

2

; (12)

with  (x) a real random �eld whose distribution is as-

sumed to be Gaussian [22℄

P ( ) = exp

�

�

1

�

0

Z

d

d

x 

2

(x)

�

; (13)

and haraterized by the impurity strength �

0

. Phys-

ially,  desribes impurities randomly distributed in

spae. These impurities lead to an additional depletion

of the ondensate given in d spae dimensions by [23,24℄

�n

�

= 2

d=2�5

�

�d=2

�(2� d=2)m

d=2

�

d=2�2

�n

d=2�1

0

�: (14)

The superuid and normal mass density �

s

and �

n

, re-

spetively now beome at the absolute zero of tempera-

ture [24℄

�

s

= m

�

�n�

4

d

�n

�

�

; �

n

=

4

d

m�n

�

: (15)

It follows that the normal density is a fator 4=d larger

than the mass density m�n

�

knoked out of the onden-

sate by the impurities. (For d = 3 this gives the fator

4

3

�rst found in Ref. [25℄.) As argued by Huang and Meng

[25℄, this implies that part of the zero{momentum states

belongs (for d < 4) not to the ondensate, but to the

normal uid. Being trapped by the impurities, this fra-

tion of the zero{momentum states are loalized. In other

words, the phenomenon of Anderson loalization an be

aounted for in the Bogoliubov theory of superuidity

by inluding a random �eld.

The universality lass de�ned by the zero{temperature

Bogoliubov theory is not only relevant to desribe the

ritial behaviour of superuid �lms (either with or

without impurities), but also to desribe that of other

systems, inluding Josephson juntion arrays and su-

peronduting �lms. In the so{alled omposite{boson

limit, where Cooper pairs form tightly bound states, the

BCS theory diretly maps onto the Bogoliubov theory

[26,3℄, whih is as we argued a phase{only theory. But

even a weakly interating BCS system was argued to be

in the same universality lass [27℄. The reason is that

the amplitude utuations of the order parameter are

not ritial at the transition, not even in the lassial

superondutor{to{normal transition in d = 3 [28℄, only

the phase utuations are. The phase of the order param-

eter therefore onstitutes the relevant degree of freedom,

whih is preisely the one desribed by the Bogoliubov

theory. (See, however, Ref. [29℄, where it is argued that

the amplitude utuations annot be negleted, when

onsidering quantum phase transitions in impure super-

onduting �lms.) The Bogoliubov theory presumably

also forms the basis for the desription of the ritial

behaviour of frational quantized Hall systems [30℄.

To investigate the role of quantum utuations in the

Bogoliubov theory we start with a dimensional anal-

ysis. Sine, as far as the quantum ritial behaviour

of this theory is onerned, the mass m is an irrele-

vant parameter, it an be saled away by introduing

t

0

= t=m; �

0

0

= m�; �

0

0

= �

0

m. The engineering dimen-

sion of the various variables is then easily determined

as:

[x℄ = �1; [t℄ = �2; [�

0

℄ = 2; [�

0

℄ = 2� d; [�℄ =

1

2

d;

(16)

with d the number of spae dimensions, and where we

dropped the primes again. Note that the time dimension

ounts double as ompared with the spae dimensions.

This is typial for nonrelativisti theories where the time

derivative is aompanied by two spae derivatives [see

Eq. (1)℄. In two spae dimensions, the oupling onstant

�

0

has a zero engineering dimension, showing that the
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j�j

4

{term is a marginal operator, and that d



= 2 is the

upper ritial spae dimension above whih the quan-

tum ritial behaviour of the Bogoliubov theory beomes

Gaussian. For d > d



quantum utuations are irrele-

vant, while for d < d



these utuations beome ruial.

Let us next ompute the one{loop e�etive potential

V

e�

= �

�

2

0

4�

0

+

1

2

Z

d

d

k

(2�)

d

E(k); (17)

with E(k) the gapless Bogoliubov spetrum (2). The in-

tegral over the loop momentum yields lose to the upper

ritial dimension d = 2:

V

e�

= �

�

2

0

4�

0

�

1

4��

m�

2

0

�

�

+O(�

0

); (18)

where � = 2 � d, and � is an arbitrary renormalization

group sale parameter, with the dimension of an inverse

length. The right{hand side of Eq. (18) is seen to diverge

when the upper ritial dimension is approahed. The

theory an be rendered ultraviolet �nite by introduing

a renormalized oupling onstant �

1

^

�

=

�

�

�

0

+

m

��

; (19)

where

^

� = �=�

�

. Its de�nition is suh that for arbitrary

d,

^

� has the same engineering dimension as �

0

in the

upper ritial dimension d = 2. As renormalization pre-

sription we used the modi�ed minimal subtration. The

beta funtion �(

^

�) follows as [21℄

�(

^

�) = �

�

^

�

��

�

�

�

�

�

�

0

= ��

^

� +

m

�

^

�

2

: (20)

In the upper ritial dimension, this yields only one �xed

point, viz. the infrared{stable (IR) �xed point

^

�

�

= 0.

Below d = 2, this �xed point is shifted to

^

�

�

= ��=m,

implying that the system undergoes a 2nd{order quan-

tum phase transition. Above the upper ritial dimen-

sion, there is no (nontrivial) renormalization of the ou-

pling onstant, whih explains why we omitted the sub-

sript 0 on � and � in Eq. (10).

Sine Eq. (18) ould be rendered �nite solely by a

renormalization of the oupling onstant, it follows that

the hemial potential is not renormalized to this order.

As shown by Uzunov these results remain true to all

orders in perturbation theory [21℄. The reason for this

behaviour is the speial analyti struture of the nonrel-

ativisti propagator at ritiality, representing only par-

tiles propagating forward in time. As a result, the self{

energy (and onsequently �) is not renormalized and the

full 4{point vertex funtion is given by a geometri se-

ries, leading to the same beta funtion (20) found at the

one{loop order. For a similar reason, the ritial indies

haraterizing it are Gaussian, despite the nontrivialness

of the IR �xed point in d < 2 [21℄. This onlusion was

on�rmed by numerial simulations in d = 1 [31℄.

This hanges when impurities are inluded. A diret

appliation of the renormalization group [32℄ lead to the

onlusion that the IR �xed point beomes unstable.

A more areful analysis, using the so{alled double ep-

silon expansion, shows that the �xed point remains sta-

ble upon inluding impurities. The double epsilon expan-

sion was originally introdued in statistial mehanis by

Dorogovtsev [33℄ to treat impurities of �nite extend in a

lassial system. To onsistently aount for these in per-

turbation theory, one must assume their dimensionality

�

d

to be small, and perform in addition to the usual ep-

silon expansion, also an expansion in �

d

. The impurities

desribed by Eq. (12) are stati grains whih trae out

straight worldlines when time is inluded. In other words,

the impurities are line{like in spaetime, and have also

to be treated in a double epsilon expansion, assuming

that their dimensionality �

d

is not 1, but small instead.

The quantum ritial behaviour of the Bogoliubov theory

in d spae dimensions with randomly distributed stati

impurities traing out \worldlines" of dimensionality �

d

falls in the universality lass of a d{dimensional lassial

system with randomly distributed extended impurities of

dimensionality 2�

d

| at least to the one{loop order [24℄.

The fator 2 arises beause, as we mentioned before, in

the nonrelativisti Bogoliubov theory, time dimensions

ount double as ompared with spae dimensions.

Besides having a diverging orrelation length �, 2nd{

order quantum phase transitions also have a diverging

orrelation time �

t

, indiating the time period over whih

the system utuates oherently. The way the diverg-

ing orrelation time sales with the diverging orrelation

length,

�

t

� �

z

; (21)

de�nes the so{alled dynami exponent z. The tradi-

tional saling theory of lassial 2nd{order phase transi-

tions is easily extended so as to inlude the time dimen-

sion [22℄. Let Æ / K�K



, withK the external ontrol pa-

rameter, denote the distane from the phase transition,

so that � � jÆj

��

, with � the orrelation length exponent.

At the absolute zero of temperature, a physial observ-

able O(k

0

; jkj;K) at �nite energy k

0

and momentum k

an in the ritial region be written as

O(k

0

; jkj;K) = �

d

O

O(�

t

k

0

; �jkj); (T = 0); (22)

where d

O

is the saling dimension of the observable O.

The right{hand side does depend not expliitly on K,

but only impliitly through � and �

t

.

Sine a physial system is always at some �nite tem-

perature, we have to investigate how the saling law (22)

hanges when the temperature beomes nonzero. The

easiest way to inlude temperature in a quantum �eld

theory is to go over to imaginary time � = it, with � re-

strited to the interval 0 � � � �, where � = 1=T is the

inverse temperature. The time dimension thus beomes
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ompati�ed. The ritial behaviour of a phase transition

at �nite temperature is still ontrolled by the quantum

ritial point provided �

t

< �, so that the system does

not notie the �nite extend of the time dimension. In-

stead of the zero{temperature saling (22), we now have

the �nite{size saling

O(k

0

; jkj;K; �) = �

d

O

=z

O(�k

0

; �

1=z

jkj; �=�

t

); (T 6= 0):

(23)

The distane to the quantum ritial point is measured

by the ratio �=�

t

� jÆj

z�

=T .

Let us apply these general onsiderations to the ef-

fetive theory (9) [34,17℄. The singular part of the free

energy density f

sing

, whih sales near the transition as

f

sing

� �

�(d+z)

; (24)

arises from the low{energy, long{wavelength utuations

of the Goldstone �eld. The ensemble averages give

h(r')

2

i � �

�2

; h(�

0

')

2

i � �

�2

t

� �

�2z

: (25)

Combined, these hypersaling arguments yield the fol-

lowing saling of the rigidity onstants:

�

s

� �

�(d+z�2)

; �n

2

� � �

�(d�z)

� jÆj

(d�z)�

: (26)

The �rst onlusion is onsistent with the universal jump

in the superuid density predited by Nelson and Koster-

litz [35℄ for a Kosterlitz{Thouless phase transition whih

orresponds to taking z = 0 and d = 2.

In an impure system undergoing an Anderson transi-

tion, the ompressibility �n

2

� is nonsingular at the ritial

point and hene z = d for repulsively interating bosons

in an impure media [34℄. Surprisingly, the same onlu-

sion holds for an impure fermioni system [6℄. For d = 1

it follows that spae and time appear symmetri as in a

relativisti theory.

In a lean system, on the other hand, with a density{

driven Mott transition, i.e., Æ / � � �



, f

sing

an also

be diretly di�erentiated with respet to the hemial

potential to yield for the singular part of the ompress-

ibility

�n

2

�

sing

� jÆj

(d+z)��2

: (27)

In this ase �n

2

� � �n

2

�

sing

, so that z� = 1 [17℄ in aord

with the Gaussian values � =

1

2

; z = 2 found by Uzunov

[21℄ for the pure ase in d < 2.

The above hypersaling arguments have been extended

by Fisher, Grinstein, and Girvin [36℄ to inlude a 1=jxj{

Coulomb potential. This potential is important for quan-

tum phase transitions in harged systems beause the

Coulomb repulsion suppresses utuations in the harge

density and simultaneously enhanes those in the anon-

ially onjugate variable �, thereby disordering the or-

dered state. The quadrati terms of the e�etive theory

in Fourier spae after the 1=jxj{Coulomb potential is in-

luded beome [36℄

L

(2)

e�

=

1

2

�

�

s

k

2

�

1

ê

2

k

2

0

jkj

d�1

�

j'(k

0

;k)j

2

; (28)

where ê is the renormalized harge. Using similar hyper-

saling arguments as before, one �nds that this harge

sales as

ê

2

� �

1�z

: (29)

Arguing that in the presene of random impurities the

harge is nonsingular at the transition, the authors of

Ref. [36℄ onluded that

z = 1: (30)

This again is an exat result whih replaes the value

z = d of the neutral system in an impure media.

Most experiments on quantum phase transitions in

harged systems measure the ondutivity �. To de-

sribe suh type of systems, we minimally ouple the

Bogoliubov theory to an eletromagneti vetor poten-

tial (A

0

;A). The ondutivity turns out to be related to

the superuid mass density via [27℄

�(k) = i

�

e

m

�

2

�

s

(k)

k

0

: (31)

On aount of the saling relation (26), it then follows

that

� � �

�(d�2)

; (32)

implying that the ondutivity and therefore the resis-

tivity is a marginal operator in two spae dimensions

[37℄.

The magneti �eld H sales with � as H � �

0

=�

2

,

where �

0

= 2�=e is the magneti ux quantum. This

implies that the saling dimension d

A

of A is unity,

d

A

= 1; (33)

so that jAj � �

�1

. From this it in turn follows that the

eletri �eld E = jEj sales as E � �

�1

t

�

�1

� �

�(z+1)

,

and that the saling dimension d

A

0

of A

0

is z,

d

A

0

= z; (34)

so that A

0

� �

�1

t

� �

�z

.

Let us now be spei� and onsider quantum phase

transitions triggered by hanging either the applied mag-

neti �eld, i.e., Æ / H�H



, or the harge arrier density,
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i.e., Æ / n � n



. For DC (k

0

= 0) ondutivities in the

presene of an external eletri �eld E we have on a-

ount of the general �nite{size saling form (23) with

k

0

= jkj = 0:

�(K;T;E) = &(jÆj

�z

=T; jÆj

�(z+1)

=E): (35)

This shows that ondutivity measurements lose to a

quantum ritial point of the kind disussed here should

in general ollapse onto two branhes when plotted as

funtion of the dimensionless ombinations jÆj

�z

=T and

jÆj

�(z+1)

=E: a lower branh bending down for the insulat-

ing state and an upper branh tending to in�nity for the

other state. The best ollapse of the data determines the

values of �z and �(z + 1). In other words, the tempera-

ture and eletri{�eld dependene determine the ritial

exponents � and z independently.

The table below shows experimental data for the

ritial exponents z and � of the superondutor{to{

insulator transition in thin �lms, the Hall{liquid{to{

insulator transition in frational quantized Hall sys-

tems, and the ondutor{to{insulator transition in sil-

ion MOSFET's at extremely low eletron number den-

sities.

Transition z �

Superondutor{to{Insulator [38,39℄ 1:0� 0:1 1:36� 0:05

Hall{Liquid{to{Insulator [40,41℄ � 1:0 � 2:3

Condutor{to{Insulator [42,43℄ 0:8� 0:1 1:5� 0:1

A few remarks seem expedient here. First, the val-

ues for the dynami exponent z found in these systems

are in aordane with the predition z = 1 reorded

in Eq. (30), whih was obtained using general hyper-

saling arguments for an impure system with a 1=jxj{

Coulomb potential. Seond, the values of the ritial ex-

ponents haraterizing the Hall{liquid{to{insulator tran-

sition are universal and independent of the �lling fator

| whether an integer or a fration. Third, earlier experi-

ments on silion MOSFET's at lower densities seemed to

on�rm the general belief, based on the work by Abra-

hams et al. [44℄, that suh two{dimensional eletron sys-

tems do not undergo a quantum phase transition. In

that paper, where eletron{eletron interations were ig-

nored, it was demonstrated that impurities always loal-

ize the eletrons at the absolute zero of temperature, thus

exluding onduting behaviour. Apparently, the situa-

tion hanges drastially at low eletron number densi-

ties, where the 1=jxj{Coulomb interation beomes im-

portant. The values of the ritial exponents found for

this transition are surprisingly lose to those found for

the superondutor{to{insulator transition. Sine fur-

ther experiments in an applied magneti �eld [45℄ also

revealed a behaviour losely resembling that near the

superondutor{to{insulator transition, it is speulated

that the onduting state in silion MOSFET's is in fat

superonduting.
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