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The isotropi random walk of a partile with a onstant speed is onsidered in the d{dimensional

spae. This proess is desribed by the kineti equation whih has expliit solutions in terms of

quadratures or speial funtions only in the ases d = 1 and 2. For d > 2, the two redued

forms of the equation are used: the telegraph equation and the di�usion equation. The latter is

usually onsidered as a rougher approximation than the telegraph one. The numerial investigations

performed in this artile show that atually the situation is diametrially opposed: for d � 2 the

simple di�usion result turns out to be loser to the exat one than the more omplex solution of the

telegraph equation. The results are appliable to surfae transport and volume transport problem

and an be useful for desribing the haoti dynamis of a system in terms of random walks in the

phase spae.
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I. INTRODUCTION

As is noted in [1℄, the telegraph equation with the di-

mensionless time t having the form
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(1)

was written down by Lord Kelvin in onnetion with the

�rst transatlanti submarine telephone able [2℄. Then

it was revealed that Eq. (1) exatly desribes a one{

dimensional walk of a partile with a onstant speed

and with the random free path distributed aording

to the exponential law [3,4℄. Moreover, the telegraph

equation desribes the time{dependent distribution of

one of the oordinates of a partile walking isotropi-

ally in a three{dimensional spae [5{7℄ but this time

it gives an approximate solution of the problem known

as P

1

{approximation [8℄. In this ase, Eq. (1) is often

regarded as a better approximation than the di�usion

equation [9,10℄
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: (2)

It is really so in the one{dimensional ase when Eq. (1)

is fully equivalent to the Boltzman equation exatly de-

sribing the distribution of a walking partile.

If the partile starts its walk from the origin x = 0 at

the moment t = 0, then the distribution f(x; t) given by

the solution of Eq. (1) is di�erent from zero in the do-

main ��t < x < �t broadening linearly with time. The

x = ��t are points of the di�usion "wave" front beyond

f(x; t) = 0 beause the partile with the speed of a free

motion being equal to � an not reah the point x until

t � jxj=�.

However, when the dimension d > 1 the situa-

tion hanges. Now � means root-mean-square projetion

� =

p

V

2

x

of the veloity V on the x{axis [5℄ and

Eq. (1) gives the solution equal to zero beyond the inter-

val (��t; �t), while in reality the partile may be revealed

in the wider domain (�vt; vt), v = jVj. The two results

lead to the natural question: how aurate is the tele-

graph approximation (1) inside the interval as ompared

with the di�usion approximation (2)? The aim of this

artile is to answer the question.

II. THE PROBLEM STATEMENT

Let us de�ne the random walk problem with expo-

nential pausing time more exatly. Some partile walk-

ing in the d{dimensional spae with the onstant speed

v = 1 starts its motion from the origin of oordinates at

the time t = 0 in random diretion distributed isotropi-

ally over the whole solid angle so that the x{projetion

of the veloity has the probability density W

d

(v

x

) (see

App. A). The random time T up to the next sattering

is distributed aording to the density

p

T

(t) = e

�t

; 0 � t <1:

As a result of the ollision, the partile hanges its mo-

tion diretion and the new diretion is isotropially dis-

tributed again independently of the previous one; then

the proess is repeated.

�
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Let X(t) be a random value of one of the oordinates

of the walking partile at the time t under ondition

X(0) = 0:

Aording to the law of total probability

Probfx � X(t) < x+ dxg

= Probfx � X(t) < x+ dx j T � tgProbfT � tg

+Probfx � X(t) < x+ dx; T < tg: (3)

The �rst onditional probability desribes the unsat-

tered partile (X(t) = X

(0)

(t) = V

x

t). It is onneted to

the probability density W

d

(v

x

) via relation

Probfx � X(t) < x+ dx j T � tg

= Probfx=t � X

(0)

(t)=t < x=t+ dx=tg = W

d

(x=t)dx=t:

Taking into aount that

ProbfT � tg =

1

Z

t

e

��

d� = e

�t

and passing to distribution densities

p

d

(x; t) = Probfx � X(t) < x+ dxg=dx;

p

(0)

d

(x; t) = Probfx � X

(0)

(t) < x+ dxg=dx

= e

�t

W

d

(x=t)=t (4)

we rewrite Eq. (3) in the form

p

d

(x; t) = p

(0)

d

(x; t) + S

d

(x; t): (5)

Here, S

d

(x; t) is the ollision integral the expliit expres-

sion for whih an be obtained regarding X(t) as the

sum X

0

(T ) + X(t � T ) of two independent (by �xed

T < t) random variables with the densities W

d

(x=T )=T

and p

d

(x; t�T ) orrespondingly. Convoluting the densi-

ties and averaging over T leads to the following expres-

sion:

S

d

(x; t) =

t

Z

0

d�

�
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d

(�=� )=� ℄p

d

(x� �; t� � ): (6)

Colleting (4){(6) we arrive at the integral kineti equa-

tion being the basis for further analysis:

p

d

(x; t) = p

(0)
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(x; t)

+

t

Z
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Z
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(0)

d

(�; � )p

d

(x� �; t� � ): (7)

III. REDUCED EQUATIONS

It is onvenient for our purposes to rewrite equation

(7) in the Fourier{Laplae spae:

~p

d

(k; �) = ~p

(0)

d

(k; �)[1 + ~p

d

(k; �)℄; (8)

where

~p

d

(k; �) =

1

Z

0

dt e

��t

t

Z

�t

dx e

ikx

p

d

(x; t):

Equation (8) readily yields

~p

d
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(0)

d

(k; �)

1� ~p

(0)

d

(k; �)

:

The Fourier{Laplae transform of the unsattered par-

tile distribution is redued to the form

~p

(0)

d
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1

k

1

Z
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e

�(�+1)q=k

~
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d

(q) dq (9)

with

~

W

d

(q) = 2

1
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0

W

d
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x

) os(qv

x

) dv

x

= 2

d=2�1

�(d=2)J

d=2�1

(q)q

1�d=2

(10)

(see (A.9)). Substituting (10) into (9) gives

~p

(0)

d

(k; �) = F (1=2; 1; d=2;�k

2

=(�+ 1)

2

)=(� + 1); (11)

where

F (1=2; 1; d=2;�z) =

1

p

�

�

�

d

2

�

1

X

m=0

�(1=2 +m)

�(d=2 +m)

(�z)

m

is a hypergeometrial funtion [11℄. In partiular

~p

(0)

1

(k; �) =

� + 1

(�+ 1)

2

+ k

2

; (12)
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~p
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4
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:

IV. FROM THE TELEGRAPH TO THE

DIFFUSION EQUATION

It is readily seen that in the one{dimensional ase the

substitution of (12) in (8) leads to the equation

(�

2

+ �+ k

2

)~p

1

(k; �) = �+ 1: (13)

Let g

(�)

(x; t) be the solution of the telegraph equation

under initial onditions

g

(�)

(x; 0) = Æ(x)

and

[�g

(�)

(x; t)=�t℄

t=0

= 0:

Expliit expressions for g

(�)

(x; t) and its moments are

given in Appendix B. The Fourier{Laplae transform of

g

(�)

(x; t) obeys the equation

(�

2

+ � + �
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2

)~g

(�)

(k; �) = �+ 1; (14)

so the omparison of (13) with (14) yields

p

1

(x; t) = g

(1)

(x; t):

Thus, in the one{dimensional ase the kineti equation

(7) has exatly the same solution as the telegraph equa-

tion (1), they both are stritly equivalent.

In a spae with d > 1, the strit equivalene does not

take plae any more. Using the expansion of the funtion

1=F (1=2; 1; d=2;�z) in terms of z:

F (1=2; 1; d=2;�z)�

1

1� z=d

; z ! 0;

and setting this into (11) yields the asymptoti relation
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2

=d

; k! 0

and then

(�

2

+ � + k

2

=d)~p

T

d

(k; �) = � + 1:

This is the Fourier{Laplae transform of the equation
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= 0; t > 0 (15)

with the ondition

p

T

d

(x; 0) = Æ(x); [�p

T

d

(x; t)=�t℄

t=0

= 0;

where p

T

d

(x; t) denotes solution of the telegraph equation.

So

p

T

d

(x; t) = g

(�)

(x; t); (16)

where g

(�)

(x; t) is given by (B1) and

� = 1=

p

d: (17)

Aording to the Tauberian theorem [12℄ only the re-

gion of small � plays an essential role in forming the

solution of (15) at a large time. As a result we have

�~p

D

d

(k; �) = �(k

2

=d)~p

D

d

(k; �) + 1

whih is nothing but the Fourier{Laplae transform of

the ordinary di�usion equation

�p

D

d

(x; t)
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1

d
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(x; t)
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2

; p

D

d

(x; 0) = Æ(x) (18)

with the solution

p

D

d

(x; t) =

1

p

4�t=d

expf�x

2

=(4t=d)g: (19)

V. ANALYTICAL SOLUTIONS

Three types of equations desribing the proess of the

random walker with exponential pausing time are in-

trodued above: approximate the di�usion equation (18)

with the solution (19), the telegraph equation (15) that is

exat for d = 1, approximate for d � 2 and that has solu-

tion (16), and the kineti equation (7) exatly desribing

the proess for all d. We onsider here its solution.

As we saw above, in the one{dimensional ase

p

1

(x; t) = g

(1)

(x; t):
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In the two{dimensional ase the distribution density

p

2

(x; t) an be expressed through the two{variate den-

sity p

2

(x; y; t) as follows

p

2

(x; t) =

1

Z

�1

p

2

(x; y; t) dy: (20)

The density p

2

(x; y; t) is found in [13℄ and has the form

p

2

(x; y; t) = e

�t

�

Æ(r � t)

2�r

(21)

+

1

2�

p

t

2
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2
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�

p
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2

� r

2

�

H(t� r)

�

;

where r =

p

x

2

+ y

2

and

H(t) =

n

0; t < 0

1; t � 0

is the Heaviside funtion. Substitution of (21) into (20)

yields

p

2

(x; t) =

1

�

e

�t

(22)
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6

4

1

p

t

2
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p
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2

Z
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e
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2
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2
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p

(t

2

� x

2

) � �

2

3

7

5

:

In the three{dimensional ase the density p

3

(x; t) has a

form inluding a double integral of an osillating om-

plex funtion (see formula (17) from setion 7.4 of book

[8℄) and for this reason it is more diÆult for alula-

tions. It is more onvenient to use the moment method

well developed in the transport theory.

VI. SPATIAL MOMENTS METHOD

The spatial moment of the order 2k, k = 0; 1; 2; : : : is

de�ned by the integral

m

2k

(t) =

t

Z

�t

x

2k

p

d

(x; t)dx = 2

t

Z

0

x

2k

p

d

(x; t)dx:

The moments of odd orders are equal to zero beause of

the symmetry. It follows from (7) that the moments obey

the integral equation

m

2k

(t) = m

(0)

2k

(t) +

k

X

l=0

�

2k

2l

�

t

Z

0

m

(0)

2l

(� )m

2(k�l)

(t � � )d�:

Using the Laplae transformation

~m

2k

(�) =

1

Z

0

e

��t

m

2k

(t)dt

we arrive at the following reurrent relation

~m

2k

(�) =

8

>

<

>

:

�

�1

; k = 0;

(�+1)

2

�

2

~m

(0)

2

(�) ; k = 1;

(�+1)

2

�

2

~m

(0)

2k

(�) +

�+1

�

P

k�1

l=1

�

2k

2l

�

m

(0)

2l

(�)m

2(k�l)

(�) ; k � 2;

where (see (A.10))

~m

(0)

2k

(�) = 2

1

Z

0

dt e

�(�+1)t

t

2k

�

1

Z

0

v

2k

x

W

d

(v

x

)dv

x

=

�(2k + 1)�(d=2)�(k + 1=2)

p

��(k + d=2)(�+ 1)

2k+1

:

In partiular

~m

2

(�) =

2

d�

2

(� + 1)

; ~m

4

(�) =

(72�+ 24)d+ 48

(2 + d)d

2

�

3

(�+ 1)

3

and so on. On inverting the transforms by means of the residue theorem one obtains the momentsm

2k

(t). In partiular
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m

0

(t) = 1;

m

2

(t) =

2

d

[t� 1 + e

�t

℄; (23)

m

4

(t) =

12

(d+ 2)d

2

�

6(4� d)� 12t+ (d+ 2)t

2

� [6(4� d)� 6(d� 2)t � 2(d� 1)t

2

℄e

�t

	

:

The moments m

2

(t) and m

4

(t) onform to hr

2

i and hr

4

i

obtained in [1℄ (see formulas (29) and (35) there) beause

m

2k

(t) = hr

2k

ihV

2k

x

i

d

:

It is onvenient to pass from the x{distribution density

p

d

(x; t) to the � = x=t{distribution density

'

d

(�; t) � p

d

(t�; t)t; �1 � � � 1; (24)

with the moments

1

Z

�1

�

2k

'

d

(�; t) d� = �

2k

(t):

We use the moments for the reonstrution of the den-

sity (24) by means of a system of orthogonal on [�1; 1℄

polynomials f

m

(�), m = 0; 1; 2; : : :M :

'

d

(�; t) � '

(M)

d

(�; t) = w(�; t)

M

X

m=0

C

m

(t)f

m

(�): (25)

Here C

m

(t) is given by the expression

C

m

(t) =

1

Z

�1

f

m

(�)'

d

(�; t) d� (26)

following from the orthogonality of f

m

(�):

1

Z

�1

w(�; t)f

m

(�)f

n

(�) d� = Æ

mn

:

Substituting

f

m

(�) = a

0

+ a

1

� + : : :+ a

m

�

m

into (26) one an express C

m

(t) through the moments �

m

and reonstrut '

d

(�; t) by Eq. (25) (notie that �

m

= 0

for the odd values of m).

It is known that the loser the weight funtion w(�) to

the sought funtion of � the more e�etive the moment

method is, i.e. a lesser number of moments is needed for

the reonstrution of the funtion. To raise the e�etive-

ness we separate the time{axis into the domains: (0; t

�

)

and (t

�

;1), where t

�

is of the order 1, and use di�erent

polynomials in di�erent domains.

At small t, the unsattered partiles dominate and a-

ording to (4)

'

d

(�; t) � W

d

(�)

=

�(d=2)

p

��((d� 1)=2)

(1� �

2

)

(d�3)=2

; d � 2:

Therefore, it is reasonable to take here the Gegenbauer

(ultraspherial) polynomials

G

(�)

m

(�) =

1

�(�)

[m=2℄

X

k=0

(�1)

k

�(�+m� k)

k!(m � 2k)!

(2�)

m�2k

that have the weight funtion

w(�) = (1� �

2

)

��1=2

:

The symbol [m=2℄ denotes an integer part of m=2. As a

result we get for t < t

�

'

(M)

d

(�; t) = (1� �

2

)

��1=2

M

X

m=0

C

m

(t)G

(�)

m

(�); (27)

where

C

m

(t) =

m!(m + �)

�2

1�2�

�(�)

�(m+ 2�)

�

[m=2℄

X

k=0

(�1)

k

�(�+m� k)

k!(m � 2k)!

2

m�2k

�

m�2k

(t)

and � = d=2� 1.

At large t the di�usion regime arises

'

d

(�; t) �

1

p

2��

2

e

��

2

=(2�

2

)

: (28)

Hene, the Hermitian polynomials

H

m

(�) = m!

[m=2℄

X

k=0

(�1)

k

�

�2(m�k)

k!2

k

(m � 2k)!

�

m�2k

are more appropriate here sine their weight funtions

are just (28). In this ase

'

(M)

d

(�; t) =

1

p

2��

e

�

�

2

2�

2

M

X

m=0

C

m

(t)H

m

(�) (29)
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with

C

m

(t) =

[m=2℄

X

k=0

(�1)

k

�

2k

2

k

k!(m� 2k)!

�

m�2k

(t)

and

�

2

= �

2

(t):

The results of our alulations of '

d

(�; t), d = 3; 4; 5,

by formula (27) for t = 3 and by formula (29) for

t = 10; 30 and 100 are presented in Figs. 1{4. The re-

sults of the telegraph approximation and of the di�usion

approximations are shown there too.

VII. CONCLUSION

What did we expet to see from the omparison? Re-

member that

i) the di�usion equation is derived from the tele-

graph equation omitting the term with the seond time{

derivative (ompare (15) with (18));

ii) like the kineti solution the telegraph solution has

a di�usion front beyond whih the walking partile an-

not appear, whereas the di�usion solution strethes up

to in�nity at any time t;

iii) the seond moment of the telegraph solution ex-

atly oinides with the kineti solution at any time,

whereas the seond di�usion moment di�ers from the ex-

at one and oinides with it only in asymptoti t!1

(see (23), (B.4) and (17));

iv) in the one{dimensional ase (d = 1) the telegraph

equation gives the exat solution of the kineti problem

whereas the di�usion equation stays approximate.

Thus it was natural to expet for d � 2 the telegraph

equation to give the results that are more exat, i.e.

loser to the solution of the kineti equation than the

di�usion result.

However, the numerial results presented in Figs. 1{4

lead to quite opposite onlusion for d > 2. The solution

of the telegraph equation turns out to be farther from the

exat result than the solution of the di�usion equation.

The ause lies in the struture of the telegraph equa-

tion aording to whih the front of the distribution is

situated in the point 1=

p

d orresponding to the mean{

square{root veloity projetion on the x{axis, whereas

the exat position of the front is t. Thus the higher the

dimension d the more the two positions di�er.

To obtain an approximate solution loser to the exat

solution than di�usion approximation one have to use

P

N

{approximations of higher orders (N > 1) whih will

be investigated in our next works.

Fig. 1. Distribution density '

d

(�; t) = p

d

(t�; t)t for di�er-

ent t. Filled irles present the solution of the kineti equation

(7) obtained by (22) for d = 2; the dashed lines are the so-

lution of the di�usion equation (18) and the solid lines show

the solution of the telegraph equation. The vertial arrows in-

diate the position of the singularity in (16) oiniding with

the front positions.

Fig. 2. Distribution density '

d

(�; t) = p

d

(t�; t)t for di�er-

ent t. Filled irles present the solution of kineti equation (7)

reonstruted from the moments �

0

; �

2

; : : : ; �

10

, for d = 3;

the dashed lines are the solution of the di�usion equation

(18) and the solid lines show the solution of the telegraph

equation. The vertial arrows indiate the position of the sin-

gularity in (16) oiniding with the front positions.
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Fig. 3. Same as Fig. 2 for d = 4.

Fig. 4. Same as Fig. 2 for d = 5.

ACKNOWLEDGEMENTS

We are grateful to G.Gusarov for preparing the

manusript.

APPENDIX A. CALCULATION OF W

d

(v

x

)

AND hV

2k

x

i

d

The two known integrals

Z

R

d

f(x

2

) dx =

2�

d=2

�(d=2)

1

Z

0

t

d�1

f(t

2

) dt (A.1)

and

Z

R

d

f(x

2

)h(ax) dx =

2�

(d�1)=2

�((d� 1)=2)

�

1

Z

0

dtt

d�1

f(t

2

)

1

Z

�1

h(jajt�)(1� �

2

)

d�3

2

d� (A.2)

will be used below.

The distribution density p

d

(x) of the unit isotropi d{

dimensional vetor is written as follows:

p

d

(x) = C

d

Æ(x

2

� 1); (A.3)

where Æ(z) is the one{dimensional Dira's funtion and

C

d

is a onstant found from normalization

Z

R

d

p

d

(x) dx = 1: (A.4)

On substituting (A.3) in (A.4) and using (A.1) we obtain

C

d

=

�(d=2)

�

d=2

: (A.5)

It is evident that for d = 1

W

1

(v

x

) = (1=2)[Æ(v

x

� 1) + Æ(v

x

+ 1)℄:

For d > 1 we alulate the distribution funtion

F

d

(v

x

) =

v

x

Z

�1

W

d

(v

0

x

) dv

0

x

: (A.6)

Aording to its de�nition

F

d

(v

x

) =

Z

R

d

p

d

(x)H(v

x

� ex) dx; (A.7)

where e is the unit vetor direted along one of the axes.

Setting (A.3) with (A.5) into (A.7) and using (A.2) we

have got
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F

d

(v

x

) =

�(d=2)

p

�� ((d� 1)=2)

1

Z

0

d� �

(d�1)=2

(A.8)

�

1

Z

�1

Æ(� � 1)H(v

x

�

p

��)(1 � �

2

)

(d�3)=2

dv

x

=

�(d=2)

p

�� ((d� 1)=2)

1

Z

�1

H(v

x

� �)(1� �

2

)

(d�3)=2

dv

x

:

Di�erentiating (A.8) with respet to v

x

and taking into

aount (A.6) and the relation

dH(t)=dt = Æ(t);

we get

W

d

(v

x

) =

�(d=2)

p

�� ((d� 1)=2)

(1� v

2

x

)

(d�3)=2

(A.9)

and

hV

2k

x

i

d

=

�(d=2)

p

�� ((d� 1)=2)

2

1

Z

0

v

2k

x

(1� v

2

x

)

(d�3)=2

dv

x

=

�(d=2)�(k+ 1=2)

p

��(k + d=2)

: (A.10)

APPENDIX B. SOLUTION OF THE

TELEGRAPH EQUATION AND ITS MOMENTS

We denoted above by g

(�)

(x; t) the solution of the tele-

graph equation (1) satisfying the initial onditions

g

(�)

(x; 0) = Æ(x); [�g

(�)

(x; t)=�t℄

t=0

= 0

and the onditions at in�nity

lim

jxj!1

g

(�)

(x; t) = 0;

lim

jxj!1

[�g

(�)

(x; t)=�x℄ = 0:

The solution di�ers from zero only on the segment

[��t; �t℄ where it has the form

g

(�)

(x; t) =

1

2

[Æ(x� �t) + Æ(x + �t)℄e

�t=2

+

1

4�

h

I

0

(

p

(t

2

� x

2

=�

2

)=4)

+tI

1

(

p

(t

2

� x

2

=�

2

)=4)

.

p

t

2

� x

2

=�

2

i

e

�t=2

: (B.1)

Here I

0

and I

1

stand for the Bessel funtions of imagi-

nary argument:

I

�

(z) = (z=2)

�

1

X

k=0

(z=2)

2k

k!�(�+ k + 1)

: (B.2)

Even moments

m

(�)

2k

(t) = 2

�t

Z

��t

x

2k

g

(�)

(x; t) dx

an be alulated by means of (B.2) and of the integral

t

Z

0

(t

2

� z

2

)

k

z

2n

dz =

�(n+ 1=2)�(k+ 1)

2�(n+ k + 3=2)

t

1+2(k+n)

:

They have the form

m

(�)

2k

(t) = (2�)

2k

t

k+1=2

e

�t=2

�(k + 1=2)[I

k+1=2

(t=2)

+ I

k�1=2

(t=2)℄=2: (B.3)

In partiular

m

(�)

0

(t) = 1;

m

(�)

2

(t) = 2�

2

[t� 1 + e

�t

℄ � 2�

2

t; t!1: (B.4)

m

(�)

4

(t) = 12�

4

[6� 4t+ t

2

� 2(3 + t)e

�t

℄:

At large t

g

(�)

(x; t) �

1

2�

p

�t

e

�x

2

=(4�

2

t)

(B.5)

and the moments (B.3) take the asymptotial form

m

(�)

2k

(t) �

(2�)

2k

p

�

�(k + 1=2)t

k

: (B.6)

In partiular

m

(�)

2

(t) � 2�

2

t (B.7)

and

m

(�)

4

(t) � 12�

4

t

2

: (B:8)

The results (B.5){(B.8) relate to the di�usive approxi-

mation based on the di�usion equation (2).
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TELEGRAFNE R�VN�NN� V ZADAQ� PRO VIPADKOV� BLUKANN�

V. V. Uqa�k�n, V. V. Sanko

Ul~�novs~ki� der�avni� un�versitet, �nstitut teoretiqnoÝ f�ziki,

Ul~�novs~k, 432700, Ros��

e-mail: uhaikin�sv.uven.ru

Rozgl�nuto �zotropne vipadkove blukann� qastinki z� stalo� xvidk�st� v d{vim�rnomu prostor�. Ce�

proes opisani� k�netiqnim r�vn�nn�m, wo rozv'�zut~s� v term�nah kvadratur qi spe��l~nih funk��

lixe pri d = 1 ta 2. Dl� d > 2 vikoristovu�t~s� dv� skoroqen� formi r�vn�nn� | telegrafne r�vn�nn�

ta r�vn�nn� difuz�Ý. Druge z nih zviqa�no vva�a�t~ g�rxim nabli�enn�m, n�� perxe. Proveden� qis-

lov� dosl�d�enn� naspravd� vkazu�t~ na protile�nu situa��: dl� d � 2 prosti� rezul~tat difuz��nogo

r�vn�nn� vi�vl�t~s� bli�qim do toqnogo rezul~tatu, n�� skladn�xi� rezul~tat telegrafnogo r�vn�nn�.

Otriman� rezul~tati zastosovan� do zadaq� poverhnevogo ta ob'mnogo perenosu. Voni pridatn� dl� opisu

haotiqnoÝ dinam�ki sistemi v term�nah vipadkovih blukan~ u fazovomu prostor�.

379


