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In the present paper the e�et of the semiondutor heterosystem interfae (spherial

mirorystal{matrix) on a harge patrile is studied. In a at interfaial zone the ase of exis-

tene of the intermediate layer with the dieletri onstant as a funtion of distane is disussed.

Using the Green's funtion the potential energy of a harge as a funtion of distane to the entre

of mirorystal with various dieletri onstants of the heterosystem is determined.
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I. INTRODUCTION

The problem of studying the inuene of the rystal

boundaries on the states of quasipartiles arises from the

desription of the proesses taking plae in two{media

interfae in �ne semiondutor shells and mirorystals

plaed in the dieletri matries.

Di�erent aspets of this inuene on the eletron and

exiton states have been examined in the papers [1{12℄.

In the ase of the semiondutor surfae to bound on

vauum or other medium with the dieletri onstant

less than that of the rystal, a resultant ation gives rise

to a at interfaial zone (\dead" layer) that proves to

satter exitons. The \dead" layer model permits sat-

tering spetra to be disussed in detail whose studying

may provide useful information on interfaial states of a

surfae.

Using the lassial proedure of image fores [1℄ the

sattering potential to at on an exiton has been de-

termined, and in adiabati approximation by variational

method a Shr�odinger equation has been solved. As a

result the bound energy of the eletron{hole pair to de-

pend on the distane of the entre of exiton mass to the

rystal boundaries has been obtained. The region with

positive value of the internal energy of an exiton is a

\dead" layer itself.

In the ase of a semiondutor of dieletri onstant

less than that of the bounding medium essentially new

phenomena appear, namely the loalization of exitons

by image fores [2, 3℄. The phenomenon needs to be stud-

ied sine exiton levels lying below the ondution band

prove to onsiderably inuene the edges of absorption

spetrum.

Image fores play an important role in the formation of

eletron and exiton spetra in �ne shells. Taking them

in aount helps to explain the dependene of exitation

energy and bound energy upon shell thikness [4{6℄, the

onditions of bound eletron{surfae and exiton{surfae

states [7, 8℄, the ase of unstable eletroni spetrum of

the shell to bound on dieleti media of similar dieletri

onstants [9℄.

Analogous e�ets an be observed on studying eletron

and exiton states in the semiondutor mirorystal

plaed in dieletri matries. As is shown in the papers

[10, 11℄, in the ase of glass matrix the bound eletron{

surfae states an appear in the viinity of the spheri-

al semiondutor mirorystal surfae. The potential of

image fores strongly [12, 13℄ inuenes the exitation

energy and bound energy of exitons in spherial miro-

rystals as well.

In most theoretial works taking aount of the inter-

ation of the interfaial zones with harge partiles, di-

eletri permittivity is believed to assume various values

to hange stepwise transferring from one medium to an-

other. However, it is understood that for eah heterosys-

tem there should exist a transitional layer of dieletri

onstant as a radial{dependent variable [14℄.

In the present paper the potential energy of a point

harge partile has been obtained, when at the interfae

of the media the dependene " = "(r) has been aounted

for a spherial mirorystal plaed in the matrix.

Fig. 1. Sferial heterosystem model.
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Fig. 2. Potential energy dependene of distane to the en-

tre of mirorystal: the urve a is for total energy of the sys-

tem, the urve b shows the ontribution of U

1

term, the urve

 represents potential energy at the absene of intermediate

layer. Indies \1" and \2" stand for L = 5

�

A, L = 15

�

A

orrespondingly.

II. STATING THE PROBLEM. THE GENERAL

APPROACH

In a at interfaial zone, whih devides two homoge-

neous media with dieletri onstans "

1

and "

2

and whose

thikness is L (Fig. 1), we assume the dieletri onstant

to be

"(r) =

1

2

("

1

+ "

2

)

�

1�  � f

�

r � a

L

��

; (1)

where f(x) is a monotoni funtion of x suh that

f(�1) = �1; f

0

(�1) = 0; (2)

 =

"

1

� "

2

"

1

+ "

2

: (3)

Let �(r; r

0

) be the indued potential at r when a point

hange q is loated at position r

0

. Then � proves to sat-

isfy a Poisson's equation

r

2

�(r; r

0

) +

d

dr

(ln ") �

�

�r

(�(r; r

0

)) (4)

= �

4�q

"

Æ(r� r

0

);

with Æ(r � r

0

) denoting Dira's delta funtion. Then in

the �eld indued by a harge its potential energy may be

obtained by

U (r) =

q�(r)

2

; (5)

where

�(r) = lim

r!r

0

�

�(r; r

0

) �

q

"(r)

1

jr� r

0

j

�

: (6)

The funtion f(x) from Eq. (1) may really attain dif-

ferent forms. Here it is determined by

f(x) = th(x) (7)

Poisson's Eq. (4) by the substitution

�(r; r

0

) = �4�q["(r)"(r

0

)℄

�

1

2

G(r; r

0

); (8)

is redued to

r

2

G� V (r)G = Æ(r � r

0

); (9)

where

V (r) =

1

2

1

r

2

p

"

d

dr

�

r

2

p

"

d"

dr

�

: (10)

As seen in Eqs. (1) and (10) value of the image \poten-

tial" V (r) depends on  . Let us assume that "

1

and "

2

do not di�er muh. Then  � 1 and interation between

the interfae and harge proves to be weak.

The solution of Eq. (9) has been obtained by approx-

imation method taking aount of a small value of the

image \potential" V (r). Thus the Green's funtion an

be determined as a rapidly onverging series:

G = G

(0)

+G

(1)

+G

(2)

+ ::: � G

(0)

+�G: (11)
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In the zeroth aproximation Eq. (9) an be identi�ed

r

2

G

(0)

(r; r

0

) = Æ(r� r

0

): (12)

G

(0)

is the potential of a point harge with an auray to a onstant

G

(0)

(r; r

0

) = �f4�jr� r

0

jg

�1

: (13)

On taking aount of higher order orretions onsistently we get an arbitrary orretion G

(n)

to satisfy

r

2

G

(n)

� V (r)G

(n�1)

= 0 (14)

where

G

(1)

(r; r

0

) =

Z

dr

1

G

(0)

(r; r

1

)V (r

1

)G

(0)

(r

1

; r

0

) (15)

G

(2)

(r; r

0

) =

Z

dr

1

dr

2

G

(0)

(r; r

1

)V (r

1

)G

(0)

(r

1

; r

2

)V (r

2

)G

(0)

(r

2

; r

0

) (16)

G

(n)

(r; r

0

) =

Z

dr

1

:::dr

n

G

(0)

(r; r

1

)V (r

1

):::V (r

n

)G

(0)

(r

n

; r

0

) (17)

With the use of Eqs. (6), (8), (11) and (13) we expand �(r) in Eq. (5) by orretions of higher order than of the

zeroth

�(r) = �

4�q

"(r)

�G(r; r); (18)

where

�G(r; r) = G

(1)

(r; r) +G

(2)

(r; r) + : : : :

Let us now introdue the Fourier transformations

G

(0)

(r; r

0

) � G

(0)

(r� r

0

) = �(2�)

�3

Z

dq

1

q

2

expfiq(r� r

0

)g;

V (r) = (2�)

�3

Z

dqV (q) expfiqrg;

after the substitution into (15) we get

G

(1)

(r; r) = (2�)

�6

Z

dq

1

dq

2

dr

1

V (r

1

)

q

2

1

q

2

2

expfi(q

1

� q

2

)(r� r

1

)g: (19)

after integration with respet to q

1

and q

2

expression (19) is redued to

G

(1)

(r; r) = (4�)

�2

Z

dr

1

V (r

1

)

(r

1

� r)

2

: (20)

Similarly we have

G

(2)

(r; r) = �(4�)

�3

Z

dr

1

dr

2

V (r

1

)V (r

2

)

jr� r

1

jjr

1

� r

2

jjr

2

� rj

; (21)
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G

(n)

(r; r) = (�4�)

�(n+1)

Z

dr

1

dr

2

:::dr

n

V (r

1

)V (r

2

):::V (r

n

)

jr� r

1

jjr

1

� r

2

j � ::: � jr

n�1

� r

n

jjr

n

� rj

: (22)

The funtion V (r) depends only on the absolute value of r , therefore we hoose the axis to go in the diretion of r .

After the transition to spherial oordinates and integration over the angular variables we have

G

(1)

(r; r) =

1

8�r

1

Z

0
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1

r

1
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1
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�

�

�
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r
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r

1
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�

�

: (23)

The orretion G

(2)

(r; r) is obtained in a similar way

G
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where

F (x) =

x

Z

0

dy

1

y

ln

1 + y

1� y

; jxj � 1 : (25)

The results obtained above still remain formal. To speify them it is neessary to take aount of the expliit form

of the funtion V (r) from Eqs. (10) and (1). Now V (r) beomes as follows

V (r) = �

1

4L

2

r

�

4Lf

0

�

r�a

L

�

1� f

�

r�a

L

�

+

2rf
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�
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�
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�
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�
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�
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�
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L

�

�

2

r

�

: (26)

The weak interation is under onsideration here (jj � 1). Therefore we expand Eq. (10) with Eq. (1) in power

series of . The funtion V (r) proves to be quite ordinary (we take aount of the terms proportional to  only).

V (r) � �



Lr

f

0

�

r � a

L

�
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2L

2

f

00

�
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d

2
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2

�
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�
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L

��

: (27)

After substituting (27) into (23) and (24) and the orresponding integration arried out G

(1)

(r; r) and G

(2)

(r; r) are

expressed as

G

(1)

(r; r) = �
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1

Z

0

d

�

r

1
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�
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1
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1
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2
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G
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r
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�
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1
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�
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�
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�
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�
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�
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�
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; (29)
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In a partial ase with a harge plaed far from the interfaial zone (jr

1

� aj � jr � aj) we get

G

(1)

(r; r) =



4�

a

r

2

� a

2

; (a� L): (30)

If we substitute Eq. (30) into Eq. (18), and then the result of it into Eq. (5) using Eq. (3) we get the known [10{12℄

image potential for the spherial interfaial zone

U

1

(r) =

q

2

2"

i

�

"

1

� "

2

"

1

+ "

2

�

a

a

2

� r

2

; (r 6= a) (31)

where

"

i

=

�

"

1

; r < a;

"

2

; r > a:

The general form of the potential to take aount of two orretions of the Green's funtion will be

U (r) = �

2�q

2

"(r)

�G; (32)

where

�G = G

(1)

+G

(2)

: (33)

To determine �G we need to disuss a spei� form of the funtion f = f(x).

III. DISCUSSION

As is mentioned above, in the ordinary dieletri intermediate layer the funtion f = f(x) may be determined as

f

�

r � a

L

�

= th

�

r � a

L

�

(34)

Thus the potential energy of the interation between the interfaial zone and a harge is as follows

U (r) = U

1

(r) + U

2

(r); (35)

where

U
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q
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L
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L
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; (36)
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�
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�

r

2

L

seh

2

�

r

2

� a

L

�
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: (37)
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In Fig. 2(a,b) the dependenes U = U (r) (urve a),

U

1

= U

1

(r) (urve b) are given with the parameters of

the mirorystal suh as a = 50

�

A, if L = 5

�

A, L = 15

�

A

in the ases

a) "

1

= 5; "

2

= 10;

b) "

1

= 10; "

2

= 5:

To take aount of the existene of polarization harges

at the interfaial zone of the media in the ase of stepwise

hange of the dieletri onstant results in the potential

energy of the harge to be of the Coulomb harater [10{

12℄ and the funtion U = U (r) to undergo disontinuity

at r = a.

If " = "(r) is desribed by Eq. (1) or (34) then as

an be seen in Fig. 2, the funtion U = U (r) beomes

ontinuous and hanging non{monotonially in the re-

gion of the intermediate layer. Besides that the main

ontribution to the funtion U = U (r) is given by the

term U

1

= U

1

(r) to arise due to the �rst orretion of

the Green's funtion. The important point is that a de-

rease of the thikness of the intermediate layer (L) is

followed by a sharper dependene U = U (r) and in the

limitL! 0 we an obtain the result known from [10{12℄.

In the viinity of the surfae of the rystal plaed in a

dieletri matrix there is a possibility of bound states of

a harge partile to arise. The preeding work [10℄ dwells

on the onditions of existene of the states mentioned.

Taking aount of the intermediate layer modi�es the

onditions of both interfaial states of eletrons, holes

and exitons. These are the problems our further work

will fous on.
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POTENC��L^NA ENER�I� ZAR�DU BIL� POVERHNI SFERIQNOGO

NAPIVPROVIDNIKOVOGO MIKROKRISTALU PPI NA�VNOSTI PPOMI�NOGO

XAPU ZI ZMINNO� DIELEKTRIQNO� PRONIKNIST�

V. I. Bo�quk, R. �. Kuba�

Drogobi~ki� der�avni� pedagogiqni� universitet im. Ivana Franka, kafedra teoretiqnoÝ fiziki

vul. Ivana Franka, 24, Drogobiq, 82100, UkraÝna

Tel.: (03244) 2{20{74, fax: (03244) 3{83{76, e{mail: administrator�pedro.uar.net

Robota prisv�dqena doslid�enn� vplivu me�i podilu napivprovidnikovoÝ geterosistemi (sferiqni�

mikrokristal{matri�) na zar�d�enu qastinku. Rozgl�nuto vipadok, koli bil� me�i podilu isnu promi�-

ni� xar, u �komu dielektriqna proniknist~  funki� koordinati. Metodom klasiqnih funki� �rina

viznaqeno poten��l~nu ener�i� zar�du �k funki� vidstani do entra mikrokristala dl� riznih dielekt-

riqnih proniknoste� geterosistemi.
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