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A theoretical analysis of the thermodynamic response functions of the 2D single-band Hubbard
model 1s carried out by means of the composite operator method. It is shown that all the features
of these quantities can be explained by looking at the dependence of the thermodynamic variables
on their conjugate ones. In this way, the electronic specific heat and the entropy per site are
determined in the paramagnetic phase. Also, for the electronic specific heat and internal energy
we present two different schemes of calculation. It is found that the numerical data from quantum
Monte Carlo techniques for the internal energy and electronic specific heat are well reproduced by
determining them through the first and second temperature derivatives of the chemical potential.
The anomalous normal state properties in hole-doped cuprate high 7. superconductors are also
well described. Finally, we obtain several characteristic crossing points for the response functions
when plotted versus some thermodynamic variables. These peculiar features indicate the existence
of more than one energy scale competing with thermal excitations and indicate, as already noted
by Vollhardt, a crossover from a non—interacting to a highly correlated behaviour.
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I. INTRODUCTION

It 1s believed, on both experimental and theoretical
grounds, that superconductivity and charge transport in
high T, cuprates are mostly confined to the CuQO» planes
[1, 2]; and hence the attention of many physicists has
been dedicated to 2D models which contain as an es-
sential feature a competition between the band picture
and highly correlated many body effects. Of course, some
features of the phase diagram, like the existence of a fi-
nite Néel temperature, can only be explained by adding
a coupling between the planes.

The bonding combination of Cu and O orbitals turns
out to be quite deep below the Fermi level, so that no
dynamic freedom 1s left to treat d and p orbitals sepa-
rately [3] (there are some strong experimental evidences,
mostly based on the study of the Knight shift, that in the
CuO; plane one spin degree of freedom is observed [4]).
Through the Pauli principle, the energy of the p elec-
tron excitation is, for example, largely modified by the
change of charge and spin states of the neighbouring Cu
ions. A p electron and charge and spin fluctuations on
neighbouring Cu ions are simultaneously excited so that
electronic excitations are formed on a CuOs cluster as a
whole. Then, the resulting complex can be described by
a single-band Hubbard model [5].

In the simplest form, the Hubbard model, first intro-
duced to describe the correlations of electrons in a nar-
row d—band of transition metals, contains a kinetic term
which describes the motion of the electrons among the
sites of the Bravais lattice and an interaction term be-
tween electrons of opposite spin on the same lattice site.

474

By varying the model parameters, it is believed that the
Hubbard model is capable of describing many proper-
ties of strongly correlated fermion systems. Among dif-
ferent examples, the Hubbard Hamiltonian is applicable
to describe the metal-insulator transition in a series of
transition metal oxides such as Sry_,La,TiOs [6, 7] and
V203 [8-11]. The applicability of the model to the su-
perconducting copper—oxides 1s related to the fact that
upon doping most of these compounds exhibit a metal—
insulator Mott transition; the superconducting state is
near the Néel state and there are many experimental
results [12-15] which show a close relation between the
antiferromagnetic correlations in the Cu-O planes and
the occurrence of the superconducting phase. However,
it 1s important to stress that an appropriate description
of a bad metal with large energy scale spin fluctuations
by means of a purely electrostatic Hamiltonian should
preserve the symmetry expressed by the Pauli principle
that codifies the correct interplay between charge and
magnetic configurations [16-18].

Although considerable attention has been devoted to
the Hubbard model and significant progress was achieved
in understanding ground state properties, particularly at
half-filling, static and dynamic spin correlations, the op-
tical conductivity and other observables, a clear compre-
hension of the low-lying excitations is still lacking [2].
The difficulty is not to be found only in the absence
of any obvious small parameter in the strong coupling
regime. More deeply, it is due to the difficulty of han-
dling simultaneously itinerant aspects (spatial correla-
tions) and atomic aspects (pronounced on—site quantum
fluctuations) [19].
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In recent years we have been developing a method of
calculation, denominated Composite Operator Method
(COM) [17, 18, 20-32], that has been revealed to be a
powerful tool for the description of local and itinerant
excitations in strongly correlated systems. In previous
papers, we considered the Hubbard electronic operators
for the determination of fundamental excitations. A fully
self—consistent calculation of the electronic propagator
has been realized by means of a constraint with the phys-
ical content of the Pauli principle [17, 23-25]. We calcu-
lated local quantities, as the double occupancy and the
magnetic moment [17, 23], the energy per site [24], the
chemical potential [24], the magnetic susceptibility [25,
29], the density of states and the quasi—particle spectra
[28, 32]. In all the cases, the results show a good agree-
ment with those obtained by numerical simulation. In
particular, the results obtained for the magnetic proper-
ties can reproduce the unusual characteristics observed
in high T, superconducting materials [25, 29, 33]. There-
fore, the agreement strengthens the idea that a micro-
scopic single-band model contains the essential physical
features of the new class of materials.

In this paper we investigate the electronic specific heat
and the entropy per site of the 2D Hubbard model for a
paramagnetic ground state. It will be shown that all the
features of these quantities can be understood by looking
at the dependence of the chemical potential and dou-
ble occupancy on their conjugate thermodynamic vari-
ables, that is, the particle concentration and the on—site
Coulomb repulsion, respectively. A comprehensive com-
parison among different methods to compute the specific
heat will shed a new light on the approximation used. It
will emerge that in our theoretical scheme, even if dy-
namic effects in the self-energy are neglected promoting
unstable collective asymptotic modes to the role of well—-
defined quasi—particle excitations, extended spin modes
can be captured by properly combining symmetry re-
quirements and extended operatorial basis. Indeed, the
presence of a low temperature peak that appears when
the low-lying spin states are excited will appear as an
important feature shared with the quantum Monte Carlo
data [34]. An extensive study of the thermodynamic re-
sponse functions will reveal the existence of critical lines
which separate different energy scales created by the in-
terplay between charge and spin modes. In other words
a study of thermodynamics quantities, such as the dou-
ble occupancy, the entropy, the chemical potential, the
specific heat, indicates lines in the / =T plane which sep-
arate a highly—correlated behaviour, dominated by spin
and charge fluctuations and a non—interacting behaviour,
dominated by thermal fluctuations. In particular, there
emerges a region of filling where the entropy reduces by
increasing the filling signalling the setup of an ordered
phase. For T — 0 there is a well-defined marginal con-
centration where a quantum phase transition occurs. A
detailed comparison with the non-interacting case will
be also presented throughout the paper.

The plan of the article 1s as follows. In the next Sec-
tion we present the 2D Hubbard model and the electron
propagator in the COM. In Sec. ITI we review experimen-

tal data for some thermodynamic properties. The results
for the electronic specific heat are presented in Sec 1V,
where a theoretical understanding of the different ways
to compute the specific heat is also presented. Section V
is devoted to a discussion of double occupancy. In Sec.
VI the results for the chemical potential versus temper-
ature are discussed. The entropy is analyzed in Sec VII.
Some concluding remarks are presented at the end.

II. ELECTRON PROPAGATOR IN THE
HUBBARD MODEL

The Hubbard model is defined by
H:ECZ —|—Zt”6 (4) - e(4)
+U Z np(i)ny (1) — p Z (1)

The variable ¢ stands for the lattice vector R;. In the
following, ¢ will be also used as a composite position and
time index. {c(z) cT(i)} are annihilation and creation op-
erators of c—electrons at site 7, in the spinor notation:

c= (2) ot = (4 cj), 2)

gc is the c—electron energy level. ¢;; denotes the transfer
integral and describes hopping between different sites;
the U term is the Hubbard interaction between two
c—electrons at the same site with

no (i) = el (i)e (1) (3)

being the charge-density operator per spin o. n(i) is
the total charge—density operator. y is the chemical po-
tential. In the nearest neighbour approximation, for a
two—dimensional cubic lattice with lattice constant a, we
write the hopping matrix ¢;; as

_ _ 1 Z ik (Ri—R;
where
1
a(k) = 2 [cos(kpa) + cos(kya)] . (5)

Hereafter; the scale of the energy is fixed in such a way
that . = 0. It should be noted that since the interactions
are restricted to the same site, the dimensionality of the
system comes in only when a specific form for a(k) is
taken [35]. In other words, the stabilization of eventual
cooperative phenomena is uniquely governed by the band
dispersion.

The point of view adopted in the COM is that the
Heisenberg operators {c(i),¢f(i)} are not good candi-
dates as a basis for calculations. Because of strong cor-
relations the c—electrons loose their identity and new
fields, whose properties are self—consistently determined
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by the dynamics and by the symmetries of the model,
together with the boundary conditions; might be more
appropriate as a starting point for the physical descrip-
tion of the system. Due to the on-site Coulomb interac-
tion, it 18 known that two sharp features develop in the
band structure which correspond to the Hubbard sub-
bands and describe interatomic excitations mainly re-
stricted to subsets of the occupancy number. Indeed, a
first natural choice for composite fields is given by the
Hubbard constrained electronic operators

£(8) = [L —n(i)]e(?) (6)
n(i) = n(i)e(i) (7)

describing the transitions (n = 0) <= (n = 1) and
(n = 1) <= (n = 2), respectively. The two-point re-
tarded thermal Green’s function is defined as

S(i,4) = (RI¥ @)W (), (8)

where W(7) is the doublet composite operator

(=i Vi) ({o(Ri, 1), 01 (Ry, 1) }) = ({0 (R4, 1), H], 0T (R, 1)} ) -

v = (50). )

The bracket {...) indicates the thermal average and R is
the usual retarded operator.

In previous papers, we have shown that the determina-
tion of the single—particle Green’s function (8) can be re-
alized in a fully self—consistent way once a unique approx-
imation is made [17, 23-25]. This approximation consists
in neglecting the dynamic part in the self-energy and cor-
responds to a pole expansion of the spectral intensities
[36]. That is, we linearize the equations of motion for the
basis in (9) as

0

i) = (=i V)(). (10)

where the energy matrix € is defined by

(11)

By considering translational invariance, the Fourier transform of the Green’s function (8) S(¢,j) = <R [1/)(2) il (])]>

is given by
Sk, w) ! I (12)
w) =
’ w—e(k)
where
(@1 O _ -2 0
(5 2)-(50)
n= <cT(i) c(z)> is the particle density. Then, for the paramagnetic case, we have
W) =
—w— Ei(k)+in
The energy spectra E;(k) are given by
Ei(k) = R(k) + Q(k)  Ex(k) = R(k) - Q(k), (15)
where
1 1
R(k) = = (—2/,L + U) nre—— [mlz(k) + 8ta(k) 111 122] ; (16)
2 2111 129
1 4m?, (k)
k) = =y/g%(k 12 17
Q9 Mg() el )
and the following notation has been used
() = 0+ T (k)
= - m
) i1 Ioy 12 )
mia() = 4 [A + () (p — T12)] (18)

The parameters A and p describe a constant shift of the bands and a bandwidth renormalization, respectively. They

are static intersite correlation functions defined as
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A

Il
———

p

£ (@EN(0) — (™ (" (1)) (19)
%(nfj(i)nu(ib = (fer(ey ()]} (D) () - (20)

The notation ®“(¢) stands to indicate the field ® on the first neighbour sites:

(i) = 3 ai2(i). (21)

The explicit expressions of the spectral functions O'(i)(k) are given by

1 _In g(k)
oA =3 [1+ 5]
0(1) _ mlz(k)

12 (k) - QQ(k) ’

1 o g(k)
A= [1- ]

In order to calculate the correlation functions, the pa-
rameters pu, A and p remain to be determined. One equa-
tion is given by fixing the filling n

n = 2[1 = (€(DEN@)) — (D" ()] (23)

The parameter A 1s directly connected to the single—
particle Green’s function, and from the definition (19)
one can immediately derive the self—consistent equation

A = (€7 (@)EN (D) = (D" (9)) - (24)

The parameter p plays an important role since it is re-
lated to neighbouring correlations of the charge, spin and
pair. In the COM we adopt the following procedure to
calculate the parameter p. This quantity is not expressed
in terms of the single-particle propagator, and there is
some freedom in its determination. In COM advantage
of this freedom is taken and the parameter p is fixed in
such a way that the Hilbert space has the right prop-
erties to conserve the relations among matrix elements
imposed by symmetry laws. The Pauli principle requires
that

(i)' (i) = 0. (25)
At level of matrix elements, this condition requires that

(E@n'@) =0. (26)

Summarizing, the parameters g, A and p are self-
consistently determined by means of the equations (23),
(24) and (26). Tt should be noted that these self-
consistent equations are all coupled, so that a different
choice for the third equation will have influence also on
the first two equations. In particular, when the Pauli
condition (26) is not satisfied, there is an ambiguity in
writing the first—self consistent equation (23). In conclu-
sion, we have the self—consistent equations [23, 25]

> ' 2009
A0 = -5 (22
2 I3 g(k)
72 () 3_P+2Q&J
n:l—G0+U(1—n)F0,
A: I;nGl_%Fl—i—(Qlfl_l[:iBl’ (27)
pFy = [ F — AFy,
where
Q 2 n
B = gy [ MG 100,
G = sy [ EH 00T 9K, (28)
By = g [ MG 0 mis 1),
with
g = TS0 g =m0 + 1a0],
T;(k) = tanh (fks{T)) . (29)

The recovery of the Pauli principle, very often violated by
other approximations [37], assures a dynamics bounded
to the Hilbert space capable of describing in a correct
way the interplay between the charge and the magnetic
configurations. Furthermore, we have shown [38] that in
the two—pole approximation [39] the set of self—consistent
equations (27) is the only one which restores the particle—
hole symmetry and the Pauli principle, which are inti-
mately connected.

It is possible to go beyond the two—pole approxima-
tion by enlarging the set of asymptotic fields [18, 20-22]
or by taking into account the dynamic corrections to the
self-energy [31, 32].
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III. THERMODYNAMICS AS REVEALED BY
EXPERIMENTS

The electronic specific heat C(T) of cuprate high T
superconductors has been measured. In particular C'(7T)
of Lag_;Sr;CuOy4 [40, 41] has been studied for 0.03 <
z < 0.45 in the range of temperatures between 1.5 and
300 K, and of YBayCuszOgqy [42] for 0.16 < y < 0.97
between 1.8 and 300 K. From these experiments the fol-
lowing behaviour has been observed for the coefficient
¥ = C/T of the normal state specific heat:

a) for fixed temperature, y(x,T) increases with doping;
al) in the case of Las_,Sry;CuQy, y(x,T) exhibits a
rather sharp maximum at # &~ 0.25 (near the doping
where superconductivity disappears), then starts to de-
crease; the same behaviour for y(z,T) has been esti-
mated in Ref. 43, but with a peak located around z =~
0.18, close to the optimal doping; for Las_,Ba, CuOy [44]
a maximum has been observed at x &~ 0.22;

a2) in the case of YBayCuszOgyy, y(2,T) increases
smoothly to a plateau or two broad maxima, situated
at y & 0.6 and y & 0.9, respectively;

b) for fixed doping, v(x,T) as a function of temperature
exhibits a broad peak moving to lower temperatures with
increasing the dopant concentration;

c) further increasing y, the T—dependence weakens and
in the region of high doping no increase is observed. For
YBasCuzOs4y, no substantial increase is observed for
y > 0.8.

As noticed by Vollhardt [45], there is a peculiar feature
of the specific heat observed in a large variety of systems.
The specific heat curves versus 7', when plotted for dif-
ferent, not too large, values of some thermodynamic vari-
able, intersect at one or even two well defined tempera-
tures. In 3 He the specific heat C'(T, P) curves versus T  at
different pressures P intersect at a well defined tempera-
ture [46, 47]; in heavy fermions CeAls [48] and UBe;3 [49]
upon change of P, UPts_,Pd, [50] and CePt3Si;_,Ge,
[51] upon change of #, CeCug_zAu, when either P [52]

B=se[(e

+U[5 <

or the magnetic field B [53] is varied; in semi-metal,
Eug 5Srg.5Ass [54] upon change of B.

The following properties have been observed for the
entropy S [41, 42, 55]:
a) for a given temperature, S increases with doping;
al) in the case of Lag_;Sr,CuOy4 [41], S(x,T') reaches a
maximum in the vicinity of z & 0.25, then decreases;
a2) in the case of YBayCusOgqy [42, 55], S reaches a
maximum in the vicinity of y &~ 0.97;
b) for a given dopant concentration, S exhibits a super-
linear dependence on the temperature;
c) the normal state entropy as a function of 7' extrapo-
lates to a negative value at T'=0 K;
d) there is a striking numerical correlation between S/T'
and ayp, where yq 1s the bulk susceptibility and «a is the
Wilson ratio.

IV. ELECTRONIC SPECIFIC HEAT
A. General Formulas

The specific heat C'(T) is defined as

(1) = (30)

dr’
where E is the internal energy density, given by the ther-
mal average of the Hamiltonian

E=—(H), (31)

N being the number of sites. Calculation of internal en-
ergy by means of Eq. (31) will generally require the cal-
culation of two—particle Green’s functions. However, due
to the use of an higher order basis, the thermal average
of the Hamiltonian can be connected to the single par-
ticle propagator associated with the basis defined in Eq.
(9). Indeed, we have

(32)

An alternative way to calculate the internal energy is the following. By introducing the Helmholtz free energy per

site

F=E-TS, (33)

where S is the entropy per site, from the thermodynamics we have

oF
S—‘(ﬁﬁg
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Then, it is straightforward to obtain the following formulas
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(g;) (34)
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F(T,n) = /0” w(T,n')dn', (35)

S(T,n) = _/On (g_;)n, dn’, (36)

E(T,n):/on [ﬂ(T,n’)—T(S—;)nI] ', (37)

from which the specific heat turns out to be

C(Tyn) = =T /On (%)nldn’. (38)

In this scheme the thermodynamic quantities are all ex-
pressed through the chemical potential, whose deter-
mination requires the knowledge of the single—particle
Green’s function.

Summarizing, we have two distinct ways to calculate
the internal energy, based on the use of Eqgs. (31) and

19

Scc(i,j) — <R[C(Z)CT(_])]> — (271-)3/ﬂ dedweik~(R,—Rj)_iw(t,—tj)

where the energy spectrum has the expression
Ek) = —p —4dta(k). (40)

The chemical potential is determined as a function of n
and T by means of the equation
20 / dkfr(Ek)] =1 / d*kT (k)
n=-— F =1- )
(27m)% Jas, (27m)% Jay,

(41)

where we put

T(k) = tanh ( 22(3) . (42)

As we discussed above, we have different ways of calculat-
ing the free energy. In the non—interacting case, where an
exact solution is available, all different procedures must
give the same result. Since this point will acquire some
relevance in the interacting case, we shall examine this
in detail.

By taking the thermal average of the Hamiltonian, it
is direct to see that

E = 8t(c™(i)c (4)) = %/ﬂ ka(k)T(k), (43)

where use has been made of the expression (39) for the
single—particle Green’s function.

The proof that use of Eq. (37) leads to the same re-
sult requires some work. By taking the derivative with
respect to T of Eq. (41) we have

3/1 _ 1 V1
o1 [u+4t%] | (44)

(37). In principle these equations are equivalent and lead
to the same result when an exact solution is available.
However, the situation drastically changes when approx-
imations are involved and different results can be ob-
tained. Indeed an open problem in Condensed Matter
Physics is to find a unique consistent scheme of approx-
imation capable of treating on an equal footing, both
one— and two— particle Green’s functions.

B. Non—Interacting Case

To discuss the specific heat it 1s useful at first to con-
sider the non-interacting [i.e., U = 0] Hubbard model.
In this case the thermal retarded Green’s function can
be exactly calculated and has the expression

1— fp(w)

w— F(k)+in’ (39)
[
where
_ D 2 [a(k)]"
Vo = (2m)2 /QB cosh®(E/2kgT) (45)

By considering that the derivative with respect to n of
Eq. (41) gives

Vi Joy Be®%5E 0 0 | #ratorg
Voo [, @zkZ®  (2m)20n Jg, ’

(46)

substitution of (44) into (37) leads to

E(T,n) = %/On % [/QB dzka(k)T(k)] dn’
= % /ﬂ ) ka(k)T(k) . (47)

This concludes the proof that in the non—interacting case
all expressions (31) and (37) give the same result. We also
note that the specific heat can be calculated by means
of the following expression

s [V—lz - VZ] . (48)

A =—07 W

In Figs. 1 and 2 the linear coefficient of the electronic
specific heat v(T, n) is plotted as a function of tempera-
ture and filling, respectively.

a. For a fixed filling (T, n) first increases as a func-
tion of T, exhibits a maximum at a certain temperature
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T, and then decreases. The value of T,,, decreases by in-
creasing the filling. At half-filling 7}, is zero and (7T, n)
diverges as T" — 0; this is an effect of the van Hove sin-
gularity (vHs). The temperature behaviour of v(T, n) is
similar to the one exhibited by the static uniform spin
magnetic susceptibility xo [12, 25], whereas the doping
dependence is different.

bl. At T = 0, v(T,n) increases by increasing the fill-
ing, diverges at n = 1 and then decreases.

b2. At finite temperature the peak splits in two peaks,
symmetric with respect to n = 1. The distance between
the two peaks increases by increasing 7T'.

2.0

Y (T.n)

1.5

’: 1.0

RS S S R oY
0 0.05 0.1 0.15 0.2

Fig. 1. The linear coefficient of the normal state specific
heat (T, n) of the non-interacting 2D Hubbard model is
plotted as a function of the temperature for various values
of the particle density.

3.0 3.0
[ T-0.001 : U=0 1
T-0.01 1

250~ T-005 125
———————— T-0.1 i

Et 4

o) i ]

-~ 20+ -4 2.0
15[ 415
1_0”(’"”\””\”"\HH\HH\HH‘1_0

0.7 0.8 0.9 1 1.1 1.2 1.3

n

Fig. 2. v(T,n) of the non-interacting 2D Hubbard model
is plotted as a function of the filling for various values of the
temperature.

This is shown in Fig. 2, where (7, n) is plotted as a
function of the filling at various temperatures. The shift
of the two peaks with respect to n = 1 increases by in-
creasing T

C. Interacting Case

In the interacting case the expressions (31) and (37)
for the internal energy give different results. Hereafter,
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we use Eg to indicate that the internal energy has been
calculated by the average of the Hamiltonian.

Alternatively, we have seen that the internal energy
and the specific heat can be calculated by means of Eqs.
(37) and (38). This procedure requires a knowledge of the
first and second temperature derivatives of the chemical
potential. Let us define

0" _0"A 0"
ﬂn—aTna n = pn—aTn~

orn’
By taking the first derivative with respect to 7' of the
self-consistent equations (27), we obtain

(49)

G\ =v@—n)F,
_l-n )y U @y (A=n)_a
Av= G = SR 4 Y, (50)

piFy 4 pFPY = Ly Y — Ay Fy — ARV

where
oM F, oG omB
(m) — n (m) -2 _HYn (m) — n
Fa orm’ n aTrm’ By aTrm -
(51)

Explicit calculation of the derivatives defined in Eq. (51)
shows that equations (50) provide a set of linear alge-
braic equations for the three parameters p1, A1, p1, as
functions of the parameters p;, A, p. In the same way, by
taking the second derivative with respect to T of Egs.
(27) we obtain

G =v@—n)F?,

_l-n o) U o, (1=n) 0
Ao= =G =g o B

pa 't + 2P1F1(1) -I-PFl(z)
= o FY = AyFy — 20, FY — AR

(52)

These equations provide a set of linear algebraic equa-
tions for the three parameters ps, As, po as functions
of the parameters p, A, p, p1, A1, p1. Once the self-
consistent calculation of the three parameters p, A, p
has been performed by means of set (27), then the calcu-
lation of the first and second derivatives of the chemical
potential reduces to the solution of simple linear equa-
tions.

In the interacting case, because of the approximation
used, the different procedures to calculate the internal
energy give different results. At first we shall compare
our theoretical results with the data obtained by numer-
ical analysis. The specific heat C'(T) of the 2D Hubbard
model has been recently calculated in Ref. 34 by us-
ing quantum Monte Carlo techniques. In particular, the
Monte Carlo data for the energy per site B = (H)/N
have been fitted by polynomials and the specific heat has
been calculated by taking derivatives from these polyno-
mials analytically. Different polynomials have been cho-
sen in different regions of temperature. In the calculation
of E, it has been found that finite size effects are strong
at weak coupling but become negligible for U > 8.
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Fig. 3. The internal energy is plotted as a function of temperature for U = 4 and n = 0.75 (a), n = 1.0 (b). The squares
are the QMC data of Ref. 34 for 6 x 6 (a) and 8 x 8 (b) clusters. The dotted and solid lines refer to the theoretical results of

the COM for Eg, Er, respectively.
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Fig. 4. The internal energy is plotted as a function of U
for n = 1, T' = 0.1. The squares are the QMC data of Ref.
34 for a 8 x 8 cluster. The dotted and solid lines refer to the
theoretical results of the COM for Er, Er, respectively.

In Fig. 3 we present the internal energy versus temper-
ature in the range 0 < T < 5 for several values of doping
and U = 4. The results are compared with QMC data of
Ref. 34. We are using Ep to indicate the solution that
comes from Eq. (37). As a general feature we observe

that Ep corresponds to the lowest energy solution and
agrees very well with the QMC data, in the entire region
of temperature and for all studied dopant concentrations.
When U increases, the theoretical solution deviates from
QMC in the region of low temperatures, indicating that
the antiferromagnetic (AF) correlations are not properly
taken into account in the strong coupling regime. This is
clearly seen in Fig. 4 where the internal energy is plot-
ted versus U for half-filling. Moreover, the opening of the
antiferromagnetic gap, due to a spin density wave insta-
bility [34], does not allow us to reproduce the behaviour
near half-filling where our solution is paramagnetic; this
latter comment also reflects on the comparison with the
specific heat data.

We now consider the specific heat. There are two im-
portant features in the Monte Carlo calculations: 1) a
low temperature peak that appears when the low-lying
spin states are excited, and 2) a high temperature peak
which appears when states in the upper Hubbard band
are excited. In the weak coupling regime the low tem-
perature peak moves to slightly higher temperature as U
increases, reaching a turning point at /' = 7 where the
peak is at 7" = 0.3. For U > 7 the peak slowly moves
to lower temperatures, as U grows. This indicates the
beginning of the strong coupling regime. The broad high
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temperature peak moves to higher temperatures as U in-
creases, as expected since its presence corresponds to the
excitation of states across the gap that grows with U. In
the strong regime [U > 7] the position of the charge peak
increases linearly with U: Tiparge = 0.24U. In addition,
all the curves C versus T for several values of U inter-
sect at T' &~ 1.6. The QMC results for the specific heat
of the 2D Hubbard model qualitatively agree with the
halffilled 1D Hubbard model [56, 57].
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Fig. 5. The specific heat is plotted against temperature for
U=4and n=0.5 (a), n =0.75 (b), n = 1.0 (¢). The dotted
line represents the QMC data of Ref. 34; the solid line is the
result of the COM for Cr.

The specific heat Cp = dEp/dT, calculated by means
of Eq. (38), is compared with QMC data in Fig. b for
U = 4 and various dopant concentrations. At low den-
sity the agreement is generally good, in both the weak
and strong coupling cases [U = 8]. At higher densities
the QMC data show a double peak structure, which is
enhanced at half-filling, but also present at n = 0.75 for
U=28.
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In the discussed range of values of U our results do
not show a double peak structure. The presence of two
peaks in the specific heat has been attributed to the spin
and charge excitations. When U is weak the two peaks
overlap and there is no resolution. By increasing U the
position of the charge peak moves to higher temperatures
and we expect to be able to distinguish the two contribu-
tions. A study of the specific heat in the strong coupling
regime is given in Figs. 6 and 7, where the two expres-
sions Cyg = dFy/dT and Cp = dEp/dT are plotted,
respectively, as functions of T at half-filling.

L L L B e

Fig. 6. The specific heat Cy = dEg /dT is plotted against
temperature for halffilling and U varying in the range
0<U<11.3
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Fig. 7. The specific heat Cr = dE7/dT is plotted against
temperature for halffilling and U = 15.20.

A peak appears at low temperatures when U is rather
large [say U > 8 for Cy and U > 15 for Cp]. This be-
haviour qualitatively reproduces the QMC results. It is
worth noting that such high values for the Hubbard in-
teraction U can be ascribed to the fact that in the present
approach a Mott—Hubbard gap opens at U = 13.4 [38].

In Ref. 34 the position of the charge peak Ttharge has
been calculated for different values of U. In our analysis
when U is large Tiharge can be calculated from Cr and
the results lie on the line Tiparge = 0.24U. When U is
lower, it is not possible to resolve the two peaks.

The linear coefficient of the specific heat as a func-
tion of the particle density has been studied by QMC for
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U = 8 and T varying from 0.5 to 3. Unfortunately, due to
the sign problem it is not easy to study low temperatures
in QMC. A study of vy(#,T), by means of Cp, shows a
good agreement for high temperatures, but not at lower
temperatures, where QMC results exhibit a strong down-
ward deviation in the region of filling where we should
expect an increase of y(#,T) due to the effect of the van
Hove singularity.

Up to this point we have performed a detailed and
ample comparison with QMC, generally finding a quite
reasonable agreement in a large region of values for the
model parameters. For intermediate values of U [U = 4]
the agreement is quite satisfactory. On this basis we are
confident that the approximation used is adequate for the
2D Hubbard model and we can pass to examine the next
question as to which extent the physics of real systems
is retained in the model.
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Fig. 8. The specific heat Cr = dE7/dT is plotted against
temperature for different values of U and n = 1.

One feature present in a large variety of systems is a
characteristic crossing point in the specific heat curves
versus T' [45-54]. This behaviour has been also found in
1D models [56-58] and in the Hubbard model in infinite
dimension [19], where a crossing temperature 7" = 0.59
has been observed in the range 0.5 < U < 2.5. For the
2D Hubbard model the same behaviour, as predicted by
Vollhardt [45] has been observed by means of quantum
Monte Carlo calculations [34], where for the case of half-
filling a crossing temperature 7' = 1.6 + 0.2 has been ob-
served in the range 2 < U < 12.1In Fig. 8 the specific heat
Cr is given versus T for half-filling and various values of
U. When n = 1 the curves cross at the same temperature
T = 2.0; when doping is considered the region of crossing
spreads out and moves to higher temperatures. From the
thermodynamic relations, this crossing temperature Ty
corresponds to a turning point of the double occupancy
as a function of T, that is (0 D/9T? )7, = 0. A study of
the function (9% D/dT?) will be done in the next Section.

As mentioned in Section III, the linear coefficient of
the specific heat of cuprates exhibits an anomalous be-
haviour in the normal state. To investigate this, in Fig. 9
we present the linear coefficient v(#,T) as a function of
the doping « = 1 — n for various temperatures. As a

general behaviour we see that by increasing the doping
(2, T) increases up to a certain doping and then de-
creases. The nature of the peak 1s due to the fact that
the Fermi energy crosses the vHs for a certain critical
value #.. The value of x. depends on U and varies be-
tween 0 and 1/3, as U increases from zero to infinite.
For U = 4 it is found z, = 0.27, very close to the ex-
perimental value observed in Lag_,Sr, CuOy [40, 41]. At
half-filling the Fermi energy (ep) is at the centre of the
two Hubbard bands; by varying the dopant concentra-
tion some weight 1s transferred from the upper to the
lower band, ep moves to lower energies and crosses the
vHs for a critical value of the doping; increasing z, fur-
ther moves ep away from the vHs. A study of the Fermi
surface shows that for # > x. we have a closed surface
which becomes nested at * = z. and opens for # < z..
An enlarged Fermi surface with a volume larger than the
non-interacting one has been reported by QMC calcula-
tions [59, 60] and by other theoretical works [61, 62].
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Fig. 9. The linear coefficient of the specific heat v(z,T),
calculated from Cr, is given as a function of the doping
x =1 —n for U =4 and different temperatures.
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Fig. 10. The linear coefficient of the specific heat (z,T)
for Las_.Sr;CuQy is shown as a function of the Sr content.
The dots are the experimental data for different tempera-
tures, taken from Refs. 40 and 41.
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The peak position of y(z,T") depends on the temper-
ature. In the limit of zero temperature a sharp peak is
exactly located at ¢ = z.. By increasing the tempera-
ture the peak moves away from x. and broadens into
two peaks. The situation is similar to what we have cal-
culated for the non—interacting case [e.g. Fig. 2]; we find
that the role played by the interaction manifests itself
through the shift of the vHs and the band structure
which creates an asymmetry between the two peaks. The
behaviour described in Fig. 9 well reproduces the exper-
imental situation.
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Fig. 11. The linear coefficient of the specific heat v(z,T),
calculated from Cr, is given as a function of temperature for
U = 4. In Figs. 11a and 11b the curves have been traced for
z > x. and ¥ < x., respectively.

In the case of Lag_,Sr,CuO4 the experimental data
[40, 41] for y(x, T') are reported in Fig. 10. The peak ex-
hibited by (2, T) decreases in intensity and moves to
lower values of doping when 7" increases. In the case of
YBa2CuzOg4y, the experimental results reported in Ref.
42 are for the higher temperature 7' = 280 K; v(z,T) in-
creases with doping and presents two broad maxima in
the region of high doping.

Interpretation of the experimental results obtained in
Ref. 42 for YBasCuzOg4y in terms of a sharp feature
in the density of states, consistent with ARPES experi-
ments [63], was presented in Refs. 64 and 65. The con-
sistency of thermodynamic data with the presence of a
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vHs near the Fermi level was shown in Ref. 61 by consid-
ering a p—d like-model in the framework of slave-boson
mean—field theory in the limit of large U.

We also mention that the specific heat of
Las_,Sr,CuO4 has been estimated in Ref. 43 from the
data for the heat capacity anomaly at the superconduct-
ing transition temperature by assuming a BCS-type
relation. Under this assumption the authors find the
same behaviour for v(x,T), but with a peak located
around x & 0.18, close to the optimal doping.

In Figs. 11a and 11b we present the linear coefficient
¥(z,T) as a function of the temperature for values of the
filling « > z, and = < z., respectively. At & = z. we see
that y(x, T) diverges as T — 0; this is an effect of the
vHs. When z # 2. the Fermi energy moves away from
the vHs and the peak exhibited by y(z,T") moves away
from T"= 0. As shown in Figs. 11a and 11b, y(#,T) as a
function of temperature has different behaviours in the
two regions & > . and z < z.. In the overdoped re-
gion y(x,T) firstly increases as a function of T', exhibits
a maximum at a certain temperature 7T,, and then de-
creases. This behaviour is similar to the one exhibited by
xo(T) [12, 25]. As shown in Fig. 11a, when the doping
decreases the value of T, moves to lower temperatures.
This behaviour qualitatively agrees with the non inter-
acting case showing that for x > z. the AF correlations
are weak. A different situation is observed in the under-
doped region, where v(z,T) is always a decreasing func-
tion of 7. When we look at the experimental results for
Las_oSr,CuOy4 [40, 41] and for YBay;CusOsqy [42, 55]
we find that the behaviour of y(#,T) as a function of T
in the underdoped region is more similar to that for the
non-interacting case. The fact that for YBasCuzOsyy
y(z,T) is always a decreasing function of 7" when y > 0.8
i1s understood because by approaching the critical dop-
ing, T,y 1is shifted to low temperatures, below the critical
superconducting temperature.

V. THE DOUBLE OCCUPANCY

As a simple thermodynamic quantity indicating the
degree of correlation of the system, in this Section we
study the double occupancy D, defined as the fraction of
doubly occupied sites

D= <nTn¢> . (53)

This quantity can be calculated by means of the expres-
sion
n

D
4

[1—Go—UF) . (54)

Then, the first and second temperature derivatives of D
can be analytically calculated as

dD n

dT ~ 4 {Gél) N UFO(U} ’

d’D _ noe) (2)

arz ~ 1 {GO — Uk } (55)
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once the self—consistent equations have been solved.

We display in Figs. 12a and 12b the temperature de-
pendence of D for various values of U at particle concen-
trations n = 0.7 and n = 0.8. In Fig. 12a the data display
a characteristic low temperature behaviour: D initially
decreases with temperature, reaches a minimum, and in-
creases again. In other words, the curve indicates the
presence of a 7" region where the formation of local mag-
netic moments is enhanced with increasing T [the double
occupancy D determines the local spin—spin correlation
function S? through the equation S? = 3(n — 2D)/4].
This behaviour is characteristic of incipient localization
effects in a strongly correlated Fermi liquid in a regime
dominated by spin fluctuations. Starting from the low
temperature Fermi liquid regime, when the temperature
increases, the system can gain free energy by localizing
the particles (i.e., decreasing D) in order to take advan-
tage of a larger spin entropy [19, 56]. In the absence of
spin excitations one would observe decreasing values with
increasing 7.
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Fig. 12. The double occupancy D is plotted as a function
of the temperature for n = 0.7, U = 2 (a) and for n = 0.8,
U =4 (b). The arrow in Fig. 12b indicates the temperature
Ty where the curve changes curvature.

In Fig. 12b D is a monotonic increasing function of
temperature. In this case the values of n and U are large
enough to inhibit localization effects due to the increase
of temperature. To study this behaviour in more detail

this behaviour, the derivative with respect to the temper-
ature of the double occupancy has been analyzed. The
results show that for a given 7' there exists a critical
value of U, say Up(T), such that

aD
a_T <0 for U< UD(T), (56)
aD
a_T > 0 fOI' U > UD(T) . (57)

The function Up(T'), defined by dD/JT = 0, is given
in Fig. 13. We note that at 7 = 0 Up(0) coincides
with Uc(n,0), defined as the critical strength of the on—
site Coulomb interaction for which the Fermi energy
crosses the vHs at fixed dopant concentration. Up(T)
goes to zero for some temperature Tp. For n = 0.7
we find that Tp = 0.581. When T > Tp we have
dD/0T > 0 for all values of U. The behaviour of Tp
as a function of n is reported in the Fig. 14. The fact
that (0D/0T)y=v,(ry = 0 implies that at U = Up(T)
the double occupancy does not depend on 7. However,
the curves of D as function of U for different values of
T will not cross in a single point because Up (T') changes
with the temperature in a significant way.
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A}

Fig. 13. Up (T) as a function of the temperature for various
values of the filling.

At very high temperature 7" > U, larger than Ty
where there is a change in the concavity, D asymptot-
ically tends to the non—interacting value n?/4, as ex-
pected. We have seen in the previous section that the
specific heat curves versus T for different values of U
cross almost at the same point 7y, determined by the

equation
9D
(W) . =0. (58)

A study of this equation by means of formula (55) gives
the results plotted in Fig. 15, where Ty 1s plotted versus
U for n = 0.75.
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Fig. 14. Tp as a function of the filling.
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Fig. 15. Ty as a function of the potential intensity U for
n = 0.75.

VI. CHEMICAL POTENTIAL VERSUS
TEMPERATURE

From the solution of the fermionic propagator and by
means of Egs. (50) we obtain the following behaviour for
the temperature derivative of the chemical potential

g—;<0 for n < n,(T),
g—; =0 for n=mn,(T), (59)
g—;>0 for n>n,(T).

The function n,(T") is presented in Fig. 16. It can be
shown that at 7" = 0 n, coincides with n., the critical
value where the Fermi level crosses the van Hove sin-
gularity. But, the temperature dependence of n,(7') is
remarkably different from the one of n (7).

Thus, only for 7" — 0 we may relate the transition
Op/0T < 0 = Iu/OT > 0 to the reversal of the sign
of the derivative for the density of states at the Fermi
level. Furthermore, we observe that n,(T") reaches the

486

value of 1 for some temperature T, (for U = 4 we find
T, = 0.843). When T > T, we have 0p/0T < 0 for all
values of n . The fact that (Ou/0T)pn=n, (1) = 0 implies
that at n = n,(7T) the chemical potential does not de-
pend on T'. Therefore, the curves of p as function of n
for various values of T, reported in Fig. 17, will not cross
exactly in the same point as claimed in Ref. 66.
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Fig. 16. n,(T) as a function of the temperature for differ-
ent values of U.
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Fig. 17. The chemical potential y as a function of the filling
for U = 4 and different temperatures.

VII. THE ENTROPY

The entropy S(T,n), connected to the total number
of spin and charge excitations at temperature 7" and fill-
ing n, is a bulk thermodynamic quantity uniquely deter-
mined by the spectrum of excitations, whose magnitude
and temperature dependence provide an important test
for proposed theories. Theoretical works available so far
are the following. Bipolaron models propose preformed
boson charge carriers at 7. and behaving classically at
higher temperatures. Apart from some inconsistency re-
lated to the magnitude of the entropy, these theories have
to resort to the existence of thermally excited triplet
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bipolarons in explaining the deviation of S from a linear
T—dependence in underdoped samples [67]. Theoretical
studies of the entropy in the strongly correlated electron
systems have also been performed in the framework of
the statistical spin liquid [68-71]. This scheme is based
on the assumption that in the strongly correlated metals
the doubly occupied single—spin configurations must be
excluded not only in the real space representation, but
also in the reciprocal space. By means of the spin liquid
statistics, the entropy of localized moments is reproduced
when the Mott insulator limit is reached for halffilling.
Nevertheless, this over imposed statistics freezes the sys-
tem in a wrong Hilbert space whenever different choices
of the parameters modify the interplay between thermal
excitations and electronic interactions. Some theories [3]
predict decoupled holon (boson) and spinon (fermion)
excitations. In these approaches it is difficult to recon-
cile the experimentally observed magnitude for the en-
tropy with its partition between statistically independent
excitations. Moreover, the striking numerical correlation
between S/T and ayp is expected for weakly interacting
fermions but not if the dominant excitations are those
of spinless bosons. In Ref. 66 exact diagonalization stud-
ies of the ¢ — J model have been performed; for several
thermodynamic quantities a critical doping concentra-
tion that marks a change of the Fermi surface character
1s found.

0.08 0.08
I 1-001] U-4 @ ]
I S T-0.02 ; il
0.06-|-—-- T-0.03 S, 1 0.06
L |- — — 1-0.04 I \ i
L T-0.05 o~
i s, |
v 0.04- -7 oy 4004
0025~ " T -4 0.02
ol v b
0 02 04 06 08 1
n
1 - 1
I U=4 ,(,,):
08 08
06 [ e e 106
1% L e e T ]
Vs T 7
r L e T=0.5 |
04 /,/’ rrrrrrrrrrr 106 [ 94
s SR T-0.7 |1
02 L 4 - - - T-081 g2
P T-0.9 |4
7 0 T=10[]
0 | Ll | ? 10
0 02 04 06 08 1
n

Fig. 18. The entropy is plotted versus the particle density

for U = 4 and different temperatures.

By means of the relation (36), we have calculated
the entropy per site S(T,n). Recalling the behaviour of
Op/0T, we see that the entropy must have the following
behaviour
(1) for T < T, S(T,n) increases with increasing parti-
cle concentration, reaches a maximum for n = n,, then
decreases (see Fig. 18a);

(ii) for T'> T,,, S(T,n) always increases with increasing
particle concentration (for U = 4 we find T), = 0.843) as
is shown in Fig. 18b.
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Fig. 19. The entropy is plotted versus the particle density
for T'= 0.01 and different values of U.
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Fig. 20. The entropy is reported versus the particle density
for T'= 0.4 and different values of U.

Again the peak structure reflects a Fermi level crossing
the vHs at the critical doping. This behaviour is in agree-
ment with the experimental data from Refs. 41, 42 and
55. Indeed, the experiments show a well defined peak
structure in a large region of temperature (from 40K
to 320K); furthermore, the position of the peak slightly
changes with temperature. In the theoretical analysis the
position of the peak as a function of temperature is gov-
erned by n,(T), reported in Fig. 16, that shows a smooth
variation in the region of physical relevance (T' < 0.05).
In Fig. 19 the entropy versus the particle concentration
is reported for various values of the Coulomb interaction.
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The maximum of the entropy shifts to lower values of
n by increasing U, varying between 1 and 2/3 when U
varies from 0 to co. In Fig. 20, we see that for 7' = 0.4 all
entropy curves for different U cross at the same particle
concentration. By comparison with Fig. 17 and by nu-
merical analysis, we see that the crossing point is exactly
the critical concentration n, (7). Recalling the Maxwell

relation
0S oD
(),=- (7). e

the behaviour shown in Fig. 18 implies (0D/01)n=pn, =
0. If we remember that the double occupancy D deter-
mines the local spin—spin correlation function, it is clear
that a sign reversal of its derivative with respect to the
temperature represents a crossover from a regime domi-
nated by spin fluctuations, where S is a decreasing func-
tion of U, to another regime favouring charge fluctua-
tions (electronic delocalization), where the entropy is an
increasing function of U.
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Fig. 21. The entropy is plotted versus the temperature for
U = 4. The range of filling is > z. for (a) and = < z. for (b)

In Figs. 21 and 22 we report the temperature depen-
dence of S and S/T for several dopant concentrations.
The curves have a qualitative agreement with the exper-
imental ones [41, 42, 55]. In Fig. 21a, where & > z., S
is a decreasing function of z at a fixed temperature; the
opposite behaviour is observed in Fig. 21b.
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Fig. 22. S/T is plotted versus the temperature for U = 4.
The range of filling is z > z. for (a) and z < z. for (b)

In the limit of zero temperature the entropy goes to
zero by a linear law. When T increases the entropy devi-
ates from the linear behaviour. In the region 0.01 < 7T <
0.1 the temperature dependence 1s well described by the
law

S(T) =5+ 51T+ Ssz , (61)

where the coefficients Sy, S1, S2 are strongly dependent
on the filling.

It is worth noticing that in the limit of large tempera-
tures (a weak point of the statistical spin liquid [68-71])
our results for the entropy asymptotically agree with the
exact expression

Tlim S(Tyn)=2In2—nlnn—(2—n)In(2 —n). (62)
—00
For non—interacting fermions at 7' = 0K we have
Y = axo, (63)

where xg 1s the bulk susceptibility and a is the Wilson
ratio

a=—. (64)
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In the case of Las_;Sr,CuOy4 [41] and of YBayCuzOeyy
[42, 55, 72], there is a striking numerical correlation be-
tween S/T and ayo. As noticed by Loram et al., this
resemblance shows that the total spin4charge spectrum
over all moments k (from S) and the k = 0 spin spectrum
(from xg) have a similar energy dependence. Also, exper-
imental evidences suggest that the low—energy excita-
tions are predominantly those of conventional fermions,
and that the substantial T' dependencies of S/T and yq
are primarily determined by the energy dependence of
the single—particle density of states in the vicinity of the
Fermi level.
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Fig. 23. S/Txo is plotted versus the temperature for U = 4
and different fillings.

In Fig. 23 we present S/T'x¢ as a function of the tem-
perature for various values of doping (i.e., 0.03 < z <
0.27). For all values of dopant concentration S/T'xq is
almost constant over a wide range of temperatures.

In addition, the value of S/T'xq is less than the non—
interacting one. This is due to the fact that by introduc-
ing interaction the number of microscopic states acces-
sible to the same macroscopic state is reduced (i.e., the
entropy per site) whereas the susceptibility is increased
by incipient localization effects.

In order to obtain a better understanding of how
the thermodynamics of an electronic liquid is modified
by the interaction, we have performed a study of non-—
interacting Hubbard model (i.e., U = 0). What we learn
from the study of this model is that the critical value
(i.e., half-filling) above which the entropy looks a de-
creasing function of the filling is uniquely fixed by the
statistics. The temperature has no role. On the contrary,
in the interacting case the energy scale of charge config-
urations has a crucial role in the region of particle con-
centration between n, and half-filling. For n, < n <1
there is a critical temperature 7),, depending on the fill-
ing, above which the behaviour is similar to the non-
interacting case [i.e., where 85/0n becomes positive, or
where du/IT becomes negative].

We now consider the physical origin of these results.
In the non-interacting case the combinatorics dictated
by the Fermi statistics governs the behaviour of the en-
tropy. This can be understood if we think that for the

single—site problem the entropy has the values 0, In 2 and
0 for occupancy 0, 1 and 2, respectively. In the interact-
ing case it i1s natural to look for a critical value of the
filling above which the number of permutations satisfy-
ing the restrictions of the boundary conditions starts to
decrease. For n, < n < 1, because of the Coulomb in-
teraction, by increasing the particle density the number
of microscopic realizations, accessible to the same ob-
servable macroscopic state, decreases [the Pauli principle
is obviously crucial for a correct counting]. This is true
only if the thermal excitations do not exceed the energy
scale fixed by the interaction. Definitely, for 0 < n < n,
we have a sort of disordered non—interacting state with
05/0n > 0, whereas for n, < n < 1 the low-lying excita-
tions characterize a far from random spatial pattern [i.e.,
05/0n < 0]. In the range n, < n < 1 incommensurate
magnetism and superconductivity are experimentally ob-

served [12, 73].

VIII. CONCLUDING REMARKS

The 2D single-band Hubbard model has been studied
by means of the composite operator method. By con-
sidering the Hubbard operators as basic set of fields,
which describe interatomic excitations restricted to sub-
sets of the occupancy number, the single—particle elec-
tronic propagator has been computed in a fully self-
consistent way by means of a quasi—particle scheme ca-
pable of coherently integrating dynamics, boundary con-
ditions and symmetry principles.

The paper was devoted to the study of the electronic
specific heat and entropy per site in the paramagnetic
phase. We analyzed these quantities by looking at the
dependence of the thermodynamic variables on their
conjugate ones, that is, for example, the relation be-
tween entropy and temperature, chemical potential and
particle concentration, double occupancy and on—site
Coulomb repulsion. Once the self-consistent equations
for the single-particle propagator have been solved, we
have determined the temperature derivatives of the in-
ternal parameters by means of exact linear systems of
algebraic equations. The determination of the first and
second temperature derivatives of the chemical poten-
tial has been revealed crucial in determining the thermo-
dynamic response functions under investigation. For the
electronic specific heat and internal energy we have pre-
sented two different schemes of calculation. All of them
allowed the possibility to obtain a deep theoretical un-
derstanding of how and to which extent collective ex-
citations can be retained in the description of thermal
response functions. We have obtained a good agreement
with the data by quantum Monte Carlo techniques for
the electronic specific heat and the internal energy [34].
Further on, although Monte Carlo data shared common
features with the results from the calculations through
the T—derivative of the chemical potential, the experi-
mental data for cuprates, as revealed by the Wilson ratio
and linear coefficient of the electronic specific heat, have
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shown that in such systems the dominant excitations are
those of conventional non—interacting fermions [41].

We obtained several characteristic crossing points for
the response functions when reported as functions of
some thermodynamic variables. These peculiar features,
already evidenced by Vollhardt [45], marked turning
points where different response functions evolve from a
non-interacting behaviour
(i) the entropy is an increasing function of U;

(ii) the entropy is an increasing function of n;

(iii) the double occupancy is a decreasing function of T
(iv) the T—-derivative of the chemical potential is a de-
creasing function of n;

(v) the linear coefficient of the specific heat is an increas-
ing function of n;

to an unconventional dependence on the conjugate
variables
(vi) the entropy is a decreasing function of U;

(vii) the entropy is a decreasing function of n;

(viii) the double occupancy is an increasing function of T
(ix) the T—derivative of the chemical potential is an in-
creasing function of n;

(x) the linear coefficient of the specific heat is a decreas-
ing function of n.

Before closing we would like to mention that the region
of filling, where (vi)—(x) hold, coincides with that where
incommensurate magnetism and superconductivity are
experimentally observed in LSCO cuprates family.
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TEPMOIUHAMIKA JIBOBUMIPHOI MOOEJII TABBAPIA

®. Manuini!, I'. Mamymoro?, . Bisnmami®,
L paxyavmem disuvwnuz nayx, “E. P. Kaaniearo”, IHOM Canepro, Vwisepcumem Caaepro,

8481 Baponicci, Canepro, Imanis

2 paxyavmem npuraadnol disuxu, Yrisepcumem Cetixeti, Toxio 180, Anowin
® Cepuncoxa disuuna rabopamopis, Pamrepe ynisepcumem, Hickemeseti, Hoto—Torcepei, 08855-0849, CIIIA

Teopernunnii anasi3s GYHKINHE TepMOIMHAMIYHOTO BIATYKY IBOBHUMIPHOI OmHO30HHOI Momdesi ['abbapma mpo-
BEIEeHO 3a JIOMMOMOIO MeTomy KoMOIHOBaHMX orepaTopiB. I[lokasaHo, 1mo BCl 0CoGJIMBOCTI IUX BEJWYMH MOXKHA

HOSCHUTH 3aJI€XKHICTIO TepMO,D;I/IHaMi‘IHI/IX 3MIHHIX Bi,H CIIPpAZK EHUX 3MIHHEX. TaKuM 9YUHOM BU3HAYEHO CJICKTPOHHY

TEIJIOEMHICTH Ta eHTPOIII0 Ha By30J y ITapaMarHeTHii ¢asi. Takox rmogaHo ABl pi3HI CXeMH 00UKC/IEHD eJ1eKTPOH-

HOl TEIJIOEMHOCTH Ta BHYTPILNIHBOI eHepril. BuasiaeHo, mo 49uciioBi gaHi 3 KkBaHToBUX MetomB Moure—Kapso myis

BHYTPINIHBOI €HePril Ta eJIEKTPOHHOI TEILIOEMHOCTHI T00pe BIITBOPIOIOTHCHA 1X BUSHAYEHHAM Yepes MepIly Ta APYTy

MHOX1OHI XeMIYHOTO IOTEHINATY 3a TeMIleparyporo. JJoKIaIHOo OIMMCaHO BJAACTHBOCTI AHOMAJIBHOTO CTAaHy B MITHUX
BHUCOKOTEMITEPpATYPHIUX HAIIPOBIAHMKAX 13 JOMIIIKOBUMHE IipkKamu. HaperniTi, orpuMaHo OeKiJIbKa XapaKTepHUX
TOYOK TepeTuHy i (pYHKINI BIANYKY Ha 3aJIEXXKHOCTAX Bl OKpEeMHUX TepMoaumHaMmidHux 3MiHHuX. [11 xapakTepHi
pucH BKa3yioTh Ha ICHYBaHHS OlJIBII HIXK OIHIEI eHepreTHYHOl MKaJId, M0 KOHKYPYE 3 TeILIOBUMU 30y K EeHHAMMI
Ta, AK y:Ke rnmoMiTuB BoJsbrapar, Ha Iepexif Bil HEB3a€MOIIOUO0l 10 CUJIBHO CKOPETHOBAHOI ITOBEIIHKH.
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