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The 
lassi
al{to{quantum dimensional 
rossover in a wide 
lass of systems with quen
hed impu-

rities and inhomogeneities is investigated within the framework of the renormalization group. The

one{loop renormalization group equations are derived with the help of a double (�; Æ){expansion,

where the small parameter Æ des
ribes the quantum e�e
ts and � = 2� � d is the usual expan-

sion parameter (0 < � � 2; d is the spatial dimensionality). The 
lassi
al{to{quantum 
rossover

phenomenon is established and the 
riti
al exponents are 
al
ulated to �rst order in � and Æ. The

analogy between this approa
h and that of double (�; Æ){expansion in treating the extended impu-

rities problem is dis
ussed.
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I. INTRODUCTION

The in
uen
e of the quantum 
u
tuations on the 
rit-

i
al behaviour at extremely low temperatures was estab-

lished in early pioneering works of Re
hester [1℄, Pfeuty

and Elliott [2℄, Young [3℄, and Hertz [4℄. In parti
ular,

the 
lassi
al{to{quantum dimensional 
rossover (CQC)

of the 
riti
al behaviour at zero temperature was dis-


overed [2, 3℄ and 
omprehensively des
ribed for a num-

ber of systems [4℄. The CQC 
onsists of a 
hange of the

spatial dimensionality d to an e�e
tive dimensionality

D = (d+ z), where z is the dynami
al 
riti
al exponent

[4, 5℄. For any temperature T > 0, the asymptoti
 
riti-


al behaviour is 
lassi
al, whereas for T ! 0, the width

of the 
lassi
al Ginzburg region (see, e.g., Ref. [5℄) tends

to zero, and at T = 0 the 
riti
al behaviour is entirely

a quantum phenomenon. A

ording to CQC [2{4℄, the

quantum 
riti
al behaviour at T = 0 in a d{dimensional

quantum system is equivalent to the usual 
riti
al be-

haviour [5℄ in a D = (d + z){dimensional 
lassi
al sys-

tem. An ex
eption is the quantum 
riti
al behaviour of

intera
ting real bosons [6℄.

The e�e
t of quen
hed disorder of randomly dis-

tributed quen
hed impurities (and/or inhomogeneities)

[7, 8℄ on the quantum 
riti
al behaviour at T = 0 of a

wide 
lass of quantum models was investigated by Ko-

rut
heva and Uzunov [9℄; see also Ref. [10℄. In 
ontrast

to pure systems, where the CQC produ
es a stable zero{

temperature (quantum) 
riti
al behaviour [4℄, standard

renormalization group (RG) studies [9, 10℄ performed

within the usual �{expansion have shown that the zero{

temperature 
riti
al behaviour in disordered systems ex-

hibits [9, 10℄ an instability with respe
t to the quen
hed

disorder. This disorder{indu
ed instability has been de-

du
ed from the la
k of stable �xed points (FPs) of the

RG equations for spatial dimensionalities d < d

U

, where

d

U

is the upper borderline dimensionality. An attempt

of a treatment of this instability in parti
ular models

was made [11{13℄ with the help of double �{expansions

known from the problem for extended impurities [14, 15℄.

It has been 
laimed [14, 15℄ on the basis of these double

�{expansions that a stable quantum 
riti
al behaviour in

disordered systems may o

ur and this point requires a

spe
ial attention. Reviews of the present status of the

theory of quantum 
riti
al phenomena in pure and im-

pure systems have been re
ently given in Refs. [5, 16{18℄.

In this paper we shall investigate the quantum 
rit-

i
al behaviour of impure systems with the help of the

renormalization group equations in the one{loop approx-

imation. By using the double (�; Æ){expansion previously

introdu
ed for thin �lms [19, 20℄, whi
h is quite simi-

lar to the original Dorogovtsev double �{expansion [14℄,

we shall demonstrate a spe
ial form of CQC for a wide


lass of e�e
tive Bose models of systems with short{range

random impurities with a Gaussian distribution. The dy-

nami
al and stati
 
riti
al exponents will be 
al
ulated

to �rst order in � and Æ. The stability of RG FPs will be

dis
ussed and a stable quantum 
riti
al behaviour will

be revealed.

In Se
tion II we shortly represent the models of 
on-

sideration. In Se
tion III we generalize the RG analysis

of Korut
heva and Uzunov [9℄ with the help of a double

(�; Æ){expansion within the framework of the one-loop

RG approximation. For our aims we shall apply the so{


alled Æ{integration [19, 20℄. In Se
tion IV we summarize

and dis
uss our results.

II. MODEL

We shall use the HamiltonianH (= �H=T; k

B

= 1) of

the general form [9℄

H = H

0

+H

4

+H

i

; (1)

where
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H

0

=

X

�;q

[f(q) � r℄ 

�

�

(q) 

�

(q) (2)

is the free part,

H

4

= �

uT

2V

X

��;q

1

;q

2

;q

3

 

�

�

(q

1

) 

�

�

(q

2

) 

�

(q

3

) 

�

(q

1

+ q

2

� q

3

)

(3)

is the usual  

4

�intera
tion term, and

H

i

= �V

�1=2

X

�;!

l

;k

1

;k

2

�(k

1

� k

2

) 

�

�

(!

l

;k

1

) 

�

(!

l

;k

2

)

(4)

is the term des
ribing quen
hed impurities. In Eqs. (2){

(4),  (q) = f 

�

; � = 1; :::; n=2g is the 
omplex 
u
-

tuation (order parameter) �eld whi
h depends on the

frequen
y{momentum ve
tor q = (!

l

;k), where !

l

=

2�lT with �h = 1 and l = (0;�1; :::) is the (Bose) Mat-

subara frequen
y, and k = fk

i

= 2�n

i

=L

i

; n

i

= 0;�1; ::g

is the d-dimensional wave ve
tor. The volume V of the

d{dimensional system is V = (L

1

:::L

d

), r = r

0

(T � T




),

where T




� 0 is the bare (unrenormalized) 
riti
al tem-

perature, and u > 0 is the intera
tion 
onstant.

As the Hamiltonian H given by Eqs. (1){(4) is sup-

posed to des
ribe quasima
ros
opi
 quantum and 
lassi-


al 
u
tuations we shall 
onsider small wave ve
tors k,

i.e., we shall apply the long{wavelength approximation

ka� 1, where k = jkj and a is the latti
e 
onstant (or,

the mean interparti
le distan
e in non
rystalline bod-

ies). Thus we shall 
onveniently 
hoose an upper mo-

mentum 
uto� �, so that 0 < k � �� (�=a). By a suit-

able 
hoi
e of the units we set � = 1. The frequen
y !

l

has no natural 
uto� but the latter 
an be always intro-

du
ed (j!

l

j < �

!

). Note, that only the small frequen
y

(j!

l

j � 0) behaviour of the modes  (q) is relevant to the


riti
al behaviour in both 
lassi
al (!

l

� 0) and quan-

tum (T ! 0; !

l

6= 0) regimes. We shall use the 
uto� �

!

only in 
ases where the frequen
y integrals exhibit an

unessential ultraviolet divergen
e in the large frequen
y

limit (!

l

!1).

In Eq. (2),

f(q) = �

j !

l

j

m

k

m

0

� k

�

; (5)

where m, m

0

and � are positive exponents. Eq. (5) rep-

resents a general form of the fun
tion f(q) whi
h stands

for a number of e�e
tive Bose models of real sysems; see,

e.g., Refs. [4, 5, 9, 16℄. The exponent � = 2 
orresponds

to short{range for
es whereas 0 < � < 2 
orresponds to

long-range intera
tions (see, e.g., Refs. [5, 21, 22℄). The

values of the exponents m andm

0

depend on the parti
u-

lar systems [4, 5, 16℄, for example, itinerant antiferromag-

nets (m = 1;m

0

� 0), super
ondu
tors (m = 1;m

0

= 0),


lean itinerant ferromagnets (m = m

0

= 1), dirty itin-

erant ferromagnets (m = 1;m

0

= 2), ex
iton systems

(m = 1 or 2;m

0

= 0). The form f(q) = �(i!

l

� k

2

)

whi
h also des
ribes a number of interesting systems [5,

16℄, in parti
ular, dilute Bose gases, will not be 
onsid-

ered in this paper. The last 
lass of systems exhibits a

quite unusual quantum 
riti
al behaviour as a result of a

great simpli�
ation of the RG equations [6℄ in the limit

T ! 0; see also the review [5, 17℄.

In Eq. (4), �(k) is a random fun
tion whi
h obeys the

Gaussian distribution [:::℄

R

given by

h

�

�

(k)�(k

0

)

i

R

= �Æ

k;k

0

; (6)

where � is a parameter des
ribing the disorder e�e
ts

(short{range random 
orrelations [5, 7{9℄). The bare (un-

renormalized) Green fun
tion G

0

= �hj 

�

(q)j

2

i is given

by

G

0

(q) =

1

f(q) � r

: (7)

III. RG ANALYSIS

A. RG equations

The Wilson{Fisher RG re
ursion relations [9℄ 
an be

derived in a variant of the initial res
aling pro
edure for

whi
h the frequen
y !

l

is not s
aled, the initial s
aling

of the wave ve
tor is given by k = k

0

b

�1

, where b > 1

is the res
aling number, and the �eld 
omponents  

�

(q)

obey the s
aling relation  

�

(!

l

;kb

�1

) = �(b) 

�

(!

l

;k).

The RG re
ursion relations to one{loop approximation


an be written in the general form [9℄

f

0

(q) = �

2

(b)[f(!

l

; kb

�1

) + �K(!

l

)℄ ; (8)

r

0

= �

2

(b)

�

r +

(n+ 2)

2

uI

1

(r)��J

1

(r)

�

; (9)

(uT )

0

= �

4

(b)b

�d

�

uT �

(n+ 8)

2

u

2

TI

2

(r) (10)

+ 6�(uT )J

2

(r)℄ ;

�

0

= �

4

(b)b

�d

[� + 4�

2

J

2

(r)� (n+ 2)�uI

2

(r)℄ ; (11)

where

K(!

l

) =

Z

0

d

d

k

(2�)

d

(

[f(0; k)� r℄

�1

� [f(!

l

; k)� r℄

�1

)

;

(12)
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I

1

(r) = �T

X

!

l

Z

0

d

d

k

(2�)

d

G

0

(q) ; (13)

I

2

(r) = �

�I

1

(r)

�r

= T

X

!

l

Z

0

d

d

k

(2�)

d

G

2

0

(q) ; (14)

and

J

i

(r) =

Z

0

d

d

k

(2�)

d

(k

�

+ r)

�i

; i = 1; 2 : (15)

The prime (

0

) in the integrals denotes an integration in

the shell b

�1

< k < 1 (� = 1). The s
aling fa
tor �(b) is


hosen in the form �(b) = b

1��=2

, where �=2 = (1��=2)

is the anomalous dimension of the �eld  

�

(q). Note, that

the relation (�=2) = 1 � (�=2) is exa
t [21, 22℄ for all

0 < � < 2 (long-range intera
tions), and the result � = 0

for � = 2 is valid only in the one{loop order of the theory


onsidered here. The sums (13) and (14) over !

l

are di-

vergent form � 1. In order to in
lude values ofm 2 (0; 1℄

we must introdu
e an upper frequen
y 
uto� �

!

. The

latter is irrelevant to models where m > 1. For m < 1,

the �nite 
uto� �

!

leads to a modi�
ation of the RG

analysis but the �nal results for m > 1 and 0 < m < 1

are the same.

The analysis [9℄ of the RG re
ursion relations (8){(11)

has been performed within the � = (2� � d){expansion

in two limiting 
ases:

(i) The 
lassi
al 
ase (�

T

� �) when the de Broglie

thermal wavelength �

T

= �

(0)

T

=T

(1=z

0

)

des
ribed by the

mean �eld value z

0

of the dynami
al 
riti
al exponent z

[17℄ is mu
h smaller than the (bare) 
orrelation length

� = �

0

=jT � T




j

1=�

; �

(0)

T

and �

0

are s
aling amplitudes.

(ii) The quantum 
ase (�

T

� �) whi
h is possible for

T




= 0 and T ! 0.

The analysis of the 
lassi
al asymptote (i) yields the

usual 
lassi
al 
riti
al behaviour governed by the 
lassi-


al 
u
tuation modes  

�

(0;k). In addition to this trivial

result one reveals [9℄ the 
riti
al dynami
s of the sys-

tems whi
h results from purely quantum dynami
al phe-

nomena (for the 
orresponding values of the dynami
al


riti
al exponent z 
al
ulated to one{loop order for both


ases (i) and (ii), see Ref. [9℄; for 
al
ulations of z in

parti
ular 
ases, see Refs. [10{13℄).

It has been for a �rst time demonstrated in Ref. [9℄,

that the asymptote (ii) reveals a spe
ial type of in-

stability of the quantum 
riti
al behaviour at T = 0.

In 
ontrast to pure systems (� = 0, Ref. [4℄), where

CQC (d ! d + z) manifests itself, the quen
hed disor-

der (� > 0) in impure systems enhan
es the 
lassi
al


u
tuations up to an upper borderline dimensionality

d

U

= 2� and CQC 
annot o

ur [9℄. The same instabil-

ity was noted and extensively investigated in more re
ent

works [10, 11{13℄.

The summation over the frequen
y !

l

in Eqs. (13) and

(14) yields trans
endental fun
tions whi
h should be fur-

ther integrated over the wave ve
tor k. The presen
e of

trans
edental fun
tions in Eqs. (8){(11) leads to a great


ompli
ation of the RG analysis in the general 
ase of

any ratio 0 < (�

T

=�) < 1. In result the standard anal-

ysis [9℄ 
an be performed with analyti
al means only in

the asymptoti
 
ases (i) and (ii).Therefore the entire in-

vestigation of the problem requires another approa
h [19,

20℄, whi
h will be shortly introdu
ed in the next Se
tion.

B. RG equations from a Æ{integration

In the remainder of this paper we shall present an-

other variant of the RG equations (8){(11) by using a

double (�;

�

Æ)-expansion, where

�

Æ = z

0

Æ; z

0

= (�+m

0

)=m

[4℄ is the mean �eld value of the dynami
al exponent

z, and 0 � Æ � 1. Furthermore, we shall perform the

main steps of the RG analysis in terms of the small pa-

rameters � = (2� � d) and

�

Æ. In fa
t, the derivation of

RG equations 
an be performed with the help of a sin-

gle expansion parameter ~� = 2� � d �

�

Æ, related to an

e�e
tive upper dimensionality d

eff

= 2� �

�

Æ [20℄. But

at a next stage of 
onsideration, when we impose the

requirement for a s
aling invariant form of the RG equa-

tions the single ~�{expansion should be split to the double

(�;

�

Æ){expansion.

The quantum e�e
ts will be taken into a

ount by the

�

Æ{dependen
e of the relevant physi
al quantities. An at-

tempt along this dire
tion of resear
h has been made

for the parti
ular 
ases of Bose systems [11, 12℄, with a

!

l

{dependen
e of type f(!

l

; 0) = �i!

l

, and for impure

quantum antiferromagnets [13℄, where f(!

l

; 0) = j!

l

j.

We shall follow the method of Æ{integration presented in

Ref. [20℄ applied to thin �lms.

The main idea of the Æ{integration [19, 20℄ is to 
hange

the usual rule

T

X

!

l

T!0

�!

Z

1

0

d!

2�

(16)

by

T

X

!

l

! T

1�Æ

Z

d

Æ

!

(2�)

Æ

(17)

Advantages and disadvantages of the approximate rule

(17) were widely dis
ussed in Ref. [20℄. In parti
ular, it

has been shown that for all intermediate 
ases 0 < Æ < 1,

the Æ | integration gives in
orre
t values of FP 
oordi-

nates but universal quantities su
h as the 
riti
al expo-

nents 
an be reliably 
al
ulated. In the limiting 
ases

Æ ! 0 (
lassi
al) and (Æ ! 1) (quantum), one obtains an

entirely 
orre
t des
ription. For models 
orresponding to

m � 1 one should introdu
e in Eqs. (16){(17) an upper

frequen
y 
uto� �

!

< 1. Below we shall 
onsider the


ase m > 1 where the �nite 
uto� �

!

is not ne
essary.

The 
ase m � 1 will be brie
y dis
ussed in Se
tion IV.

Using the rule (17) in Eqs. (13) and (14) and perform-

ing 
ertain standard 
al
ulations, the Eqs. (8){(11) yield
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!

0

l

= b

z

0

!

l

"

1 +

1

m

Æ

m

0

;0

�

 

b

�

Æ

� 1

�

Æ

!#

; (18)

r

0

= b

�

�

r +

(n+ 2)

2

v

�

1� b

��

�

�

m

m � Æ

�

� rlnb

�

� �

"

1� b

��+

�

Æ

� �

�

Æ

� r

 

b

�

Æ

� 1

�

Æ

!#)

; (19)

v

0

= b

2��d

�

�

T

T

0

�

Æ

(

v �

(n+ 8)

2

v

2

lnb + 6�v

 

b

�

Æ

� 1

�

Æ

!)

; (20)

and

�

0

= b

2��d

(

� � (n+ 2)�vlnb + 4�

2

 

b

�

Æ

� 1

�

Æ

!)

; (21)

where � = K

d

� with K

d

= 2

1�d

�

�d=2

=�(d=2), and

v = T

1�Æ

au with a = K

d

K

Æ

�(Æ=m)�(2� Æ=m)=m. The

Eqs. (18){(21) are valid within an ~� = (2��d�

�

Æ) expan-

sion, where the perturbation integrals are 
al
ulated at

the upper borderline dimensionality d

U

= (2� �

�

Æ). It is

obvious that Eqs. (18){(21) take a s
aling invariant form

provided we assume that (b

�

Æ

� 1) �

�

Ælnb, i.e., for

�

Æ � 1.

This means that we must substitute the single expansion

parameter ~� with two ones: � = (2� � d) and

�

Æ.

Eq. (18) for !

l


an be written for the temperature:

T

0

= b

z(�)

T ; (22)

where

z(�) = z

0

+

�

m

Æ

m

0

;0

: (23)

The FP value �

�

of � yields the dynami
al 
riti
al ex-

ponent: z = z(�

�

). Obviously, the mean �eld value

z

0

= (� +m

0

)=m will a
quire (�; Æ){
orre
tions only for

�

�

6= 0, i.e., for random FPs (RFP). At the 
lassi
al

asymptote (Æ ! 0), the dynami
al exponent z(�

�

) was


al
ulated in Ref. [9℄. Here the 
al
ulation 
an be gener-

alized for Æ > 0.

It is 
onvenient to perform our further analysis with

the help of the 
orresponding di�erential RG equations

(see, e.g., Ref. [5, 11{13℄). From Eqs. (19){(23) one 
an

easily obtain

dT (l)

dl

= z(�)T (l) ; (24)

dr(l)

dl

= �r(l) +

(n+ 2)

2

v(l)

�

m

m � Æ

� r(l)

�

� �(l)[1� r(l)℄ ; (25)

dv(l)

dl

= [2� � d� Æz(�)℄v(l)

�

(n + 8)

2

v(l)

2

+ 6v(l)�(l) ; (26)

d�(l)

dl

= (2� � d)�(l)� (n+ 2)v(l)�(l) + 4�(l)

2

; (27)

In Eq. (26) one 
an safely ignore a small term Æ�v � Æ�

2

and substitute z(�) with z

0

.

C. Fixed points and 
riti
al exponents

Sin
e z > 0, Eq. (24) has two FPs: T

�

C

=1 (
lassi
al)

and T

�

Q

= 0 (quantum). Within the present RG s
heme

the 
lassi
al FP (T

�

C

= 1) 
orresponds to the 
lassi-


al 
riti
al behaviour at T > 0, where the frequen
ies

!

l

are irrelevant to the asymptoti
 (
riti
al) thermody-

nami
s at T ! T




> 0. In this 
ase, Eq. (18) indi
ates

that the su

essive RG transformations lead to !

l

!1

for all !

l

> 0. Thus the perturbation 
ontributions from

the non
riti
al modes  

�

(!

l

> 0;k) be
ome irrelevant

and the 
onsequen
es of this 
ir
umstan
e is des
ribed

by FPs of type T

�

C

=1. Within our approa
h this 
las-

si
al 
riti
al behaviour is des
ribed by Eqs. (18){(21) or,

equivalently, by Eqs. (24){(27) in the limit Æ ! 0. The

quantum FPs (T

�

Q

= 0) 
orrespond to the limit Æ ! 1.

The Eqs. (24) and (25) 
onstitute T and r as the relevant

thermodynami
 parameters.

The Eqs. (26){(27) give four FPs:

(1) Gaussian (GFP)

v

G

= �

G

= 0 ; (28)

(2) Unphysi
al (UFP)

v

U

= 0 ; �

U

= �

�

4

; (29)

(3) Heisenberg (HFP)

v

H

=

2(��

�

Æ)

(n + 8)

; �

H

= 0 ; (30)

(4) Random (RFP)
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v

R

=

�+ 2

�

Æ

2(n � 1)

; �

R

=

(4� n)�+ 2(n+ 2)

�

Æ

8(n� 1)

: (31)

The Eqs. (31) are valid for n > 1. For

�

Æ = 0, all these

FPs are known from Refs. [7, 9℄. In some 
ases the FPs

(1){(4) will be shortly referred to as G, U, H and R,

respe
tively. Here we shall 
onsider the quantum e�e
ts

represented by the

�

Æ{dependen
e of the FPs and related

physi
al quantities.

The Eq. (6) de�nes � = K

d

� as a positive parameter

and, hen
e, the UFP does not present a pra
ti
al interest

for � > 0; for � < 0 UFP is physi
al but unstable [7, 9℄.

For 2� < d < 2(�+

�

Æ) the UFP has an instability towards

� whereas the same FP has a double instability (towards

both v and �) for d > 2(� +

�

Æ). We shall 
onsider G, H,

and R in more details.

The stability exponents of GFP are �

(G)

v

= � �

�

Æ and

�

(G)

�

= �. Thus GFP is stable only for d > 2�. The sta-

bility exponents of H are

�

(H)

v

=

�

Æ � � ; (32)

and

�

(H)

�

=

(4� n)�+ 2(n + 2)

�

Æ

(n+ 8)

: (33)

The stability exponents �

(R)

1;2

of the RFP are given by

�

(R)

1;2

= �

3n�+ 2(4� n)

�

Æ �

p

Q

8(n� 1)

; (34)

where

Q = (5n � 8)

2

�

2

� 12(5n

2

+ 8n� 16)

�

Æ

2

� 12(n

2

+ 12n� 16)�

�

Æ : (35)

For Q � 0, the 
orre
tion{to{s
aling (stability) expo-

nents �

(R)

1;2

take real values. The usual (impure) 
riti
al

behaviour [7℄ is stable for �

(R)

1;2

< 0. For Q < 0 the 
om-

plex exponents �

(R)

1;2

des
ribe the so{
alled impure 
rit-

i
al behaviour with os
illatory 
orre
tions to the main

s
aling laws [8, 14℄. The 
orresponding RFP is often re-

ferred to as a \fo
al" FP. We shall denote the RFP in

su
h 
ases by R

C

FP or simply by R

C

. The RFP with

real values of �

(R)

1;2

will be respe
tively referred to as

R

R

FP or, simply, as R

R

. The same notations will be

used for respe
tive quantities (
riti
al exponents, stabil-

ity domains).

The stati
 
riti
al behaviour is given by � = (2 � �)

and the value of the 
orrelation length exponent �. For

G, �

G

= 1=�. For H we obtain

�

H

=

1

�

+

(n+ 2)(��

�

Æ)

�

2

(n+ 8)

; (36)

and for R we have

�

R

=

1

�

+

3�n+ 2(n+ 2)

�

Æ

8�

2

(n� 1)

; n > 1 : (37)

The dynami
al exponent z is z = z

0

= (�+m

0

)=m for

GFP and HFP. For R the dynami
 exponent is given by

z

R

=

�

m

+

1

m

�

(4 � n)�+ 2(n+ 2)

�

Æ

8(n� 1)

�

; n > 1 ; (38)

for m

0

= 0, and z

R

= z

0

for m

0

> 0. The Eq. (38) is a

generalization of the result for z obtained in Ref. [9℄ for

Æ = 0. Besides, by setting m = 1 and � = 2 in Eq. (38)

one obtains the result for z

R

known from Ref. [13℄. For

� = 2 ;m = 2 and

�

Æ � Æ(z

0

= 1); z

R

from Eq. (38) re-

produ
es the result for the 
riti
al exponent z

R

obtained

in Ref. [20℄.

D. Stability analysis

Here we shall brie
y dis
uss the stability of H and R

for n > 1. Besides, we shall distinguish between the 
rit-

i
al behaviour des
ribed by real (R) and 
omplex (C)

values of the 
orre
tion-to-s
aling exponents �

(R)

1;2

.

The stability requirements for H are: �

(H)

v

< 0, and

�

(H)

�

< 0. To these inequalities we must add the restri
-

tion d

L

= (��

�

Æ) < d of our RG analysis (d

L

- the lower

borderline dimension). For � < 0, H is unstable towards

v-perturbation for all n > 0 and

�

Æ � 0. For � > 0 one 
an

easily demonstrate that H is unstable for all 0 < n � 4

and 0 �

�

Æ � 1 ex
ept for the 
ase n = 4 for

�

Æ = 0 in

whi
h H has a known marginal stability [7℄. For n > 4,

H is stable provided

d

L

= (� �

�

Æ) < d < d

H

; (39)

where

d

H

= 2� �

2(n + 2)

(n� 4)

�

Æ : (40)

The HFP has a domain of stability in the plane, say,

(d; Æ) provided 0 < d

L

< d

H

. From (39){(40) we obtain

�Æ <

(n� 4)

(n+ 8)

; (41)

where � = (z

0

=�). For (�Æ) = 0 (
lassi
al limit) the 
on-

dition (41) is satis�ed for any n > 4.

The inequality (41) 
an be solved with respe
t to n to

�rst order in the Æ-expansion:
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n > n

H

(Æ) ; (42)

n

H

(Æ) = (4 + 12�Æ) : (43)

The 
ondition d

L

> 0 yields (�Æ) < 1. Besides the

(�Æ)-term in Eq.(42) should be 
onsidered small with

respe
t to n

H

(0) = 4. This is 
onsistent both with our

Æ{expansion and the requirement d

L

� 0 whi
h leads to

(�Æ) < 1. For � < 1 the result (43) for n

H

(Æ) is reliable

for a wide range of values of Æ. In general, the 
riti
al

value n

H

(Æ) will 
ontain higher order 
orre
tions in pow-

ers of (�Æ) but their 
al
ulation is beyond our one{loop

RG treatment.

Fig. 1. Stability domains of H, R

R

and R

C

for � = 1:5 and

n = 16.

Fig. 2. Stability domains of H, R

R

and R

C

for � = 0:5 and

n = 16.

The inequality (41) 
an be 
onsidered with respe
t to

Æ. For � > 0 we have Æ < Æ

H

, where

Æ

H

=

(n� 4)

(n+ 8)�

: (44)

The upper bound Æ

H

< 1 always exists for � � 1; see

Fig. 1. In this 
ase the values of Æ in the interval [Æ

H

; 1℄

are forbidden. For 0 < � < 1 the additional restri
tion

Æ � Æ

H

on the values of Æ takes pla
e only when

n < n

H

(�) =

4(2�+ 1)

(1� �)

: (45)

The 
ondition (45) should be 
onsidered together with

n > 4. The stability domain of H is depi
ted in Fig. 2

for � = 1=2 and n = n

H

(1=2); and in Fig. 3 for � = 1=2

and n = 22.

Fig. 3. Stability domains of H, R

R

and R

C

for � = 0:5 and

n = 22.

The stability properties of the RFPs, R

R

and R

C

, 
an

be investigated only for n 6= 1 be
ause of the degen-

eration of the RG equations for n = 1 [7, 8, 14℄; for

the notations R

R

and R

C

, see Se
tion III.C. The 
ase

0 < n < 1 seems to be of an a
ademi
 interest only and

for this reason we shall fo
us our attention on symmetry

indi
es n > 1. We have the following 
onditions for the

stability of R

R

:

(� �

�

Æ) < d < 2(� +

�

Æ) ; (46)

(4� n)(2� � d) + 2(n+ 2)

�

Æ > 0 ; (47)

3n(2� � d) + 2(4� n)

�

Æ > 0 ; (48)

and

Q � 0 ; (49)

together with d

L

= (� �

�

Æ) > 0. For R

C

one obtains the

inequalities (47), (48), the inequality inverse to (49), and

the standard 
ondition d

L

> 0. The 
riteria of stability


an be investigated numeri
ally for all values of d, n > 1,
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and Æ =

�

Æ=z

0

. A similar analysis for another problem has

been performed in Ref. [20℄ for values of n of parti
ular

interest.

For n = 4, R

R

is stable in the domain (d; Æ) de-

�ned by 0 < Æ < Æ

4

and (1 � �Æ) < (d=�) <

�

d

R

(4),

Æ

4

= 1=(1 + 2

p

3)� and

�

d

R

(4) = 2 � 2(1 +

p

3)�Æ. Be-

sides, we should note that (d

L

=�) = (1 � �Æ) > 0 must

be satis�ed throughout our analysis.

For 1 < n < 4, the stability of R

R

is given by Q � 0

and

1� �Æ < (d=�) <

�

d

R

(50)

with

�

d

R

= d

R

=�, where

d

R

= 2� +

2(4� n)

�

Æ

3n

: (51)

For R

C

, we must use the inequalities Q < 0 and (50).

The domains of stability of R

R

and R

C

are depi
ted

in Figs. 1, 2, and 3. Another spe
ial 
ase is n = 8=5

[23℄. At n = 8=5 the �{expansion exhibits singularities

[23℄. In our 
ase of one{loop RG analysis the stability

domain of R

R

at n = 8=5 does not exist at all and

the domain of R

C

is expanded up to 0 � Æ � 1 and

(1� �Æ) < (d=�) � (2 + �Æ).

BothH and R are stable for n > 4 in di�erent domains

of the (d; Æ) plane. For Æ < Æ

H

the stability domain of

R

R

is given by Q � 0 and

�

d

H

< (d=�) <

�

d

R

(52)

whereas for Æ > Æ

H

, the same domain is des
ribed by the

inequalities Q � 0 and

1� �Æ < (d=�) <

�

d

R

: (53)

The stability domain of R

C

is given by (52) and (53) and

Q < 0. The stability domains R and C of R

R

and R

C

are shown in Figs. 1, 2, and 3 for parti
ular values of �

and n. The borderline separating the stability domains

of R

R

and R

C

is given by

d=� = 2� �Æ ; (54)

where

� =

2�

h

3n

2

+ 36n� 48 + 8

p

6(n+ 2)(n � 1)

3

i

(5n� 8)

2

: (55)

In 
ertain 
ases, su
h as that in Fig. 1, the borderline

(54) 
rosses the upper borderline of stability region of H

at a 
oordinate Æ

R

< 1, whi
h is given by

Æ

R

=

(5n� 8)

2

�

h

152n� 19n

2

� 160 + 16

p

6(n+ 2)(n� 1)

3

i

:

(56)

For example, if � = 0:5 and � = 2, one obtains Æ

R

< 1

provided 1:23 < n < 8:43.

The domains in Figs. 1{3 denoted by I 
orrespond to a

total instability of the system for n > 4. In these domains

all FPs are unstable for all n > 4, Æ > 0 and d � 2�. The

instability 
an be interpreted [13, 20℄ as an indi
ation for

a 
u
tuation{driven phase transition of �rst order.

IV. MAIN RESULTS AND DISCUSSION

We have derived the one{loop RG equations for a wide


lass of models of quantum 
riti
al phenomena. Our main

attention has been fo
ussed on the zero temperature 
rit-

i
al phenomena in systems with quen
hed impurities. For

our purposes we have used an (�; Æ){expansion, where the

parameter 0 � Æ � 1 des
ribes the quantum e�e
ts. The


riti
al exponents 
orresponding to FPs of the RG equa-

tions are 
al
ulated to �rst order in � = (2� � d) and

0 � Æ � 1. The stability properties of the FPs are in-

vestigated. It has been demonstrated within the double

(�; Æ){expansion that several types of stable 
riti
al be-

haviour are possible.

Predi
tions about the zero temperature (quantum)


riti
al behaviour 
an be made by the extrapolation of

the results for Æ � 1 to Æ � 1. The small (Æ � 1) 
or-

re
tions to the results known from the usual �{analysis

a

ount for quantum e�e
ts on the usual 
lassi
al be-

haviour at �nite{temperature 
riti
al points (T




6= 0).

The variation of the parameter Æ 
an be 
onsidered as

dependent on the ratio (�

T

=�) [17, 20℄. The quantum

limiting 
ase Æ � 1 
orresponds to (�

T

=�) � 1 whereas

the 
lassi
al asymptote Æ ! 0 
orresponds to (�

T

=�) � 0.

Our analysis allows a general treatment 
orresponding to

any value 0 � Æ � 1. Note, that within the present RG

analysis Æ is 
onsidered as a small expansion parameter

but the results 
an be extended to �nite values of Æ (of

order of unity). So, the expansion parameter Æ is treated

at the same footing as the usual expansion parameter �.

The RG Eqs. (25){(27) formally 
oin
ide with the

RG equations for 
lassi
al systems with extended (Æ{

dimensional) impurities [14℄, whi
h are randomly dis-

tributed in the rest d dimensions of a D

Æ

= (d + Æ) di-

mensional system. In our 
ase, the extra Æ dimension is

a purely quantum e�e
t due to the imaginary \time" �

or, equivalently, on the Matsubara frequen
y !

l


onju-

gate to � . In fa
t the spatial dimensionality d does not


hange but for any Æ > 0 the point impurities 
ontained

in the initial Hamiltonian (1){(4) e�e
tively behave like

extended quen
hed impurities of dimensionality Æ. Thus

the results obtained by Dorogovtsev [14℄ for 
lassi
al sys-

tems with extended impurities and short{range intera
-

tions (� = 2) 
an be easily rederived from Eqs. (25){

(27). For this aim one must 
hange our � = (2� � d)
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with ~� = (2� � d�

�

Æ). For example, in terms of ~� and

�

Æ,

Eq. (37) reads

�

R

=

1

�

+

3n ~�+ (5n+ 4)

�

Æ

8�

2

(n� 1)

: (57)

One 
an easily 
he
k that there is a formal equiva-

len
e between the 
riti
al exponents of 
lassi
al systems

with extended impurities and systems with point{like

quen
hed impurities of Æ-type as given by Eq. (6). The

dynami
al exponent z

R

from Eq. (38) 
orresponds to the

so{
alled longitudinal exponent �

l

in Ref. [14℄. Despite

of their di�erent physi
al meaning, these two exponents

are related by z

R

= (�=m) + �

l

. One may easily 
he
k

that (z

R

� �=m) from Eq. (38) 
oin
ides with the result

[14℄ for �

l

for � = m = 2 and m

0

= 0. It 
an be therefore


on
luded that the quantum 
riti
al behaviour for a wide


lass of systems is quite similar to that for 
lassi
al sys-

tems with extended impurities. In fa
t, for m

0

= 0 and

m = � = 2, there is a total equivalen
e in the 
riti
al

properties of 
lassi
al systems with extended impurities

and systems with point impurities.

The limit Æ ! 1 
orresponds to (�

T

=�) ! 1, i.e., to

the quantum limit T ! 0. In this 
ase our RG investi-

gation in terms of � and Æ leads to stable FPs whi
h de-

s
ribe several types of quantum 
riti
al behaviour. For


ertain values of the symmetry index n this quantum


riti
al behaviour is in
uen
ed by the quen
hed disor-

der. This pi
ture 
orresponds again to that known from


lassi
al systems with extended (one-dimensional, Æ = 1)

quen
hed impurities. Similar 
on
lusions were obtained

in Refs. [12, 13℄, where parti
ular models have been in-

vestigated. We must emphasize that the predi
tion of

the availability of a stable zero temperature 
riti
al be-

haviour in impure systems is a dire
t 
onsequen
e of our

supposition that an additional Æ{expansion 
an be per-

formed.

The dire
t appli
ation of the RG method to the same

zero temperature problem leads to an instability [9℄ of

the quantum 
riti
al behaviour with respe
t to the same

quen
hed impurities. In our present study, the previously

known instability [9℄ appears only in a 
lose vi
inity be-

low the upper borderline dimensionality d

U

= 2�. In

both 
ases the instability indi
ates a 
u
tuation indu
ed

phase transition of �rst order.

Our analysis leads to a general 
on
lusion, that the

standard CQC 
on
ept [4℄ 
annot be dire
tly applied to

the quantum 
riti
al behaviour of impure systems. The

quantum 
riti
al behaviour at T = 0 of su
h systems

with quen
hed point impurities 
orresponds to the 
las-

si
al 
riti
al behaviour of systems with 
ertain extended

impurities rather than to 
lassi
al systems with point im-

purities at a higher e�e
tive dimensionality (D = d+ z).

In order to maintain the interpretation of our results

within a dimensional CQC 
on
ept we must establish a


orresponden
e between the quantum 
riti
al behaviour

and the 
riti
al behaviour of 
ertain 
lassi
al systems

with extended impurities although the initial 
lass of

quantum models 
ontains point impurities only.

We 
on
lude with several remarks for the validity of

our investigation. Our results for n > 1 
an be extended

to higher orders in the loop expansion. The study of

Ising{like systems (n = 1) requires a two{loop approxi-

mation [7, 8, 14, 23℄. It 
an be supposed that su
h an

investigation will reveal a quantum 
riti
al behaviour

quite similar to that for 
lassi
al Ising (n = 1) with

short range intera
tion (� = 2) and extended impurities

[14℄. The two{loop RG analysis for long{range intera
-

tion (0 < � < 2) is quite 
ompli
ated [21, 22℄ and for this

reason our one{loop 
onsideration for 0 < � < 2 
annot

be straightforwardly extended to the two{loop order.

The RG analysis in Se
tion III has been performed

for systems where m > 1. For m < 1 an upper fre-

quen
y 
uto� �

!

should be introdu
ed in order to avoid

a runaway (to in�nity) of the FPs 
oordinates. This does

not 
hange the results for the 
riti
al exponents and the

stability properties of FPs. Thus our main 
on
lusions

are valid for all m > 0. The last 
on
lusion is a result

of both heuristi
 arguments and dire
t RG 
al
ulations.

The main heuristi
 argument is that the upper 
uto�

�

!

should not 
hange the 
riti
al behaviour as the rel-

evant low frequen
y modes  

�

(!

l

< �

!

;k) are in
luded

into 
onsideration. The dire
t introdu
tion of �

!

in the


al
ulations lead to another form of the perturbation in-

tegrals but the subsequent RG analysis 
on�rms the sim-

ple heuristi
 argument. This modi�ed RG analysis 
an be

easily a

omplished and we shall not dwell on this point.
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KLASIQNO{KVANTOVI� KROSOVER U KRITIQN�� POVED�NC�

DOM�XKOVIH SISTEM

�. P. Takov

�nstitut f�ziki tverdogo t�la �m. �. Nad�akova, Bolgars~ka akadem�� nauk,

Sof��, BG{1784, Bolgar��

Klasiqno{kvantovi� krosover za vim�rn�st� v xirokomu klas� sistem �z zamoro�enimi dom�xkami

ta neodnor�dnost�mi dosl�d�eni� u ramkah metodu renormal�za
��noÝ grupi. Odnopetlev� renormgrupov�

r�vn�nn� vivedeno za dopomogo� podv��nogo (�; Æ){rozvinenn�, de lokal~ni� parametr Æ opisu
 kvantov�

efekti, a � = 2� � d 
 zviqa�nim parametrom rozvinenn� (0 < � � 2; d | vim�rn�st~ prostoru). Usta-

novleno �viwe klasiqno{kvantovogo krosoveru ta obqisleno kritiqn� eksponenti v perxomu por�dku za

� ta Æ. Obgovoreno analog�Ý m�� 
im p�dhodom ta p�dhodom podv��nogo (�; Æ){rozvinenn� pri rozgl�d� zadaq�

prot��nih dom�xok.
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