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Some new solutions for the equation of motion in �

4

{theory with damping are 
onstru
ted.

These solutions des
ribe the �eld 
on�gurations 
orresponding to the 
oupled states of three kinks

and/or antikinks. To obtain them a new dire
t method for nonlinear partial di�erential equations

whi
h generalises the Hirota method for the a degenera
y 
ase is applied.
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I. INTRODUCTION

The s
alar �eld �

4

{theory is one of the most inves-

tigated and widely used for the des
ription of physi
al

phenomena both in 
lassi
al and quantum physi
s. Up

till to re
ent time for the equation of motion in this the-

ory

�

tt

� �

xx

= �� �

3

(1)

only su
h dynami
 and stati
 soliton{like solutions as one

kink (antikink) were 
onsidered for the self{similarity


ase. Here �

tt

= �

2

�=�t

2

and so on. To study a 
ou-

pled state of kink and antikink one should introdu
e an

external for
e [1℄ or 
onsider using perturbative approa
h

su
h a �eld 
on�guration whi
h 
orresponds to the sum

of kink and antikink plus a small additional term [2℄{

[4℄. In su
h a 
ase the problem 
an be solved numeri
ally

or by 
onsidering a linearized version of equation for the

small term. A numeri
al investigation has demonstrated

the existen
e of a quasistable approximate 
oupled state

whi
h de
ays in time [5℄{ [7℄.

In [8℄ it was proved by 
onsidering the symmetry prop-

erties that a mathemati
ally stable exa
t solution of

eq. (1) whi
h 
orresponds to the 
oupled state of kink

and antikink does not exist. The formation and propa-

gation of nonlinear waves is determined by the pro
esses


onne
ted with energy transformation and 
hara
terized

by dispersion, nonlinearity and dissipation. In eq. (1) just

dispersion and nonlinearity are a

ounted for. But, op-

posite to the Korteweg{de Vries equation where an ex-

pansion of wave pa
ket due to dispersion is 
ompensated

by its 
ompression due to nonlinearity, for eq. (1) there is

no su
h balan
e. As a result, this equation does not have

the exa
t and stable solutions 
orresponding to the 
ou-

pled states of any number of kinks and/or antikinks. The

mentioned above balan
e for eq. (1) 
an be obtained by

taking into a

ount additionally the physi
al me
hanism

that is always present pra
ti
ally in any pro
ess, namely,

that of dissipation. It may be 
aused by di�erent reasons

(fri
tion, damping, et
.) and 
hanges the shape and prop-

agation of nonlinear wave. The equation of motion in this


ase has the form:

�

tt

� �

xx

+ ��

t

= �� �

3

; (2)

where � is a damping 
oeÆ
ient. Without loss of gener-

ality, all other 
oeÆ
ients in eq. (2) may be taken equal

to unity. For this equation the exa
t and stable solutions


orresponding to the 
oupled states of any number of

kinks and/or antikinks 
an be 
onstru
ted.

For the self{similarity 
ase eq. (2) redu
es to the ordi-

nary di�erential equation possessing the Painlev�e prop-

erty [9,10℄. This equation is of integrable type. We shall

use the next de�nition of integrability. The non{linear

partial di�erential equation will be 
alled integrable if it

has N{soliton solutions, N = 1; 2; 3; : : : [11℄. Hen
e, one


an 
onstru
t the solutions of eq. (2) whi
h 
orrespond to

the 
oupled states. As we 
onsider the boundary problem

one 
an use the dire
t methods to 
onstru
t the 
oupled

state solutions. Applying the well{known Hirota method

[13℄ or its generalization using gauge invarian
e as a de-

termining property [14℄ to eq. (2) does not allow to do

this be
ause there is a problem of degenera
y of param-

eters for these solutions. One{kink and one{antikink so-

lutions for eq. (2) are well{known [9,10,12℄ and for them

the values of wave numbers and velo
ities are �xed and

depend on � only. It means that, for instan
e, in the 
ase

of two{kink solution both a the kinks have the same pa-

rameters.

This problem may be solved by a re
ently developed

dire
t method for nonlinear partial di�erential equations

whi
h generalises the Hirota method for a degenera
y


ase [15,16℄. By this method the two{kink 
oupled states

for eq. (2) have been 
onstru
ted [15,17℄. In this pa-

per the method is applied to 
onstru
t the solutions for

eq. (2) whi
h 
orrespond to the 
oupled states of three

kinks and/or antikinks. The nonlinear 
hara
ter of the

problem under 
onsideration leads to some pe
uliarities

in a three{kink 
ase. In parti
ular, due to in
reasing the

number of the terms in an expansion for the fun
tion

that determines the solution, the number of the nonlin-

ear algebrai
 equations for parameters of this solution

ex
eeds that of these parameters. Now, to 
hoose appro-

priate values of the parameters the using of the symmetry

properties as for a two{kink solution is not enough. It is
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ne
essary to make an additional assumption about the

independen
e of one{parti
le 
ontributions to the solu-

tion (for nonlinear problems it is not obviously).

II. FORMULATION OF THE PROBLEM

To 
onstru
t the self{similarity solutions for eq. (2)


orresponding to the 
oupled states of various 
ombina-

tions of three kinks and/or antikinks, one should trans-

form this equation to an in�nite system of linear partial

di�erential equations. To do this let introdu
e a new un-

known fun
tion F (x; t) by the Cole{Hopf transformation

�(x; t) = �F

x

(x; t)=F (x; t); (3)

where � is a 
onstant determined below. The arguments

of fun
tions will be dropped where it is possible. By using

eq. (3), eq. (2) may be written as

F

xtt

F

2

� 2F

xt

F

t

F + 2F

x

F

2

t

� F

x

F
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F
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F

2

+ 3F

x

F
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F � (�

2

� 2)F

3

x

(4)

+�F

xt

F

2

� �F

x

F

t

F � F

x

F

2

= 0:

A

ording to the Hirota method, now the parameter

� should be determined from eq. (4). Let �

2

= 2. Eq. (4)

redu
ed to

F

xtt

F

2

� 2F

xt

F

t

F + 2F

x

F

2

t

� F

x

F

tt

F � F

xxx

F

2

+3F

x

F

xx

F + �F

xt

F

2

� �F

x

F

t

F � F

x

F

2

= 0: (5)

For one{kink solution eq. (4) and eq. (5) lead to the

same result. But for the 
oupled states eq. (5) leads to


ertain diÆ
ulties in 
al
ulating some 
oeÆ
ients are de-

termined su
h solutions. To avoid these diÆ
ulties one

uses eq. (4). In the 
ase of a one{kink solution � 
an

be determined at the last stage of 
al
ulations. In this

paper the same value of � will be used to 
onstru
t the

three{kink 
oupled states.

The next step is usual for dire
t methods [13,14℄. Let

us represent F (x; t) as a formal series:

F (x; t) = 1 + "f

1

+ "

2

f

2

+ "

3

f

3

+ : : : ; (6)

where f

i

(x; t) are new unknown fun
tions and ", gen-

erally speaking, is not a small 
onstant. By substitut-

ing eq. (6) into eq. (4) and equating to zero 
oeÆ
ients

for ea
h degree of ", one obtains the in�nite system of

linear partial di�erential equations for the fun
tions f

i

.

For three{kink solutions one need only three fun
tions f

i

(i = 1; 2; 3) of series (6). To determine them one should

use the �rst four equations of the in�nite system. They

have the form:

"

1

: f

1;xtt

� f

1;xxx

+ �f

1;xt

� f

1;x

= 0; (7)

"

2

: f

2;xtt

� f

2;xxx

+ �f

2;xt

� f

2;x

= 2f

1;xt

f

1;t

+ f

1;x

f

1;tt

� 3f

1;x

f

1;xx

+ �f

1;x

f

1;t

; (8)

"

3

: f

3;xtt

� f

3;xxx

+ �f

3;xt

� f

3;x

= 2f

1;xt

f

2;t

+ 2f

1;t

f

2;xt

� f

1;x

f

2;tt

+ f

2;x

f

1;tt

�2f

1;x

f1; t

2

� 3f

1;xx

f

2;x

� 3f

1;x

f

2;xx

� (�

2

� 2)f

3

1;x

+ �f

1;x

f

2;t

+ �f

1;t

f

2;x

�f

2;xtt

f

1

+ f

2;xxx

f

1

+ �f

2;xt

f

1

+ f

2;x

f

1

; (9)

"

4

: f

4;xtt

� f

4;xxx

+ �f

4;xt

� f

4;x

= 2f

1;xt

f

3;t

+ 2f

2;xt

f

2;t

+ 2f

1;t

f

3;xt

� 4f

1;x

f

1;t

f

2;t

�2f
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2
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f
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The Hirota method possesses a remarkble property. If

for some nonlinear equation aN{soliton solution exists, a

formal series (6) is broken and all f

i

= 0 for i = N+1; : : :

[13℄. But, 
ontrary to the Hirota method, the method

used in this paper does not require a spe
ial form for

the 
oeÆ
ients of the fun
tions f

i

. That is why for a N{

soliton solution one should use the right hand side of the

(N + 1){equation to break a series (6) [16℄.

III. THREE{KINK STATES

Let us 
onstru
t the expli
it expressions for the �eld


on�gurations 
orresponding to the 
oupled states of var-

ious 
ombinations of three kinks and/or antikinks. To do

this, one needs the expli
it expressions for the fun
tions

f

i

(i = 1; 2; 3). Ea
h of these three fun
tions des
ribes an

appropriate 
ontribution to a three{kink solution. But

one should note that fun
tions the f

1

, f

2

and f

3

are not

the same as a one{kink state and 
oupled states of two{

and three kinks. They may be 
alled as one{, two{ and

three{parti
le fun
tions. It is 
lear from eq. (7){eq. (10)

that for every value of i the fun
tion f

i

is determined by

the previous fun
tions and the damping 
oeÆ
ient only.

Let us represent a one{parti
le fun
tion in the form

f

1

(x; t) = exp(�

1

) + exp(�

2

) + exp(�

3

); (11)

where �

i

= k

i

x � !

i

t + �

(0)

i

, i = 1; 2; 3. Here k

i

, !

i

and

�

(0)

i

are a wave number, velo
ity and initial phase shift,

respe
tively. It is known [9℄ that in the �

4

{theory with

damping the wave number and velo
ity for a one{kink

solution are �xed and equal to

k

1

= �(9 + 2�

2

)

1=2

=2�; !

1

= �3=2�; (12)

(-/+ 
orresponds to kink/antikink). These values are

used in this paper. A

ording to the Hirota method, to

avoid a degenera
y of the 
oeÆ
ients in the expansion of

the fun
tions f

i

, the 
ondition k

i

6= k

j

for the absolute

values of wave numbers should be ful�lled. This 
ondi-

tion is not required here, be
ause no spe
ial form for

the 
oeÆ
ients mentioned above are demanded.Only at

a �nal stage of 
al
ulations the various expli
it relations

between these parameters are 
onsidered.

For the di�erent values of i one should use the same

relations between k

i

and !

i

as for a one{kink 
ase. The

�rst three of these relations 
an be obtained by substi-

tuting eq. (11) into eq. (7) and equating to zero the 
oef-

�
ients for ea
h of the exponential fun
tions. They have

the form:

!

2

i

� k

2

i

� �!

i

� 1 = 0; i = 1; 2; 3: (13)

The se
ond three relations 
an be obtained by sub-

stitution eq. (11) into the right hand side of eq. (8)

and equaling to zero the 
oeÆ
ients for the fun
tions

exp(2�

i

), i = 1; 2; 3:

3!

2

i

� 3k

2

i

� �!

i

= 0; i = 1; 2; 3: (14)

Eq. (13) and eq. (14) determine the parameters k

i

and !

i

(i = 1; 2; 3) by a single{value way. They have the same

values (12) as in a one{kink 
ase. It supposes the in-

dependent 
ontributions to the solution from one{, two{

and three{parti
le fun
tions. The additional relations for

k

i

and !

i

, (i = 1; 2; 3) 
an be obtained from the right

hand side of eq. (8) by equating to zero the 
oeÆ
ients

for exp(�

i

+ �

j

); i 6= j, but they are not linearly inde-

pendent and may be made 
onsistent with the relations

mentioned above.

By de�nition for a one{parti
le fun
tion all the 
oeÆ-


ients equal unity. Let us represent two{parti
le fun
tion

in the form:

f

2

(x; t) =M exp(2�

1

) + N exp(2�

2

)

+ O exp(2�

3

) + P exp(�

1

+ �

2

) (15)

+ R exp(�

2

+ �

3

) + S exp(�

2

+ �

3

):

Here, M;N;O; P;R and S are the 
oeÆ
ients to be

determined. If one substitutes eq. (15) into eq. (8) and

tries to 
al
ulate these 
oeÆ
ients, the un
ertainties of

the type 0/0 for all the physi
ally admissible relations

between k

i

and !

i

(i = 1; 2; 3) will be obtained.

To avoid this diÆ
ulty one should use the right hand

side of eq. (9). By substituting into it eq. (11) and eq. (15)

and equating to zero 
oe�
ients for the exponential fun
-

tions all the 
oeÆ
ients for the fun
tion f

2


an be deter-

mined in a single{valued way. From the 
al
ulations it

results that M = N = O = 0. It means that the 
ontri-

bution of the two{parti
le fun
tion f

2

into a three{kink

state does not take into a

ount self{intera
tive terms.

Let us determine the three{parti
le fun
tion. In the

general 
ase, it should be written in the form:

f

3

(x; t) = A

1

exp(3�

1

) + A

2

exp(3�

2

) + A

3

exp(3�

3

)

+ A

4

exp(�

1

+ 2�

2

) + A

5

exp(�

1

+ 2�

3

)

+ A

6

exp(2�

1

+ �

2

) + A

7

exp(2�

1

+ �

3

)

+ A

8

exp(2�

2

+ �

3

) + A

9

exp(�

2

+ 2�

3

)

+ A

10

exp(�

1

+ �

2

+ �

3

): (16)

For simpli
ity, �

(0)

i

= 0, i = 1; 2; 3.

In the general 
ase expli
it expressions for A

i

(i =

1; : : : ; 10) are very 
umbrous. To simplify this problem

without loss of generality one 
an 
onsider the spe
ial


ases when the wave numbers of kinks and/or antikinks

are determined by the �rst of eqs. (12) and all the initial

phase shifts equal zero.
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Let k

1

= k

2

= k

3

= k. This 
ase 
orresponds to a


oupled state of three kinks. A one{parti
le fun
tion f

1

takes the form:

f

1

= 3 exp(�

1

); �

1

= k

1

x� !

1

t: (17)

The te
hnique of determinating the 
oeÆ
ients

M;N;O; P;R and S for a two{parti
le fun
tion have

been des
ribed above. By applying this te
hnique to the


ase under 
onsideration one obtains that all of these


oeÆ
ients are equal to zero and as a result f

2

= 0.

Let us 
al
ulate the 
oeÆ
ients A

i

(i = 1; : : : ; 10) for

a three{parti
le fun
tion. Eq. (9) now takes the form:

f

3;xtt

� f

3;xxx

+ �f

3;xt

� f

3;x

= �2f

1;x

f

2

1;t

� (�

2

� 2)f

3

1;x

� 2f

1

f

1;xt

f

1;t

(18)

� f

1

f

1;x

f

1;tt

+ 3f

1

f

1;x

f

1;xx

� �f

1

f

1;x

f

1;t

:

By substituting eq. (16) and eq. (17) into eq. (18) and

equaling to zero the 
oeÆ
ients for every exponential

fun
tion one obtains that all A

i

(i = 1; : : : ; 10) are equal

to zero. So, f

3

= 0.

Now, it is possible to write down the �eld 
on�guration

whi
h 
orresponds to a 
oupled state of three kinks:

�(x; t) = �F

x

(x; t)=F (x; t) = (1=k

1

)f

1;x

=(1 + f

1

)

= 3 exp(�

1

)=[1 + 3 exp(�

1

)℄: (19)

In the 
ase of �

(0)

i

= 0 (i = 1; 2; 3), the solution of

eq. (2) 
an be written down in the form:

�(x; t) = f1 + tanh[(kx� !t + ln 3)=2℄g=2: (20)

Let k

1

= k

2

= �k

3

= k. This 
ase 
orresponds to

a 
oupled state of two kinks and antikink. One{parti
le

fun
tion takes the form:

f

1

= 2 exp(k

1

x� !

1

t) + exp(�k

1

x� !

1

t): (21)

For the 
oeÆ
ients of a two{parti
le fun
tion one ob-

tains M = N = O = P = 0, R = S = 6=(6 + �

2

). The

two{parti
le fun
tion may be written in the form:

f

2

= 6 exp(�

1

+ �

3

)=(6 + �

2

) + 6 exp(�

2

+ �

3

)=(6 + �

2

)

= 12 exp(3t=�)=(6 + �

2

): (22)

In this 
ase eq. (9) takes the form:

f

3;xtt

� f
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� f

3;x

= 2f

1;xt

f

2;t

� 2f

1;x

f

2

1;t

+ f

1;x

f

2;tt
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2

� 2)f

2

1;x

+ �f

1;x

f

2;t

� 2f

1

f

1;xt

f

1;t

�f

1

f

1;x

f

1;tt

+ 3f

1

f

1;x

f

1;xx

� �f

1

f

1;x

f

1;t

: (23)

By substituting into eq. (23) eqs. (16), (21) and (22)

and equating to zero 
oeÆ
ients for every exponential

fun
tion one obtains that all A

i

= 0 (i = 1; : : : ; 10) as

for 
oupled state of three kinks. So, f

3

= 0.

Now, a �eld 
on�guration whi
h 
orresponds to a 
ou-

pled state of two kinks and antikink 
an be written in a

form:

�(x; t) = �F

x

(x; t)=F (x; t) = (1=k

1

)f

1;x

=(1 + f

1

+ f

2

)

= (6 + �

2

)[2 exp(kx� !t)

� exp(�kx� !t)℄=f(6 + �

2

)[1 + 2 exp(kx� !t)

+ exp(�kx� !t)℄ + 12 exp(�2!t)g:

Let k

1

= �k

2

= �k

3

= k. This 
ase 
orresponds to a


oupled state of a kink and two antikinks. One{parti
le

fun
tion takes the form:

f

1

= exp(k

1

x� !

1

t) + 2 exp(�k

1

x� !

1

t): (24)

By analogy to the previous 
ase one 
an obtain that

M = N = O = S = 0, P = R = 6=(6 + �

2

). Conse-

quently, f

2

has the same form as for two kinks and an

antikink:

f

2

= 6 exp(�

1

+ �

2

)=(6 + �

2

) + 6 exp(�

1

+ �

3

)=(6 + �

2

)

= 12 exp(3t=�)=(6 + �

2

): (25)

To determine the 
oeÆ
ients A

i

(i = 1; : : : ; 10) for

a three{parti
le fun
tion one should use the pro
edure

whi
h has been des
ribed above. This leads to the fol-

lowing values for the 
oeÆ
ients: A

1

= A

2

= A

3

= A

6

=

A

7

= A

8

= A

9

= 0, A

4

= A

5

= A

10

= �6=(6 + �

2

).

Then f

3

takes the form:

f

3

=�6 exp(�

1

+ 2�

2

)=(6 + �

2

)�6 exp(�

1

+ 2�

3

)=(6 + �

2

)

� 6 exp(�

1

+ �

2

+ �

3

)=(6 = �

2

) (26)

= �18 exp(�kx� !t)=(6 + �

2

):

By using eqs. (24){(26) a 
oupled state for one kink

and two antikinks may be written in the form:
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�(x; t) = �F

x

(x; t)=F (x; t) = (1=k

1

)(f

1;x

+ f

2;x

+ f

3;x

)=(1 + f

1

+ f

2

+ f

3

)

=

h

(6 + �

2

) exp(kx� !t) � 2(6 + �

2

) exp(�kx � !t) + 18 exp(�kx � 3!t)℄=[1 + (6 + �

2

) exp(kx� !t)

�2(6 + �

2

) exp(�kx� !t) + 18 exp(�kx� !t) + 12 exp(�2!t)

i

:

Comparing this fun
tion �(x; t) with that des
ribing

a 
oupled state of two kinks and an antikink one 
an

see that in both the 
ases the self{similarity is violated

(there is a term with a temporal 
oordinate only).

Let k

1

= k

2

= k

3

= �k. This 
ase 
orresponds to a


oupled state of three antikinks. It is obviousl that the

solutions of eq. (2) whi
h des
ribes this state di�ers from

solutions (19) and (20) by the sign of spatial 
oordinate

only. So, for a three{antikink 
oupled state one obtains

�(x; t) = f1 + tanh[(�kx� !t + ln 3)=2℄g=2:

IV. CONCLUSION

In this paper the expli
it expressions for 
oupled states

of three kinks and/or antikinks in the �

4

{theory with

damping are 
onstru
ted. By dire
t substitution one 
an

verify that all of them are solutions of eq. (2).

It is known that the �

4

{theory without damping is

not integrable. This theory has be
ome integrable and

admits the solutions that des
ribe the 
oupled states of

any number of kinks and/or antikinks only in the 
ase

when the energy dissipation is taken into a

ount, for ex-

ample, due to damping. This result allows to introdu
e a

physi
al 
riterion of integrability for nonlinear equations.

The nonlinear equation will be integrable (possesses the

N{soliton solution) if there is a balan
e between an ex-

pansion and 
ompression of the wave pa
ket due to the

pro
esses of energy transformation (dispersion, dissipa-

tion, non{linearity and so on). For eq. (1) su
h a bal-

an
e is absent. To a
hieve it one should introdu
e into

the term ��

t

the equation. This 
riterion is ful�lled for

the system of two s
alar �elds [18℄ where there is an ex-


hange of energy between both the �elds and as a result

the 
oupled states 
an be 
onstru
ted.

[1℄ R. Rajaraman, Phys. Rev. D 15, 2866 (1977).

[2℄ A. E. Kudryav
ev, Pis'ma Zh. Eksp. Teor. Fiz. 22, 178

(1975).

[3℄ T. Sugiyama, Prog. Theor. Phys. 61, 1550 (1979).

[4℄ R. V. Konoply
h, Yad. Fiz. 32, 1132 (1980).

[5℄ D. K. Campbell, M. Peyrard, Physi
a D 18, 47 (1986).

[6℄ T. I. Belova, A. E. Kudryavtsev, Physi
a D 32, 18 (1988).

[7℄ P. Anninos, S. Oliveira, R. A. Matzner, Phys. Rev. D 44,

1147 (1991).

[8℄ H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58, 747 (1987).

[9℄ J. Cervero, P. G. Est�evez, Phys. Lett. A 114, 435 (1986).

[10℄ J. Geike, Phys. Lett. A 116, 221 (1986).

[11℄ A. C. Newell, Solitons in Mathemati
s and Physi
s

(SIAM, Philadelphia, 1985).

[12℄ P. Lal, Phys. Lett. A 111, 389 (1985).

[13℄ M. J. Ablowitz, H. Segur, Solitons and Inverse S
attering

Transform (SIAM, Philadelphia, 1981).

[14℄ J. Hietarinta, Int. J. Mod. Phys. A 12, 43 (1997).

[15℄ M. A. Knyazev, Fizika B 4, 1 (1995).

[16℄ M. A. Knyazev, Rep. Math. Phys. 40, 493 (1997).

[17℄ M. A. Knyazev, Dokl. Akad. Nauk Bielarusi 39, 41

(1995).

[18℄ M. A. Knyazev, E. A. Ho
harenko, Dokl. Natsional.

Akad. Nauk Bielarusi 42, 63 (1998).

ROZRAHUNOK TRIK�NKOVIH STAN�V U TEOR�Õ �

4

�Z ZAGASANN�M

M. A. Kn�z
v

�nstitut prikladnoÝ f�ziki Na
�onal~noÝ akadem�Ý nauk B
larus�,

vul. Akadem�qna, 16, M�ns~k, 220072, B
larus~

Pobudovano nov� rozv'�zki r�vn�nn� ruhu v teor�Ý �

4

�z zagasann�m. C� rozv'�zki opisu�t~ pol~ov� kon-

f��ura
�Ý, �k� v�dpov�da�t~ zv'�zanim stanam r�znih komb�na
�� tr~oh k�nk�v �/abo antik�nk�v. Rozv'�zki

otrimano za dopomogo� novogo pr�mogo metodu dl� nel�n��nih r�vn�n~ u qastinnih poh�dnih, �ki� uza-

gal~n�
 metod G�roti dl� vipadku virod�enn�.
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