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The lassial{to{quantum dimensional rossover in a wide lass of systems with quenhed impu-

rities and inhomogeneities is investigated within the framework of the renormalization group. The

one{loop renormalization group equations are derived with the help of a double (�; Æ){expansion,

where the small parameter Æ desribes the quantum e�ets and � = 2� � d is the usual expan-

sion parameter (0 < � � 2; d is the spatial dimensionality). The lassial{to{quantum rossover

phenomenon is established and the ritial exponents are alulated to �rst order in � and Æ. The

analogy between this approah and that of double (�; Æ){expansion in treating the extended impu-

rities problem is disussed.
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I. INTRODUCTION

The inuene of the quantum utuations on the rit-

ial behaviour at extremely low temperatures was estab-

lished in early pioneering works of Rehester [1℄, Pfeuty

and Elliott [2℄, Young [3℄, and Hertz [4℄. In partiular,

the lassial{to{quantum dimensional rossover (CQC)

of the ritial behaviour at zero temperature was dis-

overed [2, 3℄ and omprehensively desribed for a num-

ber of systems [4℄. The CQC onsists of a hange of the

spatial dimensionality d to an e�etive dimensionality

D = (d+ z), where z is the dynamial ritial exponent

[4, 5℄. For any temperature T > 0, the asymptoti riti-

al behaviour is lassial, whereas for T ! 0, the width

of the lassial Ginzburg region (see, e.g., Ref. [5℄) tends

to zero, and at T = 0 the ritial behaviour is entirely

a quantum phenomenon. Aording to CQC [2{4℄, the

quantum ritial behaviour at T = 0 in a d{dimensional

quantum system is equivalent to the usual ritial be-

haviour [5℄ in a D = (d + z){dimensional lassial sys-

tem. An exeption is the quantum ritial behaviour of

interating real bosons [6℄.

The e�et of quenhed disorder of randomly dis-

tributed quenhed impurities (and/or inhomogeneities)

[7, 8℄ on the quantum ritial behaviour at T = 0 of a

wide lass of quantum models was investigated by Ko-

rutheva and Uzunov [9℄; see also Ref. [10℄. In ontrast

to pure systems, where the CQC produes a stable zero{

temperature (quantum) ritial behaviour [4℄, standard

renormalization group (RG) studies [9, 10℄ performed

within the usual �{expansion have shown that the zero{

temperature ritial behaviour in disordered systems ex-

hibits [9, 10℄ an instability with respet to the quenhed

disorder. This disorder{indued instability has been de-

dued from the lak of stable �xed points (FPs) of the

RG equations for spatial dimensionalities d < d

U

, where

d

U

is the upper borderline dimensionality. An attempt

of a treatment of this instability in partiular models

was made [11{13℄ with the help of double �{expansions

known from the problem for extended impurities [14, 15℄.

It has been laimed [14, 15℄ on the basis of these double

�{expansions that a stable quantum ritial behaviour in

disordered systems may our and this point requires a

speial attention. Reviews of the present status of the

theory of quantum ritial phenomena in pure and im-

pure systems have been reently given in Refs. [5, 16{18℄.

In this paper we shall investigate the quantum rit-

ial behaviour of impure systems with the help of the

renormalization group equations in the one{loop approx-

imation. By using the double (�; Æ){expansion previously

introdued for thin �lms [19, 20℄, whih is quite simi-

lar to the original Dorogovtsev double �{expansion [14℄,

we shall demonstrate a speial form of CQC for a wide

lass of e�etive Bose models of systems with short{range

random impurities with a Gaussian distribution. The dy-

namial and stati ritial exponents will be alulated

to �rst order in � and Æ. The stability of RG FPs will be

disussed and a stable quantum ritial behaviour will

be revealed.

In Setion II we shortly represent the models of on-

sideration. In Setion III we generalize the RG analysis

of Korutheva and Uzunov [9℄ with the help of a double

(�; Æ){expansion within the framework of the one-loop

RG approximation. For our aims we shall apply the so{

alled Æ{integration [19, 20℄. In Setion IV we summarize

and disuss our results.

II. MODEL

We shall use the HamiltonianH (= �H=T; k

B

= 1) of

the general form [9℄

H = H

0

+H

4

+H

i

; (1)

where
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�

(q) (2)
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H
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= �
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2V
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2

� q
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(3)

is the usual  

4

�interation term, and

H

i

= �V

�1=2

X

�;!

l

;k

1

;k

2

�(k

1

� k

2

) 

�

�

(!

l

;k

1

) 

�

(!

l

;k

2

)

(4)

is the term desribing quenhed impurities. In Eqs. (2){

(4),  (q) = f 

�

; � = 1; :::; n=2g is the omplex u-

tuation (order parameter) �eld whih depends on the

frequeny{momentum vetor q = (!

l

;k), where !

l

=

2�lT with �h = 1 and l = (0;�1; :::) is the (Bose) Mat-

subara frequeny, and k = fk

i

= 2�n

i

=L

i

; n

i

= 0;�1; ::g

is the d-dimensional wave vetor. The volume V of the

d{dimensional system is V = (L

1

:::L

d

), r = r

0

(T � T



),

where T



� 0 is the bare (unrenormalized) ritial tem-

perature, and u > 0 is the interation onstant.

As the Hamiltonian H given by Eqs. (1){(4) is sup-

posed to desribe quasimarosopi quantum and lassi-

al utuations we shall onsider small wave vetors k,

i.e., we shall apply the long{wavelength approximation

ka� 1, where k = jkj and a is the lattie onstant (or,

the mean interpartile distane in nonrystalline bod-

ies). Thus we shall onveniently hoose an upper mo-

mentum uto� �, so that 0 < k � �� (�=a). By a suit-

able hoie of the units we set � = 1. The frequeny !

l

has no natural uto� but the latter an be always intro-

dued (j!

l

j < �

!

). Note, that only the small frequeny

(j!

l

j � 0) behaviour of the modes  (q) is relevant to the

ritial behaviour in both lassial (!

l

� 0) and quan-

tum (T ! 0; !

l

6= 0) regimes. We shall use the uto� �

!

only in ases where the frequeny integrals exhibit an

unessential ultraviolet divergene in the large frequeny

limit (!

l

!1).

In Eq. (2),

f(q) = �

j !

l

j

m

k

m

0

� k

�

; (5)

where m, m

0

and � are positive exponents. Eq. (5) rep-

resents a general form of the funtion f(q) whih stands

for a number of e�etive Bose models of real sysems; see,

e.g., Refs. [4, 5, 9, 16℄. The exponent � = 2 orresponds

to short{range fores whereas 0 < � < 2 orresponds to

long-range interations (see, e.g., Refs. [5, 21, 22℄). The

values of the exponents m andm

0

depend on the partiu-

lar systems [4, 5, 16℄, for example, itinerant antiferromag-

nets (m = 1;m

0

� 0), superondutors (m = 1;m

0

= 0),

lean itinerant ferromagnets (m = m

0

= 1), dirty itin-

erant ferromagnets (m = 1;m

0

= 2), exiton systems

(m = 1 or 2;m

0

= 0). The form f(q) = �(i!

l

� k

2

)

whih also desribes a number of interesting systems [5,

16℄, in partiular, dilute Bose gases, will not be onsid-

ered in this paper. The last lass of systems exhibits a

quite unusual quantum ritial behaviour as a result of a

great simpli�ation of the RG equations [6℄ in the limit

T ! 0; see also the review [5, 17℄.

In Eq. (4), �(k) is a random funtion whih obeys the

Gaussian distribution [:::℄

R

given by

h

�

�

(k)�(k

0

)

i

R

= �Æ

k;k

0

; (6)

where � is a parameter desribing the disorder e�ets

(short{range random orrelations [5, 7{9℄). The bare (un-

renormalized) Green funtion G

0

= �hj 

�

(q)j

2

i is given

by

G

0

(q) =

1

f(q) � r

: (7)

III. RG ANALYSIS

A. RG equations

The Wilson{Fisher RG reursion relations [9℄ an be

derived in a variant of the initial resaling proedure for

whih the frequeny !

l

is not saled, the initial saling

of the wave vetor is given by k = k

0

b

�1

, where b > 1

is the resaling number, and the �eld omponents  

�

(q)

obey the saling relation  

�

(!

l

;kb

�1

) = �(b) 

�

(!

l

;k).

The RG reursion relations to one{loop approximation

an be written in the general form [9℄

f

0

(q) = �

2

(b)[f(!

l

; kb

�1

) + �K(!

l

)℄ ; (8)

r

0

= �

2

(b)

�

r +

(n+ 2)

2

uI

1

(r)��J

1

(r)

�

; (9)

(uT )

0

= �

4

(b)b

�d

�

uT �

(n+ 8)

2

u

2

TI

2

(r) (10)

+ 6�(uT )J

2

(r)℄ ;

�

0

= �

4

(b)b

�d

[� + 4�

2

J

2

(r)� (n+ 2)�uI

2

(r)℄ ; (11)

where

K(!

l

) =

Z

0

d

d

k

(2�)

d

(

[f(0; k)� r℄

�1

� [f(!

l

; k)� r℄

�1

)

;

(12)
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I

1

(r) = �T

X

!

l

Z

0

d

d

k

(2�)

d

G

0

(q) ; (13)

I

2

(r) = �

�I

1

(r)

�r

= T

X

!

l

Z

0

d

d

k

(2�)

d

G

2

0

(q) ; (14)

and

J

i

(r) =

Z

0

d

d

k

(2�)

d

(k

�

+ r)

�i

; i = 1; 2 : (15)

The prime (

0

) in the integrals denotes an integration in

the shell b

�1

< k < 1 (� = 1). The saling fator �(b) is

hosen in the form �(b) = b

1��=2

, where �=2 = (1��=2)

is the anomalous dimension of the �eld  

�

(q). Note, that

the relation (�=2) = 1 � (�=2) is exat [21, 22℄ for all

0 < � < 2 (long-range interations), and the result � = 0

for � = 2 is valid only in the one{loop order of the theory

onsidered here. The sums (13) and (14) over !

l

are di-

vergent form � 1. In order to inlude values ofm 2 (0; 1℄

we must introdue an upper frequeny uto� �

!

. The

latter is irrelevant to models where m > 1. For m < 1,

the �nite uto� �

!

leads to a modi�ation of the RG

analysis but the �nal results for m > 1 and 0 < m < 1

are the same.

The analysis [9℄ of the RG reursion relations (8){(11)

has been performed within the � = (2� � d){expansion

in two limiting ases:

(i) The lassial ase (�

T

� �) when the de Broglie

thermal wavelength �

T

= �

(0)

T

=T

(1=z

0

)

desribed by the

mean �eld value z

0

of the dynamial ritial exponent z

[17℄ is muh smaller than the (bare) orrelation length

� = �

0

=jT � T



j

1=�

; �

(0)

T

and �

0

are saling amplitudes.

(ii) The quantum ase (�

T

� �) whih is possible for

T



= 0 and T ! 0.

The analysis of the lassial asymptote (i) yields the

usual lassial ritial behaviour governed by the lassi-

al utuation modes  

�

(0;k). In addition to this trivial

result one reveals [9℄ the ritial dynamis of the sys-

tems whih results from purely quantum dynamial phe-

nomena (for the orresponding values of the dynamial

ritial exponent z alulated to one{loop order for both

ases (i) and (ii), see Ref. [9℄; for alulations of z in

partiular ases, see Refs. [10{13℄).

It has been for a �rst time demonstrated in Ref. [9℄,

that the asymptote (ii) reveals a speial type of in-

stability of the quantum ritial behaviour at T = 0.

In ontrast to pure systems (� = 0, Ref. [4℄), where

CQC (d ! d + z) manifests itself, the quenhed disor-

der (� > 0) in impure systems enhanes the lassial

utuations up to an upper borderline dimensionality

d

U

= 2� and CQC annot our [9℄. The same instabil-

ity was noted and extensively investigated in more reent

works [10, 11{13℄.

The summation over the frequeny !

l

in Eqs. (13) and

(14) yields transendental funtions whih should be fur-

ther integrated over the wave vetor k. The presene of

transedental funtions in Eqs. (8){(11) leads to a great

ompliation of the RG analysis in the general ase of

any ratio 0 < (�

T

=�) < 1. In result the standard anal-

ysis [9℄ an be performed with analytial means only in

the asymptoti ases (i) and (ii).Therefore the entire in-

vestigation of the problem requires another approah [19,

20℄, whih will be shortly introdued in the next Setion.

B. RG equations from a Æ{integration

In the remainder of this paper we shall present an-

other variant of the RG equations (8){(11) by using a

double (�;

�

Æ)-expansion, where

�

Æ = z

0

Æ; z

0

= (�+m

0

)=m

[4℄ is the mean �eld value of the dynamial exponent

z, and 0 � Æ � 1. Furthermore, we shall perform the

main steps of the RG analysis in terms of the small pa-

rameters � = (2� � d) and

�

Æ. In fat, the derivation of

RG equations an be performed with the help of a sin-

gle expansion parameter ~� = 2� � d �

�

Æ, related to an

e�etive upper dimensionality d

eff

= 2� �

�

Æ [20℄. But

at a next stage of onsideration, when we impose the

requirement for a saling invariant form of the RG equa-

tions the single ~�{expansion should be split to the double

(�;

�

Æ){expansion.

The quantum e�ets will be taken into aount by the

�

Æ{dependene of the relevant physial quantities. An at-

tempt along this diretion of researh has been made

for the partiular ases of Bose systems [11, 12℄, with a

!

l

{dependene of type f(!

l

; 0) = �i!

l

, and for impure

quantum antiferromagnets [13℄, where f(!

l

; 0) = j!

l

j.

We shall follow the method of Æ{integration presented in

Ref. [20℄ applied to thin �lms.

The main idea of the Æ{integration [19, 20℄ is to hange

the usual rule

T

X

!

l

T!0

�!

Z

1

0

d!

2�

(16)

by

T

X

!

l

! T

1�Æ

Z

d

Æ

!

(2�)

Æ

(17)

Advantages and disadvantages of the approximate rule

(17) were widely disussed in Ref. [20℄. In partiular, it

has been shown that for all intermediate ases 0 < Æ < 1,

the Æ | integration gives inorret values of FP oordi-

nates but universal quantities suh as the ritial expo-

nents an be reliably alulated. In the limiting ases

Æ ! 0 (lassial) and (Æ ! 1) (quantum), one obtains an

entirely orret desription. For models orresponding to

m � 1 one should introdue in Eqs. (16){(17) an upper

frequeny uto� �

!

< 1. Below we shall onsider the

ase m > 1 where the �nite uto� �

!

is not neessary.

The ase m � 1 will be briey disussed in Setion IV.

Using the rule (17) in Eqs. (13) and (14) and perform-

ing ertain standard alulations, the Eqs. (8){(11) yield
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!

0

l

= b

z
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!

l

"

1 +

1

m

Æ

m

0

;0

�

 

b

�

Æ

� 1

�

Æ

!#

; (18)

r

0

= b

�

�

r +

(n+ 2)

2

v

�

1� b

��

�

�

m

m � Æ

�

� rlnb

�

� �

"

1� b

��+

�

Æ

� �

�

Æ

� r

 

b

�

Æ

� 1

�

Æ

!#)

; (19)

v

0

= b

2��d

�

�

T

T

0

�

Æ

(

v �

(n+ 8)

2

v

2

lnb + 6�v

 

b

�

Æ

� 1

�

Æ

!)

; (20)

and

�

0

= b

2��d

(

� � (n+ 2)�vlnb + 4�

2

 

b

�

Æ

� 1

�

Æ

!)

; (21)

where � = K

d

� with K

d

= 2

1�d

�

�d=2

=�(d=2), and

v = T

1�Æ

au with a = K

d

K

Æ

�(Æ=m)�(2� Æ=m)=m. The

Eqs. (18){(21) are valid within an ~� = (2��d�

�

Æ) expan-

sion, where the perturbation integrals are alulated at

the upper borderline dimensionality d

U

= (2� �

�

Æ). It is

obvious that Eqs. (18){(21) take a saling invariant form

provided we assume that (b

�

Æ

� 1) �

�

Ælnb, i.e., for

�

Æ � 1.

This means that we must substitute the single expansion

parameter ~� with two ones: � = (2� � d) and

�

Æ.

Eq. (18) for !

l

an be written for the temperature:

T

0

= b

z(�)

T ; (22)

where

z(�) = z

0

+

�

m

Æ

m

0

;0

: (23)

The FP value �

�

of � yields the dynamial ritial ex-

ponent: z = z(�

�

). Obviously, the mean �eld value

z

0

= (� +m

0

)=m will aquire (�; Æ){orretions only for

�

�

6= 0, i.e., for random FPs (RFP). At the lassial

asymptote (Æ ! 0), the dynamial exponent z(�

�

) was

alulated in Ref. [9℄. Here the alulation an be gener-

alized for Æ > 0.

It is onvenient to perform our further analysis with

the help of the orresponding di�erential RG equations

(see, e.g., Ref. [5, 11{13℄). From Eqs. (19){(23) one an

easily obtain

dT (l)

dl

= z(�)T (l) ; (24)

dr(l)

dl

= �r(l) +

(n+ 2)

2

v(l)

�

m

m � Æ

� r(l)

�

� �(l)[1� r(l)℄ ; (25)

dv(l)

dl

= [2� � d� Æz(�)℄v(l)

�

(n + 8)

2

v(l)

2

+ 6v(l)�(l) ; (26)

d�(l)

dl

= (2� � d)�(l)� (n+ 2)v(l)�(l) + 4�(l)

2

; (27)

In Eq. (26) one an safely ignore a small term Æ�v � Æ�

2

and substitute z(�) with z

0

.

C. Fixed points and ritial exponents

Sine z > 0, Eq. (24) has two FPs: T

�

C

=1 (lassial)

and T

�

Q

= 0 (quantum). Within the present RG sheme

the lassial FP (T

�

C

= 1) orresponds to the lassi-

al ritial behaviour at T > 0, where the frequenies

!

l

are irrelevant to the asymptoti (ritial) thermody-

namis at T ! T



> 0. In this ase, Eq. (18) indiates

that the suessive RG transformations lead to !

l

!1

for all !

l

> 0. Thus the perturbation ontributions from

the nonritial modes  

�

(!

l

> 0;k) beome irrelevant

and the onsequenes of this irumstane is desribed

by FPs of type T

�

C

=1. Within our approah this las-

sial ritial behaviour is desribed by Eqs. (18){(21) or,

equivalently, by Eqs. (24){(27) in the limit Æ ! 0. The

quantum FPs (T

�

Q

= 0) orrespond to the limit Æ ! 1.

The Eqs. (24) and (25) onstitute T and r as the relevant

thermodynami parameters.

The Eqs. (26){(27) give four FPs:

(1) Gaussian (GFP)

v

G

= �

G

= 0 ; (28)

(2) Unphysial (UFP)

v

U

= 0 ; �

U

= �

�

4

; (29)

(3) Heisenberg (HFP)

v

H

=

2(��

�

Æ)

(n + 8)

; �

H

= 0 ; (30)

(4) Random (RFP)

425



I. P. TAKOV

v

R

=

�+ 2

�

Æ

2(n � 1)

; �

R

=

(4� n)�+ 2(n+ 2)

�

Æ

8(n� 1)

: (31)

The Eqs. (31) are valid for n > 1. For

�

Æ = 0, all these

FPs are known from Refs. [7, 9℄. In some ases the FPs

(1){(4) will be shortly referred to as G, U, H and R,

respetively. Here we shall onsider the quantum e�ets

represented by the

�

Æ{dependene of the FPs and related

physial quantities.

The Eq. (6) de�nes � = K

d

� as a positive parameter

and, hene, the UFP does not present a pratial interest

for � > 0; for � < 0 UFP is physial but unstable [7, 9℄.

For 2� < d < 2(�+

�

Æ) the UFP has an instability towards

� whereas the same FP has a double instability (towards

both v and �) for d > 2(� +

�

Æ). We shall onsider G, H,

and R in more details.

The stability exponents of GFP are �

(G)

v

= � �

�

Æ and

�

(G)

�

= �. Thus GFP is stable only for d > 2�. The sta-

bility exponents of H are

�

(H)

v

=

�

Æ � � ; (32)

and

�

(H)

�

=

(4� n)�+ 2(n + 2)

�

Æ

(n+ 8)

: (33)

The stability exponents �

(R)

1;2

of the RFP are given by

�

(R)

1;2

= �

3n�+ 2(4� n)

�

Æ �

p

Q

8(n� 1)

; (34)

where

Q = (5n � 8)

2

�

2

� 12(5n

2

+ 8n� 16)

�

Æ

2

� 12(n

2

+ 12n� 16)�

�

Æ : (35)

For Q � 0, the orretion{to{saling (stability) expo-

nents �

(R)

1;2

take real values. The usual (impure) ritial

behaviour [7℄ is stable for �

(R)

1;2

< 0. For Q < 0 the om-

plex exponents �

(R)

1;2

desribe the so{alled impure rit-

ial behaviour with osillatory orretions to the main

saling laws [8, 14℄. The orresponding RFP is often re-

ferred to as a \foal" FP. We shall denote the RFP in

suh ases by R

C

FP or simply by R

C

. The RFP with

real values of �

(R)

1;2

will be respetively referred to as

R

R

FP or, simply, as R

R

. The same notations will be

used for respetive quantities (ritial exponents, stabil-

ity domains).

The stati ritial behaviour is given by � = (2 � �)

and the value of the orrelation length exponent �. For

G, �

G

= 1=�. For H we obtain

�

H

=

1

�

+

(n+ 2)(��

�

Æ)

�

2

(n+ 8)

; (36)

and for R we have

�

R

=

1

�

+

3�n+ 2(n+ 2)

�

Æ

8�

2

(n� 1)

; n > 1 : (37)

The dynamial exponent z is z = z

0

= (�+m

0

)=m for

GFP and HFP. For R the dynami exponent is given by

z

R

=

�

m

+

1

m

�

(4 � n)�+ 2(n+ 2)

�

Æ

8(n� 1)

�

; n > 1 ; (38)

for m

0

= 0, and z

R

= z

0

for m

0

> 0. The Eq. (38) is a

generalization of the result for z obtained in Ref. [9℄ for

Æ = 0. Besides, by setting m = 1 and � = 2 in Eq. (38)

one obtains the result for z

R

known from Ref. [13℄. For

� = 2 ;m = 2 and

�

Æ � Æ(z

0

= 1); z

R

from Eq. (38) re-

produes the result for the ritial exponent z

R

obtained

in Ref. [20℄.

D. Stability analysis

Here we shall briey disuss the stability of H and R

for n > 1. Besides, we shall distinguish between the rit-

ial behaviour desribed by real (R) and omplex (C)

values of the orretion-to-saling exponents �

(R)

1;2

.

The stability requirements for H are: �

(H)

v

< 0, and

�

(H)

�

< 0. To these inequalities we must add the restri-

tion d

L

= (��

�

Æ) < d of our RG analysis (d

L

- the lower

borderline dimension). For � < 0, H is unstable towards

v-perturbation for all n > 0 and

�

Æ � 0. For � > 0 one an

easily demonstrate that H is unstable for all 0 < n � 4

and 0 �

�

Æ � 1 exept for the ase n = 4 for

�

Æ = 0 in

whih H has a known marginal stability [7℄. For n > 4,

H is stable provided

d

L

= (� �

�

Æ) < d < d

H

; (39)

where

d

H

= 2� �

2(n + 2)

(n� 4)

�

Æ : (40)

The HFP has a domain of stability in the plane, say,

(d; Æ) provided 0 < d

L

< d

H

. From (39){(40) we obtain

�Æ <

(n� 4)

(n+ 8)

; (41)

where � = (z

0

=�). For (�Æ) = 0 (lassial limit) the on-

dition (41) is satis�ed for any n > 4.

The inequality (41) an be solved with respet to n to

�rst order in the Æ-expansion:
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n > n

H

(Æ) ; (42)

n

H

(Æ) = (4 + 12�Æ) : (43)

The ondition d

L

> 0 yields (�Æ) < 1. Besides the

(�Æ)-term in Eq.(42) should be onsidered small with

respet to n

H

(0) = 4. This is onsistent both with our

Æ{expansion and the requirement d

L

� 0 whih leads to

(�Æ) < 1. For � < 1 the result (43) for n

H

(Æ) is reliable

for a wide range of values of Æ. In general, the ritial

value n

H

(Æ) will ontain higher order orretions in pow-

ers of (�Æ) but their alulation is beyond our one{loop

RG treatment.

Fig. 1. Stability domains of H, R

R

and R

C

for � = 1:5 and

n = 16.

Fig. 2. Stability domains of H, R

R

and R

C

for � = 0:5 and

n = 16.

The inequality (41) an be onsidered with respet to

Æ. For � > 0 we have Æ < Æ

H

, where

Æ

H

=

(n� 4)

(n+ 8)�

: (44)

The upper bound Æ

H

< 1 always exists for � � 1; see

Fig. 1. In this ase the values of Æ in the interval [Æ

H

; 1℄

are forbidden. For 0 < � < 1 the additional restrition

Æ � Æ

H

on the values of Æ takes plae only when

n < n

H

(�) =

4(2�+ 1)

(1� �)

: (45)

The ondition (45) should be onsidered together with

n > 4. The stability domain of H is depited in Fig. 2

for � = 1=2 and n = n

H

(1=2); and in Fig. 3 for � = 1=2

and n = 22.

Fig. 3. Stability domains of H, R

R

and R

C

for � = 0:5 and

n = 22.

The stability properties of the RFPs, R

R

and R

C

, an

be investigated only for n 6= 1 beause of the degen-

eration of the RG equations for n = 1 [7, 8, 14℄; for

the notations R

R

and R

C

, see Setion III.C. The ase

0 < n < 1 seems to be of an aademi interest only and

for this reason we shall fous our attention on symmetry

indies n > 1. We have the following onditions for the

stability of R

R

:

(� �

�

Æ) < d < 2(� +

�

Æ) ; (46)

(4� n)(2� � d) + 2(n+ 2)

�

Æ > 0 ; (47)

3n(2� � d) + 2(4� n)

�

Æ > 0 ; (48)

and

Q � 0 ; (49)

together with d

L

= (� �

�

Æ) > 0. For R

C

one obtains the

inequalities (47), (48), the inequality inverse to (49), and

the standard ondition d

L

> 0. The riteria of stability

an be investigated numerially for all values of d, n > 1,
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and Æ =

�

Æ=z

0

. A similar analysis for another problem has

been performed in Ref. [20℄ for values of n of partiular

interest.

For n = 4, R

R

is stable in the domain (d; Æ) de-

�ned by 0 < Æ < Æ

4

and (1 � �Æ) < (d=�) <

�

d

R

(4),

Æ

4

= 1=(1 + 2

p

3)� and

�

d

R

(4) = 2 � 2(1 +

p

3)�Æ. Be-

sides, we should note that (d

L

=�) = (1 � �Æ) > 0 must

be satis�ed throughout our analysis.

For 1 < n < 4, the stability of R

R

is given by Q � 0

and

1� �Æ < (d=�) <

�

d

R

(50)

with

�

d

R

= d

R

=�, where

d

R

= 2� +

2(4� n)

�

Æ

3n

: (51)

For R

C

, we must use the inequalities Q < 0 and (50).

The domains of stability of R

R

and R

C

are depited

in Figs. 1, 2, and 3. Another speial ase is n = 8=5

[23℄. At n = 8=5 the �{expansion exhibits singularities

[23℄. In our ase of one{loop RG analysis the stability

domain of R

R

at n = 8=5 does not exist at all and

the domain of R

C

is expanded up to 0 � Æ � 1 and

(1� �Æ) < (d=�) � (2 + �Æ).

BothH and R are stable for n > 4 in di�erent domains

of the (d; Æ) plane. For Æ < Æ

H

the stability domain of

R

R

is given by Q � 0 and

�

d

H

< (d=�) <

�

d

R

(52)

whereas for Æ > Æ

H

, the same domain is desribed by the

inequalities Q � 0 and

1� �Æ < (d=�) <

�

d

R

: (53)

The stability domain of R

C

is given by (52) and (53) and

Q < 0. The stability domains R and C of R

R

and R

C

are shown in Figs. 1, 2, and 3 for partiular values of �

and n. The borderline separating the stability domains

of R

R

and R

C

is given by

d=� = 2� �Æ ; (54)

where

� =

2�

h

3n

2

+ 36n� 48 + 8

p

6(n+ 2)(n � 1)

3

i

(5n� 8)

2

: (55)

In ertain ases, suh as that in Fig. 1, the borderline

(54) rosses the upper borderline of stability region of H

at a oordinate Æ

R

< 1, whih is given by

Æ

R

=

(5n� 8)

2

�

h

152n� 19n

2

� 160 + 16

p

6(n+ 2)(n� 1)

3

i

:

(56)

For example, if � = 0:5 and � = 2, one obtains Æ

R

< 1

provided 1:23 < n < 8:43.

The domains in Figs. 1{3 denoted by I orrespond to a

total instability of the system for n > 4. In these domains

all FPs are unstable for all n > 4, Æ > 0 and d � 2�. The

instability an be interpreted [13, 20℄ as an indiation for

a utuation{driven phase transition of �rst order.

IV. MAIN RESULTS AND DISCUSSION

We have derived the one{loop RG equations for a wide

lass of models of quantum ritial phenomena. Our main

attention has been foussed on the zero temperature rit-

ial phenomena in systems with quenhed impurities. For

our purposes we have used an (�; Æ){expansion, where the

parameter 0 � Æ � 1 desribes the quantum e�ets. The

ritial exponents orresponding to FPs of the RG equa-

tions are alulated to �rst order in � = (2� � d) and

0 � Æ � 1. The stability properties of the FPs are in-

vestigated. It has been demonstrated within the double

(�; Æ){expansion that several types of stable ritial be-

haviour are possible.

Preditions about the zero temperature (quantum)

ritial behaviour an be made by the extrapolation of

the results for Æ � 1 to Æ � 1. The small (Æ � 1) or-

retions to the results known from the usual �{analysis

aount for quantum e�ets on the usual lassial be-

haviour at �nite{temperature ritial points (T



6= 0).

The variation of the parameter Æ an be onsidered as

dependent on the ratio (�

T

=�) [17, 20℄. The quantum

limiting ase Æ � 1 orresponds to (�

T

=�) � 1 whereas

the lassial asymptote Æ ! 0 orresponds to (�

T

=�) � 0.

Our analysis allows a general treatment orresponding to

any value 0 � Æ � 1. Note, that within the present RG

analysis Æ is onsidered as a small expansion parameter

but the results an be extended to �nite values of Æ (of

order of unity). So, the expansion parameter Æ is treated

at the same footing as the usual expansion parameter �.

The RG Eqs. (25){(27) formally oinide with the

RG equations for lassial systems with extended (Æ{

dimensional) impurities [14℄, whih are randomly dis-

tributed in the rest d dimensions of a D

Æ

= (d + Æ) di-

mensional system. In our ase, the extra Æ dimension is

a purely quantum e�et due to the imaginary \time" �

or, equivalently, on the Matsubara frequeny !

l

onju-

gate to � . In fat the spatial dimensionality d does not

hange but for any Æ > 0 the point impurities ontained

in the initial Hamiltonian (1){(4) e�etively behave like

extended quenhed impurities of dimensionality Æ. Thus

the results obtained by Dorogovtsev [14℄ for lassial sys-

tems with extended impurities and short{range intera-

tions (� = 2) an be easily rederived from Eqs. (25){

(27). For this aim one must hange our � = (2� � d)

428



CLASSICAL TO QUANTUM CROSSOVER OF THE CRITICAL BEHAVIOUR OF IMPURE SYSTEMS

with ~� = (2� � d�

�

Æ). For example, in terms of ~� and

�

Æ,

Eq. (37) reads

�

R

=

1

�

+

3n ~�+ (5n+ 4)

�

Æ

8�

2

(n� 1)

: (57)

One an easily hek that there is a formal equiva-

lene between the ritial exponents of lassial systems

with extended impurities and systems with point{like

quenhed impurities of Æ-type as given by Eq. (6). The

dynamial exponent z

R

from Eq. (38) orresponds to the

so{alled longitudinal exponent �

l

in Ref. [14℄. Despite

of their di�erent physial meaning, these two exponents

are related by z

R

= (�=m) + �

l

. One may easily hek

that (z

R

� �=m) from Eq. (38) oinides with the result

[14℄ for �

l

for � = m = 2 and m

0

= 0. It an be therefore

onluded that the quantum ritial behaviour for a wide

lass of systems is quite similar to that for lassial sys-

tems with extended impurities. In fat, for m

0

= 0 and

m = � = 2, there is a total equivalene in the ritial

properties of lassial systems with extended impurities

and systems with point impurities.

The limit Æ ! 1 orresponds to (�

T

=�) ! 1, i.e., to

the quantum limit T ! 0. In this ase our RG investi-

gation in terms of � and Æ leads to stable FPs whih de-

sribe several types of quantum ritial behaviour. For

ertain values of the symmetry index n this quantum

ritial behaviour is inuened by the quenhed disor-

der. This piture orresponds again to that known from

lassial systems with extended (one-dimensional, Æ = 1)

quenhed impurities. Similar onlusions were obtained

in Refs. [12, 13℄, where partiular models have been in-

vestigated. We must emphasize that the predition of

the availability of a stable zero temperature ritial be-

haviour in impure systems is a diret onsequene of our

supposition that an additional Æ{expansion an be per-

formed.

The diret appliation of the RG method to the same

zero temperature problem leads to an instability [9℄ of

the quantum ritial behaviour with respet to the same

quenhed impurities. In our present study, the previously

known instability [9℄ appears only in a lose viinity be-

low the upper borderline dimensionality d

U

= 2�. In

both ases the instability indiates a utuation indued

phase transition of �rst order.

Our analysis leads to a general onlusion, that the

standard CQC onept [4℄ annot be diretly applied to

the quantum ritial behaviour of impure systems. The

quantum ritial behaviour at T = 0 of suh systems

with quenhed point impurities orresponds to the las-

sial ritial behaviour of systems with ertain extended

impurities rather than to lassial systems with point im-

purities at a higher e�etive dimensionality (D = d+ z).

In order to maintain the interpretation of our results

within a dimensional CQC onept we must establish a

orrespondene between the quantum ritial behaviour

and the ritial behaviour of ertain lassial systems

with extended impurities although the initial lass of

quantum models ontains point impurities only.

We onlude with several remarks for the validity of

our investigation. Our results for n > 1 an be extended

to higher orders in the loop expansion. The study of

Ising{like systems (n = 1) requires a two{loop approxi-

mation [7, 8, 14, 23℄. It an be supposed that suh an

investigation will reveal a quantum ritial behaviour

quite similar to that for lassial Ising (n = 1) with

short range interation (� = 2) and extended impurities

[14℄. The two{loop RG analysis for long{range intera-

tion (0 < � < 2) is quite ompliated [21, 22℄ and for this

reason our one{loop onsideration for 0 < � < 2 annot

be straightforwardly extended to the two{loop order.

The RG analysis in Setion III has been performed

for systems where m > 1. For m < 1 an upper fre-

queny uto� �

!

should be introdued in order to avoid

a runaway (to in�nity) of the FPs oordinates. This does

not hange the results for the ritial exponents and the

stability properties of FPs. Thus our main onlusions

are valid for all m > 0. The last onlusion is a result

of both heuristi arguments and diret RG alulations.

The main heuristi argument is that the upper uto�

�

!

should not hange the ritial behaviour as the rel-

evant low frequeny modes  

�

(!

l

< �

!

;k) are inluded

into onsideration. The diret introdution of �

!

in the

alulations lead to another form of the perturbation in-

tegrals but the subsequent RG analysis on�rms the sim-

ple heuristi argument. This modi�ed RG analysis an be

easily aomplished and we shall not dwell on this point.
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KLASIQNO{KVANTOVI� KROSOVER U KRITIQN�� POVED�NC�

DOM�XKOVIH SISTEM

�. P. Takov

�nstitut f�ziki tverdogo t�la �m. �. Nad�akova, Bolgars~ka akadem�� nauk,

Sof��, BG{1784, Bolgar��

Klasiqno{kvantovi� krosover za vim�rn�st� v xirokomu klas� sistem �z zamoro�enimi dom�xkami

ta neodnor�dnost�mi dosl�d�eni� u ramkah metodu renormal�za��noÝ grupi. Odnopetlev� renormgrupov�

r�vn�nn� vivedeno za dopomogo� podv��nogo (�; Æ){rozvinenn�, de lokal~ni� parametr Æ opisu kvantov�

efekti, a � = 2� � d  zviqa�nim parametrom rozvinenn� (0 < � � 2; d | vim�rn�st~ prostoru). Usta-

novleno �viwe klasiqno{kvantovogo krosoveru ta obqisleno kritiqn� eksponenti v perxomu por�dku za

� ta Æ. Obgovoreno analog�Ý m�� im p�dhodom ta p�dhodom podv��nogo (�; Æ){rozvinenn� pri rozgl�d� zadaq�

prot��nih dom�xok.
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