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Some interesting features of the large scale structure formation in the model of the Universe with
the cosmological constant are discussed. In the framework of such a model we consider the evolution
of small scalar perturbations of metrics, density and velocity of the matter for the dust-like medium.

On the basis of the corresponding solutions of the Einstein equations the analysis of the long
distance correlations of clusters of galaxies, contribution of the integrated Sachs—Wolfe (ISW) effect
into microwave background temperature fluctuations and the Great Attractor problem in a non-
zero A cosmology is carried out. It is shown that the data on long distance correlations in spatial
distribution of clusters of galaxies are well explained in the framework of such models when Q4 >
0.5. On the other hand, the possibility of a nearly convergent flow of the galaxies in the neighborhood
of the Local Group to be generated by the gravitational action of single large scale matter density
perturbation is even more insignificant in the A 7 0 case in comparison with the models without A.
It is shown also, that the main contribution to the microwave background temperature fluctuations
due to ISW effect is formed at 0.05 < z < 1. Its value for models with different €24 1s estimated.
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I. INTRODUCTION

The cosmological constant has a physical interpreta-
tion of the energy density of zero-point quantum vacuum
fluctuations of the fundamental fields. In cosmology it
can be considered as a specific kind of non-baryonic dark
matter, that is not clustered at all the scales and has a
negative effective pressure. Actually, there is no possibil-
ity for the direct detection of A, but the growing amount
of indirect evidences suggests the existence of the A-term.

Non-zero A cosmological models have been in the cen-
tre of attention in the last few years due to their abil-
ity to resolve some problems of the standard cold dark
matter (sSCDM) and the standard mixed dark matter
(sSMDM) scenarios [1,13,22]. Including A > 0 into cos-
mology allows to keep the inflation paradigm ©Q = 1
and avoid any contradiction between the age of the
oldest stars in globular clusters [8] and the age of the
Universe for the present value of the Hubble constant
Hy > 50 kms™'Mpc™!, h = MIW > 0.5. Also
such a class of cosmological models explains the low val-
ues of the clustered matter fraction, obtained by most
of the dynamical estimates, and fits the whole set of the
observable data much better (see for review [19]).

Furthermore, current experiments on high redshift
SNTa [18] directly indicate a positive cosmological con-
stant, and can be considered as an independent confir-
mation. Also the data on gravitational lensing [9] and
current analyses of the cosmic microwave background
(CMB) temperature fluctuations [23,16] provide us with
additional evidence. Thus, the specific features of A £ 0
models must be of great interest for cosmologists.

The most important problem in modern cosmology
is to determine the cosmological model (or the class
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of cosmological models) whose predictions agree with
the whole set of the available observational data in the
best way. The so-called standard scenario imply that the
observable large scale structures of the Universe have
been formed via the growth of small primordial inhomo-
geneities due to the gravitational instability. The phys-
ical properties of initial random field of density fluctu-
ations are defined by the physics of very early epochs
in the evolution of the Universe, and described by pri-
mordial power spectrum. Most of modern inflationary
scenarios predict the primordial power spectrum to be
scale-free P(k) = A k™ with n ~ 1. Further evolution
of perturbations is determined by the global character-
istics of the Universe (i. e. curvature, Hubble constant,
presence of cosmological constant) as well as by the ma-
terial content of the Universe (i. e. fractions of baryons,
hot and cold dark matter, numbers of species of mas-
sive and massless neutrinos). In such a framework the
characteristics of the large scale structure can be precal-
culated and confronted to observations, and conclusions
about the likelithood of a certain cosmological model with
a particular set of parameters can be made (see [17,22]
and references therein).

This paper is concerned with the consideration of some
features of the cosmological models with non-zero cos-
mological term. The outline of the paper is as follows:
in section IT we give the solutions of the linearized Ein-
stein equations for the fluctuations of the matter den-
sity, velocity and gravitational potential in the longitu-
dinal Newtonian gauge for dust-like medium with the
cosmological constant. Also in this section a two-point
correlation function of a cluster of galaxies is calculated
and compared with the observable one. Section III is de-
voted to the analysis of the influence of the cosmological
constant onto microwave background anisotropy. In sec-
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tion IV we analyse the Great Attractor problem in the
A # 0 cosmology. The conclusions are given in section V.

II. EVOLUTION OF PERTURBATIONS. POWER
SPECTRA AND LONG DISTANCE
CORRELATIONS OF CLUSTERS

Let us consider the evolution of small scalar pertur-
bations in the framework of a simple dust-like A # 0
model. For comparing theoretical predictions and observ-
able data on the large scale structure of the Universe
more convenient gauge to use for scalar perturbations is
Newtonian (longitudinal) one with the line element

ds® = gikdxidxk

= (142¢/cH)cdt* — a(t)*(1 - 2¢/cz)5a@d1‘°‘d1‘ﬁ, (1)

where i, k =0,1,2,3, «, 8 = 1,2, 3, and ¢ plays the role
of the gravitational potential in the Newtonian limit.

Einstein equations for flat, unperturbed A # 0 Uni-
verse give the following solution for the evolution of the
scale factor [13,19]

Qn \* 2 (3Hoty/T—Qp
a(t) = shs | ————— ]|
1—Qn 2
where €,, 1is the density parameter at present

(@ = 552 0(10).

The age of the Universe in such a model for the same
present Hubble constant is larger than in the A = 0 case
by the factor

1 | 14+ V1= S

1.
Wi-t,. - JI-Q.

[(t =

The age of the Universe predicted by the model for
the currently measured values of Hubble constant Hy >

50 km s~' Mpc™! agrees with the data on the age of
globular clusters tg = 13 + 3 Gyrs [8] for Q,,, < 1.

From FEinstein equations in Newtonian gauge, with
energy-momentum tensor for the dust-like medium 7 =
¢?pU; U* , we have obtained solutions in Fourier space for
the matter density perturbations dp/p, 3-velocity JV¢
and gravitational potential ¢, (growing mode only):

) 203 k?
% k1) = - 2,
p 3H
o o QC'kaa -
oV (k’,t) = —ik 3Hng Ky, (2)

bk, 1) = Ch K,

where C} is a constant of integration, a = a(t) is the
scale factor in unperturbed A # 0 model.

5 t
K, =3 (1 — d/a2/0 adt) ,

t
(a/a® — d/aa)/ adt, (0< K,, Ky <1)
0

Lol Ot

Ky

are suppressing factors for density and velocity pertur-
bations correspondingly. For the models without the cos-
mological constant both factors are equal to unity.

Here ¢(k,t) and %"(k’, t) are gauge-invariant values @ 4
and ¢, respectively, as introduced by Bardeen [2]. The
proper solution for the density perturbations in the New-
tonian (longitudinal) gauge, gauge-invariant value ¢, was
transformed to the ¢, using relations from [2]. The anal-
ogous solutions in synchronous gauge was obtained and
analyzed in details by [14]. At the early epoch z > z4 > 0

1/3
for Q,, < 0.5, where z = (%) — 1 1s the redshift

at the moment of equality of matter density to cosmolog-
ical constant density, the suppressing factors were close
to unity. At later epoch z < zp they decrease fast as z
goes to 0 or £y, decreases (see Table 1).

Q| K, | Ky | K2 | K2 | K2

K2 K2 | K2 | Ko | Ky | Ky

0.7010.93]0.77|1.00{1.02

1.02{1.02

1.01{0.99(1.30]1.09]0.91

0.55]0.89]0.64|1.06|1.07

1.06]1.05

1.02(1.00|1.56(1.16|0.86

0.35]0.8110.45|1.28]1.25

1.21(1.18

1.08|1.01|2.22]1.31]0.78

0.25]0.75]0.35|1.51|1.43

1.35(1.29

1.13|1.03|2.86]|1.43(0.71

Table 1. Suppressing factors at z = 0, ISW and GA amplification coefficients for different Q,,.

The approximations for the suppressing factors K, and
Ky are given also by [7,15]. As we can see, in all the
models K,/Q,, > 1 and Ky /Q,, > 1, so that the ampli-
tudes of density and velocity perturbations will be higher

in A # 0 models in comparison with A = 0 ones for the
same C}, (normalization to CMB quadrupole). According
to these solutions power spectra for the density, velocity
and potential perturbations are as follows:
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o B
By (k) = ARV T(H)
H? K2
Pyk) =22 v
‘]( ) A72 p( ) ]ng ’
9H2 5
Py(k) = g Lo (k)

where T'(k) is a transfer function, A is a constant of
normalization (CyCy = 9HAT?(k)/4k3). The power
spectra normalized to 4-year COBE data [5] for differ-
ent value of €,,, and scale-invariant primordial spectrum
with n = 1 are shown in Fig. 1. We have used the nor-
malization procedure proposed by [4].
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Fig. 1. The power spectra of density perturbations nor-
malized to 4-year COBE data for MDM+A models with
Ho=50 km s~! Mpc™!, Qr/Qm = 0.2 (Qg is a content of hot
dark matter), 1 species of massive and 2 species of massless
neutrinos, and different ©4: 0 (solid line), 0.3 (dotted), 0.45
(short dashed), 0.65 (long dashed), 0.75 (dot-short dashed).

The transfer functions used here for different models
were taken from [22]. The horizontal shift of the maxi-
mum of power spectra toward large scales when €, de-
creases (horizon scale at the increasing equality epoch)
and the growth of amplitude at larger than horizon scales
can resolve the problem of the positive long distance
(> 50h=! Mpc) correlations in a spatial distribution of
clusters of galaxies. The correlation function of clusters
is calculated as

b2

= o2

sin kr

Eee(r) /0 h P(k)kzwz(ch)Tdk,

where W(kR.) is a window function, which filters the
structures of scales larger than R. out of the density
field, b. is their biasing parameter, which takes into ac-
count the statistical correlation of peaks above the given
threshold [3], and this correlation function matches very

well observational data for Q,,,h ~ 0.15 — 0.30 (Fig. 2).
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Fig. 2. The cluster-cluster correlation functions for spectra
from Fig. 1, along with observational data points, given by
[12]. Solid straight line represents the well-known approxima-

tion & = (r/ro)_l'g.

III. AT/T ANISOTROPY: THE LOCALIZATION
OF CONTRIBUTION OF ISW EFFECT

Now we shall use these solutions for the analysis
of temperature fluctuations of CMB radiation in A #
0 models. The observable temperature fluctuations of
CMB radiation can be connected with density, velocity
and metrics perturbations at the last scattering surface
by means of integrating geodesic equation in a fashion
similar to classical paper [20] and taking into considera-
tion adiabatic process:

5T 1
T(n) = §¢(nRh)
4o [0 Lop

*(w))dw + a6V (nRy) + = —2(nRy),
G e Ve @) + 5 PRy

where n is unit vector, w(n) is affine parameter along
geodesic curve which begins from observer and finishes in
the emission point, 7 is conformal time (dy = ¢ dt/a), Ry
is a distance to the last-scattering surface. The first term
is well known Sachs-Wolfe effect (SW), the second is in-
tegrated Sachs—Wolfe (ISW), essential for % #+ 0 only,
the third 1s Doppler one and the last 1s adiabatic one. At
a large angular scale (~ 10°), where such anisotropy has
been registered by COBE [5], SW and ISW effects dom-
inate. For this case AT/T in expansion into spherical
harmonics will be

AT\  20+1HZ [ P,(k)
=) 2t -0 i (k
(T )l 8r2 oA /0 2 {J’( Bn)

Nrec d[( ) 2
46 [ ko — ) o] ak, ()
7o d7]
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where j; is spherical Bessel function of {-th order, 7pc. 18
the conformal time of recombination, 7y is the present
conformal time. It also can be expressed in a symbolic
form:

(AT/T)? = SW  SW + 2% SW x ISW + ISW % [SW.

It 1s clear that df”
7

uli are maximal at n = 5y (physical factor). It means
that the main contribution into the monopole ISW term
(I = 0) is being formed now. But higher harmonics
(I > 1) are formed between zp. and z = 0, because
Ji>1 (k(no —n)) = 0 when n — 5o (the geometrical fac-
to_r). A question arises: where at the time scale 1s the
main contribution of ISW effect to angular power spec-
trum formed and how does its localization depend on £2,,,
and [7 In order to answer this question we have altered
the order of integration in (3) and calculated integrand
(function of contribution) as a function of time for differ-
ent €,,, and /. The results are shown in Fig. 3 and Fig. 4,
for primordial spectrum P, (k) = A k with arbitrary nor-
malization.
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Fig. 3. Contribution function of the ISW effect against z
for quadrupole in models with different €2,,.
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Fig. 4. Localization of contribution function of ISW on z
for different harmonics.

As we can see, the maximum of contribution function
shifts to an earlier epoch when either Q4 = 1 — €, or
[ is growing. The main contribution to AT/T caused
by the cosmological constant localized in the redshift
range z ~ 0.05 — 1 and this localization does not de-
pend strongly on £2,,, because it is caused mainly by the
geometrical factor.

The coefficients of AT/T amplification owing to the
cosmological constant are defined as K7 = (AT—T)lZ (SW+
ISW)/ (AT—T)lZ (SW) and presented in Table 1 for some
harmonics. The ISW contribution to quadrupole is
rapidly growing with the 4 increase (from 6% for
Q= 0.55 to 50% for £, = 0.25). Tt is more essential
for lower harmonics and lower €,,. K12 1s not sensible to
the transfer function: after the transfer function has been
substituted by 1 in (3), K} arises 6% for [ = 20, 4% for
[ =10 and only 1% for [ = 2 in model with Q,, = 0.25.

IV. GREAT ATTRACTOR-LIKE
FLUCTUATIONS

Let us appeal to the Great Attractor (GA) problem
in A # 0 cosmology. The core of problem is an explana-
tion of a roughly convergent flow in the neighborhood of
the Local Group (LG) of galaxies (> 50h~! Mpc) with
increasing velocity toward the centre which is placed at
~ 45h~! Mpc from us. The peculiar velocity of LG is
~ 535 km/s (see [6,10,24] and references therein). If we
introduce the potential for a peculiar velocity field, such
as was proposed by [6] 6V (x) = —VUp(x) and use solu-
tions (2) then amplitudes of matter density perturbation
and gravitational potential are given by:

Ap —12 Ky

—(x)=Hy VU

() = Hy V7 Uo () 3t
3 K

qf)(X) = §H0U0(X)Qmﬁ

The velocity potential is provided by observational pe-
culiar velocity field and does not depend on the model.
So, in A # 0 models gravitational potential will be less
and density perturbation higher than in A = 0 models
with the same Uy and Hyp. It can be understood easily.
As the source of ¢(x) is Ap(x), which in A # 0 mod-
els is lesser by QmII((—";, so that ¢(x) lessens by the same
factor. Thus, the same peculiar velocity potential Upy(x)
in A # 0 models is generated by lower Ap(x) and ¢(x),
because Hubble constant for A # 0 was lower in the
past in comparison with A = 0: Hy—g = Ho(1 + 2)3/2,
Hazo = Ho\/Qm(l + 2)3 4+ Q4. Since the power spec-
trum of density perturbations decreases at these scales
with decreasing €2, the probability of realizing such fluc-
tuations will decrease too. If GA is not a unique object
similar fluctuations should be seen at the last scatter-
ing surface and they must have generated hot and cold
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spots in the CMB sky. The scale of GA at the recom-
bination epoch 1s close to the acoustic horizon so that
the angular size of such spots is in the same range where
the first acoustic peak is expected to be. In order to cal-
culate the amplitudes or profiles of such spots one must
recalculate velocity, density and gravitational potential
perturbations at z = zpec. Using of solutions (2) it can
be obtained that

U(X) _ UO(X) \/Qm
V Zrec +1 I{V ’
3 Qi
=-H
¢(x) 7 olo(x) Ty
ﬂ(x) _ 1 V() 1
P _HO Zrec‘i‘l[\jv.

In comparison with the €,, = 1 models, at LSS
the velocity potential U is higher by the factor Ky =
V0 /Ky, ¢ is lesser by the factor Ky = ©,,/Ky and
density perturbations are higher by the factor Ko =
1/Kv (see Table 1). Therefore, the GA-like fluctuations
will generate more contrast hot and cold spots because at
the GA scale (full width at half maximum is ~ 30') the
main contribution is given by Doppler and Silk effects.
We have calculated profiles for such spots in the Q,,, =1
model and shown that their amplitudes are < 1.4 10~*
for the GA precursors [10]. The rms AT/T at this scale,
calculated by means of the analytical approach by [11],

is <(AT—T)2>1/2 = 2.8 1077 (here and below we suppose
the baryon content €2, = 0.06 and cold dark matter con-
tent Qcpm = 1 — Q4 — Q). An analogous calculation
for Q,, = 0.3 model gives the amplitude < 2.2 10~%.
Here it was taken into account that at the scale of GA

(k ~ 0.03) the damping factor D(k) ~ 0.75 [11] and the

amplitude of baryon density perturbations is lower by
the factor ~ 0.4 in comparison with the CDM compo-
nent (estimated using the code from [21]). The estima-
tion of AT/T, caused by Great Attractor and measured
at LSS carried out by [24] for Q,,, = 0.3 is close to our
own estimation. The rms AT/T at this scale in such a
model is 3.3 107®. So, the hot and cold spots caused by
GA are more rare in A # 0 as compared with the A =0
case. It means that the possibility of generating a large
scale peculiar velocity field with the value ~ 540 km/s
for Local Group via gravitational action of the large scale
matter density perturbation is even more insignificant in

the A # 0 models.

V. CONCLUSION

Changes in the form and amplitude of the initial power
spectra in A > 0 cosmology along with the best features
of sSCDM and/or sMDM scenario allow us to achieve bet-
ter agreement between the theoretical predictions and
observable data on a large scale structure of the Uni-
verse (for more details see [17,22]).

The main contribution of the ISW effect to <(AT—T)2>
is formed at the redshift range 0.05-1. It is maximal for
lower spherical garmonics and increases fast when €,,, de-
creases (from 6% for 2, = 0.55 to 50% for £2,,, = 0.25).

The GA like fluctuations which are probably respon-
sible for the convergent flow with V' > 500 km/s in the
bulk of ~ 50A~! Mpc in these models are less possible
than in the models without A. Taking into account the
positive long distance correlation in these models, the ob-
servable disturbance of the uniform Hubble flow in the
vicinity of Local Group is suggested to be a result of su-
perposition of gravitational action of a few extended low
amplitude density perturbations.
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BEJINKOMACHITABHI CTPYKTYPU TA IHTETPOBAHUU EGEKT CAKCA-BOJIb®A
B MOJIEJISIX I3 KOCMOJIOTTYHOIO IIOCTIMHOIO

C. Anynesny, b. HoBocamnnii
Acmporomiuna obcepsamopia JIveiecvroeo naytonaivrozo yrnisepcumemy iment learna Ppanxa
eyn. Kupuaa i Medodia, 8, 79005, Jlvets, YVxpaina

Kocmosoriuni Momestl 3 HeHy TbOBOIO A-KOHCTAHTOI OCTAHHIME POKAMU IIPUBEPHYJIN YBAry IOCIIIHUKIB MOXK-
JINBICTIO PO3B’f3aTH NesiKi IpobaeMu cTaHIapTHIX Momesieil 3 xosionHo0 Ta 3Milranow reMuor Marepiero (sCDM
ta sMDM). Brutouenns B momens A > 0 mae 3Mory He NOPYULYyBaTH CTAHIAPTHOTO IIPHILYIIeHHHA IHIIAMIHIX
Teopiit 2 = 1 1 YHUKHYTH IPOTHPIYYA MK BIKOM HalcTaplIMX 3ip y KyJIACTHX CKYIMYEeHHAX Ta BIKOM BcecBiry
I CYYacHHX 3HadeHb HocTifiol ['a66ma Ho > 50 kM ¢! Mok ™. ¥ Mexax Takoro Kjacy Mmomesefi moGpe mmo-
ACHIOIOTHCA HU3BKI 3HaUYeHHsI HOJ1 KJacTepr30BaHol Marepil, AKl BAILIMBAIOTH 3 OLIBIIOCTH IUHAMIYHUX OITIHOK,
1 B 3araJibHOMY IlepeabadeHHsa TaKUX Mofesel JIMire BIIIOBIIAOTh YCili CYKYIIHOCTI CIIOCTEpeKyBaHUX HaHUX.
I obinbIre, ocTaHHl eKCHEepUMEHTH 3 BU3HadYeHHs Blacramed 3a HamuoBumm la mpsamo BKasyioTh Ha HadABHICTH
JOJIATHOI KOCMOJIOTIYHOI TOCTIHHOI 1 iX MOXKHAa PO3TJIAIATA AK He3aJlexXHe marBepmKenHda A > 0.

V mifi mparii o6roBopeHo IedKi aciekTH (popMyBaHH#A BesImKoMacHiTabHol cTpyKTypu BcecBiTy B Momenasix i3
KOCMOJIOTIYHOIO KOHCTaHTOK. BuBdYeHo 0cOBIMBOCTI €BOJIIOLN]I CKaJAAPHUX 306ypeHb, CHEeKTpP MOTYKHOCTH T'y CTHHHI
TakKuX 30ypeHb y oMy KJjacl mofdeseit. Teopermuno obunciena KopesriiiHa (pyHKINA CKYIYeHb rajJakTuK 106pe
Y3rOMKYETHCA 31 CriocTepeyBaHoro mpu 24 > 0.5.

[IpoanasizoBaHO MACUIEHHT HU3HKIUX TapPMOHIK y (PJIIOKTYaIAX TeMIIepaTypr PeJIIKTOBOI0 (pOHOBOTO BHIIPO-
MIHIOBAHHsI BHACJIAOK IPUCYTHOCTH KOCMOJIOTIYHOI MOCTIHHOI Ta BU3HAYEHO, IO OCHOBHUII BHECOK y INICHJTCHHS
dopmyeTbcsa B midnasoHl yepBoHUX 3MimleHb 0.05 < z < 1.

Takoxk BUABIIEHO, 10 IMOBIPHICTL yTBOPEHHS TaKOro ABUIIA, AK Beswkuit ArpakTop (Maitke 36ixHuil moTik
raJIaKTHK [0 LEHTPY, L0 3HAXOOUThCH Ha Bimcrani ~ 50h ™! Muk Bin mamrol lajakTUKK), SIK pe3yJbTaT I'paBiTa-
IMAHOTO MPUTATAHHA BeJIMKoMacuiTabHol (hJIFOKTyalli I'yCTHHI B MOIEIAX 13 KOCMOJIOTIYHOIO MOCTIIiHOI0, MeHIIa,
HIXK ¥ Momeax 3 A = 0.
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