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We present the Hamilton{Ja
obi method for the 
lassi
al me
hani
s with the 
onstrains in

Grassmann algebra. Within the framework of this method the solution for the 
lassi
al system


hara
terized by the SUSY Lagrangian is obtained.

Key words: Hamilton{Ja
obi method, SUSY system, 
lassi
al me
hani
s, 
onstrains.

PACS number(s): 45.20.Jj, 12.60.Jv, 11.30.Pb

The problem of Lagrangian and Hamiltonian me
han-

i
s with Grassmann variables has been dis
ussed pre-

viously in works [1{3℄ where examples of solutions for


lassi
al systems were presented.

In this paper we propose the Hamilton{Ja
obi method

for the solution of the 
lassi
al 
ounterpart of Witten`s

model [4℄.

We assume that the states of me
hani
al system are

des
ribed by the set of ordinary bosoni
 degrees of

freedom q (even Grassmann numbers) and the set of

fermioni
 degrees of freedom  (odd Grassmann num-

bers).

Within the framework of the 
lassi
al me
hani
s with


onstrains the equations of motion 
an be obtained from

the variational prin
iple for the a
tion

S =

Z

�
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with the additional 
onditions (
onstrains)
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and P

x

is the 
anoni
al momentum
onjugate to the vari-

ables x. Velo
ities

~

_x(q; P

x

;

_

X) are the solutions of the

equations P

x

= �L=� _x with respe
t to the variables _x.

On the other hand equations P

X

= �L=�

_

X form the

system of 
onstrains (2).

The Hamilton{Ja
obi equation in the 
ase of the 
las-

si
al me
hani
s with 
onstrains in Grassmann algebra is

as follows:
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Here (�

a

; �

b

) is the set of 
ertain Lagrange multipliers for

the 
onstrains from the variational problem (1) in Grass-

mann algebra. Lagrange multipliers�

a


an be found from

the equations of motion
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and from the time{independen
e 
onditions

_

F
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(q;  ; P

q
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) = 0 :

On the other hand, �

b

are those multipliers whi
h 
an-

not be found and whi
h form a fun
tional arbitration for

solutions (in the theory with the �rst{
lass 
onstrains

[5{7℄). However, we 
an transform the theory with the

�rst{
lass 
onstrains to the physi
ally equivalent theory

with the se
ond{
lass 
onstrains. As an example, we 
an

take the strong minimal gauge whi
h does not shift the

equations of motion (the so{
alled 
anoni
al gauge G

(
)

[8℄).

The solution of Hamilton{Ja
obi equation 
an be

found with using of the Ja
obi theorem. In our 
ase this

theorem has some di�eren
es from the standard formu-

lation.

Let us 
onsider a full solution of the Hamilton{Ja
obi

equation S=S

r

(q;  ; �; �; t) (� is a set of the even Grass-

mann 
onstants, � is a set of the odd ones). We perform

the 
anoni
al transformation from the old variables q,

 , P

q

, P

 

to the new ones (taking S

r

as a generating

fun
tion) and put � = P

Q

, � = P

�

as new 
anoni
al mo-

menta and Q, � as new 
oordinates. Then the relations

between the new and old variables 
an be written in the

form:

H
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= H +
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Sin
e S

r

is the solution of the Hamilton{Ja
obi equation,

we obtain that

H

0

=0 =) P

Q

=
onst; Q=
onst; P

�

=
onst; �=
onst;

new 
oordinates are 
onstant. From the obtained result

we 
an write:

�S

r

=�� = 
onst (even Grassmann number); (4)

�S

r

=�� = 
onst (odd Grassmann number):

The solution of equations (4) gives the variables q and  

as fun
tions of time. Time dependen
ies of the 
anoni
al

momenta 
an be found from the relations P

 

= �S=� ,

P

q

= �S=�q:

Let us now 
onsider the Lagrangian [1,2℄
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whi
h possess supersymmetry when U (q) = V

0

(q) (in

this 
ase the real fun
tion V is the so{
alled superpoten-

tial) [4℄. The overbar denotes the Grassmann variant of

the 
omplex 
onjugation.

The momenta 
onjugate to the fermioni
 variables do

not depend on

_

 or

_

�

 . Hen
e, we have the following 
on-

strains between 
oordinates and momenta:
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The Lagrange multipliers 
an be found from the follow-

ing time{independen
e 
onditions:
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where
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The solutions of (7) are the following ones:

�

1

= �iU(q) ; �
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= iU(q)
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 :

Sin
e the Hamiltonian of system (5) is as follows:
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Starting from the obtained Hamiltonian (9), the

Hamilton{Ja
obi equation (3) 
an be written in the form:
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Let us make an ansatz for the a
tion
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where S

0

and S

1

are even Grassmann fun
tions and S

2

and S

3

are the odd ones. After the substitution of ansatz

(11) into equation (10) and de
omposition of this equa-

tion on Grassmann parities we obtain the following sys-

tem of equations:
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The �rst equation 
an be integrated by the variable de-


omposition method. Thus, we obtain

S

0

=

Z

p

2E � V

2

(q) dq � Et; (13)

where E is the 
onstant of integration. Starting from

expression (13), for the fourth equation we obtain the

following:

S

1

=

Z

A dq

p

2E � V

2

(q)

�At: (14)

Here, A and E are real variables.

The solutions of the se
ond and third equations 
an

be written as
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S

2

= �

1

 

Z

dq

p

2E � V

2

(q)

� t

!

exp

 

i

Z

U (q) dq

p

2E � V

2

(q)

!

; (15)

S

3

= �

2

 

Z

dq

p

2E � V

2

(q)

� t

!

exp

 

� i

Z

U (q) dq

p

2E � V

2

(q)

!

;

where �

1

and �

2

are arbitrary odd Grassmann fun
tions. In our 
ase, it is suÆ
ient to take �

1

= 
onst, �

2

= 
onst.

The last equation from (12) leads to some 
ondition on fun
tions �

1

and �

2

, whi
h is satis�ed when they are 
onstant.

Thus, we 
an present the a
tion in the following form:
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Using the Ja
obi theorem (4)
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we obtain solutions for the odd Grassmann variables:
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Let us introdu
e the following series for the even Grassmann variable:
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Then, from the Ja
obi theorem we have:
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From (18) and (19) we 
an write
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Let us now evaluate the derivative �S=�E = 
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ount the result (20) and the following expansions
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we obtain:
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This result 
an be presented in the form:
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The obtained result 
oin
ides with the result obtained

from the Lagrangian equations of motion [1℄.

Thus the Hamilton{Ja
obi equation and Ja
obi the-

orem are presented in Grassmann algebra. The a
tion

for the 
lassi
al system 
hara
terized by the SUSY La-

grangian is presented in the expli
it form. The results ob-

tained using the Hamilton{Ja
obi method 
oin
ide with

the ones obtained previously from the Lagrangian equa-

tions of motion.
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METOD GAM�L^TONA{�KOB� DL� KLASIQNOÕ MEHAN�KI,

POBUDOVANOÕ V AL�EBR� �RASMANA

K. B. Tabunwik

�nstitut f�ziki kondensovanih sistem NAN UkraÝni,

vul. Sv
n
�
~kogo, 1, L~v�v, 79011, UkraÝna

U pra
� r�vn�nn� Gam�l~tona{�kob� � teorema �kob� zapisan� dl� klasiqnoÝ mehan�ki v al�ebr� �ras-

mana. Dl� psevdoklasiqnoÝ sistemi, �ka v qastkovomu vipadku 
 supersimetriqno�, zna�deno zagal~ni�

�nte�ral r�vn�nn� Gam�l~tona{�kob�. Za dopomogo� teoremi �kob� otrimano zagal~ni� �nte�ral r�vn�n~

ruhu, wo zb�ga
t~s� z rozv'�zkom r�vn�n~ La�ran�a{E�lera.
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