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The classical-to—quantum dimensional crossover in a wide class of systems with quenched impu-
rities and inhomogeneities is investigated within the framework of the renormalization group. The
one—loop renormalization group equations are derived with the help of a double (e, §)—expansion,
where the small parameter 6 describes the quantum effects and € = 20 — d is the usual expan-
sion parameter (0 < o < 2; d is the spatial dimensionality). The classical-to—quantum crossover
phenomenon is established and the critical exponents are calculated to first order in € and 4. The
analogy between this approach and that of double (e, §)—expansion in treating the extended impu-

rities problem is discussed.
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I. INTRODUCTION

The influence of the quantum fluctuations on the crit-
ical behaviour at extremely low temperatures was estab-
lished in early pioneering works of Rechester [1], Pfeuty
and Elliott [2], Young [3], and Hertz [4]. In particular,
the classical-to-quantum dimensional crossover (CQC)
of the critical behaviour at zero temperature was dis-
covered [2, 3] and comprehensively described for a num-
ber of systems [4]. The CQC consists of a change of the
spatial dimensionality d to an effective dimensionality
D = (d + z), where z is the dynamical critical exponent
[4, 5]. For any temperature T' > 0, the asymptotic criti-
cal behaviour 1s classical, whereas for 7' — 0, the width
of the classical Ginzburg region (see, e.g., Ref. [5]) tends
to zero, and at T = 0 the critical behaviour is entirely
a quantum phenomenon. According to CQC [2—-4], the
quantum critical behaviour at 7' = 0 in a d—dimensional
quantum system is equivalent to the usual critical be-
haviour [5] in a D = (d 4+ z)-dimensional classical sys-
tem. An exception is the quantum critical behaviour of
interacting real bosons [6].

The effect of quenched disorder of randomly dis-
tributed quenched impurities (and/or inhomogeneities)
[7, 8] on the quantum critical behaviour at 7' = 0 of a
wide class of quantum models was investigated by Ko-
rutcheva and Uzunov [9]; see also Ref. [10]. In contrast
to pure systems, where the CQC produces a stable zero—
temperature (quantum) critical behaviour [4], standard
renormalization group (RG) studies [9, 10] performed
within the usual e—expansion have shown that the zero—
temperature critical behaviour in disordered systems ex-
hibits [9, 10] an instability with respect to the quenched
disorder. This disorder—induced instability has been de-
duced from the lack of stable fixed points (FPs) of the
RG equations for spatial dimensionalities d < dgr, where
dyr 18 the upper borderline dimensionality. An attempt
of a treatment of this instability in particular models
was made [11-13] with the help of double e-expansions
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known from the problem for extended impurities [14, 15].
It has been claimed [14, 15] on the basis of these double
e—expansions that a stable quantum critical behaviour in
disordered systems may occur and this point requires a
special attention. Reviews of the present status of the
theory of quantum critical phenomena in pure and im-
pure systems have been recently given in Refs. [5, 16-18].

In this paper we shall investigate the quantum crit-
ical behaviour of impure systems with the help of the
renormalization group equations in the one-loop approx-
imation. By using the double (¢, d)—expansion previously
introduced for thin films [19, 20], which is quite simi-
lar to the original Dorogovtsev double e—expansion [14],
we shall demonstrate a special form of CQC for a wide
class of effective Bose models of systems with short-range
random impurities with a Gaussian distribution. The dy-
namical and static critical exponents will be calculated
to first order in € and 4. The stability of RG FPs will be
discussed and a stable quantum critical behaviour will
be revealed.

In Section II we shortly represent the models of con-
sideration. In Section III we generalize the RG analysis
of Korutcheva and Uzunov [9] with the help of a double
(e,d)—expansion within the framework of the one-loop
RG approximation. For our aims we shall apply the so—
called é—integration [19, 20]. In Section IV we summarize
and discuss our results.

1I. MODEL

We shall use the Hamiltonian # (= —H/T, kg = 1) of
the general form [9]

H="Ho+Hs+Hi, (1)

where
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is the free part,
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(3)

is the usual y*—interaction term, and

Hi=—V72 3" gk — ko) (wi, K ) (wr, k)

oswik ko

(4)

is the term describing quenched impurities. In Eqgs. (2)-
4), ¥(¢) = {¥a,0 = 1,...,n/2} is the complex fluc-
tuation (order parameter) field which depends on the
frequency—momentum vector ¢ = (wy, k), where w; =
2rlT with A = 1 and { = (0, %1, ...) is the (Bose) Mat-
subara frequency, and k = {k; = 27n;/L;,n; = 0, %1, ..}
is the d-dimensional wave vector. The volume V of the
d-dimensional system is V = (L1...Lq), r = ro(T — T¢),
where T, > 0 is the bare (unrenormalized) critical tem-
perature, and u > 0 is the interaction constant.

As the Hamiltonian X given by Eqgs. (1)—(4) is sup-
posed to describe quasimacroscopic quantum and classi-
cal fluctuations we shall consider small wave vectors k,
i.e., we shall apply the long—wavelength approximation
ka < 1, where k = |k| and «a is the lattice constant (or,
the mean interparticle distance in noncrystalline bod-
ies). Thus we shall conveniently choose an upper mo-
mentum cutoff A, so that 0 < & < A <« (7/a). By a suit-
able choice of the units we set A = 1. The frequency w;
has no natural cutoff but the latter can be always intro-
duced (|w;| < Ay). Note, that only the small frequency
(lwi| ~ 0) behaviour of the modes (¢) is relevant to the
critical behaviour in both classical (w; = 0) and quan-
tum (7" — 0,w; # 0) regimes. We shall use the cutoff A,
only in cases where the frequency integrals exhibit an
unessential ultraviolet divergence in the large frequency
limit (w; — 00).

In Eq. (2),

e ™

k™

flg) = — k7, (5)

where m, m’ and ¢ are positive exponents. Eq. (5) rep-
resents a general form of the function f(¢) which stands
for a number of effective Bose models of real sysems; see,
e.g., Refs. [4, 5, 9, 16]. The exponent o = 2 corresponds
to short-range forces whereas 0 < ¢ < 2 corresponds to
long-range interactions (see, e.g., Refs. [5, 21, 22]). The
values of the exponents m and m’ depend on the particu-
lar systems [4, 5, 16], for example, itinerant antiferromag-
nets (m = 1,m’ > 0), superconductors (m = 1,m’ = 0),
clean itinerant ferromagnets (m = m’ = 1), dirty itin-

erant ferromagnets (m = 1,m = 2), exciton systems
(m = 1 or 2,m = 0). The form f(q) = —(iw; — k?)
which also describes a number of interesting systems [5,
16], in particular, dilute Bose gases, will not be consid-
ered in this paper. The last class of systems exhibits a
quite unusual quantum critical behaviour as a result of a
great simplification of the RG equations [6] in the limit
T — 0; see also the review [5, 17].

In Eq. (4), ¢(k) is a random function which obeys the
Gaussian distribution [...]g given by

67 (ko)) = Adye (6)

where A is a parameter describing the disorder effects
(short-range random correlations [5, 7-9]). The bare (un-
renormalized) Green function Go = —(|1o(¢)|?) is given

by

Golq) = s> - (7)

III. RG ANALYSIS
A. RG equations

The Wilson-Fisher RG recursion relations [9] can be
derived in a variant of the initial rescaling procedure for
which the frequency w; is not scaled, the initial scaling
of the wave vector is given by k = k’6~', where b > 1
is the rescaling number, and the field components ¢ (q)
obey the scaling relation ¥, (w;, kb™1) = ((b)tbq(wi, k).
The RG recursion relations to one-loop approximation
can be written in the general form [9]

Fla) = CO)f(wi ko™ + AK (w)] (8)
v = C2(b) [r + @uh(r) NAOIR (9)
(uT) = ¢ (b)b~¢ [UT - @Mﬂz(m (10)

+ 6A(uT)J2(r)] ,

A= C0)DTUA +4A% T (r) — (n 4 2)Auly(r)], (11)

where
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)=-TY / %GO(Q% (13)

12(7“) =

ah TZ/ 'k ——G2(g (14)

and

"ok

5= [ g

The prime (') in the integrals denotes an integration in
the shell =1 < k < 1 (A = 1). The scaling factor {(b) is
chosen in the form ¢(b) = b'=7/2 where /2 = (1 —0/2)
is the anomalous dimension of the field ¢, (¢). Note, that
the relation (n/2) = 1 — (¢/2) is exact [21, 22] for all
0 < o < 2 (long-range interactions), and the result n = 0
for o = 2 is valid only in the one—loop order of the theory
considered here. The sums (13) and (14) over w; are di-
vergent for m < 1. In order to include values of m € (0, 1]
we must introduce an upper frequency cutoff A,. The
latter is irrelevant to models where m > 1. For m < 1,
the finite cutoff A, leads to a modification of the RG
analysis but the final results for m > 1 and 0 < m < 1
are the same.

The analysis [9] of the RG recursion relations (8)—(11)
has been performed within the € = (20 — d)-expansion
in two limiting cases:

(i) The classical case (/\T << &) when the de Broglie

thermal wavelength Ap = /\ /T (1/20) described by the
mean field value zp of the dynamlcal critical exponent z
[17] is much smaller than the (bare) correlation length
£=&/)|T - T M, AéEJ) and & are scaling amplitudes.

(ii) The quantum case (A > &) which is possible for
T.=0and T"— 0.

The analysis of the classical asymptote (i) yields the
usual classical critical behaviour governed by the classi-
cal fluctuation modes 1,(0,k). In addition to this trivial
result one reveals [9] the critical dynamics of the sys-
tems which results from purely quantum dynamical phe-
nomena (for the corresponding values of the dynamical
critical exponent z calculated to one—loop order for both
cases (i) and (ii), see Ref. [9]; for calculations of z in
particular cases, see Refs. [10-13]).

It has been for a first time demonstrated in Ref. [9],
that the asymptote (ii) reveals a special type of in-
stability of the quantum critical behaviour at 7' = 0.
In contrast to pure systems (A = 0, Ref. [4]), where
CQC (d = d + z) manifests itself, the quenched disor-
der (A > 0) in impure systems enhances the classical
fluctuations up to an upper borderline dimensionality
dy = 20 and CQC cannot occur [9]. The same instabil-
ity was noted and extensively investigated in more recent
works [10, 11-13].

The summation over the frequency w; in Egs. (13) and
(14) yields transcendental functions which should be fur-
ther integrated over the wave vector k. The presence of
transcedental functions in Eqgs. (8)—(11) leads to a great

k4", i=1,2. (15)
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complication of the RG analysis in the general case of
any ratio 0 < (Ar/€) < oo. In result the standard anal-
ysis [9] can be performed with analytical means only in
the asymptotic cases (i) and (ii).Therefore the entire in-
vestigation of the problem requires another approach [19,
20], which will be shortly introduced in the next Section.

B. RG equations from a é—integration

In the remainder of this paper we shall present an-
other variant of the RG equations (8)—(11) by using a
double (e, (5) expansion, where § = z0d; 29 = (U—i—ml)/m
[4] is the mean field value of the dynamical exponent
z, and 0 < & < 1. Furthermore, we shall perform the
main steps of the RG analysis in terms of the small pa-
rameters € = (20 — d) and d. In fact, the derivation of
RG equations can be performed with the help of a sin-
gle expansion parameter ¢ = 26 — d — 4, related to an
effective upper dimensionality de.;; = 20 — & [20]. But
at a next stage of consideration, when we impose the
requirement for a scaling invariant form of the RG equa-
tions the single é-expansion should be split to the double
(¢, 8)—expansion.

The quantum effects will be taken into account by the
d—dependence of the relevant physical quantities. An at-
tempt along this direction of research has been made
for the particular cases of Bose systems [11, 12], with a
wi—dependence of type f(w;,0) = —iw;, and for impure
quantum antiferromagnets [13], where f(w;,0) = |wi].
We shall follow the method of J—integration presented in
Ref. [20] applied to thin films.

The main idea of the J—integration [19, 20] is to change
the usual rule

T—0 “ dw
TZ—>/0 o (16)
wy

by

TZ—>T1<‘/d°; (17)

Advantages and disadvantages of the approximate rule
(17) were widely discussed in Ref. [20]. In particular, it
has been shown that for all intermediate cases 0 < § < 1,
the § — integration gives incorrect values of FP coordi-
nates but universal quantities such as the critical expo-
nents can be reliably calculated. In the limiting cases
d — 0 (classical) and (§ = 1) (quantum), one obtains an
entirely correct description. For models corresponding to
m < 1 one should introduce in Eqgs. (16)-(17) an upper
frequency cutoff A, < oo. Below we shall consider the
case m > 1 where the finite cutoff A, is not necessary.
The case m < 1 will be briefly discussed in Section TV.
Using the rule (17) in Egs. (13) and (14) and perform-
ing certain standard calculations, the Eqgs. (8)-(11) yield
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1
w; = b*°w

1 b1
el ()]

r = r+(n+2)v il m — rlnd
2 o m—94

1—botd -1
S

- b2a—d

5 n 5
X (%) {v—( ;—8)v21nb+6uv (b 3 1)}, (20)

and
! 20—d 2 bg_l
=0 #—(n+ 2)pvlnb + 4pu ; , (21)

where p = Ky4A with Ky = 2=47=%2/T(d/2), and
v =T"%u with a = K4Ks T'(§/m)T'(2 —3/m)/m. The
Eqgs. (18)—(21) are valid within an ¢ = (26 —d—§) expan-
sion, where the perturbation integrals are calculated at
the upper borderline dimensionality dyy = (20 — d). It is
obvious that Eqgs. (18)—(21) take a scaling invariant form
provided we assume that (b° — 1) ~ dlnb, i.e., for § < 1.
This means that we must substitute the single expansion

parameter € with two ones: € = (20 — d) and 4.

v

Eq. (18) for w; can be written for the temperature:

T = 6T (22)

where

7
= =5 .. 2
) =20+ L6, (23)

The FP value p* of p yields the dynamical critical ex-
ponent: z = z(p*). Obviously, the mean field value
z0 = (0 + ml)/m will acquire (¢, d)—corrections only for
p* # 0, ie., for random FPs (RFP). At the classical
asymptote (6 — 0), the dynamical exponent z(u*) was
calculated in Ref. [9]. Here the calculation can be gener-
alized for § > 0.

It is convenient to perform our further analysis with
the help of the corresponding differential RG equations
(see, e.g., Ref. [5, 11-13]). From Eqgs. (19)—(23) one can

easily obtain

=0T (24)

dr(l) (n+2) m
= or(l) + 7 v(l) [m —s5 r(l)]
- pO0 = (0], (25)
dv(l) _
o = 20— d—=0z(u)]o()
_ (”‘; 8 o) + 6o()u(l) (26)
dp(l)

L = (20 - d)pll) — (0 + 2e(Oull) +46(0)*  (27)

In Eq. (26) one can safely ignore a small term uv ~ Je?
and substitute z(y) with z.

C. Fixed points and critical exponents

Since z > 0, Eq. (24) has two FPs: T¢: = oo (classical)
and 75 = 0 (quantum). Within the present RG scheme
the classical FP (T} = oo) corresponds to the classi-
cal critical behaviour at T > 0, where the frequencies
w; are irrelevant to the asymptotic (critical) thermody-
namics at T — T, > 0. In this case, Eq. (18) indicates
that the successive RG transformations lead to w; — oo
for all w; > 0. Thus the perturbation contributions from
the noncritical modes 9, (w; > 0,k) become irrelevant
and the consequences of this circumstance is described
by FPs of type T = oo. Within our approach this clas-
sical critical behaviour is described by Eqs. (18)—(21) or,
equivalently, by Eqs. (24)-(27) in the limit § — 0. The
quantum FPs (T, = 0) correspond to the limit § — 1.
The Egs. (24) and (25) constitute 7" and r as the relevant
thermodynamic parameters.

The Eqs. (26)—(27) give four FPs:
(1) Gaussian (GFP)
Vg = HGg = 0 ; (28)

(2) Unphysical (UFP)

vU:OaﬂU:_ia (29)
(3) Heisenberg (HFP)
2(e — 4)

(4) Random (RFP)
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€+20  (4—n)e+2(n+2)0
R Smon MR T T smon 0 BY

The Egs. (31) are valid for n > 1. For § = 0, all these
FPs are known from Refs. [7, 9]. In some cases the FPs
(1)—(4) will be shortly referred to as G, U, H and R,
respectively. Here we shall consider the quantum effects
represented by the d—dependence of the FPs and related
physical quantities.

The Eq. (6) defines p = K4 A as a positive parameter
and, hence, the UFP does not present a practical interest
for € > 0; for ¢ < 0 UFP is physical but unstable [7, 9].
For 20 < d < 2(0+4) the UFP has an instability towards
p whereas the same FP has a double instability (towards
both v and p) for d > 2(o + §). We shall consider G, H,

and R in more details.
The stability exponents of GFP are A&G) =e¢—4 and

/\LG) = ¢. Thus GFP is stable only for d > 20. The sta-
bility exponents of H are

A =5 — ¢, (32)

and

g = Bk Bt 20 (33)

The stability exponents /\(1{%2) of the RFP are given by

NG 3ne+2(4—n)d F/Q
( _

2= 8(n—1) ' (34)
where
Q = (5n — 8)%¢* — 12(5n* + 8n — 16)4”
—12(n? 4+ 12n — 16)ed . (35)

For @ > 0, the correction—to-scaling (stability) expo-
()

nents Aj 5 take real values. The usual (impure) critical

behaviour [7] is stable for /\(1{%2) < 0. For ¢ < 0 the com-
(R)

plex exponents A;; describe the so—called impure crit-
ical behaviour with oscillatory corrections to the main
scaling laws [8, 14]. The corresponding RFP is often re-
ferred to as a “focal” FP. We shall denote the RFP in
such cases by R¢FP or simply by Re. The RFP with
real values of /\(132) will be respectively referred to as
RgrFP or, simplyl as Rpr. The same notations will be
used for respective quantities (critical exponents, stabil-
ity domains).

The static critical behaviour is given by n = (2 — o)
and the value of the correlation length exponent v. For
G, vg = 1/o. For H we obtain

426

1 (n + 2)(e — d)
vg = > + 702(71 8 (36)

and for R we have

1 3en+2(n+2)6
=4 — 1.
VR > + 80’2(77, — 1) , n> (37)

The dynamical exponent z is z = zg = (6 +m’)/m for
GFP and HFP. For R the dynamic exponent is given by

I [(4=—n)e+2(n+2)0
T 8(n—1)

IR =

z Con>1, (38)
m  m

for m" = 0, and zp = z for m’ > 0. The Eq. (38) is a
generalization of the result for z obtained in Ref. [9] for
d = 0. Besides, by setting m = 1 and ¢ = 2 in Eq. (38)
one obtains the result for zg known from Ref. [13]. For
c=2,m=2andd = (2 = 1), 2r from Eq. (38) re-
produces the result for the critical exponent zg obtained

in Ref. [20].

D. Stability analysis

Here we shall briefly discuss the stability of H and R
for n > 1. Besides, we shall distinguish between the crit-
ical behaviour described by real (R) and complex (C)

. . R
values of the correction-to-scaling exponents A; 5 .

() < 0, and

The stability requirements for H are: Ay
/\LH) < 0. To these inequalities we must add the restric-
tion dp = (o — 5) < d of our RG analysis (dr, - the lower
borderline dimension). For € < 0, H is unstable towards
v-perturbation for all n > 0 and § > 0. For ¢ > 0 one can
easily demonstrate that H is unstable for all 0 < n < 4
and 0 < 6 < 1 except for the case n = 4 for § = 0 in
which H has a known marginal stability [7]. For n > 4,
H is stable provided

dr =(c—-d) <d<dn , (39)
where
B 2(n +2) <

The HFP has a domain of stability in the plane, say,
(d,d) provided 0 < dp < dg. From (39)-(40) we obtain

wo < =9 (41)

where k = (z9/0). For (k6) = 0 (classical limit) the con-
dition (41) is satisfied for any n > 4.

The inequality (41) can be solved with respect to n to
first order in the d-expansion:
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n>nH(5) ) (42)

ng(d) = (44 12k0) . (43)

The condition dr > 0 yields (kd) < 1. Besides the
(kd)-term in Eq.(42) should be considered small with
respect to ng(0) = 4. This is consistent both with our
d—expansion and the requirement dy > 0 which leads to
(k) < 1. For & < 1 the result (43) for ng(9) is reliable
for a wide range of values of 4. In general, the critical
value ngr(d) will contain higher order corrections in pow-
ers of (kd) but their calculation is beyond our one-loop
RG treatment.

Fig. 1. Stability domains of H, Rr and R¢ for k = 1.5 and
n = 16.

00 02 04 06 08 1.0
5

Fig. 2. Stability domains of H, Rr and R¢ for k = 0.5 and
n = 16.

The inequality (41) can be considered with respect to
4. For k > 0 we have § < dg, where

(n—4)

s (44)

i =

The upper bound dg < 1 always exists for k > 1; see
Fig. 1. In this case the values of ¢ in the interval [0g, 1]
are forbidden. For 0 < k < 1 the additional restriction
& < dy on the values of § takes place only when

n<7”mﬁ):f%%§%£l. (45)

The condition (45) should be considered together with
n > 4. The stability domain of H 1s depicted in Fig. 2
for k = 1/2 and n = ny(1/2); and in Fig. 3 for k = 1/2
and n = 22.

|
— ]
3
2 " R ¢
d
14
0 T T T ] T
0.0 02 0.4 0.8 08 10

&

Fig. 3. Stability domains of H, Rr and R¢ for k = 0.5 and
n = 22.

The stability properties of the RFPs; Rr and R¢, can
be investigated only for n # 1 because of the degen-
eration of the RG equations for n = 1 [7, 8, 14]; for
the notations Rr and R¢, see Section III.C. The case
0 < n < 1 seems to be of an academic interest only and
for this reason we shall focus our attention on symmetry
indices n > 1. We have the following conditions for the
stability of Rg:

(c—d0)<d<2(c+9) , (46)
(4—n)(20 —d)+2(n+2)d >0 , (47)
3n(20 —d) +2(4—n)é >0 | (48)

and
Q=0 (49)

together with dp = (¢ — d) > 0. For R¢ one obtains the
inequalities (47), (48), the inequality inverse to (49), and
the standard condition dy > 0. The criteria of stability
can be investigated numerically for all values of d, n > 1,
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and § = &/zg. A similar analysis for another problem has
been performed in Ref. [20] for values of n of particular
interest.

For n = 4, Rp is stable in the domain (d,d) de-
fined by 0 < § < d4 and (1 — k) < (d/o) < dr(4),
64 = 1/(1 +2/3)x and dr(4) = 2 — 2(1 + v/3)kd. Be-
sides, we should note that (dz/o) = (1 — kd) > 0 must
be satisfied throughout our analysis.

For 1 < n < 4, the stability of Rg is given by @ > 0
and

1 —ké < (d/o) < dr (50)

with dg = dg/o, where

2(4 —n)é

dr = 20 + mn

(51)

For R¢, we must use the inequalities @ < 0 and (50).
The domains of stability of Rg and R¢ are depicted
in Figs. 1, 2, and 3. Another special case is n = 8/5
[23]. At n = 8/5 the e—expansion exhibits singularities
[23]. In our case of one—loop RG analysis the stability
domain of Rr at n = 8/5 does not exist at all and
the domain of R¢ is expanded up to 0 < § < 1 and
(1—rd) < (d/c) < (24 &0).

Both H and R are stable for n > 4 in different domains
of the (d,d) plane. For § < dp the stability domain of
Rpg is given by @ > 0 and

CZH< (d/U)<CZR (52)

whereas for § > g, the same domain is described by the
inequalities ) > 0 and

1—ké < (d/o) <dgr . (53)

The stability domain of R¢ is given by (52) and (53) and
@ < 0. The stability domains R and C' of Rr and R¢
are shown in Figs. 1, 2, and 3 for particular values of &
and n. The borderline separating the stability domains
of Rg and R¢ is given by

dic=2—pd | (54)
where
% 302 + 36n — 48 + 8,/6(n + 2)(n — 1)3 }
- . (55

In certain cases, such as that in Fig. 1, the borderline
(54) crosses the upper borderline of stability region of H
at a coordinate dp < 1, which is given by
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B (5n — 8)?
% [152n — 1902 — 160 + 16\/6(n + 2)(n — 1)3 }

(56)

dr

For example, if k = 0.5 and o = 2, one obtains dp < 1
provided 1.23 < n < 8.43.

The domains in Figs. 1-3 denoted by I correspond to a
total instability of the system for n > 4. In these domains
all FPs are unstable for alln > 4,4 > 0 and d ~ 20. The
instability can be interpreted [13, 20] as an indication for
a fluctuation—driven phase transition of first order.

IV. MAIN RESULTS AND DISCUSSION

We have derived the one-loop RG equations for a wide
class of models of quantum critical phenomena. Qur main
attention has been focussed on the zero temperature crit-
ical phenomena in systems with quenched impurities. For
our purposes we have used an (¢, §)—expansion, where the
parameter 0 < < 1 describes the quantum effects. The
critical exponents corresponding to FPs of the RG equa-
tions are calculated to first order in ¢ = (20 — d) and
0 < & < 1. The stability properties of the FPs are in-
vestigated. It has been demonstrated within the double
(e,d)—expansion that several types of stable critical be-
haviour are possible.

Predictions about the zero temperature (quantum)
critical behaviour can be made by the extrapolation of
the results for § < 1 to & ~ 1. The small (§ < 1) cor-
rections to the results known from the usual e—analysis
account for quantum effects on the usual classical be-
haviour at finite-temperature critical points (T. # 0).
The variation of the parameter § can be considered as
dependent on the ratio (Ap/€) [17, 20]. The quantum
limiting case § ~ 1 corresponds to (Ar/€) ~ oo whereas
the classical asymptote § — 0 corresponds to (Ar/&) ~ 0.
Our analysis allows a general treatment corresponding to
any value 0 < § < 1. Note, that within the present RG
analysis d is considered as a small expansion parameter
but the results can be extended to finite values of § (of
order of unity). So, the expansion parameter 4 is treated
at the same footing as the usual expansion parameter e.

The RG Eqgs. (25)-(27) formally coincide with the
RG equations for classical systems with extended (§—
dimensional) impurities [14], which are randomly dis-
tributed in the rest d dimensions of a Ds = (d 4 4) di-
mensional system. In our case, the extra § dimension is
a purely quantum effect due to the imaginary “time” 7
or, equivalently, on the Matsubara frequency w; conju-
gate to 7. In fact the spatial dimensionality d does not
change but for any § > 0 the point impurities contained
in the initial Hamiltonian (1)—(4) effectively behave like
extended quenched impurities of dimensionality §. Thus
the results obtained by Dorogovtsev [14] for classical sys-
tems with extended impurities and short-range interac-
tions (¢ = 2) can be easily rederived from Egs. (25)-
(27). For this aim one must change our ¢ = (20 — d)
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with € = (26 — d — §). For example, in terms of € and 4,

Eq. (37) reads

1 3né4 (5n+4)d
VR=—+ ——F7——"—

o 8a2(n—1) (57)

One can easily check that there i1s a formal equiva-
lence between the critical exponents of classical systems
with extended impurities and systems with point—like
quenched impurities of é-type as given by Eq. (6). The
dynamical exponent zg from Eq. (38) corresponds to the
so—called longitudinal exponent 7; in Ref. [14]. Despite
of their different physical meaning, these two exponents
are related by zp = (¢/m) + m. One may easily check
that (zg — o/m) from Eq. (38) coincides with the result
[14] for m; for o = m = 2 and m/ = 0. Tt can be therefore
concluded that the quantum critical behaviour for a wide
class of systems is quite similar to that for classical sys-
tems with extended impurities. In fact, for m’ = 0 and
m = o = 2, there is a total equivalence in the critical
properties of classical systems with extended impurities
and systems with point impurities.

The limit § — 1 corresponds to (Ar/€) — oo, i.e., to
the quantum limit 7" — 0. In this case our RG investi-
gation in terms of ¢ and § leads to stable FPs which de-
scribe several types of quantum critical behaviour. For
certain values of the symmetry index n this quantum
critical behaviour is influenced by the quenched disor-
der. This picture corresponds again to that known from
classical systems with extended (one-dimensional, § = 1)
quenched impurities. Similar conclusions were obtained
in Refs. [12, 13], where particular models have been in-
vestigated. We must emphasize that the prediction of
the availability of a stable zero temperature critical be-
haviour in impure systems is a direct consequence of our
supposition that an additional d—expansion can be per-
formed.

The direct application of the RG method to the same
zero temperature problem leads to an instability [9] of
the quantum critical behaviour with respect to the same
quenched impurities. In our present study, the previously
known instability [9] appears only in a close vicinity be-
low the upper borderline dimensionality dgy = 20. In
both cases the instability indicates a fluctuation induced
phase transition of first order.

Our analysis leads to a general conclusion, that the

standard CQC concept [4] cannot be directly applied to
the quantum critical behaviour of impure systems. The
quantum critical behaviour at 7' = 0 of such systems
with quenched point impurities corresponds to the clas-
sical critical behaviour of systems with certain extended
impurities rather than to classical systems with point im-
purities at a higher effective dimensionality (D = d + z).
In order to maintain the interpretation of our results
within a dimensional CQC concept we must establish a
correspondence between the quantum critical behaviour
and the critical behaviour of certain classical systems
with extended impurities although the initial class of
quantum models contains point impurities only.

We conclude with several remarks for the validity of
our investigation. Qur results for n > 1 can be extended
to higher orders in the loop expansion. The study of
Ising-like systems (n = 1) requires a two—loop approxi-
mation [7, 8, 14, 23]. It can be supposed that such an
investigation will reveal a quantum critical behaviour
quite similar to that for classical Ising (n = 1) with
short range interaction (o = 2) and extended impurities
[14]. The two-loop RG analysis for long-range interac-
tion (0 < o < 2) is quite complicated [21, 22] and for this
reason our one—loop consideration for 0 < ¢ < 2 cannot
be straightforwardly extended to the two—loop order.

The RG analysis in Section III has been performed
for systems where m > 1. For m < 1 an upper fre-
quency cutoff A, should be introduced in order to avoid
a runaway (to infinity) of the FPs coordinates. This does
not change the results for the critical exponents and the
stability properties of FPs. Thus our main conclusions
are valid for all m > 0. The last conclusion 1s a result
of both heuristic arguments and direct RG calculations.
The main heuristic argument is that the upper cutoff
A, should not change the critical behaviour as the rel-
evant low frequency modes ¢, (w; < Ay, k) are included
into consideration. The direct introduction of A, in the
calculations lead to another form of the perturbation in-
tegrals but the subsequent RG analysis confirms the sim-
ple heuristic argument. This modified RG analysis can be
easily accomplished and we shall not dwell on this point.
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P. Takov,

KJIACUYHO-KBAHTOBUIU KPOCOBEP ¥ KPUTUYHIN IIOBEIIHIII
JOMIIITKOBUX CUCTEM

I[. TI. Takos
Incmumym $isuxu meepdozo miaa im. . Hadorcaxosa, Boazapcoxa axademia nayx,
Cogpin, BG-1784, boaeapia

Knacmumno—kBaHTOBHII KpocoBep 3a BHMIPHICTIO B IMMPOKOMY KJacl CACTEM 13 3aMOPOKEHMMH HOMINIKaMMA
Ta HEOTHOPITHOCTAMK IOCJIKEHNI y paMKaX MeTomy peHopMasisariiinol rpymm. OmHomeTieBl peHOPpMIpPYIIOBI
DIBHSIHHA BHBEIEHO 3a IOIOMOICIO IOABIfiHOTO (€, d)—pO3BHHEHHH, He JIOKAIbHUI mapaMeTp § ONHCYe KBaHTOBI
edektn, a € = 20 — d € 3BuvaiiHuM napamerpoM possusenHs (0 < o < 2; d — BuMipHicTs mpocTOpy). YcTa-
HOBJIEHO #ABHINE KJIACHIHO—KBAHTOBOIO KPOCOBEPY Ta OOYMCIIEHO KPUTUYHI €KCIIOHEHTH B MEPUIOMY TOPANKY 3a
€ Ta 6. O6roBopeHo aHasIoTi MiX MM HiTXOIOM Ta MiIXOHOoM HoHBifiHOro (€,d)—pOo3BHHEHHA [P PO3IVIAN 3amadi

IIPOTAZKHUX ,HOMimOK .
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