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The theory of phase transitions in quantum spin ferromagnets with ubi single ion anisotropy

is reviewed. Some fundamental diÆulties with the mean{�eld approah to these systems are dis-

ussed. It is pointed out that quantum utuations drive the quadrupolar long range order in ubi

ferromagnets with three easy axes. This order annot be observed in the lassial ounterpart of

the onsidered model. A new deimation proedure to study magneti hains with multi{spin inter-

ation is proposed and applied to investigate e�etive Hamiltonian of the ubi ferromagnet with

large anisotropy.
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I. INTRODUCTION

It is of ourse well known that the origin of the Heisen-

berg exhange spin Hamiltonian is in quantum mehan-

is. However, in spite of the fat that the ferromagnetism

annot exist in the lassial limit usually in the theory

of phase transitions one treats spins, partiularly S�1,

as lassial vetors. It is widely believed that the �nite

temperature ritial behaviour should not be a�eted by

the quantum e�ets but the quantum nature of physi-

al system annot be ignored if one onsiders the ground

state properties and the harater of the low temper-

ature phase. For both of these problems the quantum

nature of the systems with higher spin values an be

even more signi�ant than the quantum nature of the

systems with so{alled the most quantum spin S=1/2.

The importane of the quantum harater of the spins

for the ground state of the antiferromagneti hains was

pointed out by Haldane [1℄ who argued that there is a

fundamental di�erene between integer and half{integer

spin hains. The inuene of the spin value on the exis-

tene of the various states has been studied by Zittartz

and oworkers [2℄. They found the exat ground states

for a large lass of spin{1 and 3/2 models on low dimen-

sional latties and presented, between others, how rih

struture the T=0 phase diagrams of the quantum spin

systems with S > 1 an show.

The signi�ane of the quantum harater of spins

is not restrited to the ground state of the low dimen-

sional antiferromagnets. It is surprising but quantum ef-

fets an a�et for example also the phase transitions

in the ubi ferromagnets on one{, two{ or three{ di-

mensional latties and not only in the ground state. In

the present paper we show that as a onsequene of the

quantum harater of spins the �nite temperature phase

diagram of the ubi ferromagnet is essentially di�erent

for integer and half{integer spin [3,4,5℄; the quadrupolar

long range order an be observed in the paramagneti

ground state and in the paramagneti low temperature

phase of the S = 2 system without a quadrupolar type

of interation (quantum utuation driven phase transi-

tion) [6,7,8℄. We also propose the real spae renormaliza-

tion group (RSRG) tehnique with linear weight operator

(deimation proedure) to study the e�etive quantum

Hamiltonian of the ubi ferromagneti hain.

II. THE MODEL

The Hamiltonian we onsider is that of a system with

ubi single ion anisotropy

H = �J

X

hiji

(S

i

� S
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) +
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where S

�

i

(� = x; y; z) is the � omponent of the spin

operator for S � 2 (S = 2 is the lowest value for whih

the single ion term is non{trivial) and K is a parameter

assoiated with rystal �eld anisotropy of ubi symme-

try. In this quantum ferromagneti model (J > 0) the

sign of K determines whether the spins tend to align

along the ubi axes (K < 0) | three easy axis, or

along a main diagonal (K > 0) | four easy axes. The

model (1) was studied within the framework of moleular

�eld approximation (MFA) by several authors [3℄. It was

found in this very simple approximation that similarly

to the antiferromagneti hains there is an essential dif-

ferene between the ubi ferromagnets with integer and

half{integer spins. Within the MFA one obtains that for

K < K



= �4zJ (z denotes the number of nearest neigh-

bours) a system desribed by the Hamiltonian (1) with

S = 2 does not exhibit any magneti long range order for

an arbitrary temperature whereas the same model with

S = 5=2 should have magneti long range order for any

value of anisotropy at suÆiently low temperature. In

this approximation it means that the models with S = 2

(and other integer spins) have no long range order even in

the ground state for K < �4zJ . In other words at �nite

temperatures for suÆiently large, negative, anisotropy

onstant K, in the models with integer spins, in oppo-

site to the models with half{integer no phase transitions

370



QUANTUM FLUCTUATIONS IN CUBIC FERROMAGNETS

exist.

If one takes into aount the ritial utuations [5,9℄,

the general senario survives although these utua-

tions an hange the harater of the phase transitions

from ontinuous to disontinuous for some values of the

anisotropy onstant. In fat for the most interesting ase,

the ferromagnets with three easy axes, the harater of

the phase transition is still unsettled. The earlier results

found by using momentum spae renormalization group

(RG) [9℄ suggested that this transition an be ontin-

uous or disontinuous in dependene on the values of

the model parameters, however, reently on the basis of

new alulations [10℄ it has been onluded [7℄ that the

ferromagnets with three easy axes an undergo only a

disontinuous phase transition.

In reent papers [6,7,8℄ we have onsidered the inu-

ene of the quantum utuations on the ground state

and low temperature behaviour of the ubi ferromag-

nets with three easy axes. The natural question is if there

is some other kind of long range order (non{magneti)

in the ubi ferromagnets with large negative anisotropy

omitted by the MFA | theory whih neglets any utu-

ations and RG | whih takes into aount only ritial

utuations.

In a system with higher value of spin S � 1 in addi-

tion to the magneti (dipolar) long range order one an

observe also multipolar order e.g. quadrupolar one. It is

obvious that a magneti ground state will always have

quadrupolar moment while for a non{magneti (param-

agneti) state this may be not true. Of ourse one an

expet the existene of the quadrupolar ordering even

without dipolar one if there is a quadrupolar type of

interation in the system under onsideration. The ques-

tion is if suh an order an appear in the system with

only magneti interation and single{ion anisotropy. It

is lear that suh a possibility does not exist for the las-

sial spin systems. It is also easy to see that any kind of

the MFA annot lead to the multipolar ordering in the

phase without magneti long{range order. However, the

quantum utuations an lead to qualitatively di�erent

physial properties.

Unfortunately, there is no plausible method whih al-

lows us to study eÆiently the S = 2 model even in the

ground state. So, we have applied several omplementary

methods: perturbation theory, real spae renormalization

group (RSRG), MFA and density matrix renormalization

group (DMRG) to show that in the ubi ferromagnets

with three easy axes (K < 0) one an observe quantum

utuation driven phase transition to the quadrupolar

phase.

III. PERTURBATION THEORY

We have applied perturbation theory for J=jKj �1,

treating the exhange term in the Hamiltonian (1) as a

perturbation. In the zeroth order approximation one has

the set of independent spins with the rystal �eld inter-

ation of the ubi symmetry. This �eld splits the �ve

states of the S = 2 spin into a triplet and a nonmagneti

doublet whih for the onsidered ase K < 0 is favoured.

In the standard way we have found the ontributions to

the e�etive Hamiltonians up to the fourth order for the

systems in 1, 2 and 3 dimensions [6℄. In the seond order

alulation the e�etive Hamiltonian has the same form

in all dimensions

H

(2)

eff

=
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Thus, we have obtained an e�etive interation be-

tween the nonmagneti states of the doublet in the form

of the XY model Hamiltonian. This is a hint that the

MFA preditions about the state without long range or-

der for large, negative, K may be inorret beause the

XY model is known to exhibit the long range order in

d = 2 and 3 [11℄, and to be ritial in d = 1 [12℄.

The Hamiltonian (2) has a ontinuous rotational sym-

metry in its XY plane, whereas the original model pos-

sesses a disrete ubi symmetry. This di�erene is of

ourse the result of the approximation. The symmetry

breaking terms are not present also in the third{order

ontribution to H

eff

, where additional interation be-

tween the z{spin omponents appears

�
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The symmetry breaking terms are found in the fourth

order alulation and they have forms of three{spin in-

terations

H

(4)
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where M � J

4

=K

3

.

The main part of the e�etive Hamiltonian (2) de-

sribes the e�etive spin � = 1=2 XY model whih has

in two and three dimensions a \magneti" h�i 6= 0 long

range order in the ground state. Of ourse, the small sym-

metry breaking perturbations (3) should not destroyed

the long range order. On the ontrary we would expet

that this perturbation should stabilize the long range

ground state order also in one dimension model whih is

ritial without symmetry breaking term. The question

is what kind of order in the original S = 2 model implies

the \magneti" order in the e�etive � = 1=2 model. In

rather rude approximation we have found that in d = 2

and 3 this \magneti" order in e�etive model leads to

quadrupolar long range order in the original model and

in the seond order alulations the quadrupolar order

parameters are given by

h(S

x

i

)

2

� 2i = 2�

z

8

�

J

K

�

2

; (5)
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h(S
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z

16

�

J

K

�

2

;

(x, y, and z an be of ourse interhanged).

As mentioned above in d = 1 the model desribed

by the main part of the e�etive Hamiltonian is ritial

and to prove the existene of the long range order in this

ase one should take into aount the higher order terms.

However, to study the ground state behaviour of the u-

bi ferromagneti hain one an use muh more reliable

and eÆient method | DMRG, whih an be applied di-

retly to the original S = 2 model [8℄. Before we present

the result of the DMRG method for the ground state

we propose the RSRG tehnique to study the e�etive

� = 1=2 one dimensional model whih seems to be inter-

esting by itself.

IV. LINEAR RSRG TRANSFORMATION

It is well known that for the one dimensional Ising

model the linear RSRG transformation | the deima-

tion an be arried out exatly. In the quantum ase,

beause of the non{ommutativity of several terms of

the Hamiltonian it is impossible to arry out the deima-

tion exatly even in one dimension. However, Suzuki and

Takano [13℄ proposed some approximation whih leads to

reasonable values for the free energy of the one dimen-

sional quantum anisotropi Heisenberg model, espeially

in the higher temperature. In this paper we propose the

linear RSRG transformation whih an be used to study

more general models, for example with three spin inter-

ation. Additionally this method leads to better results

for the free energy than those found in [13℄.

Below in this setion, we study one dimensional sys-

tem desribed by the Hamiltonian found in the previous

setion

H = k
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where i denotes the lattie site of the hain with N + 1

sites and �� = �1=kT has already been absorbed into

the Hamiltonian. For k

z

= 0 and m = 0 the Hamiltonian

(6) redues to XY hain, exatly solved by Katsura [12℄.

We onsider the linear RSRG transformation with

sale fator l = 2:

exp[G+H

0

(s)℄ = Tr

�

N=2�1

Y

i=0

1

2

N=2

(1 + s

2i+1

��

2i+1

)

� exp[H(�)℄: (7)

We divide the Hamiltonian (6) into six spin lusters

H =

N=5�1

X

n=0

4

X

i=0

H(�

n+i

;�

n+i+1

;�

n+i+2

) (8)

(six is the lowest number of spins whih allows to repro-

due the Hamiltonian (6) in the RSRG proedure).

By onsidering only one luster, the renormalization

an be arried out as follows

exp[G+H

0
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#

: (9)

This transformation takes quantum e�et into aount

within a single luster. However, ontrary to the deima-

tion proedure [13℄ it does not beome exat even if the

single luster Hamiltonian ommutes with eah other. To

get orret results for the renormalized oupling of the

Ising model we have onsidered six spins of the given

luster on a ring. It is easy to hek that suh a proe-

dure leads to the exat results. The results for the free

energy of the one{dimensionalXY model found by using

the transformation (9) are shown in Tabl. 1 in ompari-

son with the exat results [12℄ and the results found by

using Suzuki{Takano deimation proedure [13℄.

k

xy

F

ST

F (this paper) F

ex

0.1 0.703114 0.703098 0.703098

0.2 0.732625 0.732376 0.732374

0.3 0.780567 0.779415 0.779393

0.4 0.845252 0.842049 0.841906

0.5 0.924621 0.917933 0.917409

0.6 1.016454 1.004827 1.003466

0.7 1.118576 1.100726 1.097914

1.5 2.1233 2.0371 2.0008

3.0 4.2087 3.9902 3.8637

5.0 7.0257 6.6442 6.39245

Table 1. Approximate free energies obtained by

Takano and Suzuki (F

ST

), in this paper (F ) and the

exat free energy obtained by Katsura (F

ex

) for the one

dimensional spin{1/2 XY model.

From the results shown in Table 1, one an see that

F found by using the transformation (9) in this pa-

per is a better approximation to F

ex

than F

ST

found

in [13℄ and for relatively low temperature k

xy

= 5 it

leads to a reasonable value whih di�ers less than by
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1% from the exat result. It is interesting to note that

even the value of the ground state internal energy per

spin of the XY model found by using transformation (9)

E

0

= �4=3 is in a good agreement with the exat re-

sult E

0

= �4=� � �1:2732, however, in priniple, the

approximation used in this paper is of ourse a high-

temperature approximation.

Applying the transformation (9) to the Hamiltonian

(6) , we obtain the transformed Hamiltonian H

0

in the

same form as Eq. (6) for new spin operators (s) with new

parameters k

0

xy

, k

0

z

and m

0

:

k

0

xy

=

1

6

[log(z

0

+ 4f

x

� f

z

) � log(z

0

� 2f

x

)℄; (10)
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)℄;
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f

x
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x

1
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x

3

i ; f

z

= h�

z

1
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z

2

i;

f

m

= h�

y

1

�

y

3

�

y

5

i: (11)

The angular brakets denote a partial expetation

value, de�ned for some operator A by

hAi = Tr

�

AP exp[H℄ and z

0

= Tr

�

P exp[H℄: (12)

As usual in eah step of the transformation a onstant

term independent of s

�

appears

g

0

=

1

8

h

4log(z

0

� 2f

x

� f

z

) + 2log(z

0

+ 4f

x

� f

z

)

= log(z

0

� 4f
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+ 3f

z

) + log(z

0

� 4f

m

� 3f

z

)

i

: (13)

We an alulate the free energy F per site of the sys-

tem from the renormalization transformation by using

the well known formula

F =

1

3

1

X

n=0

g

(n)

0

2

(n)

; (14)

where n denotes nth step of the transformation.

In the Fig. 1 the free energy and internal energy

of the model (6), for original k

z

= 0, as funtions of

x = artan(

p

m=k

xy

) are presented for temperatures

T = 2, 1/1.1 and 1/1.5 (in the exhange interation

units). In the ase of the internal energy we also present

the results for the very low temperature T ! 0. The

parameter x is hosen in suh a way to have for arbi-

trary values of m and k

x

the ground state energy per

spin equal 1 for the lassial system. This allows us to

ompare the deviations from the lassial ground state

for several models. It is easy to see that the deviation

depends on the ratio m=k

xy

and is maximal for x = �=2,

it means for the system with only three spin interations.

The value of the ground state energy of suh a system

E=N � �2:31 an be ompared with the energy of the

pure XY model (m = 0) found in our approximation,

E=N � �4=3 (the exat value is �4=� [12℄) and with

the value for the lassial ground state E=N = �1.

Fig. 1. a). The free energy of the model (5) as funtions

of parameter x = artanh(

p

m=k

xy

) for k

z

=0 and T=2

(dotted line), 1/1.1 (dashed line), 1/1.5 (solid line). b). The

internal energy of the model (5) as funtions of parameter

x = artanh(

p

m=k

xy

) for k

z

= 0 and T=2 (dashed line),

1/1.1 (solid line) and T ! 0 (dotted line).

In Fig. 2 the spei� heat as a funtion of temperature

for k

z

= 0 and (i) m = 0, pure XY model; (ii) k

x

=0,

pure three spin interation model and (iii) m = 0:2k

x

, is

shown. As one ould expet our approximation is worse
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for the lower temperature whih is seen in the Fig. 2b

where we ompare our result for the XY model with the

exat result found by Katsura [12℄. Unfortunately, our

approximation fails for higher values of three{spin inter-

ation (m) at low temperature and leads to unphysial

result for the spei� heat.

Fig. 2. a). The temperature dependene of the spei� heat

of the model (5) as funtion of temperature for k

z

=0 and (i)

m=0, pure XY model (dotted line), (ii) k

x

=0, pure three

spin interation model (dashed line) and (iii) m = 0:2k

x

(solid line). b). The spei� heat obtained in this paper (dots)

and the exat result obtained by Katsura (solid line) for

one{dimensional spin{1/2 XY model.

V. DENSITY MATRIX RENORMALIZATION

GROUP

There is no fully reliable method whih would enable

us to investigate the original model (1) in two and three

dimensions for general K. However, it is possible to on-

�rm the existene of the purely quadrupolar phase driven

by quantum utuations in the one dimensional system

by using density matrix renormalization group. DMRG

is one of the most reliable numerial tehniques to study

the ground state and low{lying exited states of 1D quan-

tum lattie models [14℄.

In order to obtain the zero{temperature phase dia-

gram and ritial properties of the model (1) we arried

out extensive numerial alulations using exat diago-

nalization tehniques on short hain and the DMRG on

longer system [8℄. To hek the existene of the magneti

and quadrupolar long range order we applied to the �rst

and last spins of the L{spin open hain a symmetry{

breaking auxiliary �elds. Then the Hamiltonian whih

was simulated in the numerial alulation was

H ! H � h

�

m

(S

�

1

+ S

�

L

)

� h

�

q

[(S

�

1

)

2

+ (S

�

L

)

2

℄: (15)

Using the Hamiltonian (15) we were able to investi-

gate the spontaneous magnetization m

�

= hS

�

i and

quadrupolar order parameter q

�

= h(S

�

)

2

� 2i, and or-

responding orrelation lengths.

Evidene has been obtained that, in qualitative agree-

ment with the MFA predition, the ground state magne-

tization diminishes ontinuously when K ! K



. In the

best approximation we found that K



� �3:71J whih

an be ompared with the MFA value K



= �8J . We

also found the ritial indies desribing the ritial be-

haviour of the magnetization and the orrelation length

m(k)1(K



�K)

�

; � = 0:127� 0:004;

�

m

1(K �K



)

��

; � = 1:02� 0:06:

It is worth noting that the values of both the exponents

�, � are lose to those of the two{dimensional Ising

model. So, at K = K



our system undergoes the on-

tinuous phase transition from magneti to nonmagneti

phase and this phase transition belongs to the 2D Ising

model universality lass.

In ontrary to the MFA preditions we found both

in the magneti and nonmagneti phases the long range

quadrupolar order. We were able to analyze the depen-

dene of q on K lose to the magneti phase transition

point K



. For K > K



we assume a power{law singu-

larity and a linear term

q(K) = q

left

+ 

1

(K



�K)

�

+ 

2

(K



�K): (16)

Fitting yields q

left

= 1:838�0:01, � = 0:5�0:1. Thus, on

this side of the phase transition point, the quadrupolar

order parameter appears to have singular behaviour, but

the exponent � di�ers from � desribing the magnetiza-

tion. For K < K



, results suggest the regular behaviour

and our �tting formula is

q(K) = q

right

+ 

3

(K



�K) + 

4

(K �K



)

2

: (17)

and q

right

= 1:840�0:002. The left and right estimates of
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the order parameter q at K = K



are in good agreement,

whih supports our saling assumptions. For orrelation

length orresponding to the quadrupolar order parame-

ter (�

q

) our �tting yields rather rough estimates, the er-

rors are believed to be around 20 %. The results suggest

that �

q

= �

m

for K> K



, whih is expeted answer, sine

the magneti and quadrupolar order is intimately on-

neted in this phase. For K < K



, the orrelation length

at �rst dereases but starting with K � �3:9 inreases.

Due to the poor preision we annot resolve whether �

q

diverges for K ! K



or it remains �nite. The on�rma-

tion of the purely quadrupolar phase in the one dimen-

sional ase give rise to the belief that suh a phase should

also exist in higher dimensions at suÆiently low temper-

atures if the ubi rystal �eld is strong. Inreasing tem-

perature should destroy the quadrupolar long range or-

der and leads to a �nite temperature phase transition be-

tween the quadrupolar and ompletely disordered phase.

Note that the orret theory of this transition annot

be obtained by simply substituting spins with lassial

vetors in our model, sine this approah is unable to a-

ount for the purely quadrupolar order. The usual pra-

tie of negleting quantum utuation by treating spins

lassially around a �nite{temperature phase transition

would onfront fundamental diÆulties in this ase. As

mentioned above the orret desription of this phase

transition annot be also found by using any kind of the

MFA. In the next setion we will present how this latter

problem an be omitted by using simple transformation

similar to the linear RSRG transformation.

VI. MEAN FIELD APPROXIMATION TO

RENORMALIZED HAMILTONIAN

Below in this Setion we will present method whih

an be used to study the 3D ubi model at �nite tem-

perature. Usually, the MFA is believed to provide qual-

itatively orret desription of phase diagrams of three

dimensional spin models. However, this method is unable

to aount for the purely quadrupolar long range order

when applied diretly to the Hamiltonian (1). Therefore,

we will �rst renormalize the Hamiltonian (1) to get rid of

the rystal �eld term. This will lead to some renormal-

ized Hamiltonian whih will be treated using the MFA

[7℄.

The renormalized Hamiltonian H

ren

is de�ned by the

operator equation

exp[H

ren

(�)℄ = Tr

S

(�;S) exp[H(S)℄; (18)

with the projetion operator P (�; S) whih ouples the

original spin (S), and e�etive spin (�) spae and due to

the translational invariane, one an assume

P (S

0

;S) =

Y

p

i

(S

0

i

;S

i

); (19)

where the produt is taken over all lattie sites. The

most general rotationally invariant projetor for the spin-

2 model is

p(�

i

;S

i

) =

4

X

n=0

a

n

(�

i

� S

i

)

n

: (20)

However, we an on�ne ourselves to the simpler form

p(�

i

;S

i

) = a

0

+ a

1

(p(� � S

i

) + a

2

p(� �S

i

)

2

; (21)

whih is suÆient to �nd the appropriate renormalized

Hamiltonian.

The projetion operator P (�; S) must satisfy the on-

dition

Tr

�

p(�;S) = 1; (22)

whih insures that the partition funtion of the original

and e�etive spin problem are the same, and

Tr

S

S

�

p = �

�

; T r

S

(S

�

)

2

p = (�

�

)

2

; (23)

whih insures that equation (18) transforms the origi-

nal system in itself for K=0 (isotropi ase). It is easy

to see that the onditions (22) and (23) are ful�lled if

a

0

= �13=35, a

1

= 13=105 and a

2

= 1=21.

In order to solve equation (18) one has to use some ap-

proximation, for example the umulant expansion. In the

�rst order alulation the e�etive Hamiltonian ontains

only spin{spin interation between the nearest neigh-

bours where

H

(1)

ren

= �J

X

hi;ji

(�

i

� �); (24)

J

p

=

8�e

�2�

� 2e

�4�

+ �+ 6

�(3 + 2e

�2�

)

2

; (25)

and � = �K.

In the seond{order approximation for the ubi lattie

there ome into play nine interations with six di�erent

oupling parameters. Between others, due to the inter-

ation of the spins with the rystal �eld, the e�etive

quadrupole{quadrupole interations (J

3

; J

4

) appear

�J

3

X

hi;ji;�

(�

�

i

)

2

(�

�

j

)

2

� J

4

X

hi;ji;�;�

�

�

i

�

�

i

�

�

j

�

�

j

: (26)

These interations an of ourse ause the existene

of the quadrupolar ordering even in the non{magneti

phase. The renormalized Hamiltonian an be used as a

starting point for MFA to analyze the possibility of the

phase transition to the magneti phase with order pa-

rameter m

�

and to the quadrupolar phase with the order

parameter q

�

. It has been shown that the phase diagram

375



J. SZNAJD, M. DUDZI

�

NSKI

of the ubi ferromagnet with three easy axes onsists

three lines whih desribe the ontinuous phase transi-

tion to the magneti phase for K > K

t

� �1:94 (K

t

denotes triritial point), the disontinuous phase tran-

sition to the magneti phase for | 1:94 > K > �7:6

and the disontinuous phase transition to the purely

quadrupolar phase for K < �7:6.

VII. CONCLUSIONS

The purpose of this paper lies in showing that there

are spin systems for whih the quantum utuations an-

not be negleted even in the viinity of the �nite tem-

perature transition point. This onlusion is valid for

all dimensionality and for values of the spin S � 2. It

has been proved by using several methods that in op-

posite to the MFA results there is the �nite tempera-

ture phase transition from paramagneti to quadrupolar

phase in three{axial ubi ferromagnets in 2 and 3 di-

mensions for suÆiently large, negative, anisotropy on-

stant. The ground state of the ferromagnet with the ubi

single{ion anisotropy is ordered for an arbitrary value of

the anisotropy K, and for all dimensions. However, for

K > K



one observes the magneti long range order

whereas for K < K



the quadrupolar long range order.

K



is negative and its value depends on the spae dimen-

sionality. The existene of the quadrupolar order in the

non{magneti state of the system without quadrupolar

interations is a pure quantum e�et whih ould not

be observed in the ase of the lassial spins. We have

also applied the linear RSRG transformation to study

the temperature dependene of the energy of the one di-

mensional ubi ferromagnet desribed by the e�etive

Hamiltonian with bilinear (k

xy

) and three spin intera-

tions (m). It has been shown that in the model with

ubi symmetry the deviation of the ground state from

the lassial ground state is muh larger than in the pure

XY model.
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KVANTOV� FL�KTUAC�Õ V KUB�QNIH FEROMAGNETIKAH

�. Xna�d, M. Dudz�n~sk�

�nstitut niz~kih temperatur ta strukturnih dosl�d�en~ Pol~s~koÝ akadem�Ý nauk,

50{950, Vrolav, Pol~wa

E{mail: sznajd�apollo.int.pan.wro.pl

Zrobleno ogl�d teor�Ý fazovih perehod�v u kvantovih sp�novih feromagnetikah z kub�qno� odno�on-

no� an�zotrop��. Obgovoreno de�k� osnovn� trudnow�, wo vinika�t~ pri seredn~opol~ovomu p�dhod� do

ih sistem. Zvernuto uvagu na te, wo kvantov� fl�ktua�Ý viklika�t~ kvadrupol~ne dalekos��ne vpo-

r�dkuvann� u kub�qnih feromagnetikah z tr~oma legkimi os�mi. Ce vpor�dkuvann� ne sposter�gat~s� v

klasiqnomu var��nt� anal�zovanoÝ model�. Dl� vivqenn� magnetnih lan��k�v z bagatosp�novo� vzamo-

d�� zaproponovano novu proeduru deima�Ý. ÕÝ zastosovano pri dosl�d�enn� efektivnogo gam�l~ton��na

kub�qnogo feromagnetika z sil~no� an�zotrop��.
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