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A theoretial analysis of the thermodynami response funtions of the 2D single{band Hubbard

model is arried out by means of the omposite operator method. It is shown that all the features

of these quantities an be explained by looking at the dependene of the thermodynami variables

on their onjugate ones. In this way, the eletroni spei� heat and the entropy per site are

determined in the paramagneti phase. Also, for the eletroni spei� heat and internal energy

we present two di�erent shemes of alulation. It is found that the numerial data from quantum

Monte Carlo tehniques for the internal energy and eletroni spei� heat are well reprodued by

determining them through the �rst and seond temperature derivatives of the hemial potential.

The anomalous normal state properties in hole{doped uprate high T



superondutors are also

well desribed. Finally, we obtain several harateristi rossing points for the response funtions

when plotted versus some thermodynami variables. These peuliar features indiate the existene

of more than one energy sale ompeting with thermal exitations and indiate, as already noted

by Vollhardt, a rossover from a non{interating to a highly orrelated behaviour.

Key words: spei� heat, entropy, rossing points, Hubbard model, high T



superondutivity.
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I. INTRODUCTION

It is believed, on both experimental and theoretial

grounds, that superondutivity and harge transport in

high T



uprates are mostly on�ned to the CuO

2

planes

[1, 2℄; and hene the attention of many physiists has

been dediated to 2D models whih ontain as an es-

sential feature a ompetition between the band piture

and highly orrelated many body e�ets. Of ourse, some

features of the phase diagram, like the existene of a �-

nite N�eel temperature, an only be explained by adding

a oupling between the planes.

The bonding ombination of Cu and O orbitals turns

out to be quite deep below the Fermi level, so that no

dynami freedom is left to treat d and p orbitals sepa-

rately [3℄ (there are some strong experimental evidenes,

mostly based on the study of the Knight shift, that in the

CuO

2

plane one spin degree of freedom is observed [4℄).

Through the Pauli priniple, the energy of the p ele-

tron exitation is, for example, largely modi�ed by the

hange of harge and spin states of the neighbouring Cu

ions. A p eletron and harge and spin utuations on

neighbouring Cu ions are simultaneously exited so that

eletroni exitations are formed on a CuO

2

luster as a

whole. Then, the resulting omplex an be desribed by

a single{band Hubbard model [5℄.

In the simplest form, the Hubbard model, �rst intro-

dued to desribe the orrelations of eletrons in a nar-

row d{band of transition metals, ontains a kineti term

whih desribes the motion of the eletrons among the

sites of the Bravais lattie and an interation term be-

tween eletrons of opposite spin on the same lattie site.

By varying the model parameters, it is believed that the

Hubbard model is apable of desribing many proper-

ties of strongly orrelated fermion systems. Among dif-

ferent examples, the Hubbard Hamiltonian is appliable

to desribe the metal{insulator transition in a series of

transition metal oxides suh as Sr

1�x

La

x

TiO

3

[6, 7℄ and

V

2

O

3

[8{11℄. The appliability of the model to the su-

peronduting opper{oxides is related to the fat that

upon doping most of these ompounds exhibit a metal{

insulator Mott transition; the superonduting state is

near the N�eel state and there are many experimental

results [12{15℄ whih show a lose relation between the

antiferromagneti orrelations in the Cu{O planes and

the ourrene of the superonduting phase. However,

it is important to stress that an appropriate desription

of a bad metal with large energy sale spin utuations

by means of a purely eletrostati Hamiltonian should

preserve the symmetry expressed by the Pauli priniple

that odi�es the orret interplay between harge and

magneti on�gurations [16{18℄.

Although onsiderable attention has been devoted to

the Hubbard model and signi�ant progress was ahieved

in understanding ground state properties, partiularly at

half{�lling, stati and dynami spin orrelations, the op-

tial ondutivity and other observables, a lear ompre-

hension of the low{lying exitations is still laking [2℄.

The diÆulty is not to be found only in the absene

of any obvious small parameter in the strong oupling

regime. More deeply, it is due to the diÆulty of han-

dling simultaneously itinerant aspets (spatial orrela-

tions) and atomi aspets (pronouned on{site quantum

utuations) [19℄.
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In reent years we have been developing a method of

alulation, denominated Composite Operator Method

(COM) [17, 18, 20{32℄, that has been revealed to be a

powerful tool for the desription of loal and itinerant

exitations in strongly orrelated systems. In previous

papers, we onsidered the Hubbard eletroni operators

for the determination of fundamental exitations. A fully

self{onsistent alulation of the eletroni propagator

has been realized by means of a onstraint with the phys-

ial ontent of the Pauli priniple [17, 23{25℄. We alu-

lated loal quantities, as the double oupany and the

magneti moment [17, 23℄, the energy per site [24℄, the

hemial potential [24℄, the magneti suseptibility [25,

29℄, the density of states and the quasi{partile spetra

[28, 32℄. In all the ases, the results show a good agree-

ment with those obtained by numerial simulation. In

partiular, the results obtained for the magneti proper-

ties an reprodue the unusual harateristis observed

in high T



superonduting materials [25, 29, 33℄. There-

fore, the agreement strengthens the idea that a miro-

sopi single{band model ontains the essential physial

features of the new lass of materials.

In this paper we investigate the eletroni spei� heat

and the entropy per site of the 2D Hubbard model for a

paramagneti ground state. It will be shown that all the

features of these quantities an be understood by looking

at the dependene of the hemial potential and dou-

ble oupany on their onjugate thermodynami vari-

ables, that is, the partile onentration and the on{site

Coulomb repulsion, respetively. A omprehensive om-

parison among di�erent methods to ompute the spei�

heat will shed a new light on the approximation used. It

will emerge that in our theoretial sheme, even if dy-

nami e�ets in the self{energy are negleted promoting

unstable olletive asymptoti modes to the role of well{

de�ned quasi{partile exitations, extended spin modes

an be aptured by properly ombining symmetry re-

quirements and extended operatorial basis. Indeed, the

presene of a low temperature peak that appears when

the low{lying spin states are exited will appear as an

important feature shared with the quantumMonte Carlo

data [34℄. An extensive study of the thermodynami re-

sponse funtions will reveal the existene of ritial lines

whih separate di�erent energy sales reated by the in-

terplay between harge and spin modes. In other words

a study of thermodynamis quantities, suh as the dou-

ble oupany, the entropy, the hemial potential, the

spei� heat, indiates lines in the U�T plane whih sep-

arate a highly{orrelated behaviour, dominated by spin

and harge utuations and a non{interating behaviour,

dominated by thermal utuations. In partiular, there

emerges a region of �lling where the entropy redues by

inreasing the �lling signalling the setup of an ordered

phase. For T ! 0 there is a well{de�ned marginal on-

entration where a quantum phase transition ours. A

detailed omparison with the non{interating ase will

be also presented throughout the paper.

The plan of the artile is as follows. In the next Se-

tion we present the 2D Hubbard model and the eletron

propagator in the COM. In Se. III we review experimen-

tal data for some thermodynami properties. The results

for the eletroni spei� heat are presented in Se IV,

where a theoretial understanding of the di�erent ways

to ompute the spei� heat is also presented. Setion V

is devoted to a disussion of double oupany. In Se.

VI the results for the hemial potential versus temper-

ature are disussed. The entropy is analyzed in Se VII.

Some onluding remarks are presented at the end.

II. ELECTRON PROPAGATOR IN THE

HUBBARD MODEL

The Hubbard model is de�ned by

H = "



X

i



y

(i) � (i) +

X

i;j

t

ij



y

(i) � (j)

+ U

X

i

n

"

(i)n

#

(i) � �

X

i

n(i): (1)

The variable i stands for the lattie vetor R

i

. In the

following, i will be also used as a omposite position and

time index.

�

(i); 

y

(i)

	

are annihilation and reation op-

erators of �eletrons at site i, in the spinor notation:

 =

�



"



#

�

; 

y

=

�



y

"



y

#

�

; (2)

"



is the {eletron energy level. t

ij

denotes the transfer

integral and desribes hopping between di�erent sites;

the U term is the Hubbard interation between two

�eletrons at the same site with

n

�

(i) = 

y

�

(i)

�

(i) (3)

being the harge{density operator per spin �. n(i) is

the total harge{density operator. � is the hemial po-

tential. In the nearest neighbour approximation, for a

two{dimensional ubi lattie with lattie onstant a, we

write the hopping matrix t

ij

as

t

ij

= �4t�

ij

= �4t

1

N

X

k

e

ik�(R

i

�R

j

)

�(k) ; (4)

where

�(k) =

1

2

[os(k

x

a) + os(k

y

a)℄ : (5)

Hereafter, the sale of the energy is �xed in suh a way

that "



= 0. It should be noted that sine the interations

are restrited to the same site, the dimensionality of the

system omes in only when a spei� form for �(k) is

taken [35℄. In other words, the stabilization of eventual

ooperative phenomena is uniquely governed by the band

dispersion.

The point of view adopted in the COM is that the

Heisenberg operators f(i); 

y

(i)g are not good andi-

dates as a basis for alulations. Beause of strong or-

relations the �eletrons loose their identity and new

�elds, whose properties are self{onsistently determined
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by the dynamis and by the symmetries of the model,

together with the boundary onditions, might be more

appropriate as a starting point for the physial desrip-

tion of the system. Due to the on{site Coulomb intera-

tion, it is known that two sharp features develop in the

band struture whih orrespond to the Hubbard sub-

bands and desribe interatomi exitations mainly re-

strited to subsets of the oupany number. Indeed, a

�rst natural hoie for omposite �elds is given by the

Hubbard onstrained eletroni operators

�(i) = [1� n(i)℄(i) ; (6)

�(i) = n(i)(i) (7)

desribing the transitions (n = 0) () (n = 1) and

(n = 1) () (n = 2), respetively. The two{point re-

tarded thermal Green's funtion is de�ned as

S(i; j) = hR[	(i)	

y

(j)℄i ; (8)

where 	(i) is the doublet omposite operator

	(i) =

�

�(i)

�(i)

�

: (9)

The braket h: : :i indiates the thermal average and R is

the usual retarded operator.

In previous papers, we have shown that the determina-

tion of the single{partile Green's funtion (8) an be re-

alized in a fully self{onsistent way one a unique approx-

imation is made [17, 23{25℄. This approximation onsists

in negleting the dynami part in the self{energy and or-

responds to a pole expansion of the spetral intensities

[36℄. That is, we linearize the equations of motion for the

basis in (9) as

i

�

�t

 (i) = �(�ir) (i) ; (10)

where the energy matrix � is de�ned by

�(�ir

i

)


�

 (R

i

; t);  

y

(R

j

; t)

	�

=


�

[ (R

i

; t);H℄ ;  

y

(R

j

; t)

	�

: (11)

By onsidering translational invariane, the Fourier transform of the Green's funtion (8) S(i; j) =




R

�

 (i) 

y

(j)

��

is given by

S(k; !) =

1

! � "(k)

I (12)

where

I =

�

I

11

0

0 I

22

�

=

�

1�

n

2

0

0

n

2

�

; (13)

n =






y

(i) (i)

�

is the partile density. Then, for the paramagneti ase, we have

S(k; !) =

2

X

i=1

�

(i)

(k)

! �E

i

(k) + i �

: (14)

The energy spetra E

i

(k) are given by

E

1

(k) = R(k) +Q(k) E

2

(k) = R(k) �Q(k) ; (15)

where

R(k) =

1

2

(�2�+ U )�

1

2I

11

I

22

[m

12

(k) + 8t�(k) I

11

I

22

℄ ; (16)

Q(k) =

1

2

s

g

2

(k) +

4m

2

12

(k)

I

11

I

22

; (17)

and the following notation has been used

g(k) = �U +

1� n

I

11

I

22

m

12

(k) ;

m

12

(k) = 4t [� + �(k) (p� I

22

)℄ : (18)

The parameters � and p desribe a onstant shift of the bands and a bandwidth renormalization, respetively. They

are stati intersite orrelation funtions de�ned as
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� � h�

�

(i)�

y
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�

(i)�

y

(i)i ; (19)
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1

4

hn

�

�
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�
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"
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#
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y

#

(i)

y

"

(i)i : (20)

The notation �

�

(i) stands to indiate the �eld � on the �rst neighbour sites:

�

�

(i) =

X

j

�

ij

�(j) : (21)

The expliit expressions of the spetral funtions �

(i)

(k) are given by

�

(1)

11

(k) =

I

11

2

�

1 +

g(k)

2Q(k)

�

; �

(2)

11

(k) =

I

11

2

�

1�

g(k)

2Q(k)

�

;

�

(1)

12

(k) =

m

12

(k)

2Q(k)

; �

(2)

12

(k) = �

m

12

(k)

2Q(k)

; (22)

�

(1)

22

(k) =

I

22

2

�

1�

g(k)

2Q(k)

�

; �

(2)

22

(k) =

I

22

2

�

1 +

g(k)

2Q(k)

�

:

In order to alulate the orrelation funtions, the pa-

rameters �, � and p remain to be determined. One equa-

tion is given by �xing the �lling n

n = 2[1� h�(i)�

y

(i)i � h�(i)�

y

(i)i℄ : (23)

The parameter � is diretly onneted to the single{

partile Green's funtion, and from the de�nition (19)

one an immediately derive the self{onsistent equation

� = h�

�

(i)�

y

(i)i � h�

�

(i)�

y

(i)i : (24)

The parameter p plays an important role sine it is re-

lated to neighbouring orrelations of the harge, spin and

pair. In the COM we adopt the following proedure to

alulate the parameter p. This quantity is not expressed

in terms of the single{partile propagator, and there is

some freedom in its determination. In COM advantage

of this freedom is taken and the parameter p is �xed in

suh a way that the Hilbert spae has the right prop-

erties to onserve the relations among matrix elements

imposed by symmetry laws. The Pauli priniple requires

that

�(i) �

y

(i) = 0 : (25)

At level of matrix elements, this ondition requires that




�(i) �

y

(i)

�

= 0 : (26)

Summarizing, the parameters �, � and p are self{

onsistently determined by means of the equations (23),

(24) and (26). It should be noted that these self{

onsistent equations are all oupled, so that a di�erent

hoie for the third equation will have inuene also on

the �rst two equations. In partiular, when the Pauli

ondition (26) is not satis�ed, there is an ambiguity in

writing the �rst{self onsistent equation (23). In onlu-

sion, we have the self{onsistent equations [23, 25℄

n = 1�G

0

+ U (1� n)F

0

;

� =

1� n

2

G

1

�

U

2

F

1
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(1� n)

2I

11

I

22

B

1

; (27)

pF

1

= I
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F

1

��F

0

;

where

F

n

=




2(2�)

2
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B

d

2

k[�(k)℄

n

f(k) ;

G

n
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2(2�)

2
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B

d

2

k[�(k)℄

n

g(k) ; (28)

B

n

=




2(2�)

2
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B

d

2

k[�(k)℄

n

f(k)m

12

(k) ;

with

f(k) =

T

1

(k) � T

2

(k)

2Q(k)

; g(k) = [T

1

(k) + T

2

(k)℄ ;

T

i

(k) = tanh

�

E

i

(k)

2k

B

T

�

: (29)

The reovery of the Pauli priniple, very often violated by

other approximations [37℄, assures a dynamis bounded

to the Hilbert spae apable of desribing in a orret

way the interplay between the harge and the magneti

on�gurations. Furthermore, we have shown [38℄ that in

the two{pole approximation [39℄ the set of self{onsistent

equations (27) is the only one whih restores the partile{

hole symmetry and the Pauli priniple, whih are inti-

mately onneted.

It is possible to go beyond the two{pole approxima-

tion by enlarging the set of asymptoti �elds [18, 20{22℄

or by taking into aount the dynami orretions to the

self{energy [31, 32℄.
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III. THERMODYNAMICS AS REVEALED BY

EXPERIMENTS

The eletroni spei� heat C(T ) of uprate high T



superondutors has been measured. In partiular C(T )

of La

2�x

Sr

x

CuO

4

[40, 41℄ has been studied for 0:03 <

x < 0:45 in the range of temperatures between 1.5 and

300 K, and of YBa

2

Cu

3

O

6+y

[42℄ for 0:16 � y � 0:97

between 1.8 and 300 K. From these experiments the fol-

lowing behaviour has been observed for the oeÆient

 = C=T of the normal state spei� heat:

a) for �xed temperature, (x; T ) inreases with doping;

a1) in the ase of La

2�x

Sr

x

CuO

4

, (x; T ) exhibits a

rather sharp maximum at x � 0:25 (near the doping

where superondutivity disappears), then starts to de-

rease; the same behaviour for (x; T ) has been esti-

mated in Ref. 43, but with a peak loated around x �

0:18, lose to the optimal doping; for La

2�x

Ba

x

CuO

4

[44℄

a maximum has been observed at x � 0:22;

a2) in the ase of YBa

2

Cu

3

O

6+y

, (x; T ) inreases

smoothly to a plateau or two broad maxima, situated

at y � 0:6 and y � 0:9, respetively;

b) for �xed doping, (x; T ) as a funtion of temperature

exhibits a broad peak moving to lower temperatures with

inreasing the dopant onentration;

) further inreasing y, the T{dependene weakens and

in the region of high doping no inrease is observed. For

YBa

2

Cu

3

O

6+y

, no substantial inrease is observed for

y > 0:8.

As notied by Vollhardt [45℄, there is a peuliar feature

of the spei� heat observed in a large variety of systems.

The spei� heat urves versus T , when plotted for dif-

ferent, not too large, values of some thermodynami vari-

able, interset at one or even two well de�ned tempera-

tures. In

3

He the spei� heat C(T; P ) urves versus T at

di�erent pressures P interset at a well de�ned tempera-

ture [46, 47℄; in heavy fermions CeAl

3

[48℄ and UBe

13

[49℄

upon hange of P , UPt

3�x

Pd

x

[50℄ and CePt

3

Si

1�x

Ge

x

[51℄ upon hange of x, CeCu

6�x

Au

x

when either P [52℄

or the magneti �eld B [53℄ is varied; in semi{metal,

Eu

0:5

Sr

0:5

As

3

[54℄ upon hange of B.

The following properties have been observed for the

entropy S [41, 42, 55℄:

a) for a given temperature, S inreases with doping;

a1) in the ase of La

2�x

Sr

x

CuO

4

[41℄, S(x; T ) reahes a

maximum in the viinity of x � 0:25, then dereases;

a2) in the ase of YBa

2

Cu

3

O

6+y

[42, 55℄, S reahes a

maximum in the viinity of y � 0:97;

b) for a given dopant onentration, S exhibits a super-

linear dependene on the temperature;

) the normal state entropy as a funtion of T extrapo-

lates to a negative value at T = 0 K;

d) there is a striking numerial orrelation between S=T

and a�

0

, where �

0

is the bulk suseptibility and a is the

Wilson ratio.

IV. ELECTRONIC SPECIFIC HEAT

A. General Formulas

The spei� heat C(T ) is de�ned as

C(T ) =

dE

dT

; (30)

where E is the internal energy density, given by the ther-

mal average of the Hamiltonian

E =

1

N

hHi ; (31)

N being the number of sites. Calulation of internal en-

ergy by means of Eq. (31) will generally require the al-

ulation of two{partile Green's funtions. However, due

to the use of an higher order basis, the thermal average

of the Hamiltonian an be onneted to the single par-

tile propagator assoiated with the basis de�ned in Eq.

(9). Indeed, we have

E = 8t

�


�

�

(i) �

y

(i)

�

+ 2




�

�

(i) �

y

(i)

�

+




�

�

(i) �

y

(i)

��

+ U

h

n

2

�




�(i) �

y

(i)

�

i

: (32)

An alternative way to alulate the internal energy is the following. By introduing the Helmholtz free energy per

site

F = E � TS ; (33)

where S is the entropy per site, from the thermodynamis we have

S = �

�

�F

�T

�

n

; � =

�

�F

�n

�

T

;

�

�S

�n

�

T

= �

�

��

�T

�

n

: (34)

Then, it is straightforward to obtain the following formulas
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F (T; n) =

Z

n

0

�(T; n

0

)dn

0

; (35)

S(T; n) = �

Z

n

0

�

��

�T

�

n

0

dn

0

; (36)

E(T; n) =

Z

n

0

�

�(T; n

0

) � T

�

��

�T

�

n

0

�

dn

0

; (37)

from whih the spei� heat turns out to be

C(T; n) = �T

Z

n

0

�

�

2

�

�T

2

�

n

0

dn

0

: (38)

In this sheme the thermodynami quantities are all ex-

pressed through the hemial potential, whose deter-

mination requires the knowledge of the single{partile

Green's funtion.

Summarizing, we have two distint ways to alulate

the internal energy, based on the use of Eqs. (31) and

(37). In priniple these equations are equivalent and lead

to the same result when an exat solution is available.

However, the situation drastially hanges when approx-

imations are involved and di�erent results an be ob-

tained. Indeed an open problem in Condensed Matter

Physis is to �nd a unique onsistent sheme of approx-

imation apable of treating on an equal footing, both

one{ and two{ partile Green's funtions.

B. Non{Interating Case

To disuss the spei� heat it is useful at �rst to on-

sider the non{interating [i.e., U = 0℄ Hubbard model.

In this ase the thermal retarded Green's funtion an

be exatly alulated and has the expression

S



(i; j) = hR[(i)

y

(j)℄i =

i


(2�)

3

Z




B

d

2

kd!e

ik�(R

i

�R

j

)�i!(t

i

�t

j

)

1� f

F

(!)

! � E(k) + i�

; (39)

where the energy spetrum has the expression

E(k) = �� � 4t�(k) : (40)

The hemial potential is determined as a funtion of n

and T by means of the equation

n =

2


(2�)

2

Z




B

d

2

kf

F

[E(k)℄ = 1�




(2�)

2

Z




B

d

2

kT (k) ;

(41)

where we put

T (k) = tanh

�

E(k)

2k

B

T

�

: (42)

As we disussed above, we have di�erent ways of alulat-

ing the free energy. In the non{interating ase, where an

exat solution is available, all di�erent proedures must

give the same result. Sine this point will aquire some

relevane in the interating ase, we shall examine this

in detail.

By taking the thermal average of the Hamiltonian, it

is diret to see that

E = 8th

�

(i)

y

(i)i =

4t


(2�)

2

Z




B

d

2

k�(k)T (k) ; (43)

where use has been made of the expression (39) for the

single{partile Green's funtion.

The proof that use of Eq. (37) leads to the same re-

sult requires some work. By taking the derivative with

respet to T of Eq. (41) we have

��

�T

=

1

T

�

�+ 4t

V

1

V

0

�

; (44)

where

V

n

=




(2�)

2

Z




B

d

2

k

[�(k)℄

n

osh

2

(E=2k

B

T )

: (45)

By onsidering that the derivative with respet to n of

Eq. (41) gives

V

1

V

0

=

R




B

d

2

k�(k)

�T (k)

�n

R




B

d

2

k

�T (k)

�n

= �




(2�)

2

�

�n

Z




B

d

2

k�(k)T (k) ;

(46)

substitution of (44) into (37) leads to

E(T; n) =

4t


(2�)

2

Z

n

0

�

�n

0

�

Z




B

d

2

k�(k)T (k)

�

dn

0

=

4t


(2�)

2

Z




B

d

2

k�(k)T (k) : (47)

This onludes the proof that in the non{interating ase

all expressions (31) and (37) give the same result. We also

note that the spei� heat an be alulated by means

of the following expression

C(T; n) = �

8t

2

k

B

T

2

�

V

2

1

V

0

� V

2

�

: (48)

In Figs. 1 and 2 the linear oeÆient of the eletroni

spei� heat (T; n) is plotted as a funtion of tempera-

ture and �lling, respetively.

a. For a �xed �lling (T; n) �rst inreases as a fun-

tion of T , exhibits a maximum at a ertain temperature
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T

m

, and then dereases. The value of T

m

dereases by in-

reasing the �lling. At half{�lling T

m

is zero and (T; n)

diverges as T ! 0; this is an e�et of the van Hove sin-

gularity (vHs). The temperature behaviour of (T; n) is

similar to the one exhibited by the stati uniform spin

magneti suseptibility �

0

[12, 25℄, whereas the doping

dependene is di�erent.

b1. At T = 0, (T; n) inreases by inreasing the �ll-

ing, diverges at n = 1 and then dereases.

b2. At �nite temperature the peak splits in two peaks,

symmetri with respet to n = 1. The distane between

the two peaks inreases by inreasing T .

Fig. 1. The linear oeÆient of the normal state spei�

heat (T; n) of the non{interating 2D Hubbard model is

plotted as a funtion of the temperature for various values

of the partile density.

Fig. 2. (T; n) of the non{interating 2D Hubbard model

is plotted as a funtion of the �lling for various values of the

temperature.

This is shown in Fig. 2, where (T; n) is plotted as a

funtion of the �lling at various temperatures. The shift

of the two peaks with respet to n = 1 inreases by in-

reasing T .

C. Interating Case

In the interating ase the expressions (31) and (37)

for the internal energy give di�erent results. Hereafter,

we use E

H

to indiate that the internal energy has been

alulated by the average of the Hamiltonian.

Alternatively, we have seen that the internal energy

and the spei� heat an be alulated by means of Eqs.

(37) and (38). This proedure requires a knowledge of the

�rst and seond temperature derivatives of the hemial

potential. Let us de�ne

�

n

=

�

n

�

�T

n

; �

n

=

�

n

�

�T

n

; p

n

=

�

n

p

�T

n

: (49)

By taking the �rst derivative with respet to T of the

self{onsistent equations (27), we obtain

G

(1)

0

= U (1� n)F

(1)

0

;

�

1

=

1� n

2

G

(1)

1

�

U

2

F

(1)

1

+

(1� n)

2I

11

I

22

B

(1)

1

; (50)

p

1

F

1

+ pF

(1)

1

= I

22

F

(1)

1

��

1

F

0

��F

(1)

0

;

where

F

(m)

n

=

�

m

F

n

�T

m

; G

(m)

n

=

�

m

G

n

�T

m

; B

(m)

n

=

�

m

B

n

�T

m

:

(51)

Expliit alulation of the derivatives de�ned in Eq. (51)

shows that equations (50) provide a set of linear alge-

brai equations for the three parameters �

1

, �

1

, p

1

, as

funtions of the parameters �, �, p. In the same way, by

taking the seond derivative with respet to T of Eqs.

(27) we obtain

G

(2)

0

= U (1� n)F

(2)

0

;

�

2

=

1� n

2

G

(2)

1

�

U

2

F

(2)

1

+

(1� n)

2I

11

I

22

B

(2)

1

; (52)

p

2

F

1

+ 2p

1

F

(1)

1

+ pF

(2)

1

= I

22

F

(2)

1

��

2

F

0

� 2�

1

F

(1)

0

��F

(2)

0

:

These equations provide a set of linear algebrai equa-

tions for the three parameters �

2

, �

2

, p

2

as funtions

of the parameters �, �, p, �

1

, �

1

, p

1

. One the self{

onsistent alulation of the three parameters �, �, p

has been performed by means of set (27), then the alu-

lation of the �rst and seond derivatives of the hemial

potential redues to the solution of simple linear equa-

tions.

In the interating ase, beause of the approximation

used, the di�erent proedures to alulate the internal

energy give di�erent results. At �rst we shall ompare

our theoretial results with the data obtained by numer-

ial analysis. The spei� heat C(T ) of the 2D Hubbard

model has been reently alulated in Ref. 34 by us-

ing quantum Monte Carlo tehniques. In partiular, the

Monte Carlo data for the energy per site E = hHi=N

have been �tted by polynomials and the spei� heat has

been alulated by taking derivatives from these polyno-

mials analytially. Di�erent polynomials have been ho-

sen in di�erent regions of temperature. In the alulation

of E, it has been found that �nite size e�ets are strong

at weak oupling but beome negligible for U � 8.
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Fig. 3. The internal energy is plotted as a funtion of temperature for U = 4 and n = 0:75 (a), n = 1:0 (b). The squares

are the QMC data of Ref. 34 for 6� 6 (a) and 8� 8 (b) lusters. The dotted and solid lines refer to the theoretial results of

the COM for E

H

, E

T

, respetively.

Fig. 4. The internal energy is plotted as a funtion of U

for n = 1, T = 0:1. The squares are the QMC data of Ref.

34 for a 8� 8 luster. The dotted and solid lines refer to the

theoretial results of the COM for E

H

, E

T

, respetively.

In Fig. 3 we present the internal energy versus temper-

ature in the range 0 � T � 5 for several values of doping

and U = 4. The results are ompared with QMC data of

Ref. 34. We are using E

T

to indiate the solution that

omes from Eq. (37). As a general feature we observe

that E

T

orresponds to the lowest energy solution and

agrees very well with the QMC data, in the entire region

of temperature and for all studied dopant onentrations.

When U inreases, the theoretial solution deviates from

QMC in the region of low temperatures, indiating that

the antiferromagneti (AF) orrelations are not properly

taken into aount in the strong oupling regime. This is

learly seen in Fig. 4 where the internal energy is plot-

ted versus U for half{�lling.Moreover, the opening of the

antiferromagneti gap, due to a spin density wave insta-

bility [34℄, does not allow us to reprodue the behaviour

near half{�lling where our solution is paramagneti; this

latter omment also reets on the omparison with the

spei� heat data.

We now onsider the spei� heat. There are two im-

portant features in the Monte Carlo alulations: 1) a

low temperature peak that appears when the low{lying

spin states are exited, and 2) a high temperature peak

whih appears when states in the upper Hubbard band

are exited. In the weak oupling regime the low tem-

perature peak moves to slightly higher temperature as U

inreases, reahing a turning point at U = 7 where the

peak is at T = 0:3. For U > 7 the peak slowly moves

to lower temperatures, as U grows. This indiates the

beginning of the strong oupling regime. The broad high
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temperature peak moves to higher temperatures as U in-

reases, as expeted sine its presene orresponds to the

exitation of states aross the gap that grows with U . In

the strong regime [U > 7℄ the position of the harge peak

inreases linearly with U: T

harge

� 0:24U . In addition,

all the urves C versus T for several values of U inter-

set at T � 1:6. The QMC results for the spei� heat

of the 2D Hubbard model qualitatively agree with the

half{�lled 1D Hubbard model [56, 57℄.

Fig. 5. The spei� heat is plotted against temperature for

U = 4 and n = 0:5 (a), n = 0:75 (b), n = 1:0 (). The dotted

line represents the QMC data of Ref. 34; the solid line is the

result of the COM for C

T

.

The spei� heat C

T

= dE

T

=dT , alulated by means

of Eq. (38), is ompared with QMC data in Fig. 5 for

U = 4 and various dopant onentrations. At low den-

sity the agreement is generally good, in both the weak

and strong oupling ases [U = 8℄. At higher densities

the QMC data show a double peak struture, whih is

enhaned at half{�lling, but also present at n = 0:75 for

U = 8.

In the disussed range of values of U our results do

not show a double peak struture. The presene of two

peaks in the spei� heat has been attributed to the spin

and harge exitations. When U is weak the two peaks

overlap and there is no resolution. By inreasing U the

position of the harge peak moves to higher temperatures

and we expet to be able to distinguish the two ontribu-

tions. A study of the spei� heat in the strong oupling

regime is given in Figs. 6 and 7, where the two expres-

sions C

H

= dE

H

=dT and C

T

= dE

T

=dT are plotted,

respetively, as funtions of T at half{�lling.

Fig. 6. The spei� heat C

H

= dE

H

=dT is plotted against

temperature for half{�lling and U varying in the range

0 � U � 11:3

Fig. 7. The spei� heat C

T

= dE

T

=dT is plotted against

temperature for half{�lling and U = 15:20.

A peak appears at low temperatures when U is rather

large [say U � 8 for C

H

and U � 15 for C

T

℄. This be-

haviour qualitatively reprodues the QMC results. It is

worth noting that suh high values for the Hubbard in-

teration U an be asribed to the fat that in the present

approah a Mott{Hubbard gap opens at U

�

=

13:4 [38℄.

In Ref. 34 the position of the harge peak T

harge

has

been alulated for di�erent values of U. In our analysis

when U is large T

harge

an be alulated from C

T

and

the results lie on the line T

harge

= 0:24U . When U is

lower, it is not possible to resolve the two peaks.

The linear oeÆient of the spei� heat as a fun-

tion of the partile density has been studied by QMC for
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U = 8 and T varying from 0:5 to 3. Unfortunately, due to

the sign problem it is not easy to study low temperatures

in QMC. A study of (x; T ), by means of C

T

, shows a

good agreement for high temperatures, but not at lower

temperatures, where QMC results exhibit a strong down-

ward deviation in the region of �lling where we should

expet an inrease of (x; T ) due to the e�et of the van

Hove singularity.

Up to this point we have performed a detailed and

ample omparison with QMC, generally �nding a quite

reasonable agreement in a large region of values for the

model parameters. For intermediate values of U [U = 4℄

the agreement is quite satisfatory. On this basis we are

on�dent that the approximation used is adequate for the

2D Hubbard model and we an pass to examine the next

question as to whih extent the physis of real systems

is retained in the model.

Fig. 8. The spei� heat C

T

= dE

T

=dT is plotted against

temperature for di�erent values of U and n = 1.

One feature present in a large variety of systems is a

harateristi rossing point in the spei� heat urves

versus T [45{54℄. This behaviour has been also found in

1D models [56{58℄ and in the Hubbard model in in�nite

dimension [19℄, where a rossing temperature T = 0:59

has been observed in the range 0:5 � U � 2:5. For the

2D Hubbard model the same behaviour, as predited by

Vollhardt [45℄ has been observed by means of quantum

Monte Carlo alulations [34℄, where for the ase of half{

�lling a rossing temperature T = 1:6� 0:2 has been ob-

served in the range 2 � U � 12. In Fig. 8 the spei� heat

C

T

is given versus T for half{�lling and various values of

U . When n = 1 the urves ross at the same temperature

T � 2:0; when doping is onsidered the region of rossing

spreads out and moves to higher temperatures. From the

thermodynami relations, this rossing temperature T

U

orresponds to a turning point of the double oupany

as a funtion of T , that is (�

2

D=�T

2

)

T

U

= 0. A study of

the funtion (�

2

D=�T

2

) will be done in the next Setion.

As mentioned in Setion III, the linear oeÆient of

the spei� heat of uprates exhibits an anomalous be-

haviour in the normal state. To investigate this, in Fig. 9

we present the linear oeÆient (x; T ) as a funtion of

the doping x = 1 � n for various temperatures. As a

general behaviour we see that by inreasing the doping

(x; T ) inreases up to a ertain doping and then de-

reases. The nature of the peak is due to the fat that

the Fermi energy rosses the vHs for a ertain ritial

value x



. The value of x



depends on U and varies be-

tween 0 and 1=3, as U inreases from zero to in�nite.

For U = 4 it is found x



= 0:27, very lose to the ex-

perimental value observed in La

2�x

Sr

x

CuO

4

[40, 41℄. At

half{�lling the Fermi energy (�

F

) is at the entre of the

two Hubbard bands; by varying the dopant onentra-

tion some weight is transferred from the upper to the

lower band, �

F

moves to lower energies and rosses the

vHs for a ritial value of the doping; inreasing x, fur-

ther moves �

F

away from the vHs. A study of the Fermi

surfae shows that for x > x



we have a losed surfae

whih beomes nested at x = x



and opens for x < x



.

An enlarged Fermi surfae with a volume larger than the

non{interating one has been reported by QMC alula-

tions [59, 60℄ and by other theoretial works [61, 62℄.

Fig. 9. The linear oeÆient of the spei� heat (x; T ),

alulated from C

T

, is given as a funtion of the doping

x = 1� n for U = 4 and di�erent temperatures.

Fig. 10. The linear oeÆient of the spei� heat (x;T )

for La

2�x

Sr

x

CuO

4

is shown as a funtion of the Sr ontent.

The dots are the experimental data for di�erent tempera-

tures, taken from Refs. 40 and 41.
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The peak position of (x; T ) depends on the temper-

ature. In the limit of zero temperature a sharp peak is

exatly loated at x = x



. By inreasing the tempera-

ture the peak moves away from x



and broadens into

two peaks. The situation is similar to what we have al-

ulated for the non{interating ase [e.g. Fig. 2℄; we �nd

that the role played by the interation manifests itself

through the shift of the vHs and the band struture

whih reates an asymmetry between the two peaks. The

behaviour desribed in Fig. 9 well reprodues the exper-

imental situation.

Fig. 11. The linear oeÆient of the spei� heat (x; T ),

alulated from C

T

, is given as a funtion of temperature for

U = 4. In Figs. 11a and 11b the urves have been traed for

x > x



and x < x



, respetively.

In the ase of La

2�x

Sr

x

CuO

4

the experimental data

[40, 41℄ for (x; T ) are reported in Fig. 10. The peak ex-

hibited by (x; T ) dereases in intensity and moves to

lower values of doping when T inreases. In the ase of

YBa

2

Cu

3

O

6+y

, the experimental results reported in Ref.

42 are for the higher temperature T = 280 K; (x; T ) in-

reases with doping and presents two broad maxima in

the region of high doping.

Interpretation of the experimental results obtained in

Ref. 42 for YBa

2

Cu

3

O

6+y

in terms of a sharp feature

in the density of states, onsistent with ARPES experi-

ments [63℄, was presented in Refs. 64 and 65. The on-

sisteny of thermodynami data with the presene of a

vHs near the Fermi level was shown in Ref. 61 by onsid-

ering a p{d like{model in the framework of slave{boson

mean{�eld theory in the limit of large U .

We also mention that the spei� heat of

La

2�x

Sr

x

CuO

4

has been estimated in Ref. 43 from the

data for the heat apaity anomaly at the superondut-

ing transition temperature by assuming a BCS{type

relation. Under this assumption the authors �nd the

same behaviour for (x; T ), but with a peak loated

around x � 0:18, lose to the optimal doping.

In Figs. 11a and 11b we present the linear oeÆient

(x; T ) as a funtion of the temperature for values of the

�lling x > x



and x < x



, respetively. At x = x



we see

that (x; T ) diverges as T ! 0; this is an e�et of the

vHs. When x 6= x



the Fermi energy moves away from

the vHs and the peak exhibited by (x; T ) moves away

from T = 0. As shown in Figs. 11a and 11b, (x; T ) as a

funtion of temperature has di�erent behaviours in the

two regions x > x



and x < x



. In the overdoped re-

gion (x; T ) �rstly inreases as a funtion of T , exhibits

a maximum at a ertain temperature T

m

and then de-

reases. This behaviour is similar to the one exhibited by

�

0

(T ) [12, 25℄. As shown in Fig. 11a, when the doping

dereases the value of T

m

moves to lower temperatures.

This behaviour qualitatively agrees with the non inter-

ating ase showing that for x > x



the AF orrelations

are weak. A di�erent situation is observed in the under-

doped region, where (x; T ) is always a dereasing fun-

tion of T . When we look at the experimental results for

La

2�x

Sr

x

CuO

4

[40, 41℄ and for YBa

2

Cu

3

O

6+y

[42, 55℄

we �nd that the behaviour of (x; T ) as a funtion of T

in the underdoped region is more similar to that for the

non{interating ase. The fat that for YBa

2

Cu

3

O

6+y

(x; T ) is always a dereasing funtion of T when y > 0:8

is understood beause by approahing the ritial dop-

ing, T

m

is shifted to low temperatures, below the ritial

superonduting temperature.

V. THE DOUBLE OCCUPANCY

As a simple thermodynami quantity indiating the

degree of orrelation of the system, in this Setion we

study the double oupany D, de�ned as the fration of

doubly oupied sites

D = hn

"

n

#

i : (53)

This quantity an be alulated by means of the expres-

sion

D =

n

4

[1�G

0

� UF

0

℄ : (54)

Then, the �rst and seond temperature derivatives of D

an be analytially alulated as

dD

dT

= �

n

4

h

G

(1)

0

� UF

(1)

0

i

;

d

2

D

dT

2

= �

n

4

h

G

(2)

0

� UF

(2)

0

i

(55)
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one the self{onsistent equations have been solved.

We display in Figs. 12a and 12b the temperature de-

pendene of D for various values of U at partile onen-

trations n = 0:7 and n = 0:8. In Fig. 12a the data display

a harateristi low temperature behaviour: D initially

dereases with temperature, reahes a minimum, and in-

reases again. In other words, the urve indiates the

presene of a T region where the formation of loal mag-

neti moments is enhaned with inreasing T [the double

oupany D determines the loal spin{spin orrelation

funtion S

2

through the equation S

2

= 3(n � 2D)=4℄.

This behaviour is harateristi of inipient loalization

e�ets in a strongly orrelated Fermi liquid in a regime

dominated by spin utuations. Starting from the low

temperature Fermi liquid regime, when the temperature

inreases, the system an gain free energy by loalizing

the partiles (i.e., dereasing D) in order to take advan-

tage of a larger spin entropy [19, 56℄. In the absene of

spin exitations one would observe dereasing values with

inreasing T .

Fig. 12. The double oupany D is plotted as a funtion

of the temperature for n = 0:7, U = 2 (a) and for n = 0:8,

U = 4 (b). The arrow in Fig. 12b indiates the temperature

T

U

where the urve hanges urvature.

In Fig. 12b D is a monotoni inreasing funtion of

temperature. In this ase the values of n and U are large

enough to inhibit loalization e�ets due to the inrease

of temperature. To study this behaviour in more detail

this behaviour, the derivative with respet to the temper-

ature of the double oupany has been analyzed. The

results show that for a given T there exists a ritial

value of U , say U

D

(T ), suh that

�D

�T

< 0 for U < U

D

(T ) ; (56)

�D

�T

> 0 for U > U

D

(T ) : (57)

The funtion U

D

(T ), de�ned by �D=�T = 0, is given

in Fig. 13. We note that at T = 0 U

D

(0) oinides

with U



(n; 0), de�ned as the ritial strength of the on{

site Coulomb interation for whih the Fermi energy

rosses the vHs at �xed dopant onentration. U

D

(T )

goes to zero for some temperature T

D

. For n = 0:7

we �nd that T

D

= 0:581. When T > T

D

we have

�D=�T > 0 for all values of U. The behaviour of T

D

as a funtion of n is reported in the Fig. 14. The fat

that (�D=�T )

U=U

D

(T )

= 0 implies that at U = U

D

(T )

the double oupany does not depend on T . However,

the urves of D as funtion of U for di�erent values of

T will not ross in a single point beause U

D

(T ) hanges

with the temperature in a signi�ant way.

Fig. 13. U

D

(T ) as a funtion of the temperature for various

values of the �lling.

At very high temperature T � U , larger than T

U

where there is a hange in the onavity, D asymptot-

ially tends to the non{interating value n

2

=4, as ex-

peted. We have seen in the previous setion that the

spei� heat urves versus T for di�erent values of U

ross almost at the same point T

U

, determined by the

equation

�

�

2

D

�T

2

�

T

U

= 0 : (58)

A study of this equation by means of formula (55) gives

the results plotted in Fig. 15, where T

U

is plotted versus

U for n = 0:75.
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Fig. 14. T

D

as a funtion of the �lling.

Fig. 15. T

U

as a funtion of the potential intensity U for

n = 0:75.

VI. CHEMICAL POTENTIAL VERSUS

TEMPERATURE

From the solution of the fermioni propagator and by

means of Eqs. (50) we obtain the following behaviour for

the temperature derivative of the hemial potential

��

�T

< 0 for n < n

�

(T ) ;

��

�T

= 0 for n = n

�

(T ) ; (59)

��

�T

> 0 for n > n

�

(T ) :

The funtion n

�

(T ) is presented in Fig. 16. It an be

shown that at T = 0 n

�

oinides with n



, the ritial

value where the Fermi level rosses the van Hove sin-

gularity. But, the temperature dependene of n

�

(T ) is

remarkably di�erent from the one of n



(T ).

Thus, only for T ! 0 we may relate the transition

��=�T < 0 =) ��=�T > 0 to the reversal of the sign

of the derivative for the density of states at the Fermi

level. Furthermore, we observe that n

�

(T ) reahes the

value of 1 for some temperature T

�

(for U = 4 we �nd

T

�

= 0:843). When T > T

�

we have ��=�T < 0 for all

values of n . The fat that (��=�T )

n=n

�

(T ) = 0 implies

that at n = n

�

(T ) the hemial potential does not de-

pend on T . Therefore, the urves of � as funtion of n

for various values of T , reported in Fig. 17, will not ross

exatly in the same point as laimed in Ref. 66.

Fig. 16. n

�

(T ) as a funtion of the temperature for di�er-

ent values of U .

Fig. 17. The hemial potential � as a funtion of the �lling

for U = 4 and di�erent temperatures.

VII. THE ENTROPY

The entropy S(T; n), onneted to the total number

of spin and harge exitations at temperature T and �ll-

ing n, is a bulk thermodynami quantity uniquely deter-

mined by the spetrum of exitations, whose magnitude

and temperature dependene provide an important test

for proposed theories. Theoretial works available so far

are the following. Bipolaron models propose preformed

boson harge arriers at T



and behaving lassially at

higher temperatures. Apart from some inonsisteny re-

lated to the magnitude of the entropy, these theories have

to resort to the existene of thermally exited triplet
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bipolarons in explaining the deviation of S from a linear

T{dependene in underdoped samples [67℄. Theoretial

studies of the entropy in the strongly orrelated eletron

systems have also been performed in the framework of

the statistial spin liquid [68{71℄. This sheme is based

on the assumption that in the strongly orrelated metals

the doubly oupied single{spin on�gurations must be

exluded not only in the real spae representation, but

also in the reiproal spae. By means of the spin liquid

statistis, the entropy of loalized moments is reprodued

when the Mott insulator limit is reahed for half{�lling.

Nevertheless, this over imposed statistis freezes the sys-

tem in a wrong Hilbert spae whenever di�erent hoies

of the parameters modify the interplay between thermal

exitations and eletroni interations. Some theories [3℄

predit deoupled holon (boson) and spinon (fermion)

exitations. In these approahes it is diÆult to reon-

ile the experimentally observed magnitude for the en-

tropy with its partition between statistially independent

exitations. Moreover, the striking numerial orrelation

between S=T and a�

0

is expeted for weakly interating

fermions but not if the dominant exitations are those

of spinless bosons. In Ref. 66 exat diagonalization stud-

ies of the t � J model have been performed; for several

thermodynami quantities a ritial doping onentra-

tion that marks a hange of the Fermi surfae harater

is found.

Fig. 18. The entropy is plotted versus the partile density

for U = 4 and di�erent temperatures.

By means of the relation (36), we have alulated

the entropy per site S(T; n). Realling the behaviour of

��=�T , we see that the entropy must have the following

behaviour

(i) for T < T

�

, S(T; n) inreases with inreasing parti-

le onentration, reahes a maximum for n = n

�

, then

dereases (see Fig. 18a);

(ii) for T > T

�

, S(T; n) always inreases with inreasing

partile onentration (for U = 4 we �nd T

�

= 0:843) as

is shown in Fig. 18b.

Fig. 19. The entropy is plotted versus the partile density

for T = 0:01 and di�erent values of U.

Fig. 20. The entropy is reported versus the partile density

for T = 0:4 and di�erent values of U .

Again the peak struture reets a Fermi level rossing

the vHs at the ritial doping. This behaviour is in agree-

ment with the experimental data from Refs. 41, 42 and

55. Indeed, the experiments show a well de�ned peak

struture in a large region of temperature (from 40K

to 320K); furthermore, the position of the peak slightly

hanges with temperature. In the theoretial analysis the

position of the peak as a funtion of temperature is gov-

erned by n

�

(T ), reported in Fig. 16, that shows a smooth

variation in the region of physial relevane (T < 0:05).

In Fig. 19 the entropy versus the partile onentration

is reported for various values of the Coulomb interation.
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The maximum of the entropy shifts to lower values of

n by inreasing U , varying between 1 and 2=3 when U

varies from 0 to1. In Fig. 20, we see that for T = 0:4 all

entropy urves for di�erent U ross at the same partile

onentration. By omparison with Fig. 17 and by nu-

merial analysis, we see that the rossing point is exatly

the ritial onentration n

�

(T ). Realling the Maxwell

relation

�

�S

�U

�

T

= �

�

�D

�T

�

U

(60)

the behaviour shown in Fig. 18 implies (�D=�T )

n=n

�

=

0. If we remember that the double oupany D deter-

mines the loal spin{spin orrelation funtion, it is lear

that a sign reversal of its derivative with respet to the

temperature represents a rossover from a regime domi-

nated by spin utuations, where S is a dereasing fun-

tion of U , to another regime favouring harge utua-

tions (eletroni deloalization), where the entropy is an

inreasing funtion of U .

Fig. 21. The entropy is plotted versus the temperature for

U = 4. The range of �lling is x > x



for (a) and x < x



for (b)

In Figs. 21 and 22 we report the temperature depen-

dene of S and S=T for several dopant onentrations.

The urves have a qualitative agreement with the exper-

imental ones [41, 42, 55℄. In Fig. 21a, where x > x



, S

is a dereasing funtion of x at a �xed temperature; the

opposite behaviour is observed in Fig. 21b.

Fig. 22. S=T is plotted versus the temperature for U = 4.

The range of �lling is x > x



for (a) and x < x



for (b)

In the limit of zero temperature the entropy goes to

zero by a linear law. When T inreases the entropy devi-

ates from the linear behaviour. In the region 0:01 � T �

0:1 the temperature dependene is well desribed by the

law

S(T ) = S

0

+ S

1

T + S

2

T

2

; (61)

where the oeÆients S

0

, S

1

, S

2

are strongly dependent

on the �lling.

It is worth notiing that in the limit of large tempera-

tures (a weak point of the statistial spin liquid [68{71℄)

our results for the entropy asymptotially agree with the

exat expression

lim

T!1

S(T; n) = 2 ln2� n lnn� (2� n) ln(2� n) : (62)

For non{interating fermions at T = 0K we have

 = a�

0

; (63)

where �

0

is the bulk suseptibility and a is the Wilson

ratio

a =

�

2

3

: (64)
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In the ase of La

2�x

Sr

x

CuO

4

[41℄ and of YBa

2

Cu

3

O

6+y

[42, 55, 72℄, there is a striking numerial orrelation be-

tween S=T and a�

0

. As notied by Loram et al., this

resemblane shows that the total spin+harge spetrum

over all moments k (from S) and the k = 0 spin spetrum

(from �

0

) have a similar energy dependene. Also, exper-

imental evidenes suggest that the low{energy exita-

tions are predominantly those of onventional fermions,

and that the substantial T dependenies of S=T and �

0

are primarily determined by the energy dependene of

the single{partile density of states in the viinity of the

Fermi level.

Fig. 23. S=T�

0

is plotted versus the temperature for U = 4

and di�erent �llings.

In Fig. 23 we present S=T�

0

as a funtion of the tem-

perature for various values of doping (i.e., 0:03 � x �

0:27). For all values of dopant onentration S=T�

0

is

almost onstant over a wide range of temperatures.

In addition, the value of S=T�

0

is less than the non{

interating one. This is due to the fat that by introdu-

ing interation the number of mirosopi states aes-

sible to the same marosopi state is redued (i.e., the

entropy per site) whereas the suseptibility is inreased

by inipient loalization e�ets.

In order to obtain a better understanding of how

the thermodynamis of an eletroni liquid is modi�ed

by the interation, we have performed a study of non{

interating Hubbard model (i.e., U = 0). What we learn

from the study of this model is that the ritial value

(i.e., half{�lling) above whih the entropy looks a de-

reasing funtion of the �lling is uniquely �xed by the

statistis. The temperature has no role. On the ontrary,

in the interating ase the energy sale of harge on�g-

urations has a ruial role in the region of partile on-

entration between n

�

and half{�lling. For n

�

< n < 1

there is a ritial temperature T

�

, depending on the �ll-

ing, above whih the behaviour is similar to the non{

interating ase [i.e., where �S=�n beomes positive, or

where ��=�T beomes negative℄.

We now onsider the physial origin of these results.

In the non{interating ase the ombinatoris ditated

by the Fermi statistis governs the behaviour of the en-

tropy. This an be understood if we think that for the

single{site problem the entropy has the values 0, ln 2 and

0 for oupany 0, 1 and 2, respetively. In the interat-

ing ase it is natural to look for a ritial value of the

�lling above whih the number of permutations satisfy-

ing the restritions of the boundary onditions starts to

derease. For n

�

< n < 1, beause of the Coulomb in-

teration, by inreasing the partile density the number

of mirosopi realizations, aessible to the same ob-

servable marosopi state, dereases [the Pauli priniple

is obviously ruial for a orret ounting℄. This is true

only if the thermal exitations do not exeed the energy

sale �xed by the interation. De�nitely, for 0 < n < n

�

we have a sort of disordered non{interating state with

�S=�n > 0, whereas for n

�

< n < 1 the low{lying exita-

tions haraterize a far from random spatial pattern [i.e.,

�S=�n < 0℄. In the range n

�

< n < 1 inommensurate

magnetismand superondutivity are experimentally ob-

served [12, 73℄.

VIII. CONCLUDING REMARKS

The 2D single{band Hubbard model has been studied

by means of the omposite operator method. By on-

sidering the Hubbard operators as basi set of �elds,

whih desribe interatomi exitations restrited to sub-

sets of the oupany number, the single{partile ele-

troni propagator has been omputed in a fully self{

onsistent way by means of a quasi{partile sheme a-

pable of oherently integrating dynamis, boundary on-

ditions and symmetry priniples.

The paper was devoted to the study of the eletroni

spei� heat and entropy per site in the paramagneti

phase. We analyzed these quantities by looking at the

dependene of the thermodynami variables on their

onjugate ones, that is, for example, the relation be-

tween entropy and temperature, hemial potential and

partile onentration, double oupany and on{site

Coulomb repulsion. One the self{onsistent equations

for the single{partile propagator have been solved, we

have determined the temperature derivatives of the in-

ternal parameters by means of exat linear systems of

algebrai equations. The determination of the �rst and

seond temperature derivatives of the hemial poten-

tial has been revealed ruial in determining the thermo-

dynami response funtions under investigation. For the

eletroni spei� heat and internal energy we have pre-

sented two di�erent shemes of alulation. All of them

allowed the possibility to obtain a deep theoretial un-

derstanding of how and to whih extent olletive ex-

itations an be retained in the desription of thermal

response funtions. We have obtained a good agreement

with the data by quantum Monte Carlo tehniques for

the eletroni spei� heat and the internal energy [34℄.

Further on, although Monte Carlo data shared ommon

features with the results from the alulations through

the T{derivative of the hemial potential, the experi-

mental data for uprates, as revealed by the Wilson ratio

and linear oeÆient of the eletroni spei� heat, have
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shown that in suh systems the dominant exitations are

those of onventional non{interating fermions [41℄.

We obtained several harateristi rossing points for

the response funtions when reported as funtions of

some thermodynami variables. These peuliar features,

already evidened by Vollhardt [45℄, marked turning

points where di�erent response funtions evolve from a

non{interating behaviour

(i) the entropy is an inreasing funtion of U ;

(ii) the entropy is an inreasing funtion of n;

(iii) the double oupany is a dereasing funtion of T ;

(iv) the T{derivative of the hemial potential is a de-

reasing funtion of n;

(v) the linear oeÆient of the spei� heat is an inreas-

ing funtion of n;

to an unonventional dependene on the onjugate

variables

(vi) the entropy is a dereasing funtion of U ;

(vii) the entropy is a dereasing funtion of n;

(viii) the double oupany is an inreasing funtion of T ;

(ix) the T{derivative of the hemial potential is an in-

reasing funtion of n;

(x) the linear oeÆient of the spei� heat is a dereas-

ing funtion of n.

Before losing we would like to mention that the region

of �lling, where (vi){(x) hold, oinides with that where

inommensurate magnetism and superondutivity are

experimentally observed in LSCO uprates family.
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TERMODINAM�KA DVOVIM�RNOÕ MODEL� GABBARDA

F. Manq�n�

1

, G. Maumoto

2

, D. V�llan�

3

,

1

fakul~tet f�ziqnih nauk, \E. R. Ka�n�ello", �NFM Salerno, Un�versitet Salerno,

8481 Baron�ss�, Salerno, �tal��

2

fakul~tet prikladnoÝ f�ziki, Un�versitet Se�ke�, Tok�o 180, �pon��

3

Serins~ka f�ziqna laborator��, Rat�ers un�versitet, P�sketeve�, N~�{D�ers�, 08855{0849, SXA

Teoretiqni� anal�z funk�� termodinam�qnogo v�dguku dvovim�rnoÝ odnozonnoÝ model� Gabbarda pro-

vedeno za dopomogo� metodu komb�novanih operator�v. Pokazano, wo vs� osoblivost� ih veliqin mo�na

po�sniti zale�n�st� termodinam�qnih zm�nnih v�d spr��enih zm�nnih. Takim qinom viznaqeno elektronnu

teplomn�st~ ta entrop�� na vuzol u paramagnetn�� faz�. Tako� podano dv� r�zn� shemi obqislen~ elektron-

noÝ teplomnosti ta vnutr�xn~oÝ ener��Ý. Vi�vleno, wo qislov� dan� z kvantovih metod�v Monte{Karlo dl�

vnutr�xn~oÝ ener��Ý ta elektronnoÝ teplomnosti dobre v�dtvor��t~s� Ýh viznaqenn�m qerez perxu ta drugu

poh�dn� hem�qnogo poten��lu za temperaturo�. Dokladno opisano vlastivost� anomal~nogo stanu v m�dnih

visokotemperaturnih nadprov�dnikah �z dom�xkovimi d�rkami. Narext�, otrimano dek�l~ka harakternih

toqok peretinu dl� funk�Ý v�dguku na zale�nost�h v�d okremih termodinam�qnih zm�nnih. C� haraktern�

risi vkazu�t~ na �snuvann� b�l~x n�� odn�Ý ener�etiqnoÝ xkali, wo konkuru z teplovimi zbud�enn�mi

ta, �k u�e pom�tiv Vol~gardt, na pereh�d v�d nevzamod��qoÝ do sil~no skorel~ovanoÝ poved�nki.
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