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A theoreti
al analysis of the thermodynami
 response fun
tions of the 2D single{band Hubbard

model is 
arried out by means of the 
omposite operator method. It is shown that all the features

of these quantities 
an be explained by looking at the dependen
e of the thermodynami
 variables

on their 
onjugate ones. In this way, the ele
troni
 spe
i�
 heat and the entropy per site are

determined in the paramagneti
 phase. Also, for the ele
troni
 spe
i�
 heat and internal energy

we present two di�erent s
hemes of 
al
ulation. It is found that the numeri
al data from quantum

Monte Carlo te
hniques for the internal energy and ele
troni
 spe
i�
 heat are well reprodu
ed by

determining them through the �rst and se
ond temperature derivatives of the 
hemi
al potential.

The anomalous normal state properties in hole{doped 
uprate high T




super
ondu
tors are also

well des
ribed. Finally, we obtain several 
hara
teristi
 
rossing points for the response fun
tions

when plotted versus some thermodynami
 variables. These pe
uliar features indi
ate the existen
e

of more than one energy s
ale 
ompeting with thermal ex
itations and indi
ate, as already noted

by Vollhardt, a 
rossover from a non{intera
ting to a highly 
orrelated behaviour.
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I. INTRODUCTION

It is believed, on both experimental and theoreti
al

grounds, that super
ondu
tivity and 
harge transport in

high T





uprates are mostly 
on�ned to the CuO

2

planes

[1, 2℄; and hen
e the attention of many physi
ists has

been dedi
ated to 2D models whi
h 
ontain as an es-

sential feature a 
ompetition between the band pi
ture

and highly 
orrelated many body e�e
ts. Of 
ourse, some

features of the phase diagram, like the existen
e of a �-

nite N�eel temperature, 
an only be explained by adding

a 
oupling between the planes.

The bonding 
ombination of Cu and O orbitals turns

out to be quite deep below the Fermi level, so that no

dynami
 freedom is left to treat d and p orbitals sepa-

rately [3℄ (there are some strong experimental eviden
es,

mostly based on the study of the Knight shift, that in the

CuO

2

plane one spin degree of freedom is observed [4℄).

Through the Pauli prin
iple, the energy of the p ele
-

tron ex
itation is, for example, largely modi�ed by the


hange of 
harge and spin states of the neighbouring Cu

ions. A p ele
tron and 
harge and spin 
u
tuations on

neighbouring Cu ions are simultaneously ex
ited so that

ele
troni
 ex
itations are formed on a CuO

2


luster as a

whole. Then, the resulting 
omplex 
an be des
ribed by

a single{band Hubbard model [5℄.

In the simplest form, the Hubbard model, �rst intro-

du
ed to des
ribe the 
orrelations of ele
trons in a nar-

row d{band of transition metals, 
ontains a kineti
 term

whi
h des
ribes the motion of the ele
trons among the

sites of the Bravais latti
e and an intera
tion term be-

tween ele
trons of opposite spin on the same latti
e site.

By varying the model parameters, it is believed that the

Hubbard model is 
apable of des
ribing many proper-

ties of strongly 
orrelated fermion systems. Among dif-

ferent examples, the Hubbard Hamiltonian is appli
able

to des
ribe the metal{insulator transition in a series of

transition metal oxides su
h as Sr

1�x

La

x

TiO

3

[6, 7℄ and

V

2

O

3

[8{11℄. The appli
ability of the model to the su-

per
ondu
ting 
opper{oxides is related to the fa
t that

upon doping most of these 
ompounds exhibit a metal{

insulator Mott transition; the super
ondu
ting state is

near the N�eel state and there are many experimental

results [12{15℄ whi
h show a 
lose relation between the

antiferromagneti
 
orrelations in the Cu{O planes and

the o

urren
e of the super
ondu
ting phase. However,

it is important to stress that an appropriate des
ription

of a bad metal with large energy s
ale spin 
u
tuations

by means of a purely ele
trostati
 Hamiltonian should

preserve the symmetry expressed by the Pauli prin
iple

that 
odi�es the 
orre
t interplay between 
harge and

magneti
 
on�gurations [16{18℄.

Although 
onsiderable attention has been devoted to

the Hubbard model and signi�
ant progress was a
hieved

in understanding ground state properties, parti
ularly at

half{�lling, stati
 and dynami
 spin 
orrelations, the op-

ti
al 
ondu
tivity and other observables, a 
lear 
ompre-

hension of the low{lying ex
itations is still la
king [2℄.

The diÆ
ulty is not to be found only in the absen
e

of any obvious small parameter in the strong 
oupling

regime. More deeply, it is due to the diÆ
ulty of han-

dling simultaneously itinerant aspe
ts (spatial 
orrela-

tions) and atomi
 aspe
ts (pronoun
ed on{site quantum


u
tuations) [19℄.
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In re
ent years we have been developing a method of


al
ulation, denominated Composite Operator Method

(COM) [17, 18, 20{32℄, that has been revealed to be a

powerful tool for the des
ription of lo
al and itinerant

ex
itations in strongly 
orrelated systems. In previous

papers, we 
onsidered the Hubbard ele
troni
 operators

for the determination of fundamental ex
itations. A fully

self{
onsistent 
al
ulation of the ele
troni
 propagator

has been realized by means of a 
onstraint with the phys-

i
al 
ontent of the Pauli prin
iple [17, 23{25℄. We 
al
u-

lated lo
al quantities, as the double o

upan
y and the

magneti
 moment [17, 23℄, the energy per site [24℄, the


hemi
al potential [24℄, the magneti
 sus
eptibility [25,

29℄, the density of states and the quasi{parti
le spe
tra

[28, 32℄. In all the 
ases, the results show a good agree-

ment with those obtained by numeri
al simulation. In

parti
ular, the results obtained for the magneti
 proper-

ties 
an reprodu
e the unusual 
hara
teristi
s observed

in high T




super
ondu
ting materials [25, 29, 33℄. There-

fore, the agreement strengthens the idea that a mi
ro-

s
opi
 single{band model 
ontains the essential physi
al

features of the new 
lass of materials.

In this paper we investigate the ele
troni
 spe
i�
 heat

and the entropy per site of the 2D Hubbard model for a

paramagneti
 ground state. It will be shown that all the

features of these quantities 
an be understood by looking

at the dependen
e of the 
hemi
al potential and dou-

ble o

upan
y on their 
onjugate thermodynami
 vari-

ables, that is, the parti
le 
on
entration and the on{site

Coulomb repulsion, respe
tively. A 
omprehensive 
om-

parison among di�erent methods to 
ompute the spe
i�


heat will shed a new light on the approximation used. It

will emerge that in our theoreti
al s
heme, even if dy-

nami
 e�e
ts in the self{energy are negle
ted promoting

unstable 
olle
tive asymptoti
 modes to the role of well{

de�ned quasi{parti
le ex
itations, extended spin modes


an be 
aptured by properly 
ombining symmetry re-

quirements and extended operatorial basis. Indeed, the

presen
e of a low temperature peak that appears when

the low{lying spin states are ex
ited will appear as an

important feature shared with the quantumMonte Carlo

data [34℄. An extensive study of the thermodynami
 re-

sponse fun
tions will reveal the existen
e of 
riti
al lines

whi
h separate di�erent energy s
ales 
reated by the in-

terplay between 
harge and spin modes. In other words

a study of thermodynami
s quantities, su
h as the dou-

ble o

upan
y, the entropy, the 
hemi
al potential, the

spe
i�
 heat, indi
ates lines in the U�T plane whi
h sep-

arate a highly{
orrelated behaviour, dominated by spin

and 
harge 
u
tuations and a non{intera
ting behaviour,

dominated by thermal 
u
tuations. In parti
ular, there

emerges a region of �lling where the entropy redu
es by

in
reasing the �lling signalling the setup of an ordered

phase. For T ! 0 there is a well{de�ned marginal 
on-


entration where a quantum phase transition o

urs. A

detailed 
omparison with the non{intera
ting 
ase will

be also presented throughout the paper.

The plan of the arti
le is as follows. In the next Se
-

tion we present the 2D Hubbard model and the ele
tron

propagator in the COM. In Se
. III we review experimen-

tal data for some thermodynami
 properties. The results

for the ele
troni
 spe
i�
 heat are presented in Se
 IV,

where a theoreti
al understanding of the di�erent ways

to 
ompute the spe
i�
 heat is also presented. Se
tion V

is devoted to a dis
ussion of double o

upan
y. In Se
.

VI the results for the 
hemi
al potential versus temper-

ature are dis
ussed. The entropy is analyzed in Se
 VII.

Some 
on
luding remarks are presented at the end.

II. ELECTRON PROPAGATOR IN THE

HUBBARD MODEL

The Hubbard model is de�ned by

H = "




X

i




y

(i) � 
(i) +

X

i;j

t

ij




y

(i) � 
(j)

+ U

X

i

n

"

(i)n

#

(i) � �

X

i

n(i): (1)

The variable i stands for the latti
e ve
tor R

i

. In the

following, i will be also used as a 
omposite position and

time index.

�


(i); 


y

(i)

	

are annihilation and 
reation op-

erators of 
�ele
trons at site i, in the spinor notation:


 =

�




"




#

�

; 


y

=

�




y

"




y

#

�

; (2)

"




is the 
{ele
tron energy level. t

ij

denotes the transfer

integral and des
ribes hopping between di�erent sites;

the U term is the Hubbard intera
tion between two


�ele
trons at the same site with

n

�

(i) = 


y

�

(i)


�

(i) (3)

being the 
harge{density operator per spin �. n(i) is

the total 
harge{density operator. � is the 
hemi
al po-

tential. In the nearest neighbour approximation, for a

two{dimensional 
ubi
 latti
e with latti
e 
onstant a, we

write the hopping matrix t

ij

as

t

ij

= �4t�

ij

= �4t

1

N

X

k

e

ik�(R

i

�R

j

)

�(k) ; (4)

where

�(k) =

1

2

[
os(k

x

a) + 
os(k

y

a)℄ : (5)

Hereafter, the s
ale of the energy is �xed in su
h a way

that "




= 0. It should be noted that sin
e the intera
tions

are restri
ted to the same site, the dimensionality of the

system 
omes in only when a spe
i�
 form for �(k) is

taken [35℄. In other words, the stabilization of eventual


ooperative phenomena is uniquely governed by the band

dispersion.

The point of view adopted in the COM is that the

Heisenberg operators f
(i); 


y

(i)g are not good 
andi-

dates as a basis for 
al
ulations. Be
ause of strong 
or-

relations the 
�ele
trons loose their identity and new

�elds, whose properties are self{
onsistently determined
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by the dynami
s and by the symmetries of the model,

together with the boundary 
onditions, might be more

appropriate as a starting point for the physi
al des
rip-

tion of the system. Due to the on{site Coulomb intera
-

tion, it is known that two sharp features develop in the

band stru
ture whi
h 
orrespond to the Hubbard sub-

bands and des
ribe interatomi
 ex
itations mainly re-

stri
ted to subsets of the o

upan
y number. Indeed, a

�rst natural 
hoi
e for 
omposite �elds is given by the

Hubbard 
onstrained ele
troni
 operators

�(i) = [1� n(i)℄
(i) ; (6)

�(i) = n(i)
(i) (7)

des
ribing the transitions (n = 0) () (n = 1) and

(n = 1) () (n = 2), respe
tively. The two{point re-

tarded thermal Green's fun
tion is de�ned as

S(i; j) = hR[	(i)	

y

(j)℄i ; (8)

where 	(i) is the doublet 
omposite operator

	(i) =

�

�(i)

�(i)

�

: (9)

The bra
ket h: : :i indi
ates the thermal average and R is

the usual retarded operator.

In previous papers, we have shown that the determina-

tion of the single{parti
le Green's fun
tion (8) 
an be re-

alized in a fully self{
onsistent way on
e a unique approx-

imation is made [17, 23{25℄. This approximation 
onsists

in negle
ting the dynami
 part in the self{energy and 
or-

responds to a pole expansion of the spe
tral intensities

[36℄. That is, we linearize the equations of motion for the

basis in (9) as

i

�

�t

 (i) = �(�ir) (i) ; (10)

where the energy matrix � is de�ned by

�(�ir

i

)


�

 (R

i

; t);  

y

(R

j

; t)

	�

=


�

[ (R

i

; t);H℄ ;  

y

(R

j

; t)

	�

: (11)

By 
onsidering translational invarian
e, the Fourier transform of the Green's fun
tion (8) S(i; j) =




R

�

 (i) 

y

(j)

��

is given by

S(k; !) =

1

! � "(k)

I (12)

where

I =

�

I

11

0

0 I

22

�

=

�

1�

n

2

0

0

n

2

�

; (13)

n =







y

(i) 
(i)

�

is the parti
le density. Then, for the paramagneti
 
ase, we have

S(k; !) =

2

X

i=1

�

(i)

(k)

! �E

i

(k) + i �

: (14)

The energy spe
tra E

i

(k) are given by

E

1

(k) = R(k) +Q(k) E

2

(k) = R(k) �Q(k) ; (15)

where

R(k) =

1

2

(�2�+ U )�

1

2I

11

I

22

[m

12

(k) + 8t�(k) I

11

I

22

℄ ; (16)

Q(k) =

1

2

s

g

2

(k) +

4m

2

12

(k)

I

11

I

22

; (17)

and the following notation has been used

g(k) = �U +

1� n

I

11

I

22

m

12

(k) ;

m

12

(k) = 4t [� + �(k) (p� I

22

)℄ : (18)

The parameters � and p des
ribe a 
onstant shift of the bands and a bandwidth renormalization, respe
tively. They

are stati
 intersite 
orrelation fun
tions de�ned as
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� � h�

�

(i)�

y

(i)i � h�

�

(i)�

y

(i)i ; (19)

p �

1

4

hn

�

�

(i)n

�

(i)i � h[


"

(i)


#

(i)℄

�




y

#

(i)


y

"

(i)i : (20)

The notation �

�

(i) stands to indi
ate the �eld � on the �rst neighbour sites:

�

�

(i) =

X

j

�

ij

�(j) : (21)

The expli
it expressions of the spe
tral fun
tions �

(i)

(k) are given by

�

(1)

11

(k) =

I

11

2

�

1 +

g(k)

2Q(k)

�

; �

(2)

11

(k) =

I

11

2

�

1�

g(k)

2Q(k)

�

;

�

(1)

12

(k) =

m

12

(k)

2Q(k)

; �

(2)

12

(k) = �

m

12

(k)

2Q(k)

; (22)

�

(1)

22

(k) =

I

22

2

�

1�

g(k)

2Q(k)

�

; �

(2)

22

(k) =

I

22

2

�

1 +

g(k)

2Q(k)

�

:

In order to 
al
ulate the 
orrelation fun
tions, the pa-

rameters �, � and p remain to be determined. One equa-

tion is given by �xing the �lling n

n = 2[1� h�(i)�

y

(i)i � h�(i)�

y

(i)i℄ : (23)

The parameter � is dire
tly 
onne
ted to the single{

parti
le Green's fun
tion, and from the de�nition (19)

one 
an immediately derive the self{
onsistent equation

� = h�

�

(i)�

y

(i)i � h�

�

(i)�

y

(i)i : (24)

The parameter p plays an important role sin
e it is re-

lated to neighbouring 
orrelations of the 
harge, spin and

pair. In the COM we adopt the following pro
edure to


al
ulate the parameter p. This quantity is not expressed

in terms of the single{parti
le propagator, and there is

some freedom in its determination. In COM advantage

of this freedom is taken and the parameter p is �xed in

su
h a way that the Hilbert spa
e has the right prop-

erties to 
onserve the relations among matrix elements

imposed by symmetry laws. The Pauli prin
iple requires

that

�(i) �

y

(i) = 0 : (25)

At level of matrix elements, this 
ondition requires that




�(i) �

y

(i)

�

= 0 : (26)

Summarizing, the parameters �, � and p are self{


onsistently determined by means of the equations (23),

(24) and (26). It should be noted that these self{


onsistent equations are all 
oupled, so that a di�erent


hoi
e for the third equation will have in
uen
e also on

the �rst two equations. In parti
ular, when the Pauli


ondition (26) is not satis�ed, there is an ambiguity in

writing the �rst{self 
onsistent equation (23). In 
on
lu-

sion, we have the self{
onsistent equations [23, 25℄

n = 1�G

0

+ U (1� n)F

0

;

� =

1� n

2

G

1

�

U

2

F

1

+

(1� n)

2I

11

I

22

B

1

; (27)

pF

1

= I

22

F

1

��F

0

;

where

F

n

=




2(2�)

2

Z




B

d

2

k[�(k)℄

n

f(k) ;

G

n

=




2(2�)

2

Z




B

d

2

k[�(k)℄

n

g(k) ; (28)

B

n

=




2(2�)

2

Z




B

d

2

k[�(k)℄

n

f(k)m

12

(k) ;

with

f(k) =

T

1

(k) � T

2

(k)

2Q(k)

; g(k) = [T

1

(k) + T

2

(k)℄ ;

T

i

(k) = tanh

�

E

i

(k)

2k

B

T

�

: (29)

The re
overy of the Pauli prin
iple, very often violated by

other approximations [37℄, assures a dynami
s bounded

to the Hilbert spa
e 
apable of des
ribing in a 
orre
t

way the interplay between the 
harge and the magneti



on�gurations. Furthermore, we have shown [38℄ that in

the two{pole approximation [39℄ the set of self{
onsistent

equations (27) is the only one whi
h restores the parti
le{

hole symmetry and the Pauli prin
iple, whi
h are inti-

mately 
onne
ted.

It is possible to go beyond the two{pole approxima-

tion by enlarging the set of asymptoti
 �elds [18, 20{22℄

or by taking into a

ount the dynami
 
orre
tions to the

self{energy [31, 32℄.
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III. THERMODYNAMICS AS REVEALED BY

EXPERIMENTS

The ele
troni
 spe
i�
 heat C(T ) of 
uprate high T




super
ondu
tors has been measured. In parti
ular C(T )

of La

2�x

Sr

x

CuO

4

[40, 41℄ has been studied for 0:03 <

x < 0:45 in the range of temperatures between 1.5 and

300 K, and of YBa

2

Cu

3

O

6+y

[42℄ for 0:16 � y � 0:97

between 1.8 and 300 K. From these experiments the fol-

lowing behaviour has been observed for the 
oeÆ
ient


 = C=T of the normal state spe
i�
 heat:

a) for �xed temperature, 
(x; T ) in
reases with doping;

a1) in the 
ase of La

2�x

Sr

x

CuO

4

, 
(x; T ) exhibits a

rather sharp maximum at x � 0:25 (near the doping

where super
ondu
tivity disappears), then starts to de-


rease; the same behaviour for 
(x; T ) has been esti-

mated in Ref. 43, but with a peak lo
ated around x �

0:18, 
lose to the optimal doping; for La

2�x

Ba

x

CuO

4

[44℄

a maximum has been observed at x � 0:22;

a2) in the 
ase of YBa

2

Cu

3

O

6+y

, 
(x; T ) in
reases

smoothly to a plateau or two broad maxima, situated

at y � 0:6 and y � 0:9, respe
tively;

b) for �xed doping, 
(x; T ) as a fun
tion of temperature

exhibits a broad peak moving to lower temperatures with

in
reasing the dopant 
on
entration;


) further in
reasing y, the T{dependen
e weakens and

in the region of high doping no in
rease is observed. For

YBa

2

Cu

3

O

6+y

, no substantial in
rease is observed for

y > 0:8.

As noti
ed by Vollhardt [45℄, there is a pe
uliar feature

of the spe
i�
 heat observed in a large variety of systems.

The spe
i�
 heat 
urves versus T , when plotted for dif-

ferent, not too large, values of some thermodynami
 vari-

able, interse
t at one or even two well de�ned tempera-

tures. In

3

He the spe
i�
 heat C(T; P ) 
urves versus T at

di�erent pressures P interse
t at a well de�ned tempera-

ture [46, 47℄; in heavy fermions CeAl

3

[48℄ and UBe

13

[49℄

upon 
hange of P , UPt

3�x

Pd

x

[50℄ and CePt

3

Si

1�x

Ge

x

[51℄ upon 
hange of x, CeCu

6�x

Au

x

when either P [52℄

or the magneti
 �eld B [53℄ is varied; in semi{metal,

Eu

0:5

Sr

0:5

As

3

[54℄ upon 
hange of B.

The following properties have been observed for the

entropy S [41, 42, 55℄:

a) for a given temperature, S in
reases with doping;

a1) in the 
ase of La

2�x

Sr

x

CuO

4

[41℄, S(x; T ) rea
hes a

maximum in the vi
inity of x � 0:25, then de
reases;

a2) in the 
ase of YBa

2

Cu

3

O

6+y

[42, 55℄, S rea
hes a

maximum in the vi
inity of y � 0:97;

b) for a given dopant 
on
entration, S exhibits a super-

linear dependen
e on the temperature;


) the normal state entropy as a fun
tion of T extrapo-

lates to a negative value at T = 0 K;

d) there is a striking numeri
al 
orrelation between S=T

and a�

0

, where �

0

is the bulk sus
eptibility and a is the

Wilson ratio.

IV. ELECTRONIC SPECIFIC HEAT

A. General Formulas

The spe
i�
 heat C(T ) is de�ned as

C(T ) =

dE

dT

; (30)

where E is the internal energy density, given by the ther-

mal average of the Hamiltonian

E =

1

N

hHi ; (31)

N being the number of sites. Cal
ulation of internal en-

ergy by means of Eq. (31) will generally require the 
al-


ulation of two{parti
le Green's fun
tions. However, due

to the use of an higher order basis, the thermal average

of the Hamiltonian 
an be 
onne
ted to the single par-

ti
le propagator asso
iated with the basis de�ned in Eq.

(9). Indeed, we have

E = 8t

�


�

�

(i) �

y

(i)

�

+ 2




�

�

(i) �

y

(i)

�

+




�

�

(i) �

y

(i)

��

+ U

h

n

2

�




�(i) �

y

(i)

�

i

: (32)

An alternative way to 
al
ulate the internal energy is the following. By introdu
ing the Helmholtz free energy per

site

F = E � TS ; (33)

where S is the entropy per site, from the thermodynami
s we have

S = �

�

�F

�T

�

n

; � =

�

�F

�n

�

T

;

�

�S

�n

�

T

= �

�

��

�T

�

n

: (34)

Then, it is straightforward to obtain the following formulas
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F (T; n) =

Z

n

0

�(T; n

0

)dn

0

; (35)

S(T; n) = �

Z

n

0

�

��

�T

�

n

0

dn

0

; (36)

E(T; n) =

Z

n

0

�

�(T; n

0

) � T

�

��

�T

�

n

0

�

dn

0

; (37)

from whi
h the spe
i�
 heat turns out to be

C(T; n) = �T

Z

n

0

�

�

2

�

�T

2

�

n

0

dn

0

: (38)

In this s
heme the thermodynami
 quantities are all ex-

pressed through the 
hemi
al potential, whose deter-

mination requires the knowledge of the single{parti
le

Green's fun
tion.

Summarizing, we have two distin
t ways to 
al
ulate

the internal energy, based on the use of Eqs. (31) and

(37). In prin
iple these equations are equivalent and lead

to the same result when an exa
t solution is available.

However, the situation drasti
ally 
hanges when approx-

imations are involved and di�erent results 
an be ob-

tained. Indeed an open problem in Condensed Matter

Physi
s is to �nd a unique 
onsistent s
heme of approx-

imation 
apable of treating on an equal footing, both

one{ and two{ parti
le Green's fun
tions.

B. Non{Intera
ting Case

To dis
uss the spe
i�
 heat it is useful at �rst to 
on-

sider the non{intera
ting [i.e., U = 0℄ Hubbard model.

In this 
ase the thermal retarded Green's fun
tion 
an

be exa
tly 
al
ulated and has the expression

S





(i; j) = hR[
(i)


y

(j)℄i =

i


(2�)

3

Z




B

d

2

kd!e

ik�(R

i

�R

j

)�i!(t

i

�t

j

)

1� f

F

(!)

! � E(k) + i�

; (39)

where the energy spe
trum has the expression

E(k) = �� � 4t�(k) : (40)

The 
hemi
al potential is determined as a fun
tion of n

and T by means of the equation

n =

2


(2�)

2

Z




B

d

2

kf

F

[E(k)℄ = 1�




(2�)

2

Z




B

d

2

kT (k) ;

(41)

where we put

T (k) = tanh

�

E(k)

2k

B

T

�

: (42)

As we dis
ussed above, we have di�erent ways of 
al
ulat-

ing the free energy. In the non{intera
ting 
ase, where an

exa
t solution is available, all di�erent pro
edures must

give the same result. Sin
e this point will a
quire some

relevan
e in the intera
ting 
ase, we shall examine this

in detail.

By taking the thermal average of the Hamiltonian, it

is dire
t to see that

E = 8th


�

(i)


y

(i)i =

4t


(2�)

2

Z




B

d

2

k�(k)T (k) ; (43)

where use has been made of the expression (39) for the

single{parti
le Green's fun
tion.

The proof that use of Eq. (37) leads to the same re-

sult requires some work. By taking the derivative with

respe
t to T of Eq. (41) we have

��

�T

=

1

T

�

�+ 4t

V

1

V

0

�

; (44)

where

V

n

=




(2�)

2

Z




B

d

2

k

[�(k)℄

n


osh

2

(E=2k

B

T )

: (45)

By 
onsidering that the derivative with respe
t to n of

Eq. (41) gives

V

1

V

0

=

R




B

d

2

k�(k)

�T (k)

�n

R




B

d

2

k

�T (k)

�n

= �




(2�)

2

�

�n

Z




B

d

2

k�(k)T (k) ;

(46)

substitution of (44) into (37) leads to

E(T; n) =

4t


(2�)

2

Z

n

0

�

�n

0

�

Z




B

d

2

k�(k)T (k)

�

dn

0

=

4t


(2�)

2

Z




B

d

2

k�(k)T (k) : (47)

This 
on
ludes the proof that in the non{intera
ting 
ase

all expressions (31) and (37) give the same result. We also

note that the spe
i�
 heat 
an be 
al
ulated by means

of the following expression

C(T; n) = �

8t

2

k

B

T

2

�

V

2

1

V

0

� V

2

�

: (48)

In Figs. 1 and 2 the linear 
oeÆ
ient of the ele
troni


spe
i�
 heat 
(T; n) is plotted as a fun
tion of tempera-

ture and �lling, respe
tively.

a. For a �xed �lling 
(T; n) �rst in
reases as a fun
-

tion of T , exhibits a maximum at a 
ertain temperature
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T

m

, and then de
reases. The value of T

m

de
reases by in-


reasing the �lling. At half{�lling T

m

is zero and 
(T; n)

diverges as T ! 0; this is an e�e
t of the van Hove sin-

gularity (vHs). The temperature behaviour of 
(T; n) is

similar to the one exhibited by the stati
 uniform spin

magneti
 sus
eptibility �

0

[12, 25℄, whereas the doping

dependen
e is di�erent.

b1. At T = 0, 
(T; n) in
reases by in
reasing the �ll-

ing, diverges at n = 1 and then de
reases.

b2. At �nite temperature the peak splits in two peaks,

symmetri
 with respe
t to n = 1. The distan
e between

the two peaks in
reases by in
reasing T .

Fig. 1. The linear 
oeÆ
ient of the normal state spe
i�


heat 
(T; n) of the non{intera
ting 2D Hubbard model is

plotted as a fun
tion of the temperature for various values

of the parti
le density.

Fig. 2. 
(T; n) of the non{intera
ting 2D Hubbard model

is plotted as a fun
tion of the �lling for various values of the

temperature.

This is shown in Fig. 2, where 
(T; n) is plotted as a

fun
tion of the �lling at various temperatures. The shift

of the two peaks with respe
t to n = 1 in
reases by in-


reasing T .

C. Intera
ting Case

In the intera
ting 
ase the expressions (31) and (37)

for the internal energy give di�erent results. Hereafter,

we use E

H

to indi
ate that the internal energy has been


al
ulated by the average of the Hamiltonian.

Alternatively, we have seen that the internal energy

and the spe
i�
 heat 
an be 
al
ulated by means of Eqs.

(37) and (38). This pro
edure requires a knowledge of the

�rst and se
ond temperature derivatives of the 
hemi
al

potential. Let us de�ne

�

n

=

�

n

�

�T

n

; �

n

=

�

n

�

�T

n

; p

n

=

�

n

p

�T

n

: (49)

By taking the �rst derivative with respe
t to T of the

self{
onsistent equations (27), we obtain

G

(1)

0

= U (1� n)F

(1)

0

;

�

1

=

1� n

2

G

(1)

1

�

U

2

F

(1)

1

+

(1� n)

2I

11

I

22

B

(1)

1

; (50)

p

1

F

1

+ pF

(1)

1

= I

22

F

(1)

1

��

1

F

0

��F

(1)

0

;

where

F

(m)

n

=

�

m

F

n

�T

m

; G

(m)

n

=

�

m

G

n

�T

m

; B

(m)

n

=

�

m

B

n

�T

m

:

(51)

Expli
it 
al
ulation of the derivatives de�ned in Eq. (51)

shows that equations (50) provide a set of linear alge-

brai
 equations for the three parameters �

1

, �

1

, p

1

, as

fun
tions of the parameters �, �, p. In the same way, by

taking the se
ond derivative with respe
t to T of Eqs.

(27) we obtain

G

(2)

0

= U (1� n)F

(2)

0

;

�

2

=

1� n

2

G

(2)

1

�

U

2

F

(2)

1

+

(1� n)

2I

11

I

22

B

(2)

1

; (52)

p

2

F

1

+ 2p

1

F

(1)

1

+ pF

(2)

1

= I

22

F

(2)

1

��

2

F

0

� 2�

1

F

(1)

0

��F

(2)

0

:

These equations provide a set of linear algebrai
 equa-

tions for the three parameters �

2

, �

2

, p

2

as fun
tions

of the parameters �, �, p, �

1

, �

1

, p

1

. On
e the self{


onsistent 
al
ulation of the three parameters �, �, p

has been performed by means of set (27), then the 
al
u-

lation of the �rst and se
ond derivatives of the 
hemi
al

potential redu
es to the solution of simple linear equa-

tions.

In the intera
ting 
ase, be
ause of the approximation

used, the di�erent pro
edures to 
al
ulate the internal

energy give di�erent results. At �rst we shall 
ompare

our theoreti
al results with the data obtained by numer-

i
al analysis. The spe
i�
 heat C(T ) of the 2D Hubbard

model has been re
ently 
al
ulated in Ref. 34 by us-

ing quantum Monte Carlo te
hniques. In parti
ular, the

Monte Carlo data for the energy per site E = hHi=N

have been �tted by polynomials and the spe
i�
 heat has

been 
al
ulated by taking derivatives from these polyno-

mials analyti
ally. Di�erent polynomials have been 
ho-

sen in di�erent regions of temperature. In the 
al
ulation

of E, it has been found that �nite size e�e
ts are strong

at weak 
oupling but be
ome negligible for U � 8.
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Fig. 3. The internal energy is plotted as a fun
tion of temperature for U = 4 and n = 0:75 (a), n = 1:0 (b). The squares

are the QMC data of Ref. 34 for 6� 6 (a) and 8� 8 (b) 
lusters. The dotted and solid lines refer to the theoreti
al results of

the COM for E

H

, E

T

, respe
tively.

Fig. 4. The internal energy is plotted as a fun
tion of U

for n = 1, T = 0:1. The squares are the QMC data of Ref.

34 for a 8� 8 
luster. The dotted and solid lines refer to the

theoreti
al results of the COM for E

H

, E

T

, respe
tively.

In Fig. 3 we present the internal energy versus temper-

ature in the range 0 � T � 5 for several values of doping

and U = 4. The results are 
ompared with QMC data of

Ref. 34. We are using E

T

to indi
ate the solution that


omes from Eq. (37). As a general feature we observe

that E

T


orresponds to the lowest energy solution and

agrees very well with the QMC data, in the entire region

of temperature and for all studied dopant 
on
entrations.

When U in
reases, the theoreti
al solution deviates from

QMC in the region of low temperatures, indi
ating that

the antiferromagneti
 (AF) 
orrelations are not properly

taken into a

ount in the strong 
oupling regime. This is


learly seen in Fig. 4 where the internal energy is plot-

ted versus U for half{�lling.Moreover, the opening of the

antiferromagneti
 gap, due to a spin density wave insta-

bility [34℄, does not allow us to reprodu
e the behaviour

near half{�lling where our solution is paramagneti
; this

latter 
omment also re
e
ts on the 
omparison with the

spe
i�
 heat data.

We now 
onsider the spe
i�
 heat. There are two im-

portant features in the Monte Carlo 
al
ulations: 1) a

low temperature peak that appears when the low{lying

spin states are ex
ited, and 2) a high temperature peak

whi
h appears when states in the upper Hubbard band

are ex
ited. In the weak 
oupling regime the low tem-

perature peak moves to slightly higher temperature as U

in
reases, rea
hing a turning point at U = 7 where the

peak is at T = 0:3. For U > 7 the peak slowly moves

to lower temperatures, as U grows. This indi
ates the

beginning of the strong 
oupling regime. The broad high
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temperature peak moves to higher temperatures as U in-


reases, as expe
ted sin
e its presen
e 
orresponds to the

ex
itation of states a
ross the gap that grows with U . In

the strong regime [U > 7℄ the position of the 
harge peak

in
reases linearly with U: T


harge

� 0:24U . In addition,

all the 
urves C versus T for several values of U inter-

se
t at T � 1:6. The QMC results for the spe
i�
 heat

of the 2D Hubbard model qualitatively agree with the

half{�lled 1D Hubbard model [56, 57℄.

Fig. 5. The spe
i�
 heat is plotted against temperature for

U = 4 and n = 0:5 (a), n = 0:75 (b), n = 1:0 (
). The dotted

line represents the QMC data of Ref. 34; the solid line is the

result of the COM for C

T

.

The spe
i�
 heat C

T

= dE

T

=dT , 
al
ulated by means

of Eq. (38), is 
ompared with QMC data in Fig. 5 for

U = 4 and various dopant 
on
entrations. At low den-

sity the agreement is generally good, in both the weak

and strong 
oupling 
ases [U = 8℄. At higher densities

the QMC data show a double peak stru
ture, whi
h is

enhan
ed at half{�lling, but also present at n = 0:75 for

U = 8.

In the dis
ussed range of values of U our results do

not show a double peak stru
ture. The presen
e of two

peaks in the spe
i�
 heat has been attributed to the spin

and 
harge ex
itations. When U is weak the two peaks

overlap and there is no resolution. By in
reasing U the

position of the 
harge peak moves to higher temperatures

and we expe
t to be able to distinguish the two 
ontribu-

tions. A study of the spe
i�
 heat in the strong 
oupling

regime is given in Figs. 6 and 7, where the two expres-

sions C

H

= dE

H

=dT and C

T

= dE

T

=dT are plotted,

respe
tively, as fun
tions of T at half{�lling.

Fig. 6. The spe
i�
 heat C

H

= dE

H

=dT is plotted against

temperature for half{�lling and U varying in the range

0 � U � 11:3

Fig. 7. The spe
i�
 heat C

T

= dE

T

=dT is plotted against

temperature for half{�lling and U = 15:20.

A peak appears at low temperatures when U is rather

large [say U � 8 for C

H

and U � 15 for C

T

℄. This be-

haviour qualitatively reprodu
es the QMC results. It is

worth noting that su
h high values for the Hubbard in-

tera
tion U 
an be as
ribed to the fa
t that in the present

approa
h a Mott{Hubbard gap opens at U

�

=

13:4 [38℄.

In Ref. 34 the position of the 
harge peak T


harge

has

been 
al
ulated for di�erent values of U. In our analysis

when U is large T


harge


an be 
al
ulated from C

T

and

the results lie on the line T


harge

= 0:24U . When U is

lower, it is not possible to resolve the two peaks.

The linear 
oeÆ
ient of the spe
i�
 heat as a fun
-

tion of the parti
le density has been studied by QMC for
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U = 8 and T varying from 0:5 to 3. Unfortunately, due to

the sign problem it is not easy to study low temperatures

in QMC. A study of 
(x; T ), by means of C

T

, shows a

good agreement for high temperatures, but not at lower

temperatures, where QMC results exhibit a strong down-

ward deviation in the region of �lling where we should

expe
t an in
rease of 
(x; T ) due to the e�e
t of the van

Hove singularity.

Up to this point we have performed a detailed and

ample 
omparison with QMC, generally �nding a quite

reasonable agreement in a large region of values for the

model parameters. For intermediate values of U [U = 4℄

the agreement is quite satisfa
tory. On this basis we are


on�dent that the approximation used is adequate for the

2D Hubbard model and we 
an pass to examine the next

question as to whi
h extent the physi
s of real systems

is retained in the model.

Fig. 8. The spe
i�
 heat C

T

= dE

T

=dT is plotted against

temperature for di�erent values of U and n = 1.

One feature present in a large variety of systems is a


hara
teristi
 
rossing point in the spe
i�
 heat 
urves

versus T [45{54℄. This behaviour has been also found in

1D models [56{58℄ and in the Hubbard model in in�nite

dimension [19℄, where a 
rossing temperature T = 0:59

has been observed in the range 0:5 � U � 2:5. For the

2D Hubbard model the same behaviour, as predi
ted by

Vollhardt [45℄ has been observed by means of quantum

Monte Carlo 
al
ulations [34℄, where for the 
ase of half{

�lling a 
rossing temperature T = 1:6� 0:2 has been ob-

served in the range 2 � U � 12. In Fig. 8 the spe
i�
 heat

C

T

is given versus T for half{�lling and various values of

U . When n = 1 the 
urves 
ross at the same temperature

T � 2:0; when doping is 
onsidered the region of 
rossing

spreads out and moves to higher temperatures. From the

thermodynami
 relations, this 
rossing temperature T

U


orresponds to a turning point of the double o

upan
y

as a fun
tion of T , that is (�

2

D=�T

2

)

T

U

= 0. A study of

the fun
tion (�

2

D=�T

2

) will be done in the next Se
tion.

As mentioned in Se
tion III, the linear 
oeÆ
ient of

the spe
i�
 heat of 
uprates exhibits an anomalous be-

haviour in the normal state. To investigate this, in Fig. 9

we present the linear 
oeÆ
ient 
(x; T ) as a fun
tion of

the doping x = 1 � n for various temperatures. As a

general behaviour we see that by in
reasing the doping


(x; T ) in
reases up to a 
ertain doping and then de-


reases. The nature of the peak is due to the fa
t that

the Fermi energy 
rosses the vHs for a 
ertain 
riti
al

value x




. The value of x




depends on U and varies be-

tween 0 and 1=3, as U in
reases from zero to in�nite.

For U = 4 it is found x




= 0:27, very 
lose to the ex-

perimental value observed in La

2�x

Sr

x

CuO

4

[40, 41℄. At

half{�lling the Fermi energy (�

F

) is at the 
entre of the

two Hubbard bands; by varying the dopant 
on
entra-

tion some weight is transferred from the upper to the

lower band, �

F

moves to lower energies and 
rosses the

vHs for a 
riti
al value of the doping; in
reasing x, fur-

ther moves �

F

away from the vHs. A study of the Fermi

surfa
e shows that for x > x




we have a 
losed surfa
e

whi
h be
omes nested at x = x




and opens for x < x




.

An enlarged Fermi surfa
e with a volume larger than the

non{intera
ting one has been reported by QMC 
al
ula-

tions [59, 60℄ and by other theoreti
al works [61, 62℄.

Fig. 9. The linear 
oeÆ
ient of the spe
i�
 heat 
(x; T ),


al
ulated from C

T

, is given as a fun
tion of the doping

x = 1� n for U = 4 and di�erent temperatures.

Fig. 10. The linear 
oeÆ
ient of the spe
i�
 heat 
(x;T )

for La

2�x

Sr

x

CuO

4

is shown as a fun
tion of the Sr 
ontent.

The dots are the experimental data for di�erent tempera-

tures, taken from Refs. 40 and 41.
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The peak position of 
(x; T ) depends on the temper-

ature. In the limit of zero temperature a sharp peak is

exa
tly lo
ated at x = x




. By in
reasing the tempera-

ture the peak moves away from x




and broadens into

two peaks. The situation is similar to what we have 
al-


ulated for the non{intera
ting 
ase [e.g. Fig. 2℄; we �nd

that the role played by the intera
tion manifests itself

through the shift of the vHs and the band stru
ture

whi
h 
reates an asymmetry between the two peaks. The

behaviour des
ribed in Fig. 9 well reprodu
es the exper-

imental situation.

Fig. 11. The linear 
oeÆ
ient of the spe
i�
 heat 
(x; T ),


al
ulated from C

T

, is given as a fun
tion of temperature for

U = 4. In Figs. 11a and 11b the 
urves have been tra
ed for

x > x




and x < x




, respe
tively.

In the 
ase of La

2�x

Sr

x

CuO

4

the experimental data

[40, 41℄ for 
(x; T ) are reported in Fig. 10. The peak ex-

hibited by 
(x; T ) de
reases in intensity and moves to

lower values of doping when T in
reases. In the 
ase of

YBa

2

Cu

3

O

6+y

, the experimental results reported in Ref.

42 are for the higher temperature T = 280 K; 
(x; T ) in-


reases with doping and presents two broad maxima in

the region of high doping.

Interpretation of the experimental results obtained in

Ref. 42 for YBa

2

Cu

3

O

6+y

in terms of a sharp feature

in the density of states, 
onsistent with ARPES experi-

ments [63℄, was presented in Refs. 64 and 65. The 
on-

sisten
y of thermodynami
 data with the presen
e of a

vHs near the Fermi level was shown in Ref. 61 by 
onsid-

ering a p{d like{model in the framework of slave{boson

mean{�eld theory in the limit of large U .

We also mention that the spe
i�
 heat of

La

2�x

Sr

x

CuO

4

has been estimated in Ref. 43 from the

data for the heat 
apa
ity anomaly at the super
ondu
t-

ing transition temperature by assuming a BCS{type

relation. Under this assumption the authors �nd the

same behaviour for 
(x; T ), but with a peak lo
ated

around x � 0:18, 
lose to the optimal doping.

In Figs. 11a and 11b we present the linear 
oeÆ
ient


(x; T ) as a fun
tion of the temperature for values of the

�lling x > x




and x < x




, respe
tively. At x = x




we see

that 
(x; T ) diverges as T ! 0; this is an e�e
t of the

vHs. When x 6= x




the Fermi energy moves away from

the vHs and the peak exhibited by 
(x; T ) moves away

from T = 0. As shown in Figs. 11a and 11b, 
(x; T ) as a

fun
tion of temperature has di�erent behaviours in the

two regions x > x




and x < x




. In the overdoped re-

gion 
(x; T ) �rstly in
reases as a fun
tion of T , exhibits

a maximum at a 
ertain temperature T

m

and then de-


reases. This behaviour is similar to the one exhibited by

�

0

(T ) [12, 25℄. As shown in Fig. 11a, when the doping

de
reases the value of T

m

moves to lower temperatures.

This behaviour qualitatively agrees with the non inter-

a
ting 
ase showing that for x > x




the AF 
orrelations

are weak. A di�erent situation is observed in the under-

doped region, where 
(x; T ) is always a de
reasing fun
-

tion of T . When we look at the experimental results for

La

2�x

Sr

x

CuO

4

[40, 41℄ and for YBa

2

Cu

3

O

6+y

[42, 55℄

we �nd that the behaviour of 
(x; T ) as a fun
tion of T

in the underdoped region is more similar to that for the

non{intera
ting 
ase. The fa
t that for YBa

2

Cu

3

O

6+y


(x; T ) is always a de
reasing fun
tion of T when y > 0:8

is understood be
ause by approa
hing the 
riti
al dop-

ing, T

m

is shifted to low temperatures, below the 
riti
al

super
ondu
ting temperature.

V. THE DOUBLE OCCUPANCY

As a simple thermodynami
 quantity indi
ating the

degree of 
orrelation of the system, in this Se
tion we

study the double o

upan
y D, de�ned as the fra
tion of

doubly o

upied sites

D = hn

"

n

#

i : (53)

This quantity 
an be 
al
ulated by means of the expres-

sion

D =

n

4

[1�G

0

� UF

0

℄ : (54)

Then, the �rst and se
ond temperature derivatives of D


an be analyti
ally 
al
ulated as

dD

dT

= �

n

4

h

G

(1)

0

� UF

(1)

0

i

;

d

2

D

dT

2

= �

n

4

h

G

(2)

0

� UF

(2)

0

i

(55)
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on
e the self{
onsistent equations have been solved.

We display in Figs. 12a and 12b the temperature de-

penden
e of D for various values of U at parti
le 
on
en-

trations n = 0:7 and n = 0:8. In Fig. 12a the data display

a 
hara
teristi
 low temperature behaviour: D initially

de
reases with temperature, rea
hes a minimum, and in-


reases again. In other words, the 
urve indi
ates the

presen
e of a T region where the formation of lo
al mag-

neti
 moments is enhan
ed with in
reasing T [the double

o

upan
y D determines the lo
al spin{spin 
orrelation

fun
tion S

2

through the equation S

2

= 3(n � 2D)=4℄.

This behaviour is 
hara
teristi
 of in
ipient lo
alization

e�e
ts in a strongly 
orrelated Fermi liquid in a regime

dominated by spin 
u
tuations. Starting from the low

temperature Fermi liquid regime, when the temperature

in
reases, the system 
an gain free energy by lo
alizing

the parti
les (i.e., de
reasing D) in order to take advan-

tage of a larger spin entropy [19, 56℄. In the absen
e of

spin ex
itations one would observe de
reasing values with

in
reasing T .

Fig. 12. The double o

upan
y D is plotted as a fun
tion

of the temperature for n = 0:7, U = 2 (a) and for n = 0:8,

U = 4 (b). The arrow in Fig. 12b indi
ates the temperature

T

U

where the 
urve 
hanges 
urvature.

In Fig. 12b D is a monotoni
 in
reasing fun
tion of

temperature. In this 
ase the values of n and U are large

enough to inhibit lo
alization e�e
ts due to the in
rease

of temperature. To study this behaviour in more detail

this behaviour, the derivative with respe
t to the temper-

ature of the double o

upan
y has been analyzed. The

results show that for a given T there exists a 
riti
al

value of U , say U

D

(T ), su
h that

�D

�T

< 0 for U < U

D

(T ) ; (56)

�D

�T

> 0 for U > U

D

(T ) : (57)

The fun
tion U

D

(T ), de�ned by �D=�T = 0, is given

in Fig. 13. We note that at T = 0 U

D

(0) 
oin
ides

with U




(n; 0), de�ned as the 
riti
al strength of the on{

site Coulomb intera
tion for whi
h the Fermi energy


rosses the vHs at �xed dopant 
on
entration. U

D

(T )

goes to zero for some temperature T

D

. For n = 0:7

we �nd that T

D

= 0:581. When T > T

D

we have

�D=�T > 0 for all values of U. The behaviour of T

D

as a fun
tion of n is reported in the Fig. 14. The fa
t

that (�D=�T )

U=U

D

(T )

= 0 implies that at U = U

D

(T )

the double o

upan
y does not depend on T . However,

the 
urves of D as fun
tion of U for di�erent values of

T will not 
ross in a single point be
ause U

D

(T ) 
hanges

with the temperature in a signi�
ant way.

Fig. 13. U

D

(T ) as a fun
tion of the temperature for various

values of the �lling.

At very high temperature T � U , larger than T

U

where there is a 
hange in the 
on
avity, D asymptot-

i
ally tends to the non{intera
ting value n

2

=4, as ex-

pe
ted. We have seen in the previous se
tion that the

spe
i�
 heat 
urves versus T for di�erent values of U


ross almost at the same point T

U

, determined by the

equation

�

�

2

D

�T

2

�

T

U

= 0 : (58)

A study of this equation by means of formula (55) gives

the results plotted in Fig. 15, where T

U

is plotted versus

U for n = 0:75.
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Fig. 14. T

D

as a fun
tion of the �lling.

Fig. 15. T

U

as a fun
tion of the potential intensity U for

n = 0:75.

VI. CHEMICAL POTENTIAL VERSUS

TEMPERATURE

From the solution of the fermioni
 propagator and by

means of Eqs. (50) we obtain the following behaviour for

the temperature derivative of the 
hemi
al potential

��

�T

< 0 for n < n

�

(T ) ;

��

�T

= 0 for n = n

�

(T ) ; (59)

��

�T

> 0 for n > n

�

(T ) :

The fun
tion n

�

(T ) is presented in Fig. 16. It 
an be

shown that at T = 0 n

�


oin
ides with n




, the 
riti
al

value where the Fermi level 
rosses the van Hove sin-

gularity. But, the temperature dependen
e of n

�

(T ) is

remarkably di�erent from the one of n




(T ).

Thus, only for T ! 0 we may relate the transition

��=�T < 0 =) ��=�T > 0 to the reversal of the sign

of the derivative for the density of states at the Fermi

level. Furthermore, we observe that n

�

(T ) rea
hes the

value of 1 for some temperature T

�

(for U = 4 we �nd

T

�

= 0:843). When T > T

�

we have ��=�T < 0 for all

values of n . The fa
t that (��=�T )

n=n

�

(T ) = 0 implies

that at n = n

�

(T ) the 
hemi
al potential does not de-

pend on T . Therefore, the 
urves of � as fun
tion of n

for various values of T , reported in Fig. 17, will not 
ross

exa
tly in the same point as 
laimed in Ref. 66.

Fig. 16. n

�

(T ) as a fun
tion of the temperature for di�er-

ent values of U .

Fig. 17. The 
hemi
al potential � as a fun
tion of the �lling

for U = 4 and di�erent temperatures.

VII. THE ENTROPY

The entropy S(T; n), 
onne
ted to the total number

of spin and 
harge ex
itations at temperature T and �ll-

ing n, is a bulk thermodynami
 quantity uniquely deter-

mined by the spe
trum of ex
itations, whose magnitude

and temperature dependen
e provide an important test

for proposed theories. Theoreti
al works available so far

are the following. Bipolaron models propose preformed

boson 
harge 
arriers at T




and behaving 
lassi
ally at

higher temperatures. Apart from some in
onsisten
y re-

lated to the magnitude of the entropy, these theories have

to resort to the existen
e of thermally ex
ited triplet
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bipolarons in explaining the deviation of S from a linear

T{dependen
e in underdoped samples [67℄. Theoreti
al

studies of the entropy in the strongly 
orrelated ele
tron

systems have also been performed in the framework of

the statisti
al spin liquid [68{71℄. This s
heme is based

on the assumption that in the strongly 
orrelated metals

the doubly o

upied single{spin 
on�gurations must be

ex
luded not only in the real spa
e representation, but

also in the re
ipro
al spa
e. By means of the spin liquid

statisti
s, the entropy of lo
alized moments is reprodu
ed

when the Mott insulator limit is rea
hed for half{�lling.

Nevertheless, this over imposed statisti
s freezes the sys-

tem in a wrong Hilbert spa
e whenever di�erent 
hoi
es

of the parameters modify the interplay between thermal

ex
itations and ele
troni
 intera
tions. Some theories [3℄

predi
t de
oupled holon (boson) and spinon (fermion)

ex
itations. In these approa
hes it is diÆ
ult to re
on-


ile the experimentally observed magnitude for the en-

tropy with its partition between statisti
ally independent

ex
itations. Moreover, the striking numeri
al 
orrelation

between S=T and a�

0

is expe
ted for weakly intera
ting

fermions but not if the dominant ex
itations are those

of spinless bosons. In Ref. 66 exa
t diagonalization stud-

ies of the t � J model have been performed; for several

thermodynami
 quantities a 
riti
al doping 
on
entra-

tion that marks a 
hange of the Fermi surfa
e 
hara
ter

is found.

Fig. 18. The entropy is plotted versus the parti
le density

for U = 4 and di�erent temperatures.

By means of the relation (36), we have 
al
ulated

the entropy per site S(T; n). Re
alling the behaviour of

��=�T , we see that the entropy must have the following

behaviour

(i) for T < T

�

, S(T; n) in
reases with in
reasing parti-


le 
on
entration, rea
hes a maximum for n = n

�

, then

de
reases (see Fig. 18a);

(ii) for T > T

�

, S(T; n) always in
reases with in
reasing

parti
le 
on
entration (for U = 4 we �nd T

�

= 0:843) as

is shown in Fig. 18b.

Fig. 19. The entropy is plotted versus the parti
le density

for T = 0:01 and di�erent values of U.

Fig. 20. The entropy is reported versus the parti
le density

for T = 0:4 and di�erent values of U .

Again the peak stru
ture re
e
ts a Fermi level 
rossing

the vHs at the 
riti
al doping. This behaviour is in agree-

ment with the experimental data from Refs. 41, 42 and

55. Indeed, the experiments show a well de�ned peak

stru
ture in a large region of temperature (from 40K

to 320K); furthermore, the position of the peak slightly


hanges with temperature. In the theoreti
al analysis the

position of the peak as a fun
tion of temperature is gov-

erned by n

�

(T ), reported in Fig. 16, that shows a smooth

variation in the region of physi
al relevan
e (T < 0:05).

In Fig. 19 the entropy versus the parti
le 
on
entration

is reported for various values of the Coulomb intera
tion.
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The maximum of the entropy shifts to lower values of

n by in
reasing U , varying between 1 and 2=3 when U

varies from 0 to1. In Fig. 20, we see that for T = 0:4 all

entropy 
urves for di�erent U 
ross at the same parti
le


on
entration. By 
omparison with Fig. 17 and by nu-

meri
al analysis, we see that the 
rossing point is exa
tly

the 
riti
al 
on
entration n

�

(T ). Re
alling the Maxwell

relation

�

�S

�U

�

T

= �

�

�D

�T

�

U

(60)

the behaviour shown in Fig. 18 implies (�D=�T )

n=n

�

=

0. If we remember that the double o

upan
y D deter-

mines the lo
al spin{spin 
orrelation fun
tion, it is 
lear

that a sign reversal of its derivative with respe
t to the

temperature represents a 
rossover from a regime domi-

nated by spin 
u
tuations, where S is a de
reasing fun
-

tion of U , to another regime favouring 
harge 
u
tua-

tions (ele
troni
 delo
alization), where the entropy is an

in
reasing fun
tion of U .

Fig. 21. The entropy is plotted versus the temperature for

U = 4. The range of �lling is x > x




for (a) and x < x




for (b)

In Figs. 21 and 22 we report the temperature depen-

den
e of S and S=T for several dopant 
on
entrations.

The 
urves have a qualitative agreement with the exper-

imental ones [41, 42, 55℄. In Fig. 21a, where x > x




, S

is a de
reasing fun
tion of x at a �xed temperature; the

opposite behaviour is observed in Fig. 21b.

Fig. 22. S=T is plotted versus the temperature for U = 4.

The range of �lling is x > x




for (a) and x < x




for (b)

In the limit of zero temperature the entropy goes to

zero by a linear law. When T in
reases the entropy devi-

ates from the linear behaviour. In the region 0:01 � T �

0:1 the temperature dependen
e is well des
ribed by the

law

S(T ) = S

0

+ S

1

T + S

2

T

2

; (61)

where the 
oeÆ
ients S

0

, S

1

, S

2

are strongly dependent

on the �lling.

It is worth noti
ing that in the limit of large tempera-

tures (a weak point of the statisti
al spin liquid [68{71℄)

our results for the entropy asymptoti
ally agree with the

exa
t expression

lim

T!1

S(T; n) = 2 ln2� n lnn� (2� n) ln(2� n) : (62)

For non{intera
ting fermions at T = 0K we have


 = a�

0

; (63)

where �

0

is the bulk sus
eptibility and a is the Wilson

ratio

a =

�

2

3

: (64)

488



THERMODYNAMICS OF THE 2D HUBBARD MODEL

In the 
ase of La

2�x

Sr

x

CuO

4

[41℄ and of YBa

2

Cu

3

O

6+y

[42, 55, 72℄, there is a striking numeri
al 
orrelation be-

tween S=T and a�

0

. As noti
ed by Loram et al., this

resemblan
e shows that the total spin+
harge spe
trum

over all moments k (from S) and the k = 0 spin spe
trum

(from �

0

) have a similar energy dependen
e. Also, exper-

imental eviden
es suggest that the low{energy ex
ita-

tions are predominantly those of 
onventional fermions,

and that the substantial T dependen
ies of S=T and �

0

are primarily determined by the energy dependen
e of

the single{parti
le density of states in the vi
inity of the

Fermi level.

Fig. 23. S=T�

0

is plotted versus the temperature for U = 4

and di�erent �llings.

In Fig. 23 we present S=T�

0

as a fun
tion of the tem-

perature for various values of doping (i.e., 0:03 � x �

0:27). For all values of dopant 
on
entration S=T�

0

is

almost 
onstant over a wide range of temperatures.

In addition, the value of S=T�

0

is less than the non{

intera
ting one. This is due to the fa
t that by introdu
-

ing intera
tion the number of mi
ros
opi
 states a

es-

sible to the same ma
ros
opi
 state is redu
ed (i.e., the

entropy per site) whereas the sus
eptibility is in
reased

by in
ipient lo
alization e�e
ts.

In order to obtain a better understanding of how

the thermodynami
s of an ele
troni
 liquid is modi�ed

by the intera
tion, we have performed a study of non{

intera
ting Hubbard model (i.e., U = 0). What we learn

from the study of this model is that the 
riti
al value

(i.e., half{�lling) above whi
h the entropy looks a de-


reasing fun
tion of the �lling is uniquely �xed by the

statisti
s. The temperature has no role. On the 
ontrary,

in the intera
ting 
ase the energy s
ale of 
harge 
on�g-

urations has a 
ru
ial role in the region of parti
le 
on-


entration between n

�

and half{�lling. For n

�

< n < 1

there is a 
riti
al temperature T

�

, depending on the �ll-

ing, above whi
h the behaviour is similar to the non{

intera
ting 
ase [i.e., where �S=�n be
omes positive, or

where ��=�T be
omes negative℄.

We now 
onsider the physi
al origin of these results.

In the non{intera
ting 
ase the 
ombinatori
s di
tated

by the Fermi statisti
s governs the behaviour of the en-

tropy. This 
an be understood if we think that for the

single{site problem the entropy has the values 0, ln 2 and

0 for o

upan
y 0, 1 and 2, respe
tively. In the intera
t-

ing 
ase it is natural to look for a 
riti
al value of the

�lling above whi
h the number of permutations satisfy-

ing the restri
tions of the boundary 
onditions starts to

de
rease. For n

�

< n < 1, be
ause of the Coulomb in-

tera
tion, by in
reasing the parti
le density the number

of mi
ros
opi
 realizations, a

essible to the same ob-

servable ma
ros
opi
 state, de
reases [the Pauli prin
iple

is obviously 
ru
ial for a 
orre
t 
ounting℄. This is true

only if the thermal ex
itations do not ex
eed the energy

s
ale �xed by the intera
tion. De�nitely, for 0 < n < n

�

we have a sort of disordered non{intera
ting state with

�S=�n > 0, whereas for n

�

< n < 1 the low{lying ex
ita-

tions 
hara
terize a far from random spatial pattern [i.e.,

�S=�n < 0℄. In the range n

�

< n < 1 in
ommensurate

magnetismand super
ondu
tivity are experimentally ob-

served [12, 73℄.

VIII. CONCLUDING REMARKS

The 2D single{band Hubbard model has been studied

by means of the 
omposite operator method. By 
on-

sidering the Hubbard operators as basi
 set of �elds,

whi
h des
ribe interatomi
 ex
itations restri
ted to sub-

sets of the o

upan
y number, the single{parti
le ele
-

troni
 propagator has been 
omputed in a fully self{


onsistent way by means of a quasi{parti
le s
heme 
a-

pable of 
oherently integrating dynami
s, boundary 
on-

ditions and symmetry prin
iples.

The paper was devoted to the study of the ele
troni


spe
i�
 heat and entropy per site in the paramagneti


phase. We analyzed these quantities by looking at the

dependen
e of the thermodynami
 variables on their


onjugate ones, that is, for example, the relation be-

tween entropy and temperature, 
hemi
al potential and

parti
le 
on
entration, double o

upan
y and on{site

Coulomb repulsion. On
e the self{
onsistent equations

for the single{parti
le propagator have been solved, we

have determined the temperature derivatives of the in-

ternal parameters by means of exa
t linear systems of

algebrai
 equations. The determination of the �rst and

se
ond temperature derivatives of the 
hemi
al poten-

tial has been revealed 
ru
ial in determining the thermo-

dynami
 response fun
tions under investigation. For the

ele
troni
 spe
i�
 heat and internal energy we have pre-

sented two di�erent s
hemes of 
al
ulation. All of them

allowed the possibility to obtain a deep theoreti
al un-

derstanding of how and to whi
h extent 
olle
tive ex-


itations 
an be retained in the des
ription of thermal

response fun
tions. We have obtained a good agreement

with the data by quantum Monte Carlo te
hniques for

the ele
troni
 spe
i�
 heat and the internal energy [34℄.

Further on, although Monte Carlo data shared 
ommon

features with the results from the 
al
ulations through

the T{derivative of the 
hemi
al potential, the experi-

mental data for 
uprates, as revealed by the Wilson ratio

and linear 
oeÆ
ient of the ele
troni
 spe
i�
 heat, have
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shown that in su
h systems the dominant ex
itations are

those of 
onventional non{intera
ting fermions [41℄.

We obtained several 
hara
teristi
 
rossing points for

the response fun
tions when reported as fun
tions of

some thermodynami
 variables. These pe
uliar features,

already eviden
ed by Vollhardt [45℄, marked turning

points where di�erent response fun
tions evolve from a

non{intera
ting behaviour

(i) the entropy is an in
reasing fun
tion of U ;

(ii) the entropy is an in
reasing fun
tion of n;

(iii) the double o

upan
y is a de
reasing fun
tion of T ;

(iv) the T{derivative of the 
hemi
al potential is a de-


reasing fun
tion of n;

(v) the linear 
oeÆ
ient of the spe
i�
 heat is an in
reas-

ing fun
tion of n;

to an un
onventional dependen
e on the 
onjugate

variables

(vi) the entropy is a de
reasing fun
tion of U ;

(vii) the entropy is a de
reasing fun
tion of n;

(viii) the double o

upan
y is an in
reasing fun
tion of T ;

(ix) the T{derivative of the 
hemi
al potential is an in-


reasing fun
tion of n;

(x) the linear 
oeÆ
ient of the spe
i�
 heat is a de
reas-

ing fun
tion of n.

Before 
losing we would like to mention that the region

of �lling, where (vi){(x) hold, 
oin
ides with that where

in
ommensurate magnetism and super
ondu
tivity are

experimentally observed in LSCO 
uprates family.
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TERMODINAM�KA DVOVIM�RNOÕ MODEL� GABBARDA

F. Manq�n�

1

, G. Ma
umoto

2

, D. V�llan�

3

,

1

fakul~tet f�ziqnih nauk, \E. R. Ka�n�ello", �NFM Salerno, Un�versitet Salerno,

8481 Baron�ss�, Salerno, �tal��

2

fakul~tet prikladnoÝ f�ziki, Un�versitet Se�ke�, Tok�o 180, �pon��

3

Serins~ka f�ziqna laborator��, Rat�ers un�versitet, P�sketeve�, N~�{D�ers�, 08855{0849, SXA

Teoretiqni� anal�z funk
�� termodinam�qnogo v�dguku dvovim�rnoÝ odnozonnoÝ model� Gabbarda pro-

vedeno za dopomogo� metodu komb�novanih operator�v. Pokazano, wo vs� osoblivost� 
ih veliqin mo�na

po�sniti zale�n�st� termodinam�qnih zm�nnih v�d spr��enih zm�nnih. Takim qinom viznaqeno elektronnu

teplo
mn�st~ ta entrop�� na vuzol u paramagnetn�� faz�. Tako� podano dv� r�zn� shemi obqislen~ elektron-

noÝ teplo
mnosti ta vnutr�xn~oÝ ener��Ý. Vi�vleno, wo qislov� dan� z kvantovih metod�v Monte{Karlo dl�

vnutr�xn~oÝ ener��Ý ta elektronnoÝ teplo
mnosti dobre v�dtvor��t~s� Ýh viznaqenn�m qerez perxu ta drugu

poh�dn� hem�qnogo poten
��lu za temperaturo�. Dokladno opisano vlastivost� anomal~nogo stanu v m�dnih

visokotemperaturnih nadprov�dnikah �z dom�xkovimi d�rkami. Narext�, otrimano dek�l~ka harakternih

toqok peretinu dl� funk
�Ý v�dguku na zale�nost�h v�d okremih termodinam�qnih zm�nnih. C� haraktern�

risi vkazu�t~ na �snuvann� b�l~x n�� odn�
Ý ener�etiqnoÝ xkali, wo konkuru
 z teplovimi zbud�enn�mi

ta, �k u�e pom�tiv Vol~gardt, na pereh�d v�d nevza
mod��qoÝ do sil~no skorel~ovanoÝ poved�nki.
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