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Anharmoni phonon (pseudospin) ontributions to Raman light sattering in the rystals de-

sribed by the pseudospin{eletron model with the strong short{range eletron orrelation are in-

vestigated. The mirosopi approah based on the operator expansion of the polarizability operator

in powers of the eletron transfer onstant is used for alulation of the omponents of the Raman

sattering tensor. The inuene of the e�etive interation between pseudospins via onduting

eletrons is taken into aount in the framework of generalized random phase approximation. The

features of the olletive pseudospin dynamis are investigated; the sattering spetrum ompo-

nents onneted with exitations of the pseudospin{wave type as well as with the reonstrution

of eletron spetrum at the pseudospin reorientation are separated. The frequeny dependene of

the Raman light sattering intensity is analyzed at various values of eletron onentration and

temperature.
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I. INTRODUCTION

Due to the disovery of the phenomenon of high{

temperature superondutivity the inreasing attention

of researhers has been paid in the last few years to

the investigation of rystals with the strong eletron

short{range orrelations. The high{T



superondutors

(HTSC) belong to this lass of objets. Besides the very

e�et of superonduting paring of eletrons the har-

ateristi property of these materials is the possibility

of antiferromagneti ordering, the strong lattie anhar-

moniity having loal harater, the existene of phase

transitions and instabilities aused by the interation of

eletrons with vibrational degrees of freedom. Beause

of that many known physial e�ets beome peuliar in

these rystals. Their mehanisms are more ompliated,

the new ones appearing in addition.

In this respet the Raman light sattering phenomenon

an serve as a harateristi example. It is onneted

usually with a sattering on phonon vibrations. In rys-

tals with strongly orrelated eletrons the new meha-

nism of this e�et appears: the eletron sattering due to

the transitions between eletron band states [1℄. More-

over, owing to the antiferromagneti state appearane

under the inuene of the eletron Hubbard orrela-

tion (the t � J model) the sattering on antiferromag-

neti magnons beomes possible (the two{magnon sat-

tering proess onsidered for the �rst time by Fleury and

Loudon [2℄). Suh ontributions to the Raman sattering

ross{setion were onsidered on a mirosopi level by

Shastry and Shraiman [3℄ for the ase of eletron systems

desribed by the Hubbard model.

At the same time, experimental investigations of fre-

queny dependenes of the Raman sattering intensity

in HTSC rystals of the YBa

2

Cu

3

O

7�Æ

group revealed

(at the oxygen vaanies ontent orresponding to the

antiferromagneti phase region) signi�ant deviations of

the observed Raman line pro�les from the predited ones

by the eletron and, espeially, magnon mehanisms of

sattering [4℄. The notieable asymmetry of lines, that is

onneted with the existene of broad wings from the side

of large frequeny values, an be mentioned in this on-

text. Allowane for another fators (suh as the eletron{

phonon interation), that an inuene these sattering

proesses, requires a widening of desription and going

beyond the purely eletron models.

The step in this diretion was made in [5℄, where

the main ontributions to the Raman sattering ross{

setion in the pseudospin{eletron model (PEM) were

onsidered on the basis of mirosopi approah [6,7℄ and

its generalization given in [8℄ (where the operator expan-

sion sheme at the onstrution of the polarizability op-

erator of a system was proposed). The PEM model was

developed with the purpose of allowane for the presene

of loally anharmoni elements of the rystal struture in

the systems of the YBa

2

Cu

3

O

7�Æ

type; the desription

of dynamis of suh struture fragments is performed in

this model by means of the pseudospin formalism [9,10℄.

It was established that the pseudospin{eletron intera-

tion of the ontat type (� gS

z

i

n

i

) leads to an additional

splitting in the eletron spetrum. This makes the pi-

ture of transitions at the eletron and magnon satter-

ing more rih and ompliated. In addition to this a new

mehanism of sattering appears in the presene of the

transverse �eld ating on pseudospins (that desribes the

tunneling of partile moving in the double{well poten-

tial). Namely, the sattering on the loal anharmoni vi-

brations (the pseudospin reorientation) modi�ed by the

interation with onduting eletrons beomes possible

in this ase.

This work is devoted to a more detailed investigation of

the pseudospin mehanism of Raman sattering in PEM.

The orresponding ontributions to the polarizability op-
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erator and on this basis to the Raman sattering ten-

sor will be separated. The alulations of the pseudospin

orrelation funtions that appear in the orresponding

expressions will be performed allowing for the e�etive

retarded interation between pseudospins via onduting

eletrons. We will base on the generalized random phase

approximation (GRPA) that was proposed for a alula-

tion of boson orrelation funtions and suseptibilities in

the ase of the models with strongly orrelated eletrons

(spin orrelators and magneti suseptibility for the Hub-

bard and t�J models [11℄; density and harge orrelators

and dieletri suseptibility for PEM with zero transverse

�eld [12℄). The GPRA an be treated as analogue of the

usual random phase approximation for eletron systems,

but at the basi allowane for the short{range eletron

orrelations.

We will analyse the frequeny dependenes of the sat-

tering intensity at various relations between parameters

of the theory and at the ertain values of the eletron

onentration and temperature. The fators whih de-

termine the form of the line pro�les in the ase of the

pseudospin Raman sattering will be studied. On the

basis of the obtained results the main features of the

olletive pseudospin dynamis will be disussed.

II. SCATTERING TENSOR FOR

PSEUDOSPIN{ELECTRON MODEL

In our approah to the desription of Raman light

sattering we start from the expression for the ross{

setion of sattering written in terms of the time orre-

lation funtion alulated on the polarizability operators

^

P [6,7℄:
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P is the polarizability operator
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^
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(k) is a Fourier transform of a dipole momentum of a rystal unit ell. The symbol ff

^

M

�
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; t)j

^

M
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stands for \unaveraged" Green's funtion de�ned in the following way [8℄:

ffA(t)jB(t

0

)gg = �i�(t � t

0

)[A(t); B(t

0

)℄; (4)

where operators are written in Heisenberg representation. The equations of motion for this funtion have the form

!
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ffAjBgg

!

1
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=

1
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s
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The solution of equations (5) are built (as was proposed

in [8℄) in the form of operator series in the powers of er-

tain parameters of the system Hamiltonian. In the ase of

models with strong short{range eletron orrelations the

eletron transfer onstant t

ij

an be hosen as a formal

expansion parameter. Suh a proedure has been used

in [5,13℄. The Raman sattering tensor onstruted in

[3℄ in the framework of the e�etive sattering Hamilto-

nian approah was also obtained in the form of a similar

expansion.

The Hamiltonian of the model has the following form

[10℄:

H =

X

i

H

i

+

X

i;j;�

t

i;j

̂

y

i;�

̂

j;�

; (6)

where the single{site term

H

i

= Un
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n
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+ n

i#

) (7)

+ g(n

i"

+ n

i#

)S

z

i

� 
S

x

i

� hS

z

i

desribes the interation of eletrons with the loal an-

harmoni vibrational modes represented by pseudospins

( g{term); the tunneling splitting of the vibrational mode

(
{term), the asymmetry of loal potential desribed by

longitudinal h �eld and the Hubbard eletron orrelation

(U{term). The seond term in (6) is responsible for the

eletron transfer.

It is useful to introdue the following single{site ba-

sis of states ji; R >� jn
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; n
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z

i

=

1
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1

2
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> :

The Hamiltonian H

i

an be redued to a diagonal form

with the help of the transformation
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The total Hamiltonian is given in the Hubbard operators

representation by the expression
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The dipole momentum of a unit ell is a sum of ele-

troni and ioni( pseudospin) parts

M

�

i

= eR

�

i

(n

";i

+ n

#;i

) +

d

s

2

S

z

i

Æ

�

; (15)

(the loal anharmoni double well is oriented along the

diretion ). For the layered rystal with the eletron

transfer only within the layers the problem of Raman

sattering in a two{dimensional struture an be onsid-

ered separately. In the ase when the diretion of loal

vibrations is perpendiular to the layer the transverse

omponent of the vetor M

i

an be written in the form

[10℄

M
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d

s

2
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; (16)

here d

e

is an e�etive dipole momentum, arising due to

nonhomeopolarity of the �lling of eletron states on a

site.

To alulate unaveraged Green's funtion ffM



k
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whih is neessary for the onstrution of the polarizabil-

ity operator, we make an operator expansion, using the

transfer onstant t
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as a formal small parameter [5,13℄.
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:

Retaining only the pseudospin ontributions to the polarizability operator means that we onsider Raman sat-

tering on the loal anharmoni vibrations. Due to the eletron transfer this sattering is modi�ed by the e�etive

retarded interation between pseudospins and by the eletron interband transitions. The terms in the expression

for ffM



k

jM



l

gg whih are of the higher order with respet to the parameter t

ij

desribe the eletron and mixed

ontributions to the Raman sattering tensor.

We shall restrit ourself in this work to the pseudospin Raman sattering. Basing on expression (17) we write for

the polarizability operator
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the sattering tensor an be rewritten as:
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2

� !

1

. Here the orrelation funtions hX(t)Xi are expressed in terms of two{time Green's funtions.

III. SCATTERING INTENSITY IN THE CASE OF ZERO ELECTRON TRANSFER

Let us onsider at �rst a more simple ase of the absene of eletron transfer (t = 0) when the light satters on
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the expression for the sattering tensor an be written as:
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In this ase the Raman sattering spetrum onsists of

delta{peaks orresponding to the transitions r $ er be-

tween energy levels of pseudospin interating with ele-

trons. Energy of the pseudospin ip depends on the o-

upany of the eletron states in the same unit ell. This

is the reason for the splitting in the Raman spetrum.

Fig. 1. The intensity histogram in the ase �
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 = 0:4; U = 4; h = 0:3 [14℄ .

In the regime of the �xed value of the hemial po-

tential (� = onst) we an observe in the limit T ! 0

only one delta{peak for the Raman intensity whih or-
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The diagram illustrating the ground state of the sys-

tem depending on the values of the �eld h and hemial

potential � is presented in Fig. 2. Border lines between

the regions with di�erent ground states are given by the

onditions

� = �

1

�

1

2

(

p

h

2

+ 


2

�

p

(g � h)

2

+


2

); �

e

1

= �

e

3;

e

4

; (24)

� = �

2

�

1

2

(

p

(g � h)

2

+


2

�

p

(2g � h)

2

+


2

) + U; �

e

3;

e

4

= �

e

2

: (25)
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Fig. 2. The ground state diagram. (
 = 0:4g, U = 4g). The ground states j1 >; j3 > (j4 >) and j2 > orrespond to the

regions a; b; and  respetively. Dashed lines refer to the ase 
 = 0.

At zero temperature the eletron onentration n = h

P

�

n

i�

i jumps between n = 0 and n = 1 at � = �

1

and between

n = 1 and n = 2 at � = �

2

.

The Raman spetral lines at frequenies !

0

= �

p

h

2

+


2

, !

00

= �

p

(g � h)

2

+


2

, !

000

= �

p

(2g � h)

2

+


2

exist at

T = 0 in the regions a, b,  of the ground state diagram (Fig. 2), respetively. They oexist only on the border lines.

It follows that in the n = onst regime the Raman spetrum has two peaks situated at the !

0

and !

00

frequenies in

the ase 0 < n < 1 and at the !

00

and !

000

frequenies in the ase 1 < n < 2. The intensities of peaks redistribute in

eah pair at the hange of the eletron onentration (see Fig. 3).

Fig. 3. The intensity histogram (n = onst, T = 0, �

e

1

= �

e

3

). I =

P

i=1;3;4

sin

2

4�

i

hX

e

i

e

i

iÆ(! � �

e

i

+ �

i

), g = 1, 
 = 0:4, U = 4,

h = 0:3, n = 0:3 (a), n = 0:6 (b).

Full spetrum onsisting of three Stokes lines an be

observed only at T 6= 0. The intensities of additional

delta{peaks whih appear besides the main ones are ex-

ponentially small being proportional to e

��(�

ep

��

er

)

.

IV. POLARIZABILITY GREEN'S FUNCTION IN

GRPA

Now we shall take into aount the possibility of the

eletron hopping from site to site. Under the inuene of

eletron transfer the positions and shapes of lines in the

Raman sattering spetrum an hange essentially. It is

our aim to investigate this question .

We onsider as an example one of the lines: the line

with the frequeny !

2

� !

1

= �

e

1

� �

1

� !

0

whih is

the lowest in magnitude and an be observed at the

�xed eletron onentration with the value 0 < n < 1.

The alulation of the orrelators hX

pq

(t)X

rs

i (with

pq; rs = 11;

e

1

e

1; 1

e

1;

e

11) entering expression (2) for the

Raman sattering tensor will be performed on the ba-

sis of the temperature Green's funtion method using

the perturbation theory and diagram tehnique for Hub-

bard operators. The general random phase approxima-

tion elaborated for alulation of Bose{orrelators in the

ase of Fermi{systems with strong short{range orrela-

tions [11℄ will be used. Suh an approah was applied

in [12℄ at the investigation of dieletri suseptibility of
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the pseudospin{eletron model in the zero tunneling ase

(
 = 0).

The Hamiltonian (6) is presented as

H = H

0

+H

int

;

H

0

=

X

i;r

�

r

X

rr

i

;

H

int

=

X

i;j;�

t

i;j

̂

y

i;�

̂

j;�

: (26)

We onsider temperature Green's funtion

hTX

rs

l

(� )jX

pq

m

(� )ii = K

pqrs

lm

(� � �

0

) (27)

= hTX

rs

l

(� )X

pq

m

(� )�(�)i



0

;

�(�) = Texp(�

�

Z

0

H

int

(� )d� );

the operators are written in the interation representa-

tion: C(� ) = e

�H

0

Ce

��H

0

, the brakets h:::i

0

stand for

the statistial averaging with the Hamiltonian H

0

. The

symbol h:::i



is used for the separation of onneted dia-

grams.

Expanding the exponent in the powers of H

int

, we ob-

tain the averages of T{produts of Hubbard operators.

To alulate suh averages one an use Wik's theorem

for Hubbard operators [15℄. In aordane with this the-

orem the average of produt of n X operators an be

redued to the sum of the averages of produts of the

n � 1 operators. After this proedure the result is ex-

pressed in terms of nonperturbated Green's funtions

g

pq

ij

(� � �

0

) = Æ

ij

g

pq

(� � �

0

) (28)

= Æ

ij

hTX

pq

(� )jX

rs

(�

0

)ii

h[X

rs

; X

pq

℄

�

i

0

the Fourier transform of whih is given by the expression

g

pq

(!) =

�

Z

0

d(� � �

0

)e

�i!

n

(���

0

)

g

pq

(� � �

0

) (29)

= �

1

i!

n

� �

pq

;

here the upper (lower) sign orresponds to Green's fun-

tions onstruted on Fermi{ (Bose{) type operators;

!

n

=

2n+1

�

� or !

n

=

2n

�

� respetively. The remaining

averages of the produts of diagonalX{operators are ex-

panded in terms of semi{invariants [15℄.

The following transformation of orrelators K

lm

(���

0

)

to the momentum-frequeny representation is used:

�

Z

0

d(� � �

0

)e

i!

n

(���

0

)

1

N

X

lm

K

pqrs

lm

(� � �

0

)e

iq(R

l

�R

m

)

= K

pqrs

(q; !

n

): (30)

At the diagrammati representation of the terms of the perturbation series for orrelators K(q; !

n

) we use the stan-

dard notations [℄: triangle

pq
stands for Green's funtion g

pq

; irles

pq
and

pp

denote the averages hX

pp

�X

qq

i

0

and hX

pp

i

0

, respetively; oval surrounding a ertain number (l) of irles denotes

the semi{invariant hX

p

1

p

1

:::X

p

l

p

l

i



0

of the l{th order; the wavy line is an eletron transfer t

ij

.

It is known that the in�nite sum of hain{like fragments onsisting of Fermi funtions g

pq

bound onseutively

by the lines t

ij

orresponds to Green's funtion alulated in the Hubbard{I approximation. Let us introdue the

notation

G

pq

=

pq pq pq pq ++= pq pq pq + ...

or in the analyti form

G

pq

=

1

i!

n

� �

pq

(k)

; �

pq

(k) = �

pq

+ A

pq

hX

pp

+X

qq

it

k

; (31)
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here �

pq

= �

p

��

q

; t

k

=

P

i�j

t

ij

e

iR(R

i

�R

j

)

, A

e

4

e

1

= os

2

�

1

,

A

e

41

= sin

2

�

1

. The formula (31) orresponds to the par-

tiular ase of the Hubbard{I approximation, namely to

the so{alled independent subbands approah. It is suit-

able when the distane between Hubbard subbands is

muh larger than their widths.

The transitions with the pseudospin reorientation at

the partial �lling of eletron states (0 < n < 1) are re-

sponsible for the Raman sattering whih omes of the

sattering with the frequeny !

0

at t

ij

= 0. The ele-

tron subbands �

e

41

= �

e

31

, �

e

4

e

1

= �

e

3

e

1

taking part in

these transitions are situated far from others and are

suÆiently separated between themselves, when the fol-

lowing inequalities are ful�lled: U; g >> h;
 >> W

(W =

P

j

t

ij

). In this ase we an use the approximation

(31) leaving under onsideration only the states j1i, j

e

1i,

j

e

3i and j

e

4i.

At the summation of diagrams for orrelators

K

pqrs

(q; !

n

) we restrit ourselves in the spirit of GRPA

to the diagrams having a struture of multi{loop hains.

The simplest diagrams of this type for (p; q; r; s) = (1;

e

1)

are given in the Appendix. It is shown that the main on-

tributions in the onsidered frequeny region (! � !

0

)

are onneted with K

1

e

1

e

11

orrelator.

The diagrammati series for K

1

e

1

e

11

an be presented

in the following ompat form:

+ + + +=K
11,11

.

The �rst term is \full" boson Green's funtion whih satis�es the Dyson equation

G =

1++= ,

where the thin arrow stands for Bose{type nonperturbated Green's funtion g

1

e

1

, given by the expression (29). The

shaded ellipses denote the multi{loop diagrams whih onsist of produts of the following zero{order loops:

a = , b =

-
,

 = , d = .

or in the simple symboli form:

a =

1

, b = ,  = , d = .

The juntions between the zero{order loops are realized in the following way:
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pq

ps

pq

pq

pq sq

We do not onsider juntions by semi{invariants beause

they lead to the appearane of delta{funtion Æ(!) [12℄,

and orresponding diagrams do not ontribute to the

Raman sattering intensity.

As is shown in the Appendix, the most important of

the zero{order loop diagrams are

a =

 41

 41

, and similarly for the

loops b, , d (the lower Green's funtion is G

e

4

e

1

or G

e

3

e

1

,

the upper one is G

e

41

or G

e

31

); in the analyti form:

a =

�2 sin

2

�

1

os

2

�

1

N

X

k

t

k

t

k+q

n(�

e

4

e

1

(k)) � n(�

4

e

1

(k + q))

i!

n

+ �

e

4

e

1

(k)� �

e

41

(k + q)

;

b =

�2

N

X

k

n(�

e

4

e

1

(k)) � n(�

e

41

(k + q))

i!

n

+ �

e

4

e

1

(k)� �

4

e

1

(k + q)

+ 2

n(�

e

4

e

1

) � n(�

e

41

)

i!

n

+ �

e

4

e

1

� �

e

41

; (32)

 =

�2 os

2

�

1

N

X

k

t

k

n(�

e

4

e

1

(k)) � n(�

e

41

(k + q))

i!

n

+ �

e

4

e

1

(k)� �

e

41

(k + q)

;

d =

�2 sin

2

�

1

N

X

k

t

k+q

n(�

e

4

e

1

(k))� n(�

e

41

(k + q))

i!

n

+ �

e

4

e

1

(k)� �

e

41

(k + q)

;

q = k

2

� k

1

(we onsider a paramagneti state and eletron spetrum is degenerated with respet to eletron spin).

The summation of the diagrammati series for the multi{loop diagrams is equivalent to the solving of the following

set of simultaneous equations (see [12℄)

11
1

1

1

1

=

=

=

=

+

+

+

+

+

+

+

+

,

,

,

.

It's formal solution is

A =

1

=

a

1� � d+ d� ab

, B = =

b

1� � d+ d� ab

,

C = =

� d+ ab

1� � d+ d� ab

, D = =

d� d+ ab

1�  � d+ d� ab

.

Let us now turn to \full" Green's funtion G. The analyti expression for this funtion following from the written

above Dyson equation is:
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G =

hX

e

1

e

1

�X

11

i

i!

n

+ �

1

� �

e

1

+

2

N

P

k

t

k

[n(�

e

41

) sin

2

�

1

� n(�

e

4

e

1

) os

2

�

1

℄�AhX

e

1

e

1

�X

11

i

: (33)

The self{energy part (a mass operator) of the funtion

G onsists of two terms. The �rst of them has a form of

an loop insertion into the line of boson Green's funtion

and leads to the renormalization

�

r

!

f

�

r

= �

r

+

1

N

X

k;p

A

pr

t

k

n(�

p

(k)) (34)

of \bare" energy levels of non{perturbated problem in

the spirit of mean �eld orretions (it would be a true

mean �eld at the substitution hXi

0

! hXi in the loop

ontribution). Suh a renormalization, if it is taken into

aount, should be made everywhere, in partiular, in

the expression for Fermi{type Green's funtion G

pq

[16℄.

The seond term in a self{energy part of G funtion

is frequeny and momentum dependent and desribes

an e�etive retarded interation through band eletrons

between pseudospins. It plays here the same role as a

Fourier{transform J(q) in the model with diret inter-

ation J

ij

S

z

i

S

z

j

(in this last ase expression (33) orre-

sponds to the summation of the so{alled hain diagrams

when the expansion in powers of the reiproal radius of

interation is used).

The expression (33) is analogous in its struture to the

obtained one in [11℄ for the transverse magneti susep-

tibility of the Hubbard model. The formulae for magnon

Green's funtion in s�d exhange model (see [17℄), when

the e�etive interation between spins via onduting

eletrons is taken into aount within the usual RPA

sheme is also a simpli�ed analogue of (33). In ontrast

to these examples we have to deal here with a split spe-

trum. The ontribution onneted with interband tran-

sitions are espeially atual in our ase.

Formulae (32) and (33) give the possibility to write in

the expliit form the pseudospin orrelator K

1

e

1

e

11

, using

the expression

K

1

e

1

e

11

= G+ B +GD + GC + GDC (35)

whih follows from the diagrammati representation.

The transition to the time orrelation funtion

hX

e

11

(t)X

1

e

1

(0)i an be performed in a standard way [18℄:

hX

e

1
1

(t)X

1

e

1

(0)i =

1

2�

1

Z

�1

d!

e

i!t

e

�!

� 1

(36)

� [�2ImhhX

1

e

1

jX

e

11

ii

!+i�

℄

and

hhX

1

e

1

jX

e

11

ii

!

= K

1

e

1

e

11

(i!

n

! !): (37)

V. PSEUDOSPIN RAMAN SCATTERING

INTENSITY

The results obtained in the previous setion at the

alulation of the pseudospin orrelator K

1

e

1

e

11

allow to

write the expression for the Raman sattering tensor in

GRPA

H

k

2

;k

1

(!

1

; !

2

) =

(2�)

2

d

4

16(e

�!

� 1)

sin

2

4�

1

�

1

!

1

�

1

!

1

+ �

r

�

2

� 2Im

�

G+ B +GD

+ GC + GDC

�

!+i�

(38)

and to investigate the inuene of eletron transfer on

the frequeny dependene of the Raman sattering in-

tensity (whih is desribed by the e�etive ross{setion

of the sattering).

It should be mentioned that in aordane with the

approximations adopted above formula (38) onerns the

sattering at frequenies whih are lose to the !

2

�!

1

=

!

0

line (it is the smallest in magnitude one of the sat-

tering frequeny lines in the ase of the zero eletron

transfer and exists at the less than half �lling of eletron

states (0 < n < 1)).

In the ase of low temperatures (T ! 0) we an arry

out integration in the expressions for the zero{order

loops (32) in the analyti form putting q = k

2

� k

1

= 0

(what is justi�ed by inequality

2�

k

1;2

� a, where a is lat-

tie onstant) and using the retangular density of states

�(t) =

�

1

2W

; �W � t � W

0; otherwise

: (39)

The following expressions are obtained

b =

ln j! + t(os

2

�

1

�

n

2

)j

W (os

2

�

1

�

n

2

)

�

�

�

�

�

W

�W

1�

3

2

n

1�

n

2

�

i�

W j os

2

�

1

�

n

2

j

� 2

�

1

!

� i�Æ(!)

�

�

�

2

3

� n

�

;
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 =

os

2

�

1

t

W (os

2

�

1

�

n

2

)

�

�

�

�

�

W

�W

1�

3

2

n

1�

n

2

+

os

2

�

1

!

os

2

�

1

�

n

2

b; (40)

d = 

sin

2

�

1

os

2

�

1

;

a =

os

2

�

1

sin

2

�

1

t

2

2W (os

2

�

1

�

n

2

)

�

�

�

�

�

W

�W

1�

3

2

n

1�

n

2

+

os

2

�

1

sin

2

�

1

!

os

2

�

1

�

n

2

:

Here we have replaed i!

n

! ! + i�; the frequeny ! is

ounted o� from the !

0

= �

e

1

� �

1

value. The onnetion

between hemial potential and eletron onentration

is taken into aount [10℄; in the ase of two eletron

subbands �

e

4

e

1

and �

e

41

� = �

e

4

� �

e

1

�W os

2

�

1

(1�

3

2

n): (41)

It follows from this relation that hemial potential is

plaed in the upper subband; the positions of subband

edges and the hemial potential depending on eletron

onentration are shown in Fig. 4, the widths of subbands

are (1�

n

2

) os

2

�

1

W and

n

2

sin

2

�

1

W , respetively.

n

E

0 1

E

E

41

41

0

22

(n/2 )sin      W

(1-n/2) cos       W

2

2

1

1

h +

Fig. 4. Band boundaries and hemial potential for T = 0.

The mean �eld type renormalization (34) of energies of

pseudospin states is not taken into aount here and in

the subsequent numerial alulations (this e�et is not

essential from the point of view of frequeny dependene

of sattering intensity but an manifest itself in the de-

pendene of Raman spetrum on the eletron onentra-

tion).

The imaginary parts of all loop ontributions are dif-

ferent from zero only in the frequeny interval

�W

1�

3

2

n

1�

n

2

< �

!

os

2

�

1

�

n

2

< W: (42)

The same is valid for the multi{loop ontributions.

Fig. 5. Raman sattering intensity for T = 0, W = 0:1,

n = 0:2, a) h = 0:5, 
 = 0:1; b) h = 0:4, 
 = 0:5; ) h = 0:1,


 = 0:5.

Fig. 6. Raman sattering intensity for T = 0, W = 0:1,

n = 0:9, a) h = 0:5, 
 = 0:1; b) h=0.4, 
 = 0:5; ) h = 0:1,


 = 0:5. The vertial line in eah graph shematially shows

the loation of delta{peak.
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The imaginary part of boson Green's funtion G in the

frequeny region (42) is formed by the funtion A(!+i�)

and is �nite. It an also have the harater of delta{peak

Im G(! + i�) = ��

hX

e

1

e

1

�X

11

i

F

0

(e!)

Æ(! � e!) (43)

outside this interval; here e! is a root of the equation

F (!) = 0, where

F (!) = ! � ReA(!)hX

e

1

e

1

�X

11

i (44)

The ful�lment of onditions

�e!

os

2

�

1

�

n

2

> W or

�e!

os

2

�

1

�

n

2

< �W

1�

3

2

n

1�

n

2

(45)

is neessary in this ase. It realizes, as an be seen, at

large eletron onentrations.

As a result, at T = 0 the full ontribution to the Ra-

man sattering tensor onsists of two omponents: (a) the

relatively broad band the width of whih �! =

4(1�n)

2�n

W

hanges with the hange of n (from �! = 2W at n = 0

to �! = 0 at n = 1); (b) the narrow peak that at large

eletron onentrations is in the shape of the Æ{funtion

while at small ones is over{lapped by the above men-

tioned band and is smeared.

The �rst of these omponents has an inoherent har-

ater. It is onneted with interband transitions from the

oupied states of the �

e

41

subband to the unoupied

ones of the �

e

4

e

1

subband and reets the reonstrution

of eletron states at the reorientation of the pseudospin.

The seond omponent is oherent by nature having a

pure pseudospin origin. It expresses the olletive pseu-

dospin dynamis that is formed by the e�etive intera-

tion between pseudospins via onduting eletrons (e! is

a limit value of the pseudospin wave frequeny at q = 0).

The alulations of the Raman sattering intensity

pro�les I(!) � H

k

2

;k

1

at T = 0 have been performed

numerially on the basis of formulae (33) and (38). Their

results at the various values of h and 
 parameters [14℄

as well as at di�erent eletron onentrations are given in

Fig. 5, 6. The separate existene of oherent (a Æ{peak)

and inoherent (a band) parts of the Raman spetrum at

large eletron onentrations (n = 0; 9) and their over-

lapping at small onentrations (n = 0; 2) is illustrated.

At the small n values the intensity urves possess pre-

sumably asymmetri shape with the wing on the large

frequenies side.

The derease of the full intensity of the Raman sat-

tering at the inrease of eletron onentration is a har-

ateristi feature of the obtained sattering pro�les. This

fat is in agreement with the behaviour of the !

2

�!

1

=

!

0

line, whih is responsible for the onsidered type of

sattering at the zero eletron transfer (namely, the sat-

tering with the pseudospin ips on the sites unoupied

by eletrons; the number of suh sites tends to zero at

n! 1).

Fig. 7. Raman sattering intensity for T = 0:005,W = 0:1,

n = 0:2, a) h = 0:5, 
 = 0:1; b) h = 0:4, 
 = 0:5; ) h = 0:1,


 = 0:5.

Fig. 8. Raman sattering intensity for T = 0:005,W = 0:1,

n = 0:9, a) h = 0:5, 
 = 0:1; b)h = 0:4, 
 = 0:5; ) h = 0:1,


 = 0:5.

355



I. V. STASYUK, T. S. MYSAKOVYCH

At the temperatures di�erent from zero the inoher-

ent band in the sattering spetrum beomes broader

oupying the interval �W <

�!

os

2

�

1

�n=2

< W , beause

now the interband transitions between states with any

energies are possible due to the smearing of Fermi distri-

bution funtions n(�

e

4

e

1

) and n(�

e

41

). This band an over

the e! frequeny at all values of eletron onentration

reating a suÆiently sharp but di�use peak.

The results of the Raman sattering pro�le alula-

tions at T 6= 0, performed with the help of formula (38)

by means of the diret integration of expressions (32)

over the wave vetor, are presented in Fig. 7, 8. At small

onentrations (n = 0; 2, Fig. 7.) the intensity urves dif-

fer only slightly from the orresponding urves at T = 0

(Fig. 5.), but at large onentrations (n = 0; 9, Fig. 8.)

the di�erene is more signi�ant. This is onneted with

the above mentioned overlapping of the Æ{like oherent

peak with the ontinuous band at T 6= 0 in the whole

onentration region. The general struture of sattering

spetra at the small and large eletron onentrations

beomes similar.

VI. CONCLUSIONS

In this work the investigation of the Raman satter-

ing spetrum in the pseudospin{eletron model with the

strong short{range eletron orrelation of the Hubbard

type is performed. The mirosopi approah based on

the operator expansion sheme at the onstrution of the

polarizability operator of a system is used. The ontri-

butions onneted with the sattering on the pseudospin

exitations in the presene of the interation with on-

duting eletrons are onsidered. The ase of the zero

eletron transfer is investigated separately; the satter-

ing is aused here by the dipole transitions onneted

with the pseudospin reorientations only (i.e. the pure

anharmoni phonon sattering). The peuliarities of the

frequeny dependene of the Raman sattering intensity,

that appear due to eletron transfer and are aused by

the transitions between eletron subbands, are revealed.

It is established that the Raman sattering line on-

sists of a oherent (Æ{peak like) and inoherent (in the

form of a band of the �nite width) omponents whih

an be separated (at large eletron onentrations and

low temperatures) or mutually overlap (at small values

of n or at the inrease of T ). This result is a reetion of

the olletive dynamis of the pseudospin wave type as

well as of the dynamial reonstrution of the eletron

spetrum at the reorientation of pseudospins. An ana-

logue of this piture an be found in the Hubbard and

t � J models: one an separate in the transverse mag-

neti suseptibility the ontributions from loalized and

olletivized (having a band origin) magneti moments

[11℄.

The form of lines and their width depend on the

eletron onentration and temperature; the asymme-

try of lines is their harateristi feature. The inten-

sity pro�les are similar to those whih are obtained in

the ase of sattering on the antiferromagneti magnons,

but their asymmetry is more appreiable having a form

that is loser to the observed experimentally one in the

YBa

2

Cu

3

O

7�Æ

rystals [4℄. It should be pointed out,

however, that the onsistent analysis of experimental

data from the point of view of possible role of pseu-

dospins in the sattering an be performed after the sup-

plementary study of the pseudospin dynamis inuene

on the magnon sattering (as it was shown in [19℄, the

pseudospin{eletron oupling leads to the modi�ation

of the e�etive exhange interation and has, therefore,

an e�et on the magnon spetrum).

VII. APPENDIX

We shall demonstrate here the struture of diagram-

mati series appearing at the alulation of temperature

Green's funtion onstruted of the polarizability oper-

ators on the examples of typial diagrams of the seond

order. In the adopted approximation the polarizability

operator

^

P

k

2

�k

1

is expressed in terms of the operators

X

1

e

1

; X

e

11

; X

11

� X

e

1

e

1

and is a linear funtion of them.

Therefore, we onsider the orrelator K

pqrs

lm

(� � �

0

) with

the indies (pq; rs) belonging to the subspae (1;

e

1). In

partiular, the following diagrams appear:

in the ase of the funtion hTX

1

e

1

l

(� )X

e

11

m

(�

0

)i:

41

41
41

41
l m

(a1)

;

41

41
11l m

41

(b1)

;
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41

41

11 11
l m

(c1)

;

41

41

11

11l m

(d1)

;

in the ase of the funtions hTX

11

l

(� )X

e

11

m

(�

0

)i; hTX

e

1

e

1

l

(� )X

e

11

m

(�

0

)i:

41

41
41

41
l m

(a2)

;

41

41
11l m

41

(b2)

;

41

41
11l m

41

(c2)

;

in the ase of the funtions hTX

e

1

e

1

l

(� )X

11

m

(�

0

)i; hTX

11

l

(� )X

11

m

(�

0

)i:

41

41
41

41
l m

(a3)

;

41

41
41

41
l m

(b3)

;

41

41

41

l m
11

(c3)

;

41

41

11 11

l m

(d3)

.

We have shown here among others diagrams (3), (d3)

having at the left or right ends the diagonalX{operators

(whih are denoted by irles). At the subsequent averag-

ing with the help of expansion in terms of semi{invariants

and at the onnetion with other diagram fragments (in

the ase of the higher order diagrams) by means of semi{

invariants suh a type of diagrams give ontributions pro-

portional to Æ(!). Suh terms are not taken into aount,

beause they do not lead to the hange of light frequeny

at the sattering and as a result do not ontribute to the

Raman sattering e�et. This does not onern, however,

the diagram (2) as well as the diagrams of the higher

order with similar fragments at the left or right ends,

where the onnetion by semi{invariants is absent.
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The hain fragments, in whih the states of the �rst

and the last Green's funtion di�er in the pseudospin

orientation, lead due to the identity

1

x� a

1

x� b

= (

1

x� a

�

1

x� b

)

1

a� b

to the appearane of the fators

t

�

e

4

e

1

��

e

41

=

t

p

h

2

+


2

in the

ontributions of the diagrams (a2), (b2), (a3). In aor-

dane with the approximation used in our onsideration

suh a type of diagrams an be referred to the higher

order of smallness.

It should be mentioned also that diagrams with the

same pseudospin orientation in both parts of the loop

(ones of (2), (b3) type) desribe the intraband satter-

ing (the sattering frequeny is of the ! = !

2

� !

1

� W

order). In the ase when pseudospin reorientate at the

both ends of the loop ((a1), (b1), (1), (d1) diagrams),

the sattering has an interband harater (! � �

e

41

��

e

4

e

1

�

�

e

11

). The last frequeny region is the subjet of our in-

vestigation.

Beause of that we restrit ourselves to the onsidera-

tion of the loop diagrams of (a1), (b1), (1), (d1) type.
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KOMB�NAC��NE ROZS��NN� V PSEVDOSP�N{ELEKTRONN�� MODEL�

�. V. Stas�k, T. S. Misakoviq

�nstitut f�ziki kondensovanih sistem Na�onal~noÝ akadem�Ý nauk UkraÝni,

vul. Sven�~kogo, 1, L~v�v, 79011, UkraÝna

E{mail: ista�imp.lviv.ua

Dosl�d�eno angarmon�qn� fononn� (psevdosp�nov�) vneski do komb�na��nogo rozs��nn� sv�tla u kris-

talah �z sil~no� korotkos��no� elektronno� korel���, wo opisu�t~s� psevdosp�n{elektronno� mo-

dell�. Dl� rozrahunku komponent tenzora rozs��nn� vikoristano m�kroskop�qni� p�dh�d, �ki� �runtut~s�

na operatornomu rozklad� za stepen�mi konstanti elektronnogo perenosu pri pobudov� operatora pol�-

rizovanosti. U ramkah uzagal~nenogo nabli�enn� haotiqnih faz urahovano vpliv efektivnoÝ vzamod�Ý

m�� psevdosp�nami qerez elektroni prov�dnosti. Vivqeno osoblivost� kolektivnoÝ dinam�ki psevdosp�n�v

ta vid�leno skladov� spektra rozs��nn�, pov'�zan� z� zbud�enn�mi psevdosp�n{hvil~ovogo tipu, a tako� �z

rekonstruk�� elektronnogo spektra pri reor�nta�Ý psevdosp�n�v. Proanal�zovano qastotnu zale�n�st~

�ntensivnosti komb�na��nogo rozs��nn� sv�tla pri r�znih znaqenn�h elektronnoÝ konentra�Ý ta tempera-

turi.
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