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The gravitomagneti
 
omponents of the gravitational �eld in the tetrad representation B

(i)

(k)

are 
onsidered from the point of view of an observer moving relative to a S
hwarzs
hild sour
e.

These 
omponents are 
ompared with the gravitoele
tri
 
omponents E

(i)

(k)

. The general expressions

for B

(i)

(k)

and E

(i)

(k)

are obtained without any restri
tion on the value of the observer's velo
ity. The

in
uen
e of the relativisti
 Lorentz 
{fa
tor on the gravitomagneti
 and gravitoele
tri
 
omponents

is investigated. It is pointed out that in the proper frame of referen
e of a spinning test parti
le just

the gravitomagneti
 intera
tion determines the deviation of this parti
le motion from the geodesi


motion.
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I. INTRODUCTION

The gravitoele
tri
 and gravitomagneti
 intera
tions

as the similarities of the usual ele
tri
 and magneti
 in-

tera
tions have been 
onsidered for a long time [1℄. The

theoreti
al investigations have largely been ta
kled sin
e

the experimental tests are diÆ
ult be
ause of the small

quantities of the 
orresponding e�e
ts. Usually the grav-

itoele
tromagneti
 e�e
ts were 
onsidered for the low ve-

lo
ities and the weak gravitational �elds, though on the

whole the 
on
eption "gravitoele
tri
 (gravitomagneti
)

�eld" was introdu
ed without these restri
tions. For ex-

ample, it is pointed out in Ref. [2℄ that the gravitomag-

neti
 
omponents of the gravitational �eld are small pro-

vided a sour
e is not moving with a large velo
ity. It is

stressed in Ref. [3℄ that an analogy between gravitation

and ele
tromagnetism exists on the prin
ipled level and

that the weak �eld approximation plays a heuristi
 role

only. However, a detailed analysis of this analogy for the

large velo
ities was not 
arried out.

The investigations of the gravitomagneti
 �eld on the

level of the 
on
rete physi
al e�e
ts have a spe
ial fea-

ture. Namely, as a rule, the gravitomagneti
 �eld ap-

peared due to the momentum of rotation of a mass

(mainly it is a sour
e of the Lense{Thirring metri
) and

not due to its linear momentum (the analogy of the

known situation in ele
trodynami
s when the magneti


�eld is 
reated by a moving ele
tri
 
harge).

In this paper we shall 
onsider the gravitomagneti
 in-

tera
tion in the situation when a S
hwarzs
hild's sour
e

of the gravitational �eld is moving relatively to an ob-

server with the ultrarelativisti
 velo
ity.

It is known that in the lo
al orthogonal basis the grav-

itomagneti
 
omponents of the gravitational �eld B

(i)

(k)

are determined by the relation [4,5℄

B

(i)

(k)

= �

1

2

R

(i)(4)

(m)(n)

"

(m)(n)

(k)

; (1)

where R

(i)(4)

(m)(n)

are the lo
al 
omponents of the

Riemann tensor, "

(m)(n)

(k)

is the Levi{Civita tensor,

"

(1)(2)(3)

= �"

(1)(2)(3)

= 1, signature �;�;�;+ (here

and in the following, the indi
es of the orthogonal tetrads

are pla
ed in the parentheses; Latin indi
es run 1, 2, 3

and Greek indi
es do 1, 2, 3, 4). For the gravitoele
tri



omponents E

(i)

(k)

we have [4,5℄

E

(i)

(k)

= R

(i)(4)

(k)(4)

: (2)

The relations B

(i)(k)

= B

(k)(i)

; E

(i)(k)

= E

(k)(i)

; SpB =

0; SpE = 0 take pla
e.

II. THE GRAVITOMAGNETIC AND

GRAVITOELECTRIC COMPONENTS OF THE

GRAVITATIONAL FIELD OF A MOVING

SCHWARZSCHILD'S SOURCE

Let us 
onsider the gravitomagneti
 and gravitoele
-

tri
 
omponents from the point of view of an ob-

server who is moving with any velo
ity relative to a

S
hwarzs
hild's sour
e of the gravitational �eld. For 
on-

venien
e, we 
hoose the orientation of the spatial 
oordi-

nate axes of the frame of referen
e of a moving observer

in su
h a manner: (1) The �rst axis is perpendi
ular to

the plane that is determined by the dire
tion of motion

of an observer and the radial dire
tion to the sour
e (for

note of this axis we use the tetrad index (1)); (2) The

se
ond axis is dire
ted along the velo
ity of an observer

(this axis we note as (2)). Then a

ording to the results
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of Ref. [6℄ the nonzero 
omponents of the tetrads �

�

(�)

des
ribing this observer are

�

2

(1)

=

p

�g

22

; �

1

(2)

= u

1

u

4

r

g

44

u

4

u

4

� 1

;

�

3

(2)

= u

3

u

4

r

g

44

u

4

u

4

� 1

; �

4

(2)

=

s

u

4

u

4

� 1

g

44

;

�

1

(3)

= u

3

s

g

11

g

33

u

4

u

4

� 1

; �

3

(3)

= �u

1

s

g

33

g

11

u

4

u

4

� 1

;

�

1

(4)

= u

1

; �

3

(4)

= u

3

; �

4

(4)

= u

4

; (3)

where g

��

is the S
hwarzs
hild metri
 tensor in the stan-

dard 
oordinates x

1

= r; x

2

= �; x

3

= '; x

4

= t,

u

�

is the 4{velo
ity of an observer (u

2

= 0 be
ause this

observer is moving in the plane � = �=2).

A

ording to (1) for the 
al
ulations of the gravito-

magneti
 
omponents of the gravitational �eld it is ne
-

essary to have the values of the lo
al 
omponents of the

Riemann tensor R

(�)(�)(
)(Æ)

. These 
omponents are 
on-

ne
ted with the global 
omponents of this tensor R

����

by the relation

R

(�)(�)(
)(Æ)

= �

�

(�)

�

�

(�)

�

�

(
)

�

�

(Æ)

R

����

: (4)

The nonzero 
omponents of the Riemann tensor in the

standard S
hwarzs
hild 
oordinates for � = �=2 are given

by

R

1212

= R

1313

=

m

r � 2m

; R

2323

= �2mr;

R

1414

=

2m

r

3

; R

2424

= R

3434

= �

m

r

�

1�

2m

r

�

:

(5)

The values of the three lo
al 
omponents of the Riemann

tensor, namely R

(i)(4)(2)(3)

, are presented in Ref. [6℄:

R

(1)(4)(2)(3)

= 0;

R

(2)(4)(2)(3)

= �

3mu

1

u

3

r

2

p

u

4

u

4

� 1

�

1�

2m

r

�

�1=2

;

R

(3)(4)(2)(3)

= �

3mu

3

u

3

u

4

r

p

u

4

u

4

� 1

�

1�

2m

r

�

1=2

: (6)

For the 
al
ulation of the six other lo
al 
omponents

of this tensor whi
h a

ording to (1) we need for the


al
ulation of B

(i)

(k)

, namely R

(1)(4)(1)(2)

, R

(1)(4)(1)(3)

,

R

(2)(4)(1)(2)

, R

(2)(4)(1)(3)

, R

(3)(4)(1)(2)

, R

(3)(4)(1)(3)

, we in-

sert values (3) and (5) into (4). Then we obtain

R

(1)(4)(1)(2)

= �

3mu

3

u

3

u

4

r

p

u

4

u

4

� 1

�

1�

2m

r

�

1=2

;

R

(1)(4)(1)(3)

=

3mu

1

u

3

r

2

p

u

4

u

4

� 1

�

1�

2m

r

�

�1=2

;

R

(2)(4)(1)(2)

= 0; R

(2)(4)(1)(3)

= 0;

R

(3)(4)(1)(2)

= 0; R

(3)(4)(1)(3)

= 0: (7)

Using (6), (7) in (1) we �nd su
h nonzero 
omponents of

the gravitomagneti
 �eld:

B

(1)

(2)

= B

(2)

(1)

=

3mu

k

u

?

r

3

p

u

4

u

4

� 1

�

1�

2m

r

�

�1=2

;

B

(1)

(3)

= B

(3)

(1)

=

3mu

2

?

u

4

r

3

p

u

4

u

4

� 1

�

1�

2m

r

�

1=2

; (8)

where u

k

= u

1

is the radial 
omponent of the 4{velo
ity

and u

?

= ru

3

is the tangential 
omponent. By the 
on-

dition u

�

u

�

= 1 we take into a

ount that in (8)

p

u

4

u

4

� 1 =

"

u

2

?

+

�

1�

2m

r

�

�1

u

2

k

#

1=2

: (9)

We stress that relations (8) are valid for any velo
ity of

an observer, in
luding the ultrarelativisti
 velo
ity.

It is easy to see that the 
omponents of the gravit-

omagneti
 �eld (8) are nonzero only if u

?

6= 0, i.e. if

the motion of an observer is nonradial. A similar prop-

erty takes pla
e in ele
trodynami
s for the magneti
 �eld

of a moving 
harge. However, it is ne
essary to remem-

ber that on the level of the analogies the tensor B

(i)(k)

does not 
orrespond to the ve
tor of the magneti
 �eld

in ele
trodynami
s but to the �rst derivatives from this

ve
tor with respe
t to the spatial 
oordinates (likewise,

as E

(i)(k)


orresponds to the gradient of the ve
tor of

the ele
tri
 �eld [5℄). Therefore, the main dependen
e of


omponents (8) from the radial 
oordinate is 1=r

3

and

not 1=r

2

.

The values of 
omponents (8) essentially depend on

the velo
ity of an observer: for the low velo
ity, when

ju

k

j � 1; ju

?

j � 1; u

4

� 1, the fa
tor m=r

3

in (8) is

multiplied by the 
orresponding small quantities, while

for the ultrarelativisti
 velo
ity, when ju

k

j � 1; ju

?

j �

1; u

4

� 1, this fa
tor is multiplied by the large quanti-

ties. Moreover, sin
e u

k

; u

?

; u

4

are proportional to the

relativisti
 Lorentz 
{fa
tor, a

ording to (8) the 
om-

ponents B

(1)

(2)

= B

(2)

(1)

are proportional to the 
{fa
tor

and the 
omponents B

(1)

(3)

= B

(3)

(1)

are proportional to the
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square of the 
{fa
tor. (It is known that in ele
trodynam-

i
s the 
omponents of the ve
tor of the magneti
 �eld for

an ele
tri
 
harge movingwith the ultrarelativisti
 velo
-

ity are proportional to the Lorentz 
{fa
tor).

For further analysis of the gravitomagneti
 
ompo-

nents of the gravitational �eld let us 
ompare (8) with

the gravitoele
tri
 
omponents of this �eld. For this pur-

pose we shall 
onsider the 
omponents E

(i)

(k)

using (2). In-

serting (3) into (4) and taking into a

ount (5) after the


orresponding 
al
ulations we obtain the nonzero 
om-

ponents E

(i)

(k)

:

E

(1)

(1)

=

m

r

3

(1 + 3u

2

?

);

E

(2)

(2)

= �

2m

r

3

+

3m

r

3

u

2

?

u

4

u

4

� 1

;

E

(2)

(3)

= E

(3)

(2)

= �

3m

r

3

u

k

u

?

u

4

u

4

u

4

� 1

;

E

(3)

(3)

=

m

r

3

�

3m

r

3

u

2

?

u

4

u

4

u

4

u

4

� 1

: (10)

One 
an see that for the low velo
ity all 
omponents (10)

have the order m=r

3

, i.e. are mu
h larger than the 
om-

ponents B

(i)

(k)

from (8) for this velo
ity. (It a

ords with

the known fa
t that the tensor of the gravitoele
tri
 �eld

E

(i)

(k)

, in 
ontrast with B

(i)

(k)

, has the Newtonian limit [5℄).

While for the ultrarelativisti
 velo
ity a

ording to (10)

E

(1)

(1)

�

3m

r

3




2

; E

(2)

(2)

�

3m

r

3

;

E

(2)

(3)

= E

(3)

(2)

�

3m

r

3


; E

(3)

(3)

�

3m

r

3




2

: (11)

That is for this velo
ity the maximumvalues of the 
om-

ponents B

(i)

(k)

in (8) and E

(i)

(k)

in (10) have the same order,

namely, 3


2

m=r

3

.

Thus, if for the low velo
ity the gravitoele
tri
 �eld

prevails as 
ompared with the gravitomagneti
 �eld, for

the ultrarelativisti
 velo
ity both the 
omponents of the

gravitational �eld are 
omparable. For the 
on
rete es-

timates we shall 
onsider the equations whi
h demon-

strate the in
uen
e of B

(i)

(k)

and E

(i)

(k)

. Con
erning E

(i)

(k)

it

is known that this tensor is presented in the equation of

the geodesi
 deviation [5℄

D

2

l

(i)

ds

2

= l

(k)

E

(i)

(k)

; (12)

where s is the natural parameter, l

(i)

is the ve
tor of the

deviation of the two 
lose geodesi
 lines. Just the devi-

ation equation is used in [2℄ for the analysis of the tidal

for
es a
ting on an observer falling into a bla
k hole. A
-


ording to (12) for the tidal a

eleration a

(i)

tidal

we have

a

(i)

tidal

= l

(k)

E

(i)

(k)

(13)

(parti
ularly, in the Newtonian approximationE

(i)

(k)

is the

"Newtonian tidal matrix" [5℄). However, in Ref. [2℄, Se
.

31.2 the analysis of the tidal for
es was restri
ted to the

radial motion (u

?

= 0) when from (10) we have

E

(1)

(1)

=

m

r

3

; E

(2)

(2)

= �

2m

r

3

;

E

(2)

(3)

= E

(3)

(2)

= 0; E

(3)

(3)

=

m

r

3

: (14)

Relations (14) are valid for any velo
ity of the radial mo-

tion. Even if u

k

is ultrarelativisti
, the in
uen
e of the

Lorentz 
{fa
tor is absent in (14). So, the radial motion

is parti
ular in the sense of this 
ase does not dis
over

the spe
ial features of the gravitoele
tri
 intera
tion and

the tidal for
es just for the ultrarelativisti
 velo
ity. If

u

?

6= 0 these features are 
lear from (10), (12). There-

fore, the analysis of the tidal for
es a
ting on an observer

falling into a bla
k hole from Ref. [2℄ may be supple-

mented. The main point, as we see, is the 
on
lusion that

the tidal for
es essentially grow not only near the hori-

zon surfa
e but far from this surfa
e also if the velo
ity

of the nonradial fall of an observer is ultrarelativisti
.

The results of Ref. [6℄ demonstrate that a

ording to

the Mathisson{Papapetrou equations in the 
omoving

frame of referen
e just the gravitomagneti
 
omponents

of the gravitational �eld a
t on the spin of a test parti-


le. This a
tion has the form of the gravitational spin{

orbit intera
tion. If for the observer 
omoving with the

spinning test parti
le in a S
hwarzs
hild �eld the tetrad


omponents are 
hosen as we des
ribed on the beginning

of this Se
tion and if the spin is dire
ted along the spa-

tial dire
tion with the tetrad index (1), then a

ording

to [6℄ and (7), (8) for the 3{ve
tor of the spin{orbit a
-


eleration a

(i)

we have

a

(i)

=

s

(1)

M

B

(1)

(i)

; (15)

where s

(1)

= 
onst is the only nonzero 
omponent of

the spin 4{ve
tor, M is the mass of the spinning test

parti
le. (A

ording to (8) the nonzero 
omponents in

(15) are B

(1)

(2)

and B

(1)

(3)

). Though expressions (13), (15)

are similar their meaning is di�erent. If a

eleration (13)

is the measure of the relative deviation of the two 
lose

geodesi
 lines, then a

eleration (15) is the measure of

the nongeodesi
 properties of the one world line, namely,

the world line of the spinning test parti
le [6℄. It be-

ing known that this nongeodesity grows as 


2


orre-

spondingly as the 
omponents B

(i)

(k)

in (8) depend on the

Lorentz 
{fa
tor. Though in the ultrarelativisti
 region,

as ws stressed above, the value of a

eleration (13) grows


orrespondingly also, the nature of the for
es that 
ause
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a

elerations (13) and (15) is di�erent. A

ording to the

analogy with ele
tromagnetism one 
an say that a

el-

eration (13) is similar to the a

eleration that is 
aused

by the di�eren
e of the values of the ele
tri
 �eld in the

two 
lose spatial points while a

eleration (15) is similar

to the usual spin{orbit intera
tion [7℄. Let alone this fa
t

that a

eleration (13) does not disappear in the Newto-

nian limit while (15) is the relativisti
 e�e
t.

The gravitomagneti
 
omponents in the Mathisson{

Papapetrou equations are distinguished in the obvious

form in [8℄. However, the 
orresponding analysis of the

in
uen
e of these 
omponents on the behaviour of a spin-

ning test parti
le just for the ultrarelativisti
 velo
ity

was not 
arryed out in [8℄. From the other side, though

in [5℄ one 
an see the relativisti
 Lorentz 
{fa
tor in the

expressions for the gravitoele
tri
 and gravitomagneti



omponents of the gravitational �eld, in the 
ontext of

the Mathisson{Papapetrou equations these expressions

were not 
onsidered .

Obviously, if we pass from the 
on
rete frame of ref-

eren
e to other one, the gravitoele
tri
 and gravitomag-

neti
 
omponents are mixed a

ording to the relations

des
ribing this passing. However, if the frame of refer-

en
e is �xed (in our 
ase it is the 
omoving frame of

referen
e), then the 
omponents B

(i)

(k)

di�er from E

(i)

(k)

a

ording to (1), (2).

Sin
e in the frame of referen
e 
omoving with the spin-

ning test parti
le just the gravitomagneti
 
omponents

of the gravitational �eld determine the nongeodesi
 mo-

tion of this parti
le, let us 
onsider these 
omponents in

an interesting 
ase of motion.

III. THE GRAVITOMAGNETIC FIELD IN THE

FRAME OF REFERENCE COMOVING WITH

THE SPINNING TEST PARTICLE ON THE

ULTRARELATIVISTIC CIRCULAR ORBITS

SUSPENDING OVER A SCHWARZSCHILD'S

SOURCE

It is known [9,10℄ that a

ording to the Mathisson{

Papapetrou equations the important 
onsequen
e of the

gravitational ultrarelativisti
 spin{orbit intera
tion is

the existen
e of the essentially nongeodesi
 
ir
ular or-

bits of a spinning test parti
le in a S
hwarzs
hild �eld.

Here we shall 
onsider the 
omponents of the gravito-

magneti
 �eld from the point of view of the observer


omoving with the parti
le on these orbits. The nonzero


omponents of the 
omoving tetrads are [11℄

�

1

(1)

= �g

11

(�g

22

)

�1=2

S

r

S

�

"

1 +

g

11

g

22

�

S

r

S

�

�

2

#

�1=2

;

�

2

(1)

= (�g

22

)

�1=2

"

1 +

g

11

g

22

�

S

r

S

�

�

2

#

�1=2

;

�

3

(2)

= u

3

u

4

�

g

44

u

4

u

4

� 1

�

1=2

;

�

4

(2)

=

�

u

4

u

4

� 1

g

44

�

1=2

;

�

1

(3)

= u

3

�

g

11

g

33

u

4

u

4

� 1

�

1=2

"

1 +

g

11

g

22

�

S

r

S

�

�

2

#

�1=2

;

�

2

(3)

= �

S

r

S

�

�

1

(3)

; �

3

(4)

= u

3

; �

4

(4)

= u

4

; (16)

where S

r

, S

�

are the 
omponents of the spin 3{ve
tor


onne
ted by the relation

S

r

�

1�

3m

r

�

+ S

�


os �

r sin �

= 0: (17)

Spatial dire
tion (1) in (16) is 
onne
ted with the spin

orientation and dire
tion (2) 
oin
ides with the dire
tion

of the parti
le's motion on the 
ir
ular orbit. For the


al
ulation of the gravitomagneti
 
omponents B

(i)

(k)

we

shall use general relations (1), (4) and the generalization

of expressions (5) for any values of the angle �:

R

1212

=

m

r � 2m

;

R

1313

=

m

r � 2m

sin

2

�;

R

2323

= �2mr sin

2

�;

R

4141

=

2m

r

3

;

R

4242

= �

m

r

�

1�

2m

r

�

;

R

4343

= �

m

r

�

1�

2m

r

�

sin

2

�: (18)

Inserting (17) into (4) and using this result in (1) we �nd

the nonzero 
omponents of B

(i)

(k)

:

B

(1)

(1)

= �B

(3)

(3)

= �R

(1)(4)(2)(3)

=

m

r

3

u

?

u

4


os � ;

B

(1)

(3)

= B

(3)

(1)

= �R

(3)(4)(2)(3)

=

�

m

r

3

u

?

u

4

�

4�

9m

r

��

1�

2m

r

�

�1=2

sin � : (19)

Be
ause the velo
ity of the spinning test parti
le on

the suspending 
ir
ular orbits in a S
hwarzs
hild �eld is

ultrarelativisti
 [9,10℄, all 
omponents (19) are propor-

tional to the square of the relativisti
 Lorentz 
{fa
tor.

So, from the point of view of the observer 
omoving

with the parti
le the gravitomagneti
 
omponents (19)
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have the large values. This fa
t demonstrate the essen-

tial di�eren
e of the suspending ultrarelativisti
 
ir
ular

orbits of the spinning test parti
le in a S
hwarzs
hild �eld

from the so{
alled Weyssenho� orbits in the Minkowski

spa
etime [12℄. In the �rst 
ase we see the physi
al rea-

son 
hanging the traje
tory of the spinning parti
le as


ompared with the 
orresponding traje
tory of the non-

spinning parti
le, namely, this reason is the gravitational

spin{orbit intera
tion. From the point of view of the 
o-

moving observer this intera
tion is determined just by

gravitomagneti
 
omponents (19). Indeed, a

ording to

Ref. [11℄ and (19) the nongeodesi
 spin{orbit a

eleration

a

(i)

of the parti
le is determined by the expressions

a

(1)

=

s

(1)

M

B

(1)

(1)

;

a

(2)

= 0;

a

(3)

=

1

2

s

(1)

M

B

(1)

(3)

: (20)

While in the se
ond 
ase the Weyssenho� 
ir
ular orbits

in the Minkowski spa
etime have the kinemati
 nature


onne
ted with the properties of the 
enter of mass in

the relativisti
 me
hani
s [13℄ and the existen
e of these

orbits is not 
onne
ted with any intera
tion.

We point out that Eq. (20) is similar to Eq. (15) with

the di�eren
e that Eq. (15) 
on
erns any equatorial mo-

tion while Eq. (20) is dedu
ed for the 
ir
ular nonequa-

torial orbits. Besides that Eq. (15) is written a

urate to

the linear spin terms while Eq. (20) is valid when all the

spin terms are taken into a

ount.

IV. CONCLUSION

The statement that the gravitomagneti
 
omponents

of a gravitational �eld are small provided the sour
e of

this �eld is not moving with the large velo
ity is pre-

sented in Ref. [2℄, Se
. 1.6. The above 
al
ulations de-

velop this statement and let us estimate quantatively the

in
uen
e of the relativisti
 Lorentz 
{fa
tor on the values

of the gravitomagneti
 
omponents. It is important that

relations (8), (15) indi
ate obviously the obje
t whi
h re-

sponds dire
tly to the gravitomagneti
 �eld, namely, the

spinning test parti
le (for any value of its velo
ity rela-

tive to the sour
e of the S
hwarzs
hild �eld). We stress

that in [2℄ the deviation of the spinning test parti
le

from the geodesi
 traje
tory is not 
onne
ted with the

a
tion of the gravitomagneti
 �eld existing in the frame

of referen
e 
omoving with this parti
le. On the 
ontrary,

in Ref. [2℄, exer
ise 40.8 the reason for this deviation is

named the tidal for
es, and in [2℄, Se
. 1.6 these for
es

are 
onsidered only as 
onne
ted with the gravitoele
tri



omponents of a gravitational �eld.

Relations (10) determine the dependen
e of the grav-

itoele
tri
 
omponents on the sour
e velo
ity, and to-

gether (8) and (10) 
an be 
onsidered as the similarities

of the known ele
trodynami
al relations des
ribing the

ele
tromagneti
 �eld of a moving ele
tri
 
harge. Com-

paring (8) and (10) let us estimate the di�eren
e between

the gravitomagneti
 and gravitoele
tri
 
omponents of a

gravitational �eld for any velo
ity of its S
hwarzs
hild

sour
e. If for the low velo
ity the gravitomagneti
 
om-

ponents are mu
h less than the gravitoele
tri
 
ompo-

nents, then for the ultrarelativisti
 velo
ity they be
ome


omparable. The 
orresponding relations are valid for the

physi
al e�e
ts 
aused by these 
omponents. For exam-

ple, for a model parti
le with the mass and spin that are

equal to the mass and spin of an ele
tron and with the

linear size about 10

�13


m the ratio ja

spin�orb

j=ja

tidal

j

a

ording to (13), (15) is equal to � 10

3

for the ultra-

relativisti
 velo
ity while for the low velo
ity this ratio

is mu
h less then 1. (For the 
al
ulation of this ratio it

is ne
essary to insert into (13) and (15) the numeri
al

values of the 
orresponding quantities in an units where

G = 
 = 1 be
ause all the relations above are written in

these units).

The other dire
t example demonstrating the in
rease

of the in
uen
e of the gravitomagneti
 �eld on a spinning

test parti
le in the ultrarelativisti
 
ase is the suspend-

ing 
ir
ular orbits in a S
hwarzs
hild �eld from Se
. III.

Further studies will dis
over the in
uen
e of the gravit-

omagneti
 ultrarelativisti
 intera
tion on the behaviour

of a real quantum parti
le with a spin in a gravitational

�eld.
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�RAV�TOMAGNETNA UL^TRAREL�TIV�STIQNA VZA�MOD��

R. M. Pl�
ko

�nstitut prikladnih problem mehan�ki � matematiki �m. �. S. P�dstrigaqa NAN UkraÝni,

vul. Naukova, 3{b, L~v�v, 79601, e{mail: plyatsko�lms.lviv.ua

Dosl�d�eno �rav�tomagnetn� komponenti �rav�ta
��nogo pol� v tetradnomu predstavlenn� B

(i)

(k)

z toqki

zoru sposter�gaqa, �ki� ruha
t~s� v�dnosno xvar
x�l~d�vs~kogo d�erela, � provedeno Ýh z�stavlenn� z gra-

v�toelektriqnimi komponentami E

(i)

(k)

. Oder�ano zagal~n� virazi 
ih komponent bez obme�en~ na veliqinu

xvidkosti sposter�gaqa. Z'�sovano vpliv rel�tiv�sts~kogo 
{faktora Loren
a na �rav�tomagnetn� ta �ra-

v�toelektriqn� komponenti v ul~trarel�tiv�stiqn�� oblast� xvidkosti. Ustanovleno, wo v 
�� oblast�

maksimal~n� znaqenn� B

(i)

(k)

� E

(i)

(k)


 odnopor�dkovimi, tod� �k pri nevelik�� xvidkost� komponenti E

(i)

(k)

dom�nu�t~ nad B

(i)

(k)

. P�dkresleno, wo u vlasn�� sistem� v�dl�ku probnoÝ qastinki z� sp�nom same �rav�tomag-

netna vza
mod�� viznaqa
 v�dhilenn� ÝÝ ruhu v�d geodez��nogo.
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