
�URNAL FIZIQNIH DOSLID�EN^

t. 3, } 4 (1999) s. 409{414

JOURNAL OF PHYSICAL STUDIES

v. 3, No. 4 (1999) p. 409{414

GRAVITOMAGNETIC ULTRARELATIVISTIC INTERACTION

R. M. Plyatsko

Pidstryhah Institute for Applied Problems of Mehanis

and Mathematis of the National Aademy of Sienes of Ukraine,

3{b Naukova Str., Lviv, UA{79601, Ukraine

(Reeived September 16, 1999)

The gravitomagneti omponents of the gravitational �eld in the tetrad representation B

(i)

(k)

are onsidered from the point of view of an observer moving relative to a Shwarzshild soure.

These omponents are ompared with the gravitoeletri omponents E

(i)

(k)

. The general expressions

for B

(i)

(k)

and E

(i)

(k)

are obtained without any restrition on the value of the observer's veloity. The

inuene of the relativisti Lorentz {fator on the gravitomagneti and gravitoeletri omponents

is investigated. It is pointed out that in the proper frame of referene of a spinning test partile just

the gravitomagneti interation determines the deviation of this partile motion from the geodesi

motion.

Key words: gravitomagneti and gravitoeletri �elds, ultrarelativisti gravitation, spinning test

partile.
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I. INTRODUCTION

The gravitoeletri and gravitomagneti interations

as the similarities of the usual eletri and magneti in-

terations have been onsidered for a long time [1℄. The

theoretial investigations have largely been takled sine

the experimental tests are diÆult beause of the small

quantities of the orresponding e�ets. Usually the grav-

itoeletromagneti e�ets were onsidered for the low ve-

loities and the weak gravitational �elds, though on the

whole the oneption "gravitoeletri (gravitomagneti)

�eld" was introdued without these restritions. For ex-

ample, it is pointed out in Ref. [2℄ that the gravitomag-

neti omponents of the gravitational �eld are small pro-

vided a soure is not moving with a large veloity. It is

stressed in Ref. [3℄ that an analogy between gravitation

and eletromagnetism exists on the prinipled level and

that the weak �eld approximation plays a heuristi role

only. However, a detailed analysis of this analogy for the

large veloities was not arried out.

The investigations of the gravitomagneti �eld on the

level of the onrete physial e�ets have a speial fea-

ture. Namely, as a rule, the gravitomagneti �eld ap-

peared due to the momentum of rotation of a mass

(mainly it is a soure of the Lense{Thirring metri) and

not due to its linear momentum (the analogy of the

known situation in eletrodynamis when the magneti

�eld is reated by a moving eletri harge).

In this paper we shall onsider the gravitomagneti in-

teration in the situation when a Shwarzshild's soure

of the gravitational �eld is moving relatively to an ob-

server with the ultrarelativisti veloity.

It is known that in the loal orthogonal basis the grav-

itomagneti omponents of the gravitational �eld B

(i)

(k)

are determined by the relation [4,5℄

B

(i)

(k)

= �

1

2

R

(i)(4)

(m)(n)

"

(m)(n)

(k)

; (1)

where R

(i)(4)

(m)(n)

are the loal omponents of the

Riemann tensor, "

(m)(n)

(k)

is the Levi{Civita tensor,

"

(1)(2)(3)

= �"

(1)(2)(3)

= 1, signature �;�;�;+ (here

and in the following, the indies of the orthogonal tetrads

are plaed in the parentheses; Latin indies run 1, 2, 3

and Greek indies do 1, 2, 3, 4). For the gravitoeletri

omponents E

(i)

(k)

we have [4,5℄

E

(i)

(k)

= R

(i)(4)

(k)(4)

: (2)

The relations B

(i)(k)

= B

(k)(i)

; E

(i)(k)

= E

(k)(i)

; SpB =

0; SpE = 0 take plae.

II. THE GRAVITOMAGNETIC AND

GRAVITOELECTRIC COMPONENTS OF THE

GRAVITATIONAL FIELD OF A MOVING

SCHWARZSCHILD'S SOURCE

Let us onsider the gravitomagneti and gravitoele-

tri omponents from the point of view of an ob-

server who is moving with any veloity relative to a

Shwarzshild's soure of the gravitational �eld. For on-

veniene, we hoose the orientation of the spatial oordi-

nate axes of the frame of referene of a moving observer

in suh a manner: (1) The �rst axis is perpendiular to

the plane that is determined by the diretion of motion

of an observer and the radial diretion to the soure (for

note of this axis we use the tetrad index (1)); (2) The

seond axis is direted along the veloity of an observer

(this axis we note as (2)). Then aording to the results
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of Ref. [6℄ the nonzero omponents of the tetrads �

�

(�)

desribing this observer are

�

2

(1)

=

p

�g

22

; �

1

(2)

= u

1

u

4

r

g

44

u

4

u

4

� 1

;

�

3

(2)

= u

3

u

4

r

g

44

u

4

u

4

� 1

; �

4

(2)

=

s

u

4

u

4

� 1

g

44

;

�

1

(3)

= u

3

s

g

11

g

33

u

4

u

4

� 1

; �

3

(3)

= �u

1

s

g

33

g

11

u

4

u

4

� 1

;

�

1

(4)

= u

1

; �

3

(4)

= u

3

; �

4

(4)

= u

4

; (3)

where g

��

is the Shwarzshild metri tensor in the stan-

dard oordinates x

1

= r; x

2

= �; x

3

= '; x

4

= t,

u

�

is the 4{veloity of an observer (u

2

= 0 beause this

observer is moving in the plane � = �=2).

Aording to (1) for the alulations of the gravito-

magneti omponents of the gravitational �eld it is ne-

essary to have the values of the loal omponents of the

Riemann tensor R

(�)(�)()(Æ)

. These omponents are on-

neted with the global omponents of this tensor R

����

by the relation

R

(�)(�)()(Æ)

= �

�

(�)

�

�

(�)

�

�

()

�

�

(Æ)

R

����

: (4)

The nonzero omponents of the Riemann tensor in the

standard Shwarzshild oordinates for � = �=2 are given

by

R

1212

= R

1313

=

m

r � 2m

; R

2323

= �2mr;

R

1414

=

2m

r

3

; R

2424

= R

3434

= �

m

r

�

1�

2m

r

�

:

(5)

The values of the three loal omponents of the Riemann

tensor, namely R

(i)(4)(2)(3)

, are presented in Ref. [6℄:

R

(1)(4)(2)(3)

= 0;

R

(2)(4)(2)(3)

= �

3mu

1

u

3

r

2

p

u

4

u

4

� 1

�

1�

2m

r

�

�1=2

;

R

(3)(4)(2)(3)

= �

3mu

3

u

3

u

4

r

p

u

4

u

4

� 1

�

1�

2m

r

�

1=2

: (6)

For the alulation of the six other loal omponents

of this tensor whih aording to (1) we need for the

alulation of B

(i)

(k)

, namely R

(1)(4)(1)(2)

, R

(1)(4)(1)(3)

,

R

(2)(4)(1)(2)

, R

(2)(4)(1)(3)

, R

(3)(4)(1)(2)

, R

(3)(4)(1)(3)

, we in-

sert values (3) and (5) into (4). Then we obtain

R

(1)(4)(1)(2)

= �

3mu

3

u

3

u

4

r

p

u

4

u

4

� 1

�

1�

2m

r

�

1=2

;

R

(1)(4)(1)(3)

=

3mu

1

u

3

r

2

p

u

4

u

4

� 1

�

1�

2m

r

�

�1=2

;

R

(2)(4)(1)(2)

= 0; R

(2)(4)(1)(3)

= 0;

R

(3)(4)(1)(2)

= 0; R

(3)(4)(1)(3)

= 0: (7)

Using (6), (7) in (1) we �nd suh nonzero omponents of

the gravitomagneti �eld:

B

(1)

(2)

= B

(2)

(1)

=

3mu

k

u

?

r

3

p

u

4

u

4

� 1

�

1�

2m

r

�

�1=2

;

B

(1)

(3)

= B

(3)

(1)

=

3mu

2

?

u

4

r

3

p

u

4

u

4

� 1

�

1�

2m

r

�

1=2

; (8)

where u

k

= u

1

is the radial omponent of the 4{veloity

and u

?

= ru

3

is the tangential omponent. By the on-

dition u

�

u

�

= 1 we take into aount that in (8)

p

u

4

u

4

� 1 =

"

u

2

?

+

�

1�

2m

r

�

�1

u

2

k

#

1=2

: (9)

We stress that relations (8) are valid for any veloity of

an observer, inluding the ultrarelativisti veloity.

It is easy to see that the omponents of the gravit-

omagneti �eld (8) are nonzero only if u

?

6= 0, i.e. if

the motion of an observer is nonradial. A similar prop-

erty takes plae in eletrodynamis for the magneti �eld

of a moving harge. However, it is neessary to remem-

ber that on the level of the analogies the tensor B

(i)(k)

does not orrespond to the vetor of the magneti �eld

in eletrodynamis but to the �rst derivatives from this

vetor with respet to the spatial oordinates (likewise,

as E

(i)(k)

orresponds to the gradient of the vetor of

the eletri �eld [5℄). Therefore, the main dependene of

omponents (8) from the radial oordinate is 1=r

3

and

not 1=r

2

.

The values of omponents (8) essentially depend on

the veloity of an observer: for the low veloity, when

ju

k

j � 1; ju

?

j � 1; u

4

� 1, the fator m=r

3

in (8) is

multiplied by the orresponding small quantities, while

for the ultrarelativisti veloity, when ju

k

j � 1; ju

?

j �

1; u

4

� 1, this fator is multiplied by the large quanti-

ties. Moreover, sine u

k

; u

?

; u

4

are proportional to the

relativisti Lorentz {fator, aording to (8) the om-

ponents B

(1)

(2)

= B

(2)

(1)

are proportional to the {fator

and the omponents B

(1)

(3)

= B

(3)

(1)

are proportional to the
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square of the {fator. (It is known that in eletrodynam-

is the omponents of the vetor of the magneti �eld for

an eletri harge movingwith the ultrarelativisti velo-

ity are proportional to the Lorentz {fator).

For further analysis of the gravitomagneti ompo-

nents of the gravitational �eld let us ompare (8) with

the gravitoeletri omponents of this �eld. For this pur-

pose we shall onsider the omponents E

(i)

(k)

using (2). In-

serting (3) into (4) and taking into aount (5) after the

orresponding alulations we obtain the nonzero om-

ponents E

(i)

(k)

:

E

(1)

(1)

=

m

r

3

(1 + 3u

2

?

);

E

(2)

(2)

= �

2m

r

3

+

3m

r

3

u

2

?

u

4

u

4

� 1

;

E

(2)

(3)

= E

(3)

(2)

= �

3m

r

3

u

k

u

?

u

4

u

4

u

4

� 1

;

E

(3)

(3)

=

m

r

3

�

3m

r

3

u

2

?

u

4

u

4

u

4

u

4

� 1

: (10)

One an see that for the low veloity all omponents (10)

have the order m=r

3

, i.e. are muh larger than the om-

ponents B

(i)

(k)

from (8) for this veloity. (It aords with

the known fat that the tensor of the gravitoeletri �eld

E

(i)

(k)

, in ontrast with B

(i)

(k)

, has the Newtonian limit [5℄).

While for the ultrarelativisti veloity aording to (10)

E

(1)

(1)

�

3m

r

3



2

; E

(2)

(2)

�

3m

r

3

;

E

(2)

(3)

= E

(3)

(2)

�

3m

r

3

; E

(3)

(3)

�

3m

r

3



2

: (11)

That is for this veloity the maximumvalues of the om-

ponents B

(i)

(k)

in (8) and E

(i)

(k)

in (10) have the same order,

namely, 3

2

m=r

3

.

Thus, if for the low veloity the gravitoeletri �eld

prevails as ompared with the gravitomagneti �eld, for

the ultrarelativisti veloity both the omponents of the

gravitational �eld are omparable. For the onrete es-

timates we shall onsider the equations whih demon-

strate the inuene of B

(i)

(k)

and E

(i)

(k)

. Conerning E

(i)

(k)

it

is known that this tensor is presented in the equation of

the geodesi deviation [5℄

D

2

l

(i)

ds

2

= l

(k)

E

(i)

(k)

; (12)

where s is the natural parameter, l

(i)

is the vetor of the

deviation of the two lose geodesi lines. Just the devi-

ation equation is used in [2℄ for the analysis of the tidal

fores ating on an observer falling into a blak hole. A-

ording to (12) for the tidal aeleration a

(i)

tidal

we have

a

(i)

tidal

= l

(k)

E

(i)

(k)

(13)

(partiularly, in the Newtonian approximationE

(i)

(k)

is the

"Newtonian tidal matrix" [5℄). However, in Ref. [2℄, Se.

31.2 the analysis of the tidal fores was restrited to the

radial motion (u

?

= 0) when from (10) we have

E

(1)

(1)

=

m

r

3

; E

(2)

(2)

= �

2m

r

3

;

E

(2)

(3)

= E

(3)

(2)

= 0; E

(3)

(3)

=

m

r

3

: (14)

Relations (14) are valid for any veloity of the radial mo-

tion. Even if u

k

is ultrarelativisti, the inuene of the

Lorentz {fator is absent in (14). So, the radial motion

is partiular in the sense of this ase does not disover

the speial features of the gravitoeletri interation and

the tidal fores just for the ultrarelativisti veloity. If

u

?

6= 0 these features are lear from (10), (12). There-

fore, the analysis of the tidal fores ating on an observer

falling into a blak hole from Ref. [2℄ may be supple-

mented. The main point, as we see, is the onlusion that

the tidal fores essentially grow not only near the hori-

zon surfae but far from this surfae also if the veloity

of the nonradial fall of an observer is ultrarelativisti.

The results of Ref. [6℄ demonstrate that aording to

the Mathisson{Papapetrou equations in the omoving

frame of referene just the gravitomagneti omponents

of the gravitational �eld at on the spin of a test parti-

le. This ation has the form of the gravitational spin{

orbit interation. If for the observer omoving with the

spinning test partile in a Shwarzshild �eld the tetrad

omponents are hosen as we desribed on the beginning

of this Setion and if the spin is direted along the spa-

tial diretion with the tetrad index (1), then aording

to [6℄ and (7), (8) for the 3{vetor of the spin{orbit a-

eleration a

(i)

we have

a

(i)

=

s

(1)

M

B

(1)

(i)

; (15)

where s

(1)

= onst is the only nonzero omponent of

the spin 4{vetor, M is the mass of the spinning test

partile. (Aording to (8) the nonzero omponents in

(15) are B

(1)

(2)

and B

(1)

(3)

). Though expressions (13), (15)

are similar their meaning is di�erent. If aeleration (13)

is the measure of the relative deviation of the two lose

geodesi lines, then aeleration (15) is the measure of

the nongeodesi properties of the one world line, namely,

the world line of the spinning test partile [6℄. It be-

ing known that this nongeodesity grows as 

2

orre-

spondingly as the omponents B

(i)

(k)

in (8) depend on the

Lorentz {fator. Though in the ultrarelativisti region,

as ws stressed above, the value of aeleration (13) grows

orrespondingly also, the nature of the fores that ause
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aelerations (13) and (15) is di�erent. Aording to the

analogy with eletromagnetism one an say that ael-

eration (13) is similar to the aeleration that is aused

by the di�erene of the values of the eletri �eld in the

two lose spatial points while aeleration (15) is similar

to the usual spin{orbit interation [7℄. Let alone this fat

that aeleration (13) does not disappear in the Newto-

nian limit while (15) is the relativisti e�et.

The gravitomagneti omponents in the Mathisson{

Papapetrou equations are distinguished in the obvious

form in [8℄. However, the orresponding analysis of the

inuene of these omponents on the behaviour of a spin-

ning test partile just for the ultrarelativisti veloity

was not arryed out in [8℄. From the other side, though

in [5℄ one an see the relativisti Lorentz {fator in the

expressions for the gravitoeletri and gravitomagneti

omponents of the gravitational �eld, in the ontext of

the Mathisson{Papapetrou equations these expressions

were not onsidered .

Obviously, if we pass from the onrete frame of ref-

erene to other one, the gravitoeletri and gravitomag-

neti omponents are mixed aording to the relations

desribing this passing. However, if the frame of refer-

ene is �xed (in our ase it is the omoving frame of

referene), then the omponents B

(i)

(k)

di�er from E

(i)

(k)

aording to (1), (2).

Sine in the frame of referene omoving with the spin-

ning test partile just the gravitomagneti omponents

of the gravitational �eld determine the nongeodesi mo-

tion of this partile, let us onsider these omponents in

an interesting ase of motion.

III. THE GRAVITOMAGNETIC FIELD IN THE

FRAME OF REFERENCE COMOVING WITH

THE SPINNING TEST PARTICLE ON THE

ULTRARELATIVISTIC CIRCULAR ORBITS

SUSPENDING OVER A SCHWARZSCHILD'S

SOURCE

It is known [9,10℄ that aording to the Mathisson{

Papapetrou equations the important onsequene of the

gravitational ultrarelativisti spin{orbit interation is

the existene of the essentially nongeodesi irular or-

bits of a spinning test partile in a Shwarzshild �eld.

Here we shall onsider the omponents of the gravito-

magneti �eld from the point of view of the observer

omoving with the partile on these orbits. The nonzero

omponents of the omoving tetrads are [11℄

�
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�
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= u

3

u
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4
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�
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4
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;

�

1
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= u

3

�

g
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g
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u

4

u

4

� 1

�

1=2

"

1 +

g

11

g
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�

S

r

S

�

�

2

#

�1=2

;

�

2

(3)

= �

S

r

S

�

�

1

(3)

; �

3

(4)

= u

3

; �

4

(4)

= u

4

; (16)

where S

r

, S

�

are the omponents of the spin 3{vetor

onneted by the relation

S

r

�

1�

3m

r

�

+ S

�

os �

r sin �

= 0: (17)

Spatial diretion (1) in (16) is onneted with the spin

orientation and diretion (2) oinides with the diretion

of the partile's motion on the irular orbit. For the

alulation of the gravitomagneti omponents B

(i)

(k)

we

shall use general relations (1), (4) and the generalization

of expressions (5) for any values of the angle �:

R

1212

=

m

r � 2m

;

R

1313

=

m

r � 2m

sin

2

�;

R

2323

= �2mr sin

2

�;

R

4141

=

2m

r

3

;

R

4242

= �

m

r

�

1�

2m

r

�

;

R

4343

= �

m

r

�

1�

2m

r

�

sin

2

�: (18)

Inserting (17) into (4) and using this result in (1) we �nd

the nonzero omponents of B

(i)

(k)

:

B

(1)

(1)

= �B

(3)

(3)

= �R

(1)(4)(2)(3)

=

m

r

3

u

?

u

4

os � ;

B

(1)

(3)

= B

(3)

(1)

= �R

(3)(4)(2)(3)

=

�

m

r

3

u

?

u

4

�

4�

9m

r

��

1�

2m

r

�

�1=2

sin � : (19)

Beause the veloity of the spinning test partile on

the suspending irular orbits in a Shwarzshild �eld is

ultrarelativisti [9,10℄, all omponents (19) are propor-

tional to the square of the relativisti Lorentz {fator.

So, from the point of view of the observer omoving

with the partile the gravitomagneti omponents (19)
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have the large values. This fat demonstrate the essen-

tial di�erene of the suspending ultrarelativisti irular

orbits of the spinning test partile in a Shwarzshild �eld

from the so{alled Weyssenho� orbits in the Minkowski

spaetime [12℄. In the �rst ase we see the physial rea-

son hanging the trajetory of the spinning partile as

ompared with the orresponding trajetory of the non-

spinning partile, namely, this reason is the gravitational

spin{orbit interation. From the point of view of the o-

moving observer this interation is determined just by

gravitomagneti omponents (19). Indeed, aording to

Ref. [11℄ and (19) the nongeodesi spin{orbit aeleration

a

(i)

of the partile is determined by the expressions

a

(1)

=

s

(1)

M

B

(1)

(1)

;

a

(2)

= 0;

a

(3)

=

1

2

s

(1)

M

B

(1)

(3)

: (20)

While in the seond ase the Weyssenho� irular orbits

in the Minkowski spaetime have the kinemati nature

onneted with the properties of the enter of mass in

the relativisti mehanis [13℄ and the existene of these

orbits is not onneted with any interation.

We point out that Eq. (20) is similar to Eq. (15) with

the di�erene that Eq. (15) onerns any equatorial mo-

tion while Eq. (20) is dedued for the irular nonequa-

torial orbits. Besides that Eq. (15) is written aurate to

the linear spin terms while Eq. (20) is valid when all the

spin terms are taken into aount.

IV. CONCLUSION

The statement that the gravitomagneti omponents

of a gravitational �eld are small provided the soure of

this �eld is not moving with the large veloity is pre-

sented in Ref. [2℄, Se. 1.6. The above alulations de-

velop this statement and let us estimate quantatively the

inuene of the relativisti Lorentz {fator on the values

of the gravitomagneti omponents. It is important that

relations (8), (15) indiate obviously the objet whih re-

sponds diretly to the gravitomagneti �eld, namely, the

spinning test partile (for any value of its veloity rela-

tive to the soure of the Shwarzshild �eld). We stress

that in [2℄ the deviation of the spinning test partile

from the geodesi trajetory is not onneted with the

ation of the gravitomagneti �eld existing in the frame

of referene omoving with this partile. On the ontrary,

in Ref. [2℄, exerise 40.8 the reason for this deviation is

named the tidal fores, and in [2℄, Se. 1.6 these fores

are onsidered only as onneted with the gravitoeletri

omponents of a gravitational �eld.

Relations (10) determine the dependene of the grav-

itoeletri omponents on the soure veloity, and to-

gether (8) and (10) an be onsidered as the similarities

of the known eletrodynamial relations desribing the

eletromagneti �eld of a moving eletri harge. Com-

paring (8) and (10) let us estimate the di�erene between

the gravitomagneti and gravitoeletri omponents of a

gravitational �eld for any veloity of its Shwarzshild

soure. If for the low veloity the gravitomagneti om-

ponents are muh less than the gravitoeletri ompo-

nents, then for the ultrarelativisti veloity they beome

omparable. The orresponding relations are valid for the

physial e�ets aused by these omponents. For exam-

ple, for a model partile with the mass and spin that are

equal to the mass and spin of an eletron and with the

linear size about 10

�13

m the ratio ja

spin�orb

j=ja

tidal

j

aording to (13), (15) is equal to � 10

3

for the ultra-

relativisti veloity while for the low veloity this ratio

is muh less then 1. (For the alulation of this ratio it

is neessary to insert into (13) and (15) the numerial

values of the orresponding quantities in an units where

G =  = 1 beause all the relations above are written in

these units).

The other diret example demonstrating the inrease

of the inuene of the gravitomagneti �eld on a spinning

test partile in the ultrarelativisti ase is the suspend-

ing irular orbits in a Shwarzshild �eld from Se. III.

Further studies will disover the inuene of the gravit-

omagneti ultrarelativisti interation on the behaviour

of a real quantum partile with a spin in a gravitational

�eld.
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Dosl�d�eno �rav�tomagnetn� komponenti �rav�ta��nogo pol� v tetradnomu predstavlenn� B

(i)

(k)

z toqki

zoru sposter�gaqa, �ki� ruhat~s� v�dnosno xvarx�l~d�vs~kogo d�erela, � provedeno Ýh z�stavlenn� z gra-

v�toelektriqnimi komponentami E

(i)

(k)

. Oder�ano zagal~n� virazi ih komponent bez obme�en~ na veliqinu

xvidkosti sposter�gaqa. Z'�sovano vpliv rel�tiv�sts~kogo {faktora Lorena na �rav�tomagnetn� ta �ra-

v�toelektriqn� komponenti v ul~trarel�tiv�stiqn�� oblast� xvidkosti. Ustanovleno, wo v �� oblast�

maksimal~n� znaqenn� B

(i)

(k)

� E

(i)

(k)

 odnopor�dkovimi, tod� �k pri nevelik�� xvidkost� komponenti E

(i)

(k)

dom�nu�t~ nad B

(i)

(k)

. P�dkresleno, wo u vlasn�� sistem� v�dl�ku probnoÝ qastinki z� sp�nom same �rav�tomag-

netna vzamod�� viznaqa v�dhilenn� ÝÝ ruhu v�d geodez��nogo.
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