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We present the Hamilton—Jacobi method for the classical mechanics with the constrains in
Grassmann algebra. Within the framework of this method the solution for the classical system

characterized by the SUSY Lagrangian is obtained.
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The problem of Lagrangian and Hamiltonian mechan-
ics with Grassmann variables has been discussed pre-
viously in works [1-3] where examples of solutions for
classical systems were presented.

In this paper we propose the Hamilton—Jacobi method
for the solution of the classical counterpart of Witten‘s
model [4].

We assume that the states of mechanical system are
described by the set of ordinary bosonic degrees of
freedom ¢ (even Grassmann numbers) and the set of
fermionic degrees of freedom ¢ (odd Grassmann num-
bers).

Within the framework of the classical mechanics with
constrains the equations of motion can be obtained from
the variational principle for the action

S = /[q'aP; — H(X,z, P,)]dt, (1)

with the additional conditions (constrains)
F, = Fa(q, Pq) =0. (2)

Here we introduce the Hamiltonian

H(X,z, P,) = <3L 'a—L) ,

age " z
g ={X,z}, ' =g, i=1, R
0L 0L
det 0 k|| —|| = Rmax
¢ ‘81‘31‘ 70, rank) 5o H

and P is the canonical momentum conjugate to the vari-
ables x. Velocities #(¢, Py, X) are the solutions of the
equations P, = 9L/0z with respect to the variables .
On the other hand equations Px = OL/@X form the
system of constrains (2).

The Hamilton—Jacobi equation in the case of the clas-
sical mechanics with constrains in Grassmann algebra is
as follows:

s as as as as
E__H<Qa¢aa_xa%aAa<Qa1/)aa_xa%)aAbat)' (3)

Here (A4, Ap) is the set of certain Lagrange multipliers for
the constrains from the variational problem (1) in Grass-
mann algebra. Lagrange multipliers A, can be found from
the equations of motion

ﬁ:{n’g—i—AaFOé}a

77 = (q’ ,l/)’ an P’(ﬂ)

Foc(Qa’l/)anaPlﬂ):Oa

and from the time—independence conditions
FOc(Qa,l/)an’PTﬂ) = 0

On the other hand, Ay are those multipliers which can-
not be found and which form a functional arbitration for
solutions (in the theory with the first—class constrains
[5-7]). However, we can transform the theory with the
first—class constrains to the physically equivalent theory
with the second—class constrains. As an example, we can
take the strong minimal gauge which does not shift the
equations of motion (the so—called canonical gauge G
[8]).

The solution of Hamilton-Jacobi equation can be
found with using of the Jacobi theorem. In our case this
theorem has some differences from the standard formu-
lation.

Let us consider a full solution of the Hamilton—-Jacobi
equation S=S5,(q, ¥, «, 5,1) (o is a set of the even Grass-
mann constants, 3 is a set of the odd ones). We perform
the canonical transformation from the old variables g¢,
¥, Py, Py to the new ones (taking S, as a generating
function) and put o = Py, # = P, as new canonical mo-
menta and (), v as new coordinates. Then the relations
between the new and old variables can be written in the
form:

05, L, _ 08 05

H =H+—/
T
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Since S, is the solution of the Hamilton—Jacobi equation,
we obtain that

=0 = Pg=const, ()=const, P, =const, v=const,

new coordinates are constant. From the obtained result
we can write:

35S, /da = const (even Grassmann number), (4)

95, /88 = const (odd Grassmann number).

The solution of equations (4) gives the variables ¢ and
as functions of time. Time dependencies of the canonical
momenta can be found from the relations Py = 05/0%,
P, =095/0q.

Let us now consider the Lagrangian [1,2]

p= T Ly L gl v, )

N | —

which possess supersymmetry when U(g) = V'(¢q) (in
this case the real function V' is the so—called superpoten-
tial) [4]. The overbar denotes the Grassmann variant of
the complex conjugation.

The momenta conjugate to the fermionic variables do

not depend on 1/) or . Hence, we have the following con-
strains between coordinates and momenta:

Fi= Pyt = Fo=Pj+ 0 =0 (6)

N | =

The Lagrange multipliers can be found from the follow-
ing time—independence conditions:

Fi={HX, i} =0, F={HW\),F}=0, (7)
where
P2 5 -
H() = "2+ 2v20) + Ulgyu
+ A (Py + %1/5) + Xa(Py + %w) (8)
The solutions of (7) are the following ones:
A o=—iU(Q, A =iU(q)¢.

Since the Hamiltonian of system (5) is as follows:

H= HOg. 0, 0) = £ + 3V
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— iU (q) Py + iU (q) Py . (9)

Starting from the obtained Hamiltonian (9), the
Hamilton—Jacobi equation (3) can be written in the form:

as 1/9S\* 1
N 5(6_(]) +§V2(Q)
08
UG+ i) =0 (10)

Let us make an ansatz for the action

= So(t, q) +YvSi(t,q)
+1/)52(taQ)+1Z)SB(taQ)a (11)

S(ta q, 1/)a 12))

where Sy and S; are even Grassmann functions and S
and S3 are the odd ones. After the substitution of ansatz
(11) into equation (10) and decomposition of this equa-
tion on Grassmann parities we obtain the following sys-
tem of equations:

89Sy 1 [8S\" 1
—t3 (—0) +5V%(9) =0,

ot Jdq 2
0S, 950 05, ~
T Ty oy U052 =0,
0Ss 05y 053
05, 0505, _

ot dg 0¢
i =0

q

The first equation can be integrated by the variable de-
composition method. Thus, we obtain

So = /\/QE —VZ(q)dq — Et, (13)

where F is the constant of integration. Starting from
expression (13), for the fourth equation we obtain the
following:

Adg

V2E = V2(q)

Here, A and E are real variables.

Sy = — AL (14)

The solutions of the second and third equations can
be written as
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B dg ) exn [ Ul(q)dg
SQ“‘”(/m t) p( m) (15)

S3 = ¢2 /diq—t exp| —¢ M
V2E = V2(q) JZE—V(q) )’

where ¢1 and ¢, are arbitrary odd Grassmann functions. In our case, it is sufficient to take ¢; = const, ¢ = const.

The last equation from (12) leads to some condition on functions ¢; and ¢z, which is satisfied when they are constant.
Thus, we can present the action in the following form:

S:/V?E—Vz(q)dq - Et+ ﬁ@/}—fhﬁw) (16)
dg . Ulq)dq
B (/ VIV t) i ( V2E - v2<q>)

- dg . Ul(q)dq
+w¢2(/\/2E—V2(q) _t) eXp(_Z \/QE—W(q))'

Using the Jacobi theorem (4)
05/0¢1 = const, 0S/0¢2 = const,

we obtain solutions for the odd Grassmann variables:
P =1y exp(—i/U(q(T)) dr), Y =y exp(i/U(q(T)) dr). (17)
Let us introduce the following series for the even Grassmann variable:

q(t) = 24e(t) + qo(t)t) = wge(t) + qo(t)oto. (18)

Then, from the Jacobi theorem we have:

95 dg - _ B
i / ] Yoto — oty = const. (19)
From (18) and (19) we can write

dzge

V2E — V23(24)

Let us now evaluate the derivative 3S/9F = const. Taking into account the result (20) and the following expansions

—t = const. (20)

Ulq) = U(zge) + U (24e) 0800,
V2(q) = V() + 2V (24e)V (24e) gotbotbo, (21)

FVH9) = F(VP(xge)) + F/(VZ(2e)) 2V (2ge) V(2e) qototbo,

we obtain:
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)) = Vi(@ge (M)V' (2ge (7)) q0(7)]

/ V2E - Vi, jqéz(xqc) - / B

This result can be presented in the form:

g (1)
#4(0)

40(0) — / d722 :ggf;q(z))) . (23)

qo(t) =

The obtained result coincides with the result obtained
from the Lagrangian equations of motion [1].

Thus the Hamilton-Jacobi equation and Jacobi the-
orem are presented in Grassmann algebra. The action

2F — V2 {(2ge(T))

dr. (22)

for the classical system characterized by the SUSY La-
grangian is presented in the explicit form. The results ob-
tained using the Hamilton—Jacobi method coincide with
the ones obtained previously from the Lagrangian equa-
tions of motion.
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METON T'AMIJIBTOHA-AKOBI JIJIf KJ/JIACUYHOI MEXAHIKH,
MOBYIOBAHOI B AJITEBEPI TPACMAHA

K. B. Tabynmuk
Inemumym ¢izuxu xonderncosanux cucmem HAH Vipainu,
esy.a. Ceenyiyvroeo, 1, Jlveis, 79011, Vxpaina

Y mpanj piBusaxag [aMinerona—Iko6i # Teopema $IKo6i samcani mis KJiacHUHOI MexaHIKM B ajreGpi I pac-

MaHa. ,D;IIH HCGB,D;OKII&CI/I‘IHO.I. CHUCTEMU, dKa B 9aCTKOBOMY BUIIaAKy € CYNIEPCUMETPUYIHOIO, 3HaﬁﬂeHO 3araJabHIi

IHTerpaJ piBHAHHA ['aminbrona—fko6i. 3a momomoroio teopemu K06l oTpuMaHO 3araJibHUi IHTerpaJ pPIBHAHD
PYXY, 1o 36iracThCs 3 po3B’A3KOM piBHAHB Jlarpamka—Eiliepa.
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