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Some new solutions for the equation of motion in �

4

{theory with damping are onstruted.

These solutions desribe the �eld on�gurations orresponding to the oupled states of three kinks

and/or antikinks. To obtain them a new diret method for nonlinear partial di�erential equations

whih generalises the Hirota method for the a degeneray ase is applied.
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I. INTRODUCTION

The salar �eld �

4

{theory is one of the most inves-

tigated and widely used for the desription of physial

phenomena both in lassial and quantum physis. Up

till to reent time for the equation of motion in this the-

ory

�

tt

� �

xx

= �� �

3

(1)

only suh dynami and stati soliton{like solutions as one

kink (antikink) were onsidered for the self{similarity

ase. Here �

tt

= �

2

�=�t

2

and so on. To study a ou-

pled state of kink and antikink one should introdue an

external fore [1℄ or onsider using perturbative approah

suh a �eld on�guration whih orresponds to the sum

of kink and antikink plus a small additional term [2℄{

[4℄. In suh a ase the problem an be solved numerially

or by onsidering a linearized version of equation for the

small term. A numerial investigation has demonstrated

the existene of a quasistable approximate oupled state

whih deays in time [5℄{ [7℄.

In [8℄ it was proved by onsidering the symmetry prop-

erties that a mathematially stable exat solution of

eq. (1) whih orresponds to the oupled state of kink

and antikink does not exist. The formation and propa-

gation of nonlinear waves is determined by the proesses

onneted with energy transformation and haraterized

by dispersion, nonlinearity and dissipation. In eq. (1) just

dispersion and nonlinearity are aounted for. But, op-

posite to the Korteweg{de Vries equation where an ex-

pansion of wave paket due to dispersion is ompensated

by its ompression due to nonlinearity, for eq. (1) there is

no suh balane. As a result, this equation does not have

the exat and stable solutions orresponding to the ou-

pled states of any number of kinks and/or antikinks. The

mentioned above balane for eq. (1) an be obtained by

taking into aount additionally the physial mehanism

that is always present pratially in any proess, namely,

that of dissipation. It may be aused by di�erent reasons

(frition, damping, et.) and hanges the shape and prop-

agation of nonlinear wave. The equation of motion in this

ase has the form:

�

tt

� �

xx

+ ��

t

= �� �

3

; (2)

where � is a damping oeÆient. Without loss of gener-

ality, all other oeÆients in eq. (2) may be taken equal

to unity. For this equation the exat and stable solutions

orresponding to the oupled states of any number of

kinks and/or antikinks an be onstruted.

For the self{similarity ase eq. (2) redues to the ordi-

nary di�erential equation possessing the Painlev�e prop-

erty [9,10℄. This equation is of integrable type. We shall

use the next de�nition of integrability. The non{linear

partial di�erential equation will be alled integrable if it

has N{soliton solutions, N = 1; 2; 3; : : : [11℄. Hene, one

an onstrut the solutions of eq. (2) whih orrespond to

the oupled states. As we onsider the boundary problem

one an use the diret methods to onstrut the oupled

state solutions. Applying the well{known Hirota method

[13℄ or its generalization using gauge invariane as a de-

termining property [14℄ to eq. (2) does not allow to do

this beause there is a problem of degeneray of param-

eters for these solutions. One{kink and one{antikink so-

lutions for eq. (2) are well{known [9,10,12℄ and for them

the values of wave numbers and veloities are �xed and

depend on � only. It means that, for instane, in the ase

of two{kink solution both a the kinks have the same pa-

rameters.

This problem may be solved by a reently developed

diret method for nonlinear partial di�erential equations

whih generalises the Hirota method for a degeneray

ase [15,16℄. By this method the two{kink oupled states

for eq. (2) have been onstruted [15,17℄. In this pa-

per the method is applied to onstrut the solutions for

eq. (2) whih orrespond to the oupled states of three

kinks and/or antikinks. The nonlinear harater of the

problem under onsideration leads to some peuliarities

in a three{kink ase. In partiular, due to inreasing the

number of the terms in an expansion for the funtion

that determines the solution, the number of the nonlin-

ear algebrai equations for parameters of this solution

exeeds that of these parameters. Now, to hoose appro-

priate values of the parameters the using of the symmetry

properties as for a two{kink solution is not enough. It is
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neessary to make an additional assumption about the

independene of one{partile ontributions to the solu-

tion (for nonlinear problems it is not obviously).

II. FORMULATION OF THE PROBLEM

To onstrut the self{similarity solutions for eq. (2)

orresponding to the oupled states of various ombina-

tions of three kinks and/or antikinks, one should trans-

form this equation to an in�nite system of linear partial

di�erential equations. To do this let introdue a new un-

known funtion F (x; t) by the Cole{Hopf transformation

�(x; t) = �F

x

(x; t)=F (x; t); (3)

where � is a onstant determined below. The arguments

of funtions will be dropped where it is possible. By using

eq. (3), eq. (2) may be written as

F
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= 0:

Aording to the Hirota method, now the parameter

� should be determined from eq. (4). Let �

2

= 2. Eq. (4)

redued to
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For one{kink solution eq. (4) and eq. (5) lead to the

same result. But for the oupled states eq. (5) leads to

ertain diÆulties in alulating some oeÆients are de-

termined suh solutions. To avoid these diÆulties one

uses eq. (4). In the ase of a one{kink solution � an

be determined at the last stage of alulations. In this

paper the same value of � will be used to onstrut the

three{kink oupled states.

The next step is usual for diret methods [13,14℄. Let

us represent F (x; t) as a formal series:

F (x; t) = 1 + "f

1

+ "

2

f

2

+ "

3

f

3

+ : : : ; (6)

where f

i

(x; t) are new unknown funtions and ", gen-

erally speaking, is not a small onstant. By substitut-

ing eq. (6) into eq. (4) and equating to zero oeÆients

for eah degree of ", one obtains the in�nite system of

linear partial di�erential equations for the funtions f

i

.

For three{kink solutions one need only three funtions f

i

(i = 1; 2; 3) of series (6). To determine them one should

use the �rst four equations of the in�nite system. They

have the form:

"
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The Hirota method possesses a remarkble property. If

for some nonlinear equation aN{soliton solution exists, a

formal series (6) is broken and all f

i

= 0 for i = N+1; : : :

[13℄. But, ontrary to the Hirota method, the method

used in this paper does not require a speial form for

the oeÆients of the funtions f

i

. That is why for a N{

soliton solution one should use the right hand side of the

(N + 1){equation to break a series (6) [16℄.

III. THREE{KINK STATES

Let us onstrut the expliit expressions for the �eld

on�gurations orresponding to the oupled states of var-

ious ombinations of three kinks and/or antikinks. To do

this, one needs the expliit expressions for the funtions

f

i

(i = 1; 2; 3). Eah of these three funtions desribes an

appropriate ontribution to a three{kink solution. But

one should note that funtions the f

1

, f

2

and f

3

are not

the same as a one{kink state and oupled states of two{

and three kinks. They may be alled as one{, two{ and

three{partile funtions. It is lear from eq. (7){eq. (10)

that for every value of i the funtion f

i

is determined by

the previous funtions and the damping oeÆient only.

Let us represent a one{partile funtion in the form

f

1

(x; t) = exp(�

1

) + exp(�

2

) + exp(�

3

); (11)

where �

i

= k

i

x � !

i

t + �

(0)

i

, i = 1; 2; 3. Here k

i

, !

i

and

�

(0)

i

are a wave number, veloity and initial phase shift,

respetively. It is known [9℄ that in the �

4

{theory with

damping the wave number and veloity for a one{kink

solution are �xed and equal to

k

1

= �(9 + 2�

2

)

1=2

=2�; !

1

= �3=2�; (12)

(-/+ orresponds to kink/antikink). These values are

used in this paper. Aording to the Hirota method, to

avoid a degeneray of the oeÆients in the expansion of

the funtions f

i

, the ondition k

i

6= k

j

for the absolute

values of wave numbers should be ful�lled. This ondi-

tion is not required here, beause no speial form for

the oeÆients mentioned above are demanded.Only at

a �nal stage of alulations the various expliit relations

between these parameters are onsidered.

For the di�erent values of i one should use the same

relations between k

i

and !

i

as for a one{kink ase. The

�rst three of these relations an be obtained by substi-

tuting eq. (11) into eq. (7) and equating to zero the oef-

�ients for eah of the exponential funtions. They have

the form:

!

2

i

� k

2

i

� �!

i

� 1 = 0; i = 1; 2; 3: (13)

The seond three relations an be obtained by sub-

stitution eq. (11) into the right hand side of eq. (8)

and equaling to zero the oeÆients for the funtions

exp(2�

i

), i = 1; 2; 3:

3!

2

i

� 3k

2

i

� �!

i

= 0; i = 1; 2; 3: (14)

Eq. (13) and eq. (14) determine the parameters k

i

and !

i

(i = 1; 2; 3) by a single{value way. They have the same

values (12) as in a one{kink ase. It supposes the in-

dependent ontributions to the solution from one{, two{

and three{partile funtions. The additional relations for

k

i

and !

i

, (i = 1; 2; 3) an be obtained from the right

hand side of eq. (8) by equating to zero the oeÆients

for exp(�

i

+ �

j

); i 6= j, but they are not linearly inde-

pendent and may be made onsistent with the relations

mentioned above.

By de�nition for a one{partile funtion all the oeÆ-

ients equal unity. Let us represent two{partile funtion

in the form:

f

2

(x; t) =M exp(2�

1

) + N exp(2�

2

)

+ O exp(2�

3

) + P exp(�

1
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2

) (15)

+ R exp(�

2
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3

) + S exp(�

2

+ �

3

):

Here, M;N;O; P;R and S are the oeÆients to be

determined. If one substitutes eq. (15) into eq. (8) and

tries to alulate these oeÆients, the unertainties of

the type 0/0 for all the physially admissible relations

between k

i

and !

i

(i = 1; 2; 3) will be obtained.

To avoid this diÆulty one should use the right hand

side of eq. (9). By substituting into it eq. (11) and eq. (15)

and equating to zero oe�ients for the exponential fun-

tions all the oeÆients for the funtion f

2

an be deter-

mined in a single{valued way. From the alulations it

results that M = N = O = 0. It means that the ontri-

bution of the two{partile funtion f

2

into a three{kink

state does not take into aount self{interative terms.

Let us determine the three{partile funtion. In the

general ase, it should be written in the form:

f
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): (16)

For simpliity, �

(0)

i

= 0, i = 1; 2; 3.

In the general ase expliit expressions for A

i

(i =

1; : : : ; 10) are very umbrous. To simplify this problem

without loss of generality one an onsider the speial

ases when the wave numbers of kinks and/or antikinks

are determined by the �rst of eqs. (12) and all the initial

phase shifts equal zero.
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Let k

1

= k

2

= k

3

= k. This ase orresponds to a

oupled state of three kinks. A one{partile funtion f

1

takes the form:

f

1

= 3 exp(�

1

); �

1

= k

1

x� !

1

t: (17)

The tehnique of determinating the oeÆients

M;N;O; P;R and S for a two{partile funtion have

been desribed above. By applying this tehnique to the

ase under onsideration one obtains that all of these

oeÆients are equal to zero and as a result f

2

= 0.

Let us alulate the oeÆients A

i

(i = 1; : : : ; 10) for

a three{partile funtion. Eq. (9) now takes the form:
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By substituting eq. (16) and eq. (17) into eq. (18) and

equaling to zero the oeÆients for every exponential

funtion one obtains that all A

i

(i = 1; : : : ; 10) are equal

to zero. So, f

3

= 0.

Now, it is possible to write down the �eld on�guration

whih orresponds to a oupled state of three kinks:
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In the ase of �

(0)

i

= 0 (i = 1; 2; 3), the solution of

eq. (2) an be written down in the form:

�(x; t) = f1 + tanh[(kx� !t + ln 3)=2℄g=2: (20)
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For the oeÆients of a two{partile funtion one ob-

tains M = N = O = P = 0, R = S = 6=(6 + �
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two{partile funtion may be written in the form:
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In this ase eq. (9) takes the form:

f

3;xtt

� f

3;xxx

+ �f

3;xt

� f

3;x

= 2f

1;xt

f

2;t

� 2f

1;x

f

2

1;t

+ f

1;x

f

2;tt

�(�

2

� 2)f

2

1;x

+ �f

1;x

f

2;t

� 2f

1

f

1;xt

f

1;t

�f

1

f

1;x

f

1;tt

+ 3f

1

f

1;x

f

1;xx

� �f

1

f

1;x

f

1;t

: (23)

By substituting into eq. (23) eqs. (16), (21) and (22)

and equating to zero oeÆients for every exponential

funtion one obtains that all A

i

= 0 (i = 1; : : : ; 10) as

for oupled state of three kinks. So, f

3

= 0.

Now, a �eld on�guration whih orresponds to a ou-

pled state of two kinks and antikink an be written in a

form:
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oupled state of a kink and two antikinks. One{partile
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By analogy to the previous ase one an obtain that

M = N = O = S = 0, P = R = 6=(6 + �

2

). Conse-

quently, f

2

has the same form as for two kinks and an

antikink:
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To determine the oeÆients A

i

(i = 1; : : : ; 10) for

a three{partile funtion one should use the proedure

whih has been desribed above. This leads to the fol-

lowing values for the oeÆients: A
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9

= 0, A

4

= A

5

= A

10

= �6=(6 + �

2

).

Then f

3

takes the form:

f

3

=�6 exp(�

1

+ 2�

2

)=(6 + �

2

)�6 exp(�

1

+ 2�

3

)=(6 + �

2

)

� 6 exp(�

1

+ �

2

+ �

3

)=(6 = �

2

) (26)

= �18 exp(�kx� !t)=(6 + �

2

):

By using eqs. (24){(26) a oupled state for one kink

and two antikinks may be written in the form:
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�(x; t) = �F

x

(x; t)=F (x; t) = (1=k

1

)(f

1;x

+ f

2;x

+ f

3;x

)=(1 + f

1

+ f

2

+ f

3

)

=

h

(6 + �

2

) exp(kx� !t) � 2(6 + �

2

) exp(�kx � !t) + 18 exp(�kx � 3!t)℄=[1 + (6 + �

2

) exp(kx� !t)

�2(6 + �

2

) exp(�kx� !t) + 18 exp(�kx� !t) + 12 exp(�2!t)

i

:

Comparing this funtion �(x; t) with that desribing

a oupled state of two kinks and an antikink one an

see that in both the ases the self{similarity is violated

(there is a term with a temporal oordinate only).

Let k

1

= k

2

= k

3

= �k. This ase orresponds to a

oupled state of three antikinks. It is obviousl that the

solutions of eq. (2) whih desribes this state di�ers from

solutions (19) and (20) by the sign of spatial oordinate

only. So, for a three{antikink oupled state one obtains

�(x; t) = f1 + tanh[(�kx� !t + ln 3)=2℄g=2:

IV. CONCLUSION

In this paper the expliit expressions for oupled states

of three kinks and/or antikinks in the �

4

{theory with

damping are onstruted. By diret substitution one an

verify that all of them are solutions of eq. (2).

It is known that the �

4

{theory without damping is

not integrable. This theory has beome integrable and

admits the solutions that desribe the oupled states of

any number of kinks and/or antikinks only in the ase

when the energy dissipation is taken into aount, for ex-

ample, due to damping. This result allows to introdue a

physial riterion of integrability for nonlinear equations.

The nonlinear equation will be integrable (possesses the

N{soliton solution) if there is a balane between an ex-

pansion and ompression of the wave paket due to the

proesses of energy transformation (dispersion, dissipa-

tion, non{linearity and so on). For eq. (1) suh a bal-

ane is absent. To ahieve it one should introdue into

the term ��

t

the equation. This riterion is ful�lled for

the system of two salar �elds [18℄ where there is an ex-

hange of energy between both the �elds and as a result

the oupled states an be onstruted.
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ROZRAHUNOK TRIK�NKOVIH STAN�V U TEOR�Õ �

4

�Z ZAGASANN�M

M. A. Kn�zv

�nstitut prikladnoÝ f�ziki Na�onal~noÝ akadem�Ý nauk Blarus�,

vul. Akadem�qna, 16, M�ns~k, 220072, Blarus~

Pobudovano nov� rozv'�zki r�vn�nn� ruhu v teor�Ý �

4

�z zagasann�m. C� rozv'�zki opisu�t~ pol~ov� kon-

f��ura�Ý, �k� v�dpov�da�t~ zv'�zanim stanam r�znih komb�na�� tr~oh k�nk�v �/abo antik�nk�v. Rozv'�zki

otrimano za dopomogo� novogo pr�mogo metodu dl� nel�n��nih r�vn�n~ u qastinnih poh�dnih, �ki� uza-

gal~n� metod G�roti dl� vipadku virod�enn�.
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