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The gravitomagnetic components of the gravitational field in the tetrad representation B,

(2)

are considered from the point of view of an observer moving relative to a Schwarzschild source.
These components are compared with the gravitoelectric components E((;)). The general expressions

for B and E' are obtained without any restriction on the value of the observer’s velocity. The

k k

influence of the relativistic Lorentz y—factor on the gravitomagnetic and gravitoelectric components
is investigated. It is pointed out that in the proper frame of reference of a spinning test particle just
the gravitomagnetic interaction determines the deviation of this particle motion from the geodesic

motion.
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I. INTRODUCTION

The gravitoelectric and gravitomagnetic interactions
as the similarities of the usual electric and magnetic in-
teractions have been considered for a long time [1]. The
theoretical investigations have largely been tackled since
the experimental tests are difficult because of the small
quantities of the corresponding effects. Usually the grav-
itoelectromagnetic effects were considered for the low ve-
locities and the weak gravitational fields, though on the
whole the conception ”gravitoelectric (gravitomagnetic)
field” was introduced without these restrictions. For ex-
ample, it is pointed out in Ref. [2] that the gravitomag-
netic components of the gravitational field are small pro-
vided a source is not moving with a large velocity. It is
stressed in Ref. [3] that an analogy between gravitation
and electromagnetism exists on the principled level and
that the weak field approximation plays a heuristic role
only. However, a detailed analysis of this analogy for the
large velocities was not carried out.

The investigations of the gravitomagnetic field on the
level of the concrete physical effects have a special fea-
ture. Namely, as a rule, the gravitomagnetic field ap-
peared due to the momentum of rotation of a mass
(mainly it is a source of the Lense—Thirring metric) and
not due to its linear momentum (the analogy of the
known situation in electrodynamics when the magnetic
field is created by a moving electric charge).

In this paper we shall consider the gravitomagnetic in-
teraction in the situation when a Schwarzschild’s source
of the gravitational field is moving relatively to an ob-
server with the ultrarelativistic velocity.

It is known that in the local orthogonal basis the grav-

(4)

itomagnetic components of the gravitational field B(li)

are determined by the relation [4,5]

By = =5 ROW ™, (1)

where R(i)(‘l)(m)(n) are the local components of the
Riemann tensor, E(m)(”)(k) is the Levi-Civita tensor,
eMEG) = —£(1)(2)(3) = 1, signature —, — — 4 (here
and in the following, the indices of the orthogonal tetrads
are placed in the parentheses; Latin indices run 1, 2, 3
and Greek indices do 1, 2, 3, 4). For the gravitoelectric

components E((li)) we have [4,5]

(k) (4)- (2)

The relations BK) = pR)6)  pi)k) = pk)6) Sp B =
0, Sp F = 0 take place.

II. THE GRAVITOMAGNETIC AND
GRAVITOELECTRIC COMPONENTS OF THE
GRAVITATIONAL FIELD OF A MOVING
SCHWARZSCHILD’S SOURCE

Let us consider the gravitomagnetic and gravitoelec-
tric components from the point of view of an ob-
server who i1s moving with any velocity relative to a
Schwarzschild’s source of the gravitational field. For con-
venience, we choose the orientation of the spatial coordi-
nate axes of the frame of reference of a moving observer
in such a manner: (1) The first axis is perpendicular to
the plane that is determined by the direction of motion
of an observer and the radial direction to the source (for
note of this axis we use the tetrad index (1)); (2) The
second axis 1s directed along the velocity of an observer
(this axis we note as (2)). Then according to the results
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of Ref. [6] the nonzero components of the tetrads Als)
describing this observer are

2 _ 99 1 _ 1.4 Y44

A = V=97 Ay =w e

3 _ 3.4 J44 U4U4 —1

Al = w'u ugut — 17 \/

11 3

1 9 7933 3 g7 g1

Al = uqut — 1 Al = —u uqut — 1
My = u, Ay = o, Ay = ut, (3)

where g, is the Schwarzschild metric tensor in the stan-
dard coordinates z' = », 2?2 =10, 23 =¢, 2*=t,
u* is the 4—velocity of an observer (u? = 0 because this
observer is moving in the plane § = 7/2).

According to (1) for the calculations of the gravito-
magnetic components of the gravitational field it is nec-
essary to have the values of the local components of the
Riemann tensor Ra)5)(v)(6)- These components are con-
nected with the global components of this tensor R, o
by the relation

v

Ra)(8)(1)(5) = My Ny Ay Aoy R o (4)

The nonzero components of the Riemann tensor in the
standard Schwarzschild coordinates for # = 7 /2 are given

by

m

Ri212 = Riz13= Ra323 = —2mr,

)
r—2m

2m Im
Rys1a = e Roa24 = R3aza = - (1 - T) .
(5)

The values of the three local components of the Riemann
tensor, namely R(;y(4)(2)(3), are presented in Ref. [6]:

3mutu® 2m\ ~H?
Rowoe = ~Hrme—a—g\1 7 !

Imududut 2m 1/2
= (-2 o

Rowee =~ 7=

r

For the calculation of the six other local components
of this tensor which according to (1) we need for the
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calculation of B((;)) namely R1)a)1)2), F1)(a)(1)3);
(1

Ry Beyaywe) BReyw) @), Be)@)a)s), we in-
sert values (3) and (5 ) into (4). Then we obtain

r

3mududu? 2m\ /?
Rowwe =-7==—\177") =

3mutu® 2m\ ~H/?
Rowoe = zr—a=\17 7 ,

Using (6), (7) in (1) we find such nonzero components of
the gravitomagnetic field:

B _ g _ _Smwue (0 2m\ T
N O A N | r )
B(l) _ B(g) _ 3muJ_u4 1 2m /2 g
B~ 7 r3vugut — 1 Ry ’ (8)
where u)| = u! is the radial component of the 4-velocity

and uy = ru® is the tangential component. By the con-
dition u,u” = 1 we take into account that in (8)

5 -1 1/2
u‘i+(1—7m) uﬁ] NG

We stress that relations (8) are valid for any velocity of
an observer, including the ultrarelativistic velocity.

It is easy to see that the components of the gravit-
omagnetic field (8) are nonzero only if vy # 0, i.e. if
the motion of an observer is nonradial. A similar prop-
erty takes place in electrodynamics for the magnetic field
of a moving charge. However, it is necessary to remem-
ber that on the level of the analogies the tensor B(®)(¥)
does not correspond to the vector of the magnetic field
in electrodynamics but to the first derivatives from this
vector with respect to the spatial coordinates (likewise,
as E(F) corresponds to the gradient of the vector of
the electric field [5]). Therefore, the main dependence of
components (8) from the radial coordinate is 1/r3 and
not 1/72.

The values of components (8) essentially depend on
the velocity of an observer: for the low velocity, when
lul <« 1,|ur] < 1,u* ~ 1, the factor m/r® in (8) is
multiplied by the corresponding small quantities, while
for the ultrarelativistic velocity, when [uy| > 1, |ur| >

Vugut—1=

1,u* > 1, this factor is multiplied by the large quanti-
ties. Moreover, since w,u_, u? are proportional to the
relativistic Lorentz y—factor, according to (8) the com-

ponents B((;)) = B((f)) are proportional to the ~y—factor
and the components B((;)) = B((f)) are proportional to the
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square of the y—factor. (It is known that in electrodynam-
ics the components of the vector of the magnetic field for
an electric charge moving with the ultrarelativistic veloc-
ity are proportional to the Lorentz y—factor).

For further analysis of the gravitomagnetic compo-
nents of the gravitational field let us compare (8) with
the gravitoelectric components of this field. For this pur-

((li)) using (2). In-

serting (3) into (4) and taking into account (5) after the
corresponding calculations we obtain the nonzero com-

().
ponents E(k).

pose we shall consider the components F

m

2

(2)_ _2m 3m_ uj
Ey=—mt o oa 1
4
(2) _ p(3) _ _3m yjuiu
Boy =t =5 g1
E(g) _m_ 3m uiU4u4 (10)

5= 8T et 1
One can see that for the low velocity all components (10)
have the order m/r3, i.e. are much larger than the com-
ponents B((li)) from (8) for this velocity. (It accords with
the known fact that the tensor of the gravitoelectric field
E((li)), in contrast with B((li)), has the Newtonian limit [5]).
While for the ultrarelativistic velocity according to (10)

(1) 3m 5 2y 3m

E(1) N3 ¥, E(z) ~E

2 3 3m 3 3m
E((3)) = E((z)) ~ s E(S)) - ¥’ (11)

That is for this velocity the maximum values of the com-

ponents B((li)) in (8) and E((li)) in (10) have the same order,

namely, 3yZm/r3.

Thus, if for the low velocity the gravitoelectric field
prevails as compared with the gravitomagnetic field, for
the ultrarelativistic velocity both the components of the
gravitational field are comparable. For the concrete es-
timates we shall consider the equations which demon-

strate the influence of B((li)) and E((,i)). Concerning E((;i)) it

1s known that this tensor is presented in the equation of
the geodesic deviation [5]

D2(0)

ds?

=1WE, (12)

where s is the natural parameter, [(¥) is the vector of the
deviation of the two close geodesic lines. Just the devi-
ation equation is used in [2] for the analysis of the tidal
forces acting on an observer falling into a b(le;ck hole. Ac-
K3

tidal We have

cording to (12) for the tidal acceleration a

i =1 B (13)

(particularly, in the Newtonian approximation E(;)) is the
”Newtonian tidal matrix” [5]). However, in Ref. [2], Sec.
31.2 the analysis of the tidal forces was restricted to the
radial motion (v = 0) when from (10) we have

(1 _m ) 2m
Ey=m Po=—7
2 3 3 m
B =BG =0, B = 5 (14)

Relations (14) are valid for any velocity of the radial mo-
tion. Even if w is ultrarelativistic, the influence of the
Lorentz y—factor is absent in (14). So, the radial motion
is particular in the sense of this case does not discover
the special features of the gravitoelectric interaction and
the tidal forces just for the ultrarelativistic velocity. If
uy # 0 these features are clear from (10), (12). There-
fore, the analysis of the tidal forces acting on an observer
falling into a black hole from Ref. [2] may be supple-
mented. The main point, as we see, is the conclusion that
the tidal forces essentially grow not only near the hori-
zon surface but far from this surface also if the velocity
of the nonradial fall of an observer is ultrarelativistic.

The results of Ref. [6] demonstrate that according to
the Mathisson—-Papapetrou equations in the comoving
frame of reference just the gravitomagnetic components
of the gravitational field act on the spin of a test parti-
cle. This action has the form of the gravitational spin—
orbit interaction. If for the observer comoving with the
spinning test particle in a Schwarzschild field the tetrad
components are chosen as we described on the beginning
of this Section and if the spin is directed along the spa-
tial direction with the tetrad index (1), then according
to [6] and (7), (8) for the 3—vector of the spin—orbit ac-
celeration a(;) we have

L= 2 p()
i) = 5By (15)
where sy = const is the only nonzero component of

the spin 4-vector, M is the mass of the spinning test
particle. (According to (8) the nonzero components in
(15) are B((;)) and B((;))) Though expressions (13), (15)
are similar their meaning is different. If acceleration (13)
is the measure of the relative deviation of the two close
geodesic lines, then acceleration (15) is the measure of
the nongeodesic properties of the one world line, namely,
the world line of the spinning test particle [6]. Tt be-
ing known that this nongeodesity grows as +2 corre-

spondingly as the components B((;)) in (8) depend on the
Lorentz y—factor. Though in the ultrarelativistic region,
as ws stressed above, the value of acceleration (13) grows

correspondingly also, the nature of the forces that cause
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accelerations (13) and (15) is different. According to the
analogy with electromagnetism one can say that accel-
eration (13) is similar to the acceleration that is caused
by the difference of the values of the electric field in the
two close spatial points while acceleration (15) is similar
to the usual spin-orbit interaction [7]. Let alone this fact
that acceleration (13) does not disappear in the Newto-
nian limit while (15) is the relativistic effect.

The gravitomagnetic components in the Mathisson—
Papapetrou equations are distinguished in the obvious
form in [8]. However, the corresponding analysis of the
influence of these components on the behaviour of a spin-
ning test particle just for the ultrarelativistic velocity
was not carryed out in [8]. From the other side, though
in [5] one can see the relativistic Lorentz y—factor in the
expressions for the gravitoelectric and gravitomagnetic
components of the gravitational field, in the context of
the Mathisson—Papapetrou equations these expressions
were not considered .

Obviously, if we pass from the concrete frame of ref-
erence to other one, the gravitoelectric and gravitomag-
netic components are mixed according to the relations
describing this passing. However, if the frame of refer-
ence is fixed (in our case it is the comoving frame of
reference), then the components B((;)) differ from E((;))
according to (1), (2).

Since in the frame of reference comoving with the spin-
ning test particle just the gravitomagnetic components
of the gravitational field determine the nongeodesic mo-
tion of this particle, let us consider these components in
an interesting case of motion.

III. THE GRAVITOMAGNETIC FIELD IN THE
FRAME OF REFERENCE COMOVING WITH
THE SPINNING TEST PARTICLE ON THE
ULTRARELATIVISTIC CIRCULAR ORBITS
SUSPENDING OVER A SCHWARZSCHILD’S
SOURCE

It is known [9,10] that according to the Mathisson—
Papapetrou equations the important consequence of the
gravitational ultrarelativistic spin—orbit interaction is
the existence of the essentially nongeodesic circular or-
bits of a spinning test particle in a Schwarzschild field.
Here we shall consider the components of the gravito-
magnetic field from the point of view of the observer
comoving with the particle on these orbits. The nonzero
components of the comoving tetrads are [11]

11 9 —1/2
e [ ot (5
St 922 \ Sy ’

—1/2

1+£ & ’
g22 59 )

_ 22)—1/2
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where S,, Sy are the components of the spin 3-vector
connected by the relation

0
S, (1-— §f3) ST . (17)
r

rsin @

Spatial direction (1) in (16) is connected with the spin
orientation and direction (2) coincides with the direction
of the particle’s motion on the circular orbit. For the

(4)

calculation of the gravitomagnetic components B(li) we

shall use general relations (1), (4) and the generalization
of expressions (5) for any values of the angle 6:

m
R =
1212 = o
Riz13 = sin” 0,
r—2m
R2323 = —2mr sin2 9,
2m
Raia1 = g
m 2m
Ryoq9 = —— (1 — —) ;
r r
m 2m .9
R4343 =——(1——)sin 9 (18)
r r

Inserting (17) into (4) and using this result in (1) we find
(1)

the nonzero components of B(;):

1 3
BQIBBI—WMMwmI
—1/2
—%u“ﬁ (4— 9Tm) (1 — QTm) sinf. (19)

Because the velocity of the spinning test particle on
the suspending circular orbits in a Schwarzschild field is
ultrarelativistic [9,10], all components (19) are propor-
tional to the square of the relativistic Lorentz ~v—factor.
So, from the point of view of the observer comoving
with the particle the gravitomagnetic components (19)
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have the large values. This fact demonstrate the essen-
tial difference of the suspending ultrarelativistic circular
orbits of the spinning test particle in a Schwarzschild field
from the so—called Weyssenhoff orbits in the Minkowski
spacetime [12]. In the first case we see the physical rea-
son changing the trajectory of the spinning particle as
compared with the corresponding trajectory of the non-
spinning particle, namely, this reason is the gravitational
spin—orbit interaction. From the point of view of the co-
moving observer this interaction is determined just by
gravitomagnetic components (19). Indeed, according to
Ref. [11] and (19) the nongeodesic spin—orbit acceleration
a(;y of the particle is determined by the expressions

_ S pha
aq) = WB((l))’
a2 =0,
Ay = 18(_1)3(1) (20)
(3) — 2 M (3)°

While in the second case the Weyssenhoff circular orbits
in the Minkowski spacetime have the kinematic nature
connected with the properties of the center of mass in
the relativistic mechanics [13] and the existence of these
orbits is not connected with any interaction.

We point out that Eq. (20) is similar to Eq. (15) with
the difference that Eq. (15) concerns any equatorial mo-
tion while Eq. (20) is deduced for the circular nonequa-
torial orbits. Besides that Eq. (15) is written accurate to
the linear spin terms while Eq. (20) is valid when all the
spin terms are taken into account.

IV. CONCLUSION

The statement that the gravitomagnetic components
of a gravitational field are small provided the source of
this field is not moving with the large velocity is pre-
sented in Ref. [2], Sec. 1.6. The above calculations de-
velop this statement and let us estimate quantatively the
influence of the relativistic Lorentz y—factor on the values

of the gravitomagnetic components. It 1s important that
relations (8), (15) indicate obviously the object which re-
sponds directly to the gravitomagnetic field, namely, the
spinning test particle (for any value of its velocity rela-
tive to the source of the Schwarzschild field). We stress
that in [2] the deviation of the spinning test particle
from the geodesic trajectory is not connected with the
action of the gravitomagnetic field existing in the frame
of reference comoving with this particle. On the contrary,
in Ref. [2], exercise 40.8 the reason for this deviation is
named the tidal forces, and in [2], Sec. 1.6 these forces
are considered only as connected with the gravitoelectric
components of a gravitational field.

Relations (10) determine the dependence of the grav-
itoelectric components on the source velocity, and to-
gether (8) and (10) can be considered as the similarities
of the known electrodynamical relations describing the
electromagnetic field of a moving electric charge. Com-
paring (8) and (10) let us estimate the difference between
the gravitomagnetic and gravitoelectric components of a
gravitational field for any velocity of its Schwarzschild
source. If for the low velocity the gravitomagnetic com-
ponents are much less than the gravitoelectric compo-
nents, then for the ultrarelativistic velocity they become
comparable. The corresponding relations are valid for the
physical effects caused by these components. For exam-
ple, for a model particle with the mass and spin that are
equal to the mass and spin of an electron and with the
linear size about 107'%cm the ratio |aspin—ors|/|atidail
according to (13), (15) is equal to &~ 10% for the ultra-
relativistic velocity while for the low velocity this ratio
is much less then 1. (For the calculation of this ratio it
is necessary to insert into (13) and (15) the numerical
values of the corresponding quantities in an units where
(G = ¢ = 1 because all the relations above are written in
these units).

The other direct example demonstrating the increase
of the influence of the gravitomagnetic field on a spinning
test particle in the ultrarelativistic case 1s the suspend-
ing circular orbits in a Schwarzschild field from Sec. III.
Further studies will discover the influence of the gravit-
omagnetic ultrarelativistic interaction on the behaviour
of a real quantum particle with a spin in a gravitational

field.
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ITPABITOMATHETHA YJILTPAPEJISITUBICTUYHA B3AEMOIIA
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(2)

HocumimkeHo T'paBiTOMarHeTHl KOMIOHEHTH I'PaBITAIAHOTO OIS B TETPAIHOMY MpeacTaBJIeHH] B(;) 3 TOYKH
30py cHocTepirada, AKHI PyXaeThcA BITHOCHO NIBaPITIIILIIBCEKOTO IKepea, 1 IpoBeleHo iX sicTaBleHHd 3 Ipa-
BITOEJIEKTPUYHUMH KOMITOHeHTaMu F ((2)). Omep:kaHo 3arajbHl BUPa3u IUX KOMIIOHEHT Ge3 obMexKeHb Ha BEeJTUIuHY
MIBUOKOCTH CHOCTepirada. 3’gCOBAHO BILIUB PEeJATUBICTCHKOTO Y—dakTopa JlopeHiia Ha rpaBiToMarHeTHl Ta I'pa-
BITOEJTEKTPUYHI KOMIIOHEHTH B YJIBTPape/JIATUBICTHYHIA 06JIacTi NIBUAKOCTH. YCTaHOBJIEHO, IO B I obsacti
MaKCHAMAaJIbHI 3HAYCHHA B((;)) 1 E((;)) € OIHOIOPAIKOBUMHM, TOl AK HPU HEBEJMKIH MBUIKOCTI KOMIIOHEHTH E((;))
JOOMIHYIOTH Hal B ((;)). Ilinkpecieno, mo y BaacHi#l crucTeMi BiAIiKy MpoOHOI YaCTUHKM 31 CIIIHOM caMe I'paBlTOMAar-
HeTHa B3a€MOJIid BU3HAaYae BIIXUJIEHHS 1i pyXy BiI reomesiiiHOrO.
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