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CALCULATION OF THREE-KINK STATES IN ¢4—THEORY WITH DAMPING
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Some new solutions for the equation of motion in ¢*-theory with damping are constructed.
These solutions describe the field configurations corresponding to the coupled states of three kinks
and/or antikinks. To obtain them a new direct method for nonlinear partial differential equations
which generalises the Hirota method for the a degeneracy case is applied.
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I. INTRODUCTION

The scalar field ¢*-theory is one of the most inves-
tigated and widely used for the description of physical
phenomena both in classical and quantum physics. Up
t1ll to recent time for the equation of motion in this the-
ory

¢tt_¢xx = ¢_¢3 (1)

only such dynamic and static soliton—like solutions as one
kink (antikink) were considered for the self-similarity
case. Here ¢y = 92¢/0t? and so on. To study a cou-
pled state of kink and antikink one should introduce an
external force [1] or consider using perturbative approach
such a field configuration which corresponds to the sum
of kink and antikink plus a small additional term [2]-
[4]. In such a case the problem can be solved numerically
or by considering a linearized version of equation for the
small term. A numerical investigation has demonstrated
the existence of a quasistable approximate coupled state
which decays in time [5]- [7].

In [8] it was proved by considering the symmetry prop-
erties that a mathematically stable exact solution of
eq. (1) which corresponds to the coupled state of kink
and antikink does not exist. The formation and propa-
gation of nonlinear waves is determined by the processes
connected with energy transformation and characterized
by dispersion, nonlinearity and dissipation. In eq. (1) just
dispersion and nonlinearity are accounted for. But, op-
posite to the Korteweg—de Vries equation where an ex-
pansion of wave packet due to dispersion 1s compensated
by its compression due to nonlinearity, for eq. (1) there is
no such balance. As a result, this equation does not have
the exact and stable solutions corresponding to the cou-
pled states of any number of kinks and /or antikinks. The
mentioned above balance for eq. (1) can be obtained by
taking into account additionally the physical mechanism
that is always present practically in any process, namely,
that of dissipation. It may be caused by different reasons
(friction, damping, etc.) and changes the shape and prop-
agation of nonlinear wave. The equation of motion in this
case has the form:

Ot — Qoo + Py = ¢ — ¢3a (2)

where a is a damping coefficient. Without loss of gener-
ality, all other coefficients in eq. (2) may be taken equal
to unity. For this equation the exact and stable solutions
corresponding to the coupled states of any number of
kinks and/or antikinks can be constructed.

For the self-similarity case eq. (2) reduces to the ordi-
nary differential equation possessing the Painlevé prop-
erty [9,10]. This equation is of integrable type. We shall
use the next definition of integrability. The non-linear
partial differential equation will be called integrable if it
has N—soliton solutions, N = 1,2,3,...[11]. Hence, one
can construct the solutions of eq. (2) which correspond to
the coupled states. As we consider the boundary problem
one can use the direct methods to construct the coupled
state solutions. Applying the well-known Hirota method
[13] or its generalization using gauge invariance as a de-
termining property [14] to eq. (2) does not allow to do
this because there is a problem of degeneracy of param-
eters for these solutions. One—kink and one-antikink so-
lutions for eq. (2) are well-known [9,10,12] and for them
the values of wave numbers and velocities are fixed and
depend on « only. It means that, for instance, in the case
of two—kink solution both a the kinks have the same pa-
rameters.

This problem may be solved by a recently developed
direct method for nonlinear partial differential equations
which generalises the Hirota method for a degeneracy
case [15,16]. By this method the two—kink coupled states
for eq. (2) have been constructed [15,17]. In this pa-
per the method is applied to construct the solutions for
eq. (2) which correspond to the coupled states of three
kinks and/or antikinks. The nonlinear character of the
problem under consideration leads to some peculiarities
in a three—kink case. In particular, due to increasing the
number of the terms in an expansion for the function
that determines the solution, the number of the nonlin-
ear algebraic equations for parameters of this solution
exceeds that of these parameters. Now, to choose appro-
priate values of the parameters the using of the symmetry
properties as for a two—kink solution is not enough. It is
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necessary to make an additional assumption about the
independence of one—particle contributions to the solu-
tion (for nonlinear problems it is not obviously).

II. FORMULATION OF THE PROBLEM

To construct the self-similarity solutions for eq. (2)
corresponding to the coupled states of various combina-
tions of three kinks and/or antikinks, one should trans-
form this equation to an infinite system of linear partial
differential equations. To do this let introduce a new un-
known function F(z,t) by the Cole-Hopf transformation

¢(x’t):UFx(x’t)/F($’t)’ (3)

where o is a constant determined below. The arguments
of functions will be dropped where it 1s possible. By using
eq. (3), eq. (2) may be written as

FpptF? — 2F FyF 4+ 2F, F? — Fy Fy F
_FxxxF2+3FxexF_ (0-2 _Q)Fs (4)

taF F? — oF,F,F — F,F? = 0.

According to the Hirota method, now the parameter
o should be determined from eq. (4). Let 0? = 2. Eq. (4)

61 : fl,xtt - fl,xxx + afl,xt - fl,x =0,

reduced to

Fpts F2 = QFp FyF 4 2F, F? — Fy FyF — FppoF?

+3F Fpp B 4+ aF F? — aF B F — F,F?2 =0, (5)

For one—kink solution eq. (4) and eq. (5) lead to the
same result. But for the coupled states eq. (5) leads to
certain difficulties in calculating some coefficients are de-
termined such solutions. To avoid these difficulties one
uses eq. (4). In the case of a one-kink solution & can
be determined at the last stage of calculations. In this
paper the same value of o will be used to construct the
three—kink coupled states.

The next step is usual for direct methods [13,14]. Let
us represent F'(z,t) as a formal series:

Flz,t)=1+cfi+e’fo+efa+..., (6)

where f;(x,t) are new unknown functions and ¢, gen-
erally speaking, is not a small constant. By substitut-
ing eq. (6) into eq. (4) and equating to zero coefficients
for each degree of ¢, one obtains the infinite system of
linear partial differential equations for the functions f;.
For three—kink solutions one need only three functions f;
(i = 1,2,3) of series (6). To determine them one should
use the first four equations of the infinite system. They
have the form:

e’ fooit — fopee F Qfo ot — oo =2f1 wtfip + Frofipe — Sfiefiee Y aficfie, (8)

€3 favtt — Fawee + fspt — f30 = 2f wefor +2f e fowt — Frofoue + Foufite

_2f1,xf1at2 - 3f1,xxf2,x - 3f1,xf2,xx -
_fZ,xttfl + f2,xxxf1 + afZ,xtfl + fZ,xfla

(0% — Q)fix +afizfor+afiifoe

€' fawet — Fapoe + Ofawt — faw = 2f10tfae + 2fo 0t foe +2F1cfaot — 410 e for

—sz,xfit + frefau+ foofou+ flufse —

3f1,xf3,xx - 3f1,xf1,xxxf2 - 3f2,xf2,xx

—3f1eef30 — 3(02 - Q)ff,xfz,x ‘afiefsetafoefor+afifse—2f1etf1]2
~flehiafe+3fcfioefo—afiefiefe + 20 mtfiefi + Aofiefi —3f o fiocfi
o ft o f1ef7 = 2f1eefo it — 2010 fo oSt H AL fL o f1 — Lo font = frufoo i

+3f1,xf2,xxf1 + 3f1,xxf2,xf1 - afl,fo,tfl + 2(0-2 - Q)fix - afl,th,xf1~ (10)
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The Hirota method possesses a remarkble property. If
for some nonlinear equation a N—soliton solution exists, a
formal series (6) is broken and all f; = 0fori = N+1,...
[13]. But, contrary to the Hirota method, the method
used in this paper does not require a special form for
the coefficients of the functions f;. That is why for a N—
soliton solution one should use the right hand side of the
(N + 1)—equation to break a series (6) [16].

III. THREE-KINK STATES

Let us construct the explicit expressions for the field
configurations corresponding to the coupled states of var-
ious combinations of three kinks and/or antikinks. To do
this, one needs the explicit expressions for the functions
fi (1 =1,2,3). Each of these three functions describes an
appropriate contribution to a three—kink solution. But
one should note that functions the fi, f2 and f5 are not
the same as a one—kink state and coupled states of two—
and three kinks. They may be called as one—, two— and
three—particle functions. It is clear from eq. (7)—eq. (10)
that for every value of ¢ the function f; is determined by
the previous functions and the damping coefficient only.

Let us represent a one—particle function in the form

fie, 1) = exp(in) + exp(12) + exp(n3), (11)

where n; = kjz — wit + 772(0), t = 1,2,3. Here k;, w; and
772(0) are a wave number, velocity and initial phase shift,
respectively. It is known [9] that in the ¢*—theory with
damping the wave number and velocity for a one-kink
solution are fixed and equal to

ki =£09+ 209220, wy = —3/20, (12)

(-/+ corresponds to kink/antikink). These values are
used in this paper. According to the Hirota method, to
avoid a degeneracy of the coefficients in the expansion of
the functions f;, the condition k; # k; for the absolute
values of wave numbers should be fulfilled. This condi-
tion is not required here, because no special form for
the coefficients mentioned above are demanded.Only at
a final stage of calculations the various explicit relations
between these parameters are considered.

For the different values of ¢ one should use the same
relations between k; and w; as for a one—kink case. The
first three of these relations can be obtained by substi-
tuting eq. (11) into eq. (7) and equating to zero the coef-
ficients for each of the exponential functions. They have
the form:

i=1,2,3. (13)

2 2 —
wi — ki —aw; —1 =0,

The second three relations can be obtained by sub-
stitution eq. (11) into the right hand side of eq. (8)

and equaling to zero the coefficients for the functions
exp(2m;), 1 =1,2,3:

WP-3k—awi=0,  i=123  (14)

Eq. (13) and eq. (14) determine the parameters k; and w;
(i = 1,2,3) by a single-value way. They have the same
values (12) as in a one-kink case. It supposes the in-
dependent contributions to the solution from one—, two—
and three—particle functions. The additional relations for
ki and w;, (¢ = 1,2,3) can be obtained from the right
hand side of eq. (8) by equating to zero the coefficients
for exp(n; + n;),% # j, but they are not linearly inde-
pendent and may be made consistent with the relations
mentioned above.

By definition for a one—particle function all the coeffi-
cients equal unity. Let us represent two—particle function
in the form:

fo(x,t) = M exp(2m1) + N exp(2n)
+ Oexp(2n3) + Pexp(n + n2) (15)

+ Rexp(nz + 13) + S exp(n2 + n3).

Here, M, N,O, P, R and S are the coefficients to be
determined. If one substitutes eq. (15) into eq. (8) and
tries to calculate these coefficients, the uncertainties of
the type 0/0 for all the physically admissible relations
between k; and w; (i = 1,2, 3) will be obtained.

To avoid this difficulty one should use the right hand
side of eq. (9). By substituting into it eq. (11) and eq. (15)
and equating to zero coeffcients for the exponential func-
tions all the coefficients for the function f; can be deter-
mined in a single-valued way. From the calculations it
results that M = N = O = 0. It means that the contri-
bution of the two—particle function f into a three—kink
state does not take into account self-interactive terms.

Let us determine the three—particle function. In the
general case, it should be written in the form:

fa(z,t) = Ay exp(3n1) + Az exp(3n2) + Az exp(3n3)

(
+ Agexp(n + 2n2) + As exp(n1 + 213)
+ Agexp(2n1 + n2) + Az exp(2n1 + 13)
+ Agexp(2n2 + n3) + Ao exp(n2 + 213)

+ Argexp(m +n2 +13). (16)

For simplicity, 772(0) =0,:=1,2,3.

In the general case explicit expressions for A; (i =
1,...,10) are very cumbrous. To simplify this problem
without loss of generality one can consider the special
cases when the wave numbers of kinks and/or antikinks
are determined by the first of eqs. (12) and all the initial

phase shifts equal zero.
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Let k1 = ko = k3 = k. This case corresponds to a
coupled state of three kinks. A one—particle function f;
takes the form:

Ji=3exp(m), m = kix — wit. (17)

The technique of determinating the coefficients
M,N,O,P,R and S for a two—particle function have
been described above. By applying this technique to the
case under consideration one obtains that all of these
coeflicients are equal to zero and as a result fo = 0.

Let us calculate the coefficients A; (¢ = 1,...,10) for
a three—particle function. Eq. (9) now takes the form:

fS,xtt - fS,xxx + afS,xt - fS,x
=—2f1.fi = (* =2 . = 2fifimfie (18)
—ffighe+3fficfiee —afifizchie.

By substituting eq. (16) and eq. (17) into eq. (18) and
equaling to zero the coefficients for every exponential
function one obtains that all A; (¢ = 1,...,10) are equal
to zero. So, f3 = 0.

Now, 1t is possible to write down the field configuration
which corresponds to a coupled state of three kinks:

¢z, t) = o by, )/ F(x, 1) = (1/ki) [0/ (1 + J1)

= 3exp(m)/[1+ 3exp(n1)]. (19)

In the case of 772(0) =0 (¢ = 1,2,3), the solution of
eq. (2) can be written down in the form:

é(x,t) = {1 + tanh[(kz —wt 4+ In 3)/2]}/2. (20)

Let k1 = ks = —ks = k. This case corresponds to
a coupled state of two kinks and antikink. One—particle
function takes the form:

f1 = 2exp(kiz — wit) + exp(—kiz — wit). (21)

For the coefficients of a two—particle function one ob-
tains M = N =0=P=0,R=S5=6/(6+a?). The

two—particle function may be written in the form:

fo = 6exp(n+n3)/(6+ a®) + 6 exp(n2 + 73) /(6 + )

= 12exp(3t/a)/(6 4 ). (22)

In this case eq. (9) takes the form:
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fS,xtt - fS,xxx + afS,xt - fS,x
=2f1 etf2t — 2f1,xf127t + f1,0fo0
—(0® — Q)flzyx tafiefor =20 1 eef1e

—fficfia+3fifiafioe —afifiofie. (23)

By substituting into eq. (23) eqgs. (16), (21) and (22)
and equating to zero coefficients for every exponential
function one obtains that all A; =0 (¢ = 1,...,10) as
for coupled state of three kinks. So, f3 = 0.

Now, a field configuration which corresponds to a cou-
pled state of two kinks and antikink can be written in a
form:

P, 1) = o b (x, )/ Fle,t) = (1/k) fre /(1 + fi + f2)
= (6 + a?)[2exp(ka — wt)
— exp(—ka — wt)]/{(6 + a®)[1 + 2exp(kx — wt)

+ exp(—kz — wt)] + 12 exp(—2wt) }.

Let k1 = —ko = —ks = k. This case corresponds to a
coupled state of a kink and two antikinks. One—particle
function takes the form:

f1 = exp(k1x —wit) + 2exp(—k1x — wit). (24)

By analogy to the previous case one can obtain that
M=N=0=5=0,P=R=6/(6+a?). Conse-
quently, fo has the same form as for two kinks and an
antikink:

fo = 6exp(n +12)/(6+ ) + 6exp(m + 713) /(6 + o)

= 12exp(3t/a)/(6 4 a?). (25)

To determine the coefficients A; (¢ = 1,...,10) for
a three—particle function one should use the procedure
which has been described above. This leads to the fol-
lowing values for the coefficients: A} = Ay = Az = Ag =
A7 = Ag = Ag = 0, A4 = A5 = A10 = —6/(6—|—Oz2)
Then f3 takes the form:

fs=—6exp(ni + 2n2) (6 + a®)—6 exp(n1 + 2n3) (6 + a?)
— Gexp(ni + 12 +13)/ (6 = ) (26)
= —18exp(—kz — wt)/(6 + a?).

By using egs. (24)—(26) a coupled state for one kink
and two antikinks may be written in the form:
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$(x,t) = ocFy(x,t)/F(x,t) =

(k) (fie + foo+ faz)/(L+ f1+ fo+ f3)

(6 + a?) exp(kae — wt) — 2(6 + a?) exp(—ka — wt) + 18 exp(—kx — 3wt)]/[1 + (6 4+ a?) exp(kx — wt)

—2(6 + a?) exp(—kx — wt) + 18 exp(—kx — wt) + 12 exp(—2wt)|.

Comparing this function ¢(z,t) with that describing
a coupled state of two kinks and an antikink one can
see that in both the cases the self-similarity is violated
(there is a term with a temporal coordinate only).

Let k1 = ko = ks = —k. This case corresponds to a
coupled state of three antikinks. It is obviousl that the
solutions of eq. (2) which describes this state differs from
solutions (19) and (20) by the sign of spatial coordinate
only. So, for a three—antikink coupled state one obtains

é(x,t) = {1 + tanh[(—kz —wt +1n 3)/2]}/2.

IV. CONCLUSION

In this paper the explicit expressions for coupled states
of three kinks and/or antikinks in the ¢*-theory with

damping are constructed. By direct substitution one can
verify that all of them are solutions of eq. (2).

It is known that the ¢*-theory without damping is
not integrable. This theory has become integrable and
admits the solutions that describe the coupled states of
any number of kinks and/or antikinks only in the case
when the energy dissipation is taken into account, for ex-
ample, due to damping. This result allows to introduce a
physical criterion of integrability for nonlinear equations.
The nonlinear equation will be integrable (possesses the
N-soliton solution) if there is a balance between an ex-
pansion and compression of the wave packet due to the
processes of energy transformation (dispersion, dissipa-
tion, non-linearity and so on). For eq. (1) such a bal-
ance is absent. To achieve it one should introduce into
the term a¢; the equation. This criterion is fulfilled for
the system of two scalar fields [18] where there is an ex-
change of energy between both the fields and as a result
the coupled states can be constructed.
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PO3PAXYHOK TPUKIHKOBUX CTAHIB ¥ TEOPII qb4 I3 SATACAHHIM

M. A. Kuases
Inemumym npuxaadnor dizuxu Hauionaavror axademii nayx Beaapyct,
ey.n. Axademivna, 16, Mincox, 220072, Beaapyco

[TobymoBaro HOBI pO3B’A3KM PIBHAHHA PYXy B Teopii ¢~ 13 3aracaHHAM. LI po3B’dA3KM oMMCYIOTH MOTHOBI KOH-

dirypari, Akl BIOIOBITAIOTH 3B’A3aHUM CTaHAM DI3HMX KOMOIHaIil Tpbox KIHKIB 1/abo aHTHKIHKIB. Po3B’a#3km

OTPUMAHO 3a HOMMOMOTOI0 HOBOTO MPAMOTO METOMY I HeHIHUX PIBHAHD Y JaCTUHHUX TOXIIHUX, AKWIA y3a-

rajibHIoe MeTo ['ipoTH Ojid BUMAAKy BUPOIKEHHI.
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