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This short essay discusses the application of Bogoliubov’s theory of superfluidity in the context

of quantum phase transitions.
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The importance of N. N. Bogoliubov’s ground—braking
paper On the Theory of Superfluidity [1] in the devel-
opment of an understanding of superfluidity cannot be
underestimated [2]. More than 50 years after the publi-
cation of this seminal work, it continues to play a domi-
nant role in contemporary condensed matter physics. It
therefore seems appropriate on the occasion of commem-
orating Bogoliubov’s 90th birthday to submit a short es-
say discussing a modern application of his theory in the
context of quantum phase transitions. Some of the ma-
terial presented here is more extensively discussed in the
review [3]. Other recent reviews can be found in Refs.
[4-6].

Bogoliubov’s theory of superfluidity starts with the
Lagrangian

L= ¢*[ido — e(=iV) + po] ¢ — Xolo[*, (1)

where the complex scalar field ¢(x) describes the atoms
of mass m constituting the liquid, idy is the total energy
operator, while ¢(—iV) = —V?/2m is the kinetic energy
operator, and g the chemical potential. The last term
with a positive coupling constant, Ag > 0, represents a
weak repulsive contact interaction.

The theory features a global U(1) symmetry, under
which the matter field acquires an extra phase factor
¢(x) — e'“¢(x), with a the transformation parameter.
Depending on the ground state, which is determined by
the minimum of the potential energy, the symmetry can
be realized in two different ways. When pg < 0, the
ground state 1s at ¢ = 0, and the system is in the sym-
metrical state. As the chemical potential tends to zero,
the theory becomes critical, and when pg > 0, the global
U(1) symmetry is spontaneously broken by a nontriv-
ial ground state, given by |¢|?> = po/2X\o. This quantity
physically denotes the number density ng of particles re-
siding in the Bose—Einstein condensate.

The spectrum of the single—particle excitations in this
state is given by the celebrated Bogoliubov form [1],

E(k) = /2 (k) + 2poe(k), 2)

whose most important signature is that at low momen-
tum it takes the phonon form FE(k) ~ \/uo/m k| pre-
dicted by Landau. The spectrum was shown by Beliaev
[7] to remain gapless when one—loop quantum corrections
are included. And this was subsequently proven to hold
to all orders in perturbation theory by Hugenholtz and
Pines [8], meaning that the Bogoliubov theory describes
a gapless mode. This mode is nothing but the Goldstone
mode accompanying the spontaneous symmetry break-
down of the global U(1) symmetry, and is the only de-
gree of freedom present in this state. In other words, the
Bogoliubov theory is a phase—only theory. At zero tem-
perature and in the absence of impurities, the phase field
is governed by the effective Lagrangian [9]

Lur = =1 [to + (VP 3)

n

1 17
+ 2me? [8080—1— %(VSD) ] ’

where n is the average particle number density of the
system at rest characterized by a constant phase field
¢(x) = const, and ¢ is the sound velocity, which to a first
approximation equals ¢ = \/pg/m. The phase rigidity in
the spatial directions, i.e., the coefficient of %(Vgp)z, is
seen to be given by n/m, while that in the temporal di-
rection is given by the compressibility & because
n 2

Both these rigidities are response functions. Since the
chemical potential p is represented in the effective the-

ory (3) by [10]
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p(x) = —dop(x), (5)

a single differentiation of the effective Lagrangian with
respect to p yields the particle number density n(z) =
n—(n/me?)[dop + (V)?/2m] of the system slowly vary-
ing in space and time

OLen = nl(x
Tl = ) (6)

while a second differentiation yields the compressibility

0? Lo 9
G = (7)

as required. Tt also follows from Egs. (5) and (6) that
n and ¢ are canonically conjugate variables [11]. The
form of the effective theory (3), especially the combina-
tion o + (V)?/2m in square brackets is dictated by
Galilei invariance [12]. In cases where this symmetry is
explicitly broken, as in the presence of impurities and
at finite temperature, we expect changes in the relative
weights of the coefficients (see below).

Another, for the further development of the theory of
superfluidity [2], momentous observation made by Bo-
goliubov was the so—called depletion of the condensate.
He showed that even at the absolute zero of temperature
not all the particles reside in the ground state, but [1]

_ e\ 1/2
RPN (L0 ’ (8)
3\ 7

where we replaced the coupling constant with the s—
channel scattering length a = mA/2x [13,14]. (Remem-
ber that 1y denotes the density of particles in the con-
densate.) Due to the interparticle repulsion, particles are
removed from the condensate and put in states of finite
momentum. In a strongly interacting system like super-
fluid *He, the depletion is such that no more than about
8% of the particles condense in the zero-momentum state
[15].

Despite the depletion of the condensate, the phase
rigidity in the spatial directions was found in Eq. (3)
to be given at the absolute zero of temperature and in
the absence of impurities by the total average particle
number density n/m. Since this coefficient denotes the
superfluid particle number density ps (divided by m?),
all the particles — not just those residing in the conden-
sate — participate in the superfluid motion [16]. This
changes at finite temperature and also when impurities
are included: Galilei invariance is broken then and ps no
longer equals mn. On the other hand, the phase rigid-
ity in the temporal direction as well as the first term in
the effective Lagrangian (3) stay the same. This is be-
cause relation (5) remains true. In general we thus have
as effective theory [17]

§‘|3\
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S ﬁzﬁ(ﬁogo)z +-. (9
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2

Up to this point we have not specified the external pa-
rameter which must be varied to tune the chemical po-
tential to its critical value where the system undergoes a
phase transition. In the conventional application of the
Bogoliubov theory, the control parameter is the temper-
ature T'. The critical temperature 7. can be determined
within the theory by calculating the finite—temperature
effective potential and identifying the temperature at
which the minimum starts to shift away from the ori-
gin. At the one-loop level, one finds [9]:

-2/3 4

TRE

TCIF[\@C(%)] (§)2/3_2C(%) (10)

m

where in obtaining this result a high—temperature expan-
sion has been used. This is justified because the lead-
ing term is of the order A=2/3 which is large for weak—
coupling. Equation (10) expresses the critical tempera-
ture in terms of the chemical potential. From the experi-
mental point of view, however, it is more realistic to have
the particle number density as an independent variable.

One then finds instead [9]:

—— =y (ﬁa?’)v , (11)

where we again replaced A with the scattering length
a, ¢g = —% (%)/C(%) 282,y = %, and Ty =
(27 /m) [ﬁ/C(%)]Z/S is the critical temperature of a free
Bose gas (A = 0). Tt follows that the critical temperature
is increased by the weak repulsive interaction. This is
qualitatively different from the strongly interacting *He
system. A free gas with *He parameters at vapour pres-
sure would have a critical temperature of about 3.1 K,
whereas liquid *He becomes superfluid at a lower tem-
perature of 2.2 K. A similar picture emerges from path—
integral Monte Carlo simulations carried out by Gruter,
Ceperley, and Laloé [18]. They found that at low densi-
ties, corresponding to small a, the critical temperature
is increased by the repulsive interaction, while at higher
densities it is decreased. In the weak—coupling limit, they
found numerically the same exponent v = 0.34 £ 0.03
as in Eq. (11), while the value of ¢g was found to be
an order of magnitude smaller: ¢ = 0.34 + 0.06. As
argued by these authors, a moderate repulsive interac-
tion suppresses density fluctuations, resulting in a more
homogeneous system. This facilitates the formation of
large so—called exchange rings necessary to form a Bose—
Einstein condensate. These exchange rings, as they ap-
pear in Feynman’s theory of Bose—Einstein condensation
[19], consist of bosons which are cyclically permuted in
imaginary time (see Ref. [20] for a recent account). At
higher densities, the exchange is obstructed because due
to the strong repulsive interaction it is more difficult for
the particles to move. This leads to a lower critical tem-
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perature.

We now turn to the main subject of this essay, and
consider the quantum critical behaviour of the Bogoli-
ubov theory first studied by Uzunov [21]. The critical
behaviour of a system close to a quantum phase tran-
sition 1s dominated not by thermal fluctuations as in a
classical phase transition at finite temperature, but by
quantum fluctuations. In this context, the Bogoliubov
theory is considered to be a phenomenological theory
similar to the Landau theory of classical phase transi-
tions. The system undergoes a quantum transition at the
absolute zero of temperature when the chemical potential
approaches the critical values ., which is not necessar-
ily zero as in the case of the finite—temperature classical
transition. The fine tuning of the chemical potential can
be achieved by varying a number of external parameters,
such as the charge carrier density, the applied magnetic
field, or the impurity strength. For values of the renor-
malized parameter larger than the critical value p > pe,
the global U(1) symmetry is spontaneously broken and
the system is superfluid with a single—particle spectrum
given by the gapless Bogoliubov spectrum, implying that
the system is compressible. On lowering p, this state is
destroyed and replaced by an insulating state [17].

In the absence of impurities, the insulating state is the
so—called Mott—insulator, characterized by the absence
of phase rigidity in both spatial and temporal directions,
and by an energy gap in the single—particle spectrum.
This insulating state, which arises solely due to the re-
pulsive interaction, is consequently incompressible.

On the other hand, in the presence of impurities, the
bosons become trapped by the impurities, i.e., Anderson
localized. The resulting insulating state is the so—called
Bose glass characterized by a single—particle spectrum
that is — as in the superfluid state — gapless. This state
1s therefore also compressible, so that the compressibility
remains finite at the transition.

To account for (quenched) impurities, the following
term is added to the Bogoliubov theory:

La=9(x)]6(x)], (12)

with ¢(x) a real random field whose distribution is as-
sumed to be Gaussian [22]

P() = exp [—Aio / ddW(x)] , (13)

and characterized by the impurity strength Ag. Phys-
ically, ¥ describes impurities randomly distributed in
space. These impurities lead to an additional depletion
of the condensate given in d space dimensions by [23,24]

Aa = 29275 7= /212 — d/2)mY 2N 220 PN (14)

The superfluid and normal mass density ps and py, re-
spectively now become at the absolute zero of tempera-

ture [24]

4 4
ps=m (n — —nA) . pn= EmﬁA. (15)

="

It follows that the normal density is a factor 4/d larger
than the mass density mna knocked out of the conden-
sate by the impurities. (For d = 3 this gives the factor %
first found in Ref. [25].) As argued by Huang and Meng
[25], this implies that part of the zero—momentum states
belongs (for d < 4) not to the condensate, but to the
normal fluid. Being trapped by the impurities, this frac-
tion of the zero-momentum states are localized. In other
words, the phenomenon of Anderson localization can be
accounted for in the Bogoliubov theory of superfluidity
by including a random field.

The universality class defined by the zero—temperature
Bogoliubov theory is not only relevant to describe the
critical behaviour of superfluid films (either with or
without impurities), but also to describe that of other
systems, including Josephson junction arrays and su-
perconducting films. In the so—called composite—boson
limit, where Cooper pairs form tightly bound states, the
BCS theory directly maps onto the Bogoliubov theory
[26,3], which is as we argued a phase—only theory. But
even a weakly interacting BCS system was argued to be
in the same universality class [27]. The reason is that
the amplitude fluctuations of the order parameter are
not critical at the transition, not even in the classical
superconductor—to—normal transition in d = 3 [28], only
the phase fluctuations are. The phase of the order param-
eter therefore constitutes the relevant degree of freedom,
which is precisely the one described by the Bogoliubov
theory. (See, however, Ref. [29], where it is argued that
the amplitude fluctuations cannot be neglected, when
considering quantum phase transitions in impure super-
conducting films.) The Bogoliubov theory presumably
also forms the basis for the description of the critical
behaviour of fractional quantized Hall systems [30].

To investigate the role of quantum fluctuations in the
Bogoliubov theory we start with a dimensional anal-
ysis. Since, as far as the quantum critical behaviour
of this theory is concerned, the mass m is an irrele-
vant parameter, it can be scaled away by introducing
t' =1t/m, uy = mp, Ay = Agm. The engineering dimen-
sion of the various variables i1s then easily determined
as:

X=-1 M=-2 [u]=2 P]=2-d [¢=d

(16)

with d the number of space dimensions, and where we
dropped the primes again. Note that the time dimension
counts double as compared with the space dimensions.
This is typical for nonrelativistic theories where the time
derivative is accompanied by two space derivatives [see
Eq. (1)]. In two space dimensions, the coupling constant
Ap has a zero engineering dimension, showing that the
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|¢|*~term is a marginal operator, and that d. = 2 is the
upper critical space dimension above which the quan-
tum critical behaviour of the Bogoliubov theory becomes
Gaussian. For d > d. quantum fluctuations are irrele-
vant, while for d < d. these fluctuations become crucial.

Let us next compute the one—loop effective potential

2 d
_ Mo 1 d%k
Vet = o + 2/ (QF)dE(k)’ (17)

with F(k) the gapless Bogoliubov spectrum (2). The in-
tegral over the loop momentum yields close to the upper
critical dimension d = 2:

b Ho L omug
ff 4Ng  4mwe k€

+ O("), (18)

where € = 2 — d, and x 1s an arbitrary renormalization
group scale parameter, with the dimension of an inverse
length. The right-hand side of Eq. (18) is seen to diverge
when the upper critical dimension is approached. The
theory can be rendered ultraviolet finite by introducing
a renormalized coupling constant A

K:E

! = + (19)
A Ay we’

m
where A = A/k€. Tts definition is such that for arbitrary
d, A has the same engineering dimension as Ay in the
upper critical dimension d = 2. As renormalization pre-

scription we usedAthe modified minimal subtraction. The
beta function F(A) follows as [21]

. N . .
B =k o= = -+ %/\2. (20)

Ao

In the upper critical dimension, this yields only one fixed
point, viz. the infrared—stable (IR) fixed point A* = 0.

Below d = 2, this fixed point is shifted to = em/m,
implying that the system undergoes a 2nd-order quan-
tum phase transition. Above the upper critical dimen-
sion, there is no (nontrivial) renormalization of the cou-
pling constant, which explains why we omitted the sub-
script 0 on p and A in Eq. (10).

Since Eq. (18) could be rendered finite solely by a
renormalization of the coupling constant, it follows that
the chemical potential is not renormalized to this order.
As shown by Uzunov these results remain true to all
orders in perturbation theory [21]. The reason for this
behaviour is the special analytic structure of the nonrel-
ativistic propagator at criticality, representing only par-
ticles propagating forward in time. As a result, the self-
energy (and consequently p) is not renormalized and the
full 4-point vertex function is given by a geometric se-
ries, leading to the same beta function (20) found at the
one—loop order. For a similar reason, the critical indices
characterizing it are Gaussian, despite the nontrivialness
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of the IR fixed point in d < 2 [21]. This conclusion was
confirmed by numerical simulations in d = 1 [31].

This changes when impurities are included. A direct
application of the renormalization group [32] lead to the
conclusion that the IR fixed point becomes unstable.
A more careful analysis, using the so—called double ep-
silon expansion, shows that the fixed point remains sta-
ble upon including impurities. The double epsilon expan-
sion was originally introduced in statistical mechanics by
Dorogovtsev [33] to treat impurities of finite extend in a
classical system. To consistently account for these in per-
turbation theory, one must assume their dimensionality
€4 to be small, and perform in addition to the usual ep-
silon expansion, also an expansion in €4. The impurities
described by Eq. (12) are static grains which trace out
straight worldlines when time is included. In other words,
the impurities are line—like in spacetime, and have also
to be treated in a double epsilon expansion, assuming
that their dimensionality e¢q is not 1, but small instead.
The quantum critical behaviour of the Bogoliubov theory
in d space dimensions with randomly distributed static
impurities tracing out “worldlines” of dimensionality €4
falls in the universality class of a d—dimensional classical
system with randomly distributed extended impurities of
dimensionality 2¢4 — at least to the one—loop order [24].
The factor 2 arises because, as we mentioned before, in
the nonrelativistic Bogoliubov theory, time dimensions
count double as compared with space dimensions.

Besides having a diverging correlation length &, 2nd—
order quantum phase transitions also have a diverging
correlation time &, indicating the time period over which
the system fluctuates coherently. The way the diverg-
ing correlation time scales with the diverging correlation
length,

gt Ngza (21)

defines the so—called dynamic exponent z. The tradi-
tional scaling theory of classical 2nd—order phase transi-
tions is easily extended so as to include the time dimen-
sion [22]. Let § o« K — K., with K the external control pa-
rameter, denote the distance from the phase transition,
so that & ~ |6]7%, with v the correlation length exponent.
At the absolute zero of temperature, a physical observ-
able O(ko, k|, K) at finite energy ko and momentum k
can in the critical region be written as

Ofko, k|, K) = €% O(&cko, E[K]), (T'=0), (22)

where do is the scaling dimension of the observable O.
The right-hand side does depend not explicitly on K,
but only implicitly through & and &;.

Since a physical system 1s always at some finite tem-
perature, we have to investigate how the scaling law (22)
changes when the temperature becomes nonzero. The
easiest way to include temperature in a quantum field
theory is to go over to imaginary time 7 = ¢, with 7 re-
stricted to the interval 0 < 7 < 3, where g = 1/T is the
inverse temperature. The time dimension thus becomes
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compactified. The critical behaviour of a phase transition
at finite temperature is still controlled by the quantum
critical point provided & < S, so that the system does
not notice the finite extend of the time dimension. In-
stead of the zero-temperature scaling (22), we now have
the finite—size scaling

O(ko, k|, K, B) = B/ O(8ko, B7|K|, /&), (T #0).
(23)

The distance to the quantum critical point 18 measured
by the ratio 8/& ~ |6|*¥/T.

Let us apply these general considerations to the ef-
fective theory (9) [34,17]. The singular part of the free
energy density fsng, which scales near the transition as

fsing ~ g—(d+z)’ (24)

arises from the low—energy, long—wavelength fluctuations
of the Goldstone field. The ensemble averages give

(Ve)*) ~ €72, ((0p)*) ~ &7 ~ €75 (25)
Combined, these hyperscaling arguments yield the fol-
lowing scaling of the rigidity constants:

Ps ~ g—(d+z—2)’ 22k ~ g—(d—z) ~ |(5|(d—z)y. (26)

The first conclusion 1s consistent with the universal jump
in the superfluid density predicted by Nelson and Koster-
litz [35] for a Kosterlitz—Thouless phase transition which
corresponds to taking z = 0 and d = 2.

In an impure system undergoing an Anderson transi-
tion, the compressibility 7%« is nonsingular at the critical
point and hence z = d for repulsively interacting bosons
in an impure media [34]. Surprisingly, the same conclu-
sion holds for an impure fermionic system [6]. For d = 1
it follows that space and time appear symmetric as in a
relativistic theory.

In a clean system, on the other hand, with a density—
driven Mott transition, i.e., § o< gt — pic, fsing can also
be directly differentiated with respect to the chemical
potential to yield for the singular part of the compress-
ibility

ﬁzﬁ?sing ~ |6|(d+2)y_2' (27)

2k ~ ﬁszsing, so that zv = 1 [17] in accord

In this case n
with the Gaussian values v = £, z = 2 found by Uzunov

[21] for the pure case in d < 2.2

The above hyperscaling arguments have been extended
by Fisher, Grinstein, and Girvin [36] to include a 1/|x|-
Coulomb potential. This potential is important for quan-
tum phase transitions in charged systems because the
Coulomb repulsion suppresses fluctuations in the charge

density and simultaneously enhances those in the canon-

ically conjugate variable ¢, thereby disordering the or-
dered state. The quadratic terms of the effective theory
in Fourier space after the 1/|x|-Coulomb potential is in-

cluded become [36]

1 1 _
e = 5 (o = SR fotka P, 29

where € is the renormalized charge. Using similar hyper-
scaling arguments as before, one finds that this charge
scales as

e? ~ gt (29)

Arguing that in the presence of random impurities the
charge is nonsingular at the transition, the authors of

Ref. [36] concluded that
z=1. (30)

This again is an exact result which replaces the value
2z = d of the neutral system in an impure media.

Most experiments on quantum phase transitions in
charged systems measure the conductivity o. To de-
scribe such type of systems, we minimally couple the
Bogoliubov theory to an electromagnetic vector poten-
tial (Ag, A). The conductivity turns out to be related to
the superfluid mass density via [27]

(k) = i (3)2 ps(k). (31)

m k’o

On account of the scaling relation (26), it then follows
that

o~ g (@2 (32)

implying that the conductivity and therefore the resis-
tivity is a marginal operator in two space dimensions

[37].
The magnetic field H scales with & as H ~ ®g/¢2
where &y = 27 /e is the magnetic flux quantum. This

implies that the scaling dimension da of A is unity,
da =1, (33)

so that |A| ~ £~1. From this it in turn follows that the
electric field F = |E| scales as B ~ £71¢~1 ~ =4
and that the scaling dimension d 4, of Ag is z,

=z

da , (34)

0
so that Ag ~ E’t_l ~ &7,

Let us now be specific and consider quantum phase
transitions triggered by changing either the applied mag-
netic field, i.e., § & H — H., or the charge carrier density,
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ie,, d « n — ne. For DC (kg = 0) conductivities in the
presence of an external electric field £ we have on ac-
count of the general finite—size scaling form (23) with

k’o = |k| =0:
o(K,T,E) = <(|8]"* /T, || “TV/E). (35)

This shows that conductivity measurements close to a
quantum critical point of the kind discussed here should
in general collapse onto two branches when plotted as
function of the dimensionless combinations |§|**/T and
|67+ /E: a lower branch bending down for the insulat-

ing state and an upper branch tending to infinity for the
other state. The best collapse of the data determines the
values of vz and v(z + 1). In other words, the tempera-
ture and electric—field dependence determine the critical
exponents v and z independently.

The table below shows experimental data for the
critical exponents z and v of the superconductor—to—
insulator transition in thin films, the Hall-liquid—to—
insulator transition in fractional quantized Hall sys-
tems, and the conductor—to—insulator transition in sil-
icon MOSFET’s at extremely low electron number den-
sities.

Transition z v
Superconductor-to-Insulator [38,39]] 1.0+ 0.1 1.36+0.05
Hall-Liquid-to-Insulator [40,41] ~ 1.0 rs 2.3
Conductor-to-Insulator [42,43] | 0.8+0.1 1.5+0.1

A few remarks seem expedient here. First, the val-
ues for the dynamic exponent z found in these systems
are in accordance with the prediction z = 1 recorded
in Eq. (30), which was obtained using general hyper-
scaling arguments for an impure system with a 1/|x|-
Coulomb potential. Second, the values of the critical ex-
ponents characterizing the Hall-liquid—to—insulator tran-
sition are universal and independent of the filling factor
— whether an integer or a fraction. Third, earlier experi-
ments on silicon MOSFET’s at lower densities seemed to
confirm the general belief, based on the work by Abra-
hams et al. [44], that such two—dimensional electron sys-
tems do not undergo a quantum phase transition. In
that paper, where electron—electron interactions were ig-
nored, 1t was demonstrated that impurities always local-
1ze the electrons at the absolute zero of temperature, thus
excluding conducting behaviour. Apparently, the situa-

tion changes drastically at low electron number densi-
ties, where the 1/|x|-Coulomb interaction becomes im-
portant. The values of the critical exponents found for
this transition are surprisingly close to those found for
the superconductor-to—insulator transition. Since fur-
ther experiments in an applied magnetic field [45] also
revealed a behaviour closely resembling that near the
superconductor—to—insulator transition, it is speculated
that the conducting state in silicon MOSFET’s is in fact
superconducting.
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