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Resistane stability of thin �lm platinum resistane thermometers produed by PRIBOR Ltd.,

Koprivshtitza, Bulgaria was investigated 30 months after their thermal stabilization. A three{

point alibration method for the range between 13.8 K and 273.16 K is proposed. The optimum

onditions neessary for an adequate individual alibration of the investigated sensors are de�ned.

Mathematial desriptions of the T (R) and the R(T ) funtions between 13.8 K and 273.16 K are

suggested using a new weighted least squares method.
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I. INTRODUCTION

The interest in industrial platinum resistane ther-

mometers (IPRTs) arose reently [1℄. There are three

types of IPRTs | wire, thin �lm and thik �lm ther-

mometers. The thin �lm platinum resistane thermome-

ters (TPRTs) have some indisputable advantages suh

as small dimensions, high response, easy fabriation and

relatively low ost [2℄. They an be used without any al-

ibration in the range of 70{200 K following the T (R) and

R(T ) ommon desriptions with an auray of �(1�2)

K and �(0:4 � 0:8)
, respetively [3℄. A two{point al-

ibration method allows to apply them in the range of

70{200 K with an auray of �0:1 K or �0:04
 [3℄.

Their main disadvantages are:

i) a shift of the R(T ) funtion after a thermal yling

below 200 K, and

ii) individual R(T ) and T (R) funtions for any parti-

ular sensor.

Therefore TPRTs an be used for preise measure-

ments below 200 K after an adequate stabilization and

an individual alibration [3℄, [4℄.

The task of the present work was to investigate the re-

sistane stability of TPRTs, produed by PRIBOR Ltd.,

Koprivshtitza, Bulgaria under a tehnology desribed in

[5℄ and their T (R) and R(T ) funtions in the tempera-

ture range 13.8 | 273.16 K in order to de�ne:

i) period of stability of TPRTs after their thermal sta-

bilization,

ii) the optimum onditions for an adequate individual

alibration of the investigated sensors, and

iii) suitable mathematial desriptions in polynomial

form for T (R) and R(T ) funtions.

For this reason 10 TPRTs seleted randomly from dif-

ferent series and numbered from 031 to 042 save 037 and

039) have been investigated. Sensors 037 and 039 were

[4℄ and beame unusable. Investigations were arried out

on a omputerized experimental setup. The experimental

method and the setup were fully desribed in [4℄ and [6℄.

II. STABILITY OF THE INVESTIGATED

SENSORS

The problem of TPRTs harateristi stabilization was

a subjet of our previous paper [4℄. It was found out

that they remained stable at least 5 months after their

stabilization. Now we arried out 6 new thermal yles

numbered from 38 to 43 | one between 10 and 300 K

(helium yle) and 5 times between 65 K and 300 K. The

helium yle inluded 12 yles between 5 and 75 K as it

was done through the 16

th

yle (see about it in [4℄. The

sensor 032 resistane variane at 6 �xed temperatures

after every single thermal yle inluding the desribed

in [4℄ is shown in Fig. 1. The results for all other sensors

are analogous. It is well seen that the resistane stabi-

lizes after yle No 27. The resistane variane from 28

th

to 43

th

yles was less than TPRTs auray [3℄ and the

experimental error [4℄.

III. MATHEMATICAL DESCRIPTION OF THE

INDIVIDUAL T (R) AND R(T ) FUNCTIONS

It was established in [3℄ that the TPRTs an be used

as thermometers in the range 13.8{273.16 K with an a-

uray of �(5� 6) mK. Having in mind those results we

have searhed for a mathematial desription that ould

desribe the alibration results with the respetive au-

ray. For this purpose a weighted least squares method

was developed. It was based on the well known method-

ology desribed in Refs.7 and 8. The basi funtions |

P

k

(x) used by the Chi{square funtion [7℄ an be:

i) power funtions

P

k

(x) = x

k�1

; (1)
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ii) power funtions orthogonalized on variable interval

-1.0{+1.0,

iii) Chebyshev Polynomials,

iv) Displaed Chebyshev Polynomials, and

v) Orthogonal Polynomials (normalized or not) made

up for every data points set using a well known three{

term reurrene proedure for generating orthogonal

polynomials [8℄, [9℄, [10℄.

The �tted funtions are ordinary polynomials of the

type

Y (y) =

M

X

i=1

B

i

[X(x)℄

i�1

; (2)

where Y (y) and X(x) an be as follows:

Y = y; (3a)

Y = 1=y; (3b)

Y = ln(y); (3)

Y = e

y

; (3d)

Y = y

m

; (3e)

and

X = x; (4a)

X = 1=x; (4b)

X = ln(x); (4)

X = e

x

; (4d)

X = x=a+ b; (4e)

X = [ln (x=a+ b) + ℄=d; (4f)

X = [(x=a+ b)

m

+ ℄=d; (4g)

Here a; b; ; d and m are free oeÆients (a 6= 0 and

d 6= 0) and M is polynomial number of terms. Eqs.(3)

and Eqs.(4) allow to investigate a large number of poly-

nomial types.

Fig. 1. Dependene of resistane on thermal yle number for six temperatures for sensor 032.
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Software realizing the method was written in Borland

Pasal 7.0. It alulates:

i) the polynomial oeÆients | B

i

,

ii) the standard deviation | �,

iii) the Chi{square | �

2

,

iv) the normalized value of Chi | �

n

,

v) the maximal deviation,

vi) the optimum polynomial number of terms, and

vii) the standard deviation dependene on number of

terms | �(M ), where

� =

"

N

X

I=1

[y

i

� y(x

i

)℄

2

=(N �M )

#

1=2

; (5)

�

n

=

�

�

2

=(n�M )

�

1=2

: (6)

Here y

i

is a measured value of y (experimental data),

y(x

i

) is the �tted value for the same data point and N

is number of the experimental points.

The program allows also to present graphially the �t-

ted funtion | Y (X), its �rst and seond derivatives |

Y

0

(X) and Y

00

(X) and the dependene �Y (Y ), where

�Y = y

i

� y(x

i

). Thus, one an ontrol visually if the

�tted funtion is a smooth urve or any osillations o-

ur.

The main feature of the method is the possibility to

does the �tting proedure using iteratively two riteria:

i) the minimization of funion Chi{square | �

2

and

ii) the ful�llment for all data points of the inequality

�(x

i

)[y

i

� y(x

i

)℄

2

� 1 (7)

where �(x

i

) is the weight of the i

th

experimental point.

This priniple of minimization is proposed in [11℄ (see

also [12℄ and [13℄). Our program de�nes the suitable

weight | �(x

i

) for all data points aording to inequality

Eq.(7) after every �t and then do the next �t. The iter-

ative proess stops when the normalized value of Chi |

�

n

stabilizes. This method eliminates the "bad" points

inuene and improves the physial authentiity of the

�tted urve. The new moment in the proposed method is

that there is a possibility to apply a bigger initial weight

(�(x

i

) � 3:33) for some data points whih remains on-

stant through the �tting proess.

This program routine was applied in our investigations

to de�ne the suitable polynomial type and the optimal

number of terms for the �tted funtions.

The experimental data between 11 K and 320 K from

all the arried out investigations after the thermal stabi-

lization (yles 28{43) were �tted. At least 12 alibration

points were available at every temperature level. All the

�ts were arried out with the initial data points weight

�(x

i

) = 1 for the most part of the experimental data

beause they were obtained with the same auray [4℄.

Exeptions were done in two ases:

i) for the data at the edges of the investigated tempera-

ture range aording to Hamming's reommendations [8℄

(mainly the range 14{25 K beause of the low auray

of the data below 14 K), and

ii) when it was neessary to orret the �tted urve

in some region. We had suh problems in the range of

25{50 K for some T (R) funtions.

The �tting proedure was made applying all the above

said basi funtions | P

k

and polynomial types (Eqs.(3)

and Eqs.(4)). The best results were obtained with the

orthogonal polynomials basi funtions (normalized or

not) orthogonalized on variable interval -1.0{+1.0. There

was no di�erene between them for polynomial �ts with

the number of terms up to 21 but the alulations with

Chebyshev polynomials and orthogonalized Power fun-

tions (Eq.(1)) were simpler beause there was no nees-

sity to alulate the oeÆients of a three{term reur-

rene [8℄, [9℄, [10℄. The normalization of orthogonal poly-

nomials did not lead to better results but made the alu-

lations more ompliated. For this reason it is preferable

to use in the least squares �ts Chebyshev polynomials

or Power funtions orthogonalized on variable interval -

1.0{+1.0 as they are the simplest systems of orthogonal

polynomials.

The use of simple basi funtions and the possibility

to apply a bigger initial weight for any of the data points

are the main advantages of this method in omparison

with the OPEM method [11℄. Moreover there is no nees-

sity to estimate previously the absolute resistane reso-

lution to determine the initial data points weight. These

features make our method simpler and more universal.

We �tted the ommerially available test data obtained

under spei�ed operating onditions by Lake Shore Cry-

otronis for the Platinum thermometer (model Pt{103,

Serial No P3170) investigated in Refs.12 and 13 to om-

pare the proposed method, the standard Chebyshev and

the OPEM method [11℄. The results for T (R) funtion

obtained with our program (standard Chebyshev and

weighted Chebyshev | new method) and those from

Refs.12 and 13 for OPEM are shown in Table 1. It is

well seen that the results obtained with our method and

OPEM are very lose and exel the standard Chebyshev

�t.

The �tting proedure results allowed us to propose the

following ordinary polynomials to desribe the individual

T (R) and R(T ) funtions of TPRTs in the temperature

range 13.8{273.16 K

T =

M

X

I=1

A

i

nh

(R=R

o

)

1=6

� 0:65

i

=035

o

i�1

; (8)

W =R=R

o

=

M

X

I=1

B

i

nh

(T=T

o

)

1=6

� 0:65

i

=035

o

i�1

; (9)

where A

i

and B

i

were polynomial oeÆients, T

o

=

273.16 K and R

o

was the value of R at T = T

o

.

R

o

� 100
 for the investigated sensors and the �t ould

be made using the value R

o

= 100 whih leads to a neg-

ligible error. Eqs.(8) and (9) are similar to the inverse

formula for platinum thermometer referene T (R) fun-

tion of ITS � 90 [14℄.
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Temperature Number Number Standard Maximum

range, K of points of terms Fit type deviation, deviation,

mK mK

11 - 31 19 11 Chebyshev 7.4 �11:9

11 OPEM 6.6 �19:8

11 New method 7.0 �14:9

12 New method 4.2 �11:1

31 �95 20 8 Chebyshev 9.7 �19:9

8 OPEM 5.5 �15:2

8 New method 3.8 �23:3

95 �325 27 9 Chebyshev 2.0 �3:5

9 OPEM 1.6 3.9

9 New method 2.0 �3:5

14 �325 56 18 Chebyshev 11.9 �27:3

18 OPEM 5.8 20.9

18 New method 4.2 �45:1

Table 1. Comparative results between OPEM, standard Chebyshev �t and new weighted method for T (R) funtion of

Platinum thermometer model PT-103 Ser.No P3170.

Temperature Polynomial Standard

Funtion type range, K number of deviation,

terms mK or m


T (R) funtion | Eq.(8) 13.8{70.0 15{16 1.5{2.5 mK

T (R) funtion | Eq.(8) 70.0{273.16 9{10 3.0{5.0 mK

T (R) funtion | Eq.(8) 13.8{273.16 17{18 3.0{5.0 mK

R(T ) funtion | Eq.(10) 13.8{70.0 10{11 0.5{1.5 m


R(T ) funtion | Eq.(9) 70.0{273.16 8{10 1.5{2.5 m


R(T ) funtion | Eq.(9) 13.8{273.16 14{16 1.5{2.5 m


Table 2. Reommended number of polynomial terms (oeÆients) for the investigated temperature ranges.

It was found out that any equation of the types T =

F (lnR) and R = f(lnT ) ould not be applied for to de-

sribe TPRTs produed by PRIBOR Ltd in most ases

instead of Eqs.(8) and (9) unlike the wire Platinum resis-

tors. No orretion funtions were neessary to Eqs.(8)

and (9) as reommended in [15℄ beause they desribed

the experimental data with an adequate auray (see

Table 1 and [3℄).

Equations (8) and (9) an be applied to desribe T (R)

and R(T ) funtions in the \nitrogen" interval 70{273.16

K and T (R) funtions in the lower range 13.8{70 K. Con-

ventional polynomials

W = R=R

o

=

M

X

I=1

B

i

T

i�1

; (10)

desribe the R(T ) funtions in this range (13.8{70 K)

and up to 90 K better than Eq.(9).

The reommended numbers of polynomial terms for

the investigated temperature ranges and the respetive

standard deviations are shown in Table 1. They were de-

�ned using:

i) the dependeny of polynomial standard deviation

on the number of terms for every sensor (�

T

(M ) and

�

R

(M )),

ii) the derivatives dT=dR and dR=dT and

iii) the dependene of the residuals between the poly-

nomial desription and the experimental data on tem-

perature | �T (T ) or �R(T ).

The �

T

(M ) and �

R

(M ) dependenes allowed to de�ne

the values of M at whih the �

T

and �

R

values orre-

sponded to the data on TPRTs auray presented in [3℄.

The �

T

(M ) and �

R

(M ) dependenes for �ve thermome-

ters for the investigated temperature ranges (13.8{70 K,

70{273.16 K and 13.8{273.16 K) are shown in Figs. 2a,

2b and 2.

The derivatives dT=dR and dR=dT were investigated

after every �t to verify if osillations our. The deriva-

tives dT=dR for sensor 032 and dR=dT for sensor 041

are shown in Fig. 3. The polynomial numbers of terms

are 18 for the T (R) funtion and 15 for the R(T ) fun-

tion. It is well seen that they are smooth urves with

the maximum or minimum at T �85{86 K. The seond

derivatives are also smooth urves and they are equal to 0

at T � 85{86 K. The derivatives of lower or higher power

polynomials in omprarison with those reommended in

Table 2 (1{3 degrees less or 2{4 higher) are not smooth

urves.
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Fig. 2. Dependene of polynomial standard deviations �

T

and �

R

on number of polynomial terms for sensors 031, 036,

040, 041 and 042: 2a | Temperature range 13.8{273.16 K; 2b

| Temperature range 13.8{70 K; 2 | Temperature range

70{273.16 K.

That is why, the appliation of higher or lower power

polynomials than reommended in Table 2 is not admis-

sible beause osillations of the �tted funtion an our.

So, one an assume that the proposed mathematial de-

sriptions of T (R) andR(T ) funtions for the TPRTs an

be applied in pratie. This onlusion is on�rmed also

by the harater of dependene of the residuals between

the polynomial desriptions and the experimental data

on the temperature | �T (T ) and �R(T ). The depen-

denes �T (T ) for sensor 033 and �R(T ) for sensor 034

are shown in Figs. 4a and 4b. The reommended poly-

nomial types and number of terms are applied to obtain

them (see Table 1). It is well seen that the residuals |

�T

i

and �R

i

are less than �6 mK and �2:5 m 
, re-

spetively, for the most part of the experimental data

and the data points are situated regularly on both sides

of the �tted urve and no osillations are deteted.

Fig. 3. Dependene on temperature of the derivatives

dT=dR for sensor 032 and dR=dT for sensor 041.

IV. CALIBRATION METHODS

It is well known that thermometer alibration must be

realized at a suÆient number of temperature levels but

the number of alibration points depends on the applied

method.

Two alibration points are enough to alibrate the

TPRTs in the range of 70{273.16 K with an auray of

�0:1 K or �0:04
 [3℄. The two{point alibration method

is based on the linearity of the dependenes �W

j

(T ) and

�T

j

(W ) above 70 K and on the desription of the ther-

mometer harateristis by the sum of referene and de-

viation funtions as known for the standard platinum

thermometers [14℄. �W

j

(T ) is the di�erene between

W

j

(T ) andW



(T ), and �T

j

(W ) is the di�erene between

T

j

(W ) and T



(W ) of TPRTs above 70 K, respetively.

W

j

(T ) and T

j

(W ) are funtions of the j

th

thermome-

ter. The ommon mathematial desriptions T



(W ) and

W



(T , de�ned in [3℄ are used as referene funtions. The

T (W ) and W (T ) funtions of any TPRT an be used as

T



(W ) and W



(T ) but it is preferable to selet a TPRT

whose parameters are in the viinity of the statistially

average for the investigated group of sensors [3℄.

The two{point alibration method an be developed to

a three{point method to expand the temperature range

of the alibration down to 13.8 K. The three{point al-

ibration method is also based on the desription of the

thermometer harateristis by the sum of referene and

deviation funtions. It ensures the auray of �0:04
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(�0:1 K above 45 K and �0:3 K below 45 K) in the range

of 13.8{273.16 K. The alibration points have to be: T

1

=

270{280 K, T

2

= 75{80 K and T

3

= 4.2{10 K. We reom-

mend the �rst alibration point to be at 273.16 K (water

triple point) beause it is obligatory to determine R

o

of

any TPRT at this temperature. The reommended value

of T

2

is 77.36 K (liquid Nitrogen boiling point). The liq-

uid Nitrogen boiling point is preferable beause it an be

realized easier than any other temperature in the range

(75{80 K). The proposed T

3

value is 10 K beause the

use of a lower value dereases slightly the auray of

Eq.(11). W and R of TPRTs are almost onstant below

10{11 K beause this is the region of the residual resis-

tane of the TPRTs. The deviation is less than 3. For

this reason the urves of W

j

(T ) funtions are parallel

and �W

j

(T ) � onst. Therefore W

3

an be de�ned at

any temperature below 10 K, inluding in liquid helium

at 4.2 K, and T

3

an be aepted to be 10 K.

Fig. 4. Dependene of residuals between the polynomial

desriptions and the experimental data on temperature: 3a

| �T (T ) for sensor 033; 3b | �R(T ) for sensor 034.

TheW (T ) and T (W ) funtions are the same as for the

two{point alibration method

W

j

(T ) = W



(T ) + �W

j

(T ); (11)

T

j

(W ) = T



(W ) + �T

j

(W ): (12)

The W (T ) and T (W ) funtions (Eqs. (8) and (9)) of sen-

sor 031 were used as referene funtions beause the om-

mon mathematial desriptions [3℄ ould not be applied

below 70 K and the parameters of sensor 031 were in the

viinity of statistial mean for the investigated group of

sensors. It is well seen from Fig. 5 where the dependenes

on temperature of the di�erenes �W

j

between the ex-

perimental W

j

data of all investigated TPRTs and the

W of sensor 031 in the range 5{320 K are shown.

Fig. 5. Dependenes on temperature of the di�erenes

�W

j

between the experimental W

j

data and W of sensor

031 in the range 5{320 K for all thermometers.

Fig. 6. The deviation funtions �W

j

(T ) aording to

Eq.(15) for sensors 033, 035, 036, 038 and 041 in the range

10{77.4 K and the experimental data points.
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The deviation funtions �W

j

(T ) and �T

j

(W ) above T

2

are the same as for the two{point method [3℄

�W

j

(T ) = �W

j

(T

2

)(T

0

� T )=(T

0

� T

2

) = Z

W

�W

j

(T

2

); (13)

�T

j

(W ) = �T

j

(W

2

)(1�W )=(1�W

2

) = Z

T

�T

j

(W

2

): (14)

Here T

0

and T

2

are the �rst and the seond alibration

temperature levels (T

0

= T

1

= 273.16 K) and Z

T

and Z

W

are the funtions �rst suggested by Cragoe [16℄ and used

later by Besley and Kemp for their two{points method

[1℄. The deviation funtions �W

j

(T ) an be de�ned as 4

| terms polynomials below T

2

�W

j

(T ) =

4

X

i=1

D

i

T

i�1

: (15)

Unfortunately, the deviation funtions �T

j

(W ) ould

not be de�ned properly below T

2

. It is a onsequene

of the fat that the di�erenes between T

j

(R) fun-

tions of these sensors below 25 K beame too large

(�T

0

j

(W )!1 below 10 K) and an adequate mathemat-

ial desription of �T

j

(W ) ould not be found. For this

reason Eqs. (11), (9) and (15) have to be used to de�ne

T below T

2

. It is the main disadvantage of the three{

point method. As a onsequene the referene funtions

W



(T ) and T



(W ) were de�ned in the ranges 11{300

K and 70{300 K respetively using the proposed �tting

method. The numbers of terms were M = 15 for the

W



(T ) funtion (Eq.(9)) andM = 9 for the T



(W ) fun-

tion (Eq.(8)).

The Eq.(15) oeÆients D

i

an be alulated as fol-

lows. The values of T and W at the seond and third

alibration points of the alibrated TPRT and Eqs. (11)

and (13) allow to write the equations

D

4

T

3

2

+D

3

T

2

2

+D

2

T

2

+D

1

=W

2

�W



(T

2

); (16)

D

4

T

3

3

+D

3

T

2

3

+D

2

T

3

+D

1

=W

3

�W



(T

3

); (17)

where W

3

is the value of W

j

at the temperature T

3

.

It was shown that �W

j

(T ) � onst below 10{11 K.

For this reason the �rst derivative of Eq.(15) is equal to

0 at T = T

3

�W

0

j

(T

3

) = 3D

4

T

2

3

+ 2D

3

T

3

+D

2

= 0: (18)

The �rst derivative of Eq.(15) is obviously equal to the

derivative value of Eq.(13) at T = T

2

beause this is

the ommon point of the two funtions that desribe the

�W

j

(T ) funtions above and below T

2

and here their

derivatives must be idential. For this reason one an

write the following equation

3D

4

T

2

2

+ 2D

3

T

2

+D

2

= ��W

j

(T

2

)=(T

0

� T

2

); (19)

Now the oeÆients D

i

an be alulated from the sys-

tem of equations (16), (17), (18) and (19).

Fig. 7. The di�erenes �T

j

(T ) between alulated Eq.(11)

and experimental results for sensors 033, 035, 036, 038 and

041.

The adequay of three{points alibration method in

the region of 13.8 { 77.4 K (below T

2

) is illustrated in

Figs. 6 and 7 for 5 sensors using the above said exper-

imental data (yles 28{43). The values of �W

j

(T ) a-

ording to Eqs.(11) and (15) and the experimental data

are shown in Fig. 6 for sensors 033, 035, 036, 038 and

041. The di�erenes �T

j

(T ) between the alulated and

experimental results for the same sensors in the same

temperature region are shown in Fig.7. The analysis of

these data allowed to asertain that an auray better

than �0:04
 (�0:1 K above 45 K and �0:3 K below

45 K) was ahieved. The auray below 45 K an be

better than �0:1 K if the value of W

3

�W



(T

3

) is small

(sensors 035, 036 and 038 for example). For this reason

it is preferable to lassify the sensors into 2{3 groups in

aordane with their residual resistane |W

3

when in-

dustrial quantities of sensors has to be alibrated. Every

group of sensors must possess its own referene funtion

| W



(T ). As said above, W (T ) funtion of any sensor

an be used as W



(T ) but the most suitable for this pur-

pose an be any sensor whose residual resistane | W

3
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is in the viinity of the statistially mean for the group.

It has to be alibrated preisely in the range 13.8{300 K.

Temperature Temperature

range, K steps, K

Below 16 0.5 { 1.0

16 { 25 1.0 { 2.0

25 { 90 2.0 { 2.5

90 { 120 5.0

120 { 260 10.0

265 { 275 2.5

Above 280 10.0

Table 3. Reommended steps between the temperature levels

for preise TPRTs alibration.

The preise alibration of TPRTs requires onsider-

ably more than 3 alibration points and an adequate

mathematial desription to ensure their maximum a-

uray. It was asertained that the steps between alibra-

tion temperature levels had to be as shown in Table 3.

These results were based on the �tting results desribed

in Setion 3. The appliation of larger steps did not al-

low sometimes to obtain smooth urves for higher power

polynomials.

V. CONCLUSIONS

The investigated thermometers were seleted at ran-

dom from di�erent series. Therefore we onsider that the

sensor stability results, the proposed alibration methods

and the mathematial desriptions of T (R) and R(T )

funtions are valid for all the TPRTs produed by PRI-

BOR Ltd as well as for the sensors manufatured under

analogous tehnologies.

The results on�rmed one more time that these sensors

an be used in the temperature range of 13.8{273.16 K

with the auray of �(5 � 6) mK after thermal sta-

bilization and preise alibration and allowed to realize

this possibility using the proposed mathematial desrip-

tions and alibration method. The alibration is valid for

at least 30 months (2.5 years) after their thermal stabi-

lization and probably more.

The proposed three{point alibration method allows

to apply them with the auray of �0:04
 (�0:1 K

above 45 K and �0:3 K below 45 K) for small quantities

of TPRTs. Their auray an be better (�0:1 K in the

whole range of 13.8{300 K) when industrial quantities of

sensors have to be alibrated.

The new developed least squares method is not speial-

ized and allows to make an adequate mathematial de-

sription of any experimental results in an ordinary poly-

nomial form. It ensures a higher physial authentiity of

the �tted urve in omparison with the onventional least

squares methods and the same results as OPEM [11℄ but

it possesses some indisputable advantages. For this rea-

son it an be reommended for pratie.
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ST��K�ST^ TA METODI KAL�BRUVANN� DE�KIH TERMOMETR�V NA

TONKIH PLATINOVIH PL�VKAH V �NTERVAL� 13.8{273.16 K

�. K. �eor��v, D. A. Dimitrov, A. L. Zahar�v

�nstitut f�ziki tverdogo t�la, Bolgars~ka akadem�� nauk

72, Car��radsko xose, 1784, Sof��, Bolgar��

St��k�st~ oporu termometr�v na tonkih metalevih pl�vkah, wo virobl� f�rma PR�BOR, dosl�d�uvali

qerez 30 m�s��v p�sl� Ýh temperaturnoÝ stab�l�za�Ý. Zaproponovano tritoqkovi� metod kal�bruvann� dl�

d�l�nki 18.8 K � 273.16 K. Viznaqeno optimal~n� umovi, neobh�dn� dl� adekvatnogo �ndiv�dual~nogo kal�b-

ruvann� dosl�d�enih sensor�v. Na p�dstav� ~ogo metodu zaproponovano matematiqn� opisi funk�� T (R) �

R(T ) m�� 13.8 K ta 273.16 K.
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