ЕНЕРГІЯ ОСНОВНОГО СТАНУ Й ПЕРЕХІД МЕТАЛ-ДІЕЛЕКТРИК У МОДЕЛІ ВУЗЬКОЗОННОГО ПАРАМАГНЕТИКА

Л. Д. Дідух, Ю. Л. Скоренький

Тернопільський державний технічний університет імені І. Пулюя, кафедра фізики вул. Руська, 56, Тернопіль, 46001, Україна E-mail: didukh@tu.edu.te.ua

(Отримано 30 серпня 2000 р.; в остаточному вигляді — 30 березня 2001 р.)

Досліджено енертію основного стану та перехід метал-діелектрик у моделі вузькозонного парамагнетика з нееквівалентними габбардівськими підзонами при половинному заповненні зони та нульовій температурі. Отримано одночастинковий енертетичний спектр, критерій переходу з металічного в діелектричний стан, залежності концентрації носіїв струму та енертії системи від параметрів системи.

Ключові слова: вузькі зони провідности, нееквівалентні габбардівські підзони, енерґія основного стану, перехід метал-діелектрик.

PACS number(s): 71.10.Fd, 71.30.+h, 71.27.+a

I. ВСТУП

Значна увага, що її приділяють в останні 25-30 років дослідженню матеріялів з вузькими енерґетичними зонами (прикладом яких є оксиди, сульфіди та селеніди перехідних металів), зумовлена їхніми унікальними фізичними властивостями. Відкриття високотемпературної надпровідности ще більше підсилило інтерес до цього класу сполук.

Тепер загальноприйнято, що властивості цих матеріялів (такі, наприклад, як перехід діелектрикметал) зумовлені міжелектронними кореляціями. Базовими тут є модель Габбарда [1] (див. огляди [2,3]) та її узагальнення.

Узагальнення моделі Габбарда врахуванням матричних елементів кулонівської взаємодії, недіягональних за вузлами ґратки, запропоноване в працях [4-6], дозволяє вивчати ефекти міжелектронних кореляцій, які залишалися за межами застосовности моделі Габбарда, зокрема ефекти електрон-діркової асиметрії, зумовленої врахуванням корельованого переносу електронів [7-14].

Уперше на важливість урахування корельованого переносу електронів при описі вузькозонних матеріялів було вказано в праці [4], зокрема було показано, що у випадку сильних і помірних внутрішньоатомних взаємодій корельований перенос приводить до електрон-діркової асиметрії [6,15] (у цьому зв'язку див. також праці [4,5,8,14]) та перенормування ширин енергетичних зон. Дослідженню вузькозонної моделі, що враховує корельований перенос електронів, була присвячена низка праць [6,15-19], де, зокрема, було вивчено перехід метал-діелектрик (ПМД), поведінку концентрації полярних станів (дірок чи двійок), хемічного потенціялу, енергетичної щілини в одноелектронному енергетичному спектрі. Це дозволило якісно пояснити механізм переходу з металічного в діелектричний стан при зростанні температури та з діелектричного в металічний стан при прикладанні зовнішнього тиску, особливості поведінки енергії зв'язку, концентраційну залежність енергії активації, спостережувані в деяких вузькозонних матеріялах. При цьому для знаходження одноелектронної функції Ґріна та енерг'етичного спектра застосовували узагальнене наближення Гартрі-Фока [20] у формі, запропонованій для моделі Габбарда в працях [6,21]. Поліпшене наближення, запропоноване в праці [22], дозволяє повніше описати електронні кореляції для сильних та помірних внутрішньоатомних взаємодій (зокрема в ділянці ПМД).

Ця праця присвячена застосуванню наближення [22] для дослідження основного стану моделі вузькозонного матеріялу з електрон-дірковою асиметрією. У розділі 2 знайдено одноелектронну функцію Ґріна та енерґетичний спектр моделі. У розділі 3 обчислена концентрація полярних станів. Розділ 4 присвячений вивченню ПМД в моделі. Дослідження енерґії основного стану моделі проведене в розділі 5. У розділі 6 обговорено отримані результати та подано висновки.

II. ФУНКЦІЯ ҐРІНА ТА ЕНЕРҐЕТИЧНИЙ СПЕКТР МОДЕЛІ

Розгляньмо модель вузькозонного парамагнетика, що описується гамільтоніяном, який ураховує корельований перенос електронів [6]:

$$H = H_0 + H_1 + H'_1;$$
(2.1)

$$H_0 = -\mu \sum_{i\sigma} \left(X_i^{\sigma} + X_i^2 \right) + U \sum_i X_i^2,$$

$$H_1 = \sum_{ij\sigma, i \neq j} t_{ij}(n) X_i^{\sigma 0} X_j^{0\sigma} + \sum_{ij\sigma, i \neq j} \tilde{t}_{ij}(n) X_i^{2\bar{\sigma}} X_j^{\bar{\sigma}^2},$$

31

$$H'_{1} = \sum_{ij\sigma, i \neq j} t'_{ij}(n) \left(X_{i}^{\bar{\sigma}0} X_{j}^{\sigma2} - X_{i}^{\sigma0} X_{j}^{\bar{\sigma}2} + \text{e.c.} \right)$$

тут X_i^{kl} — оператори Габбарда [23] переходу вузла iзі стану $|l\rangle$ у стан $|k\rangle$, X_i^k — оператор числа $|k\rangle$ -станів на вузлі i, σ позначає спін електрона ($\sigma = \downarrow, \uparrow$), а $\bar{\sigma}$ проекцію спіну, протилежну до σ ; μ — хемічний потенціял моделі, U — енерґія кулонівського відштовхування двох електронів з протилежними спінами на одному вузлі, $t_{ij}(n)$ — ефективний концентраційнозалежний [6] інтеґрал переносу електрона з вузла jна вузол i ($t_{ij}(n) < 0$),

$$\tilde{t}_{ij}(n) = t_{ij}(n) + 2T_{ij},$$
(2.2)

$$t'_{ij}(n) = t_{ij}(n) + T_{ij}, \qquad (2.3)$$

$$t_{ij}(n) = t_{ij} + nT'_{ij}, (2.4)$$

де t_{ij} — "зонний" інтеґрал переходу електрона з вузла j на вузол i $(t_{ij} < 0)$, T_{ij} — матричний елемент переходу електрона з вузла j на вузол i за умови, що на вузлі j чи вузлі i є електрон із протилежним спіном $(T_{ij} > 0), T'_{ij}$ описує перенос з урахуванням заселености сусідніх вузлів, що не беруть участи в процесі перестрибування $(T'_{ij} > 0)$; за класифікацією, прийнятою в праці [6], T'_{ij} описує корельований перенос першого роду, T_{ij} — корельований перенос другого роду. Якісний ефект включення в гамільтоніян корельованого переносу полягає в перенормуванні інтеґрала переносу, який стає спін- та концентраційно залежним. Оскільки величини |t_{ij}|, *T_{ij}* та *T'_{ij}* одного порядку, всі вказані матричні елементи описують процеси переносу електрона, то для коректного опису спостережуваних особливостей фізичних властивостей вузькозонних матеріялів урахування T_{ij} та T'_{ij} є принципово необхідним (див у цьому зв'язку працю [6]). Уведемо безрозмірний параметр $\tau = T_{ij}/|t_{ij}(n)|$, що характеризує відносну величину корельованого переносу.

Одноелектронну функцію Ґріна можна подати у вигляді

$$G_{ps} = \langle \langle a_{p\uparrow} | a_{s\uparrow}^+ \rangle \rangle = G_{ps}^1 - G_{ps}^2 - G_{ps}^3 + G_{ps}^4, \qquad (2.5)$$

де

$$G_{ps}^{1} = \langle \langle X_{p}^{0\uparrow} | X_{s}^{\uparrow 0} \rangle \rangle, \qquad (2.6)$$

$$G_{ps}^{2} = \langle \langle X_{p}^{\downarrow 2} | X_{s}^{\uparrow 0} \rangle \rangle, \qquad (2.7)$$

$$G_{ps}^{3} = \langle \langle X_{p}^{0\uparrow} | X_{s}^{2\downarrow} \rangle \rangle, \qquad (2.8)$$

$$G_{ps}^4 = \langle \langle X_p^{\downarrow 2} | X_s^{2\downarrow} \rangle \rangle.$$
 (2.9)

Для знаходження функцій (2.6-2.9) застосуймо процедуру, запропоновану в праці [22].

У рівнянні для функції (2.6)

$$(E + \mu) \langle \langle X_p^{0\uparrow} | X_s^{\uparrow 0} \rangle \rangle = \frac{o_{ps}}{2\pi} \langle X_p^{\uparrow} + X_p^{0} \rangle$$

$$+ \sum_{i,i \neq p} t_{pi} \langle \langle (X_p^{0+} + X_p^{\uparrow}) X_i^{0\uparrow} | X_s^{\uparrow 0} \rangle \rangle$$

$$+ \sum_{i,i \neq p} t_{pi} \langle \langle X_p^{0\downarrow} X_i^{0\downarrow} | X_s^{\uparrow 0} \rangle \rangle$$

$$- \sum_{i,i \neq p} \tilde{t}_{pi} \langle \langle X_p^{02} X_i^{2\uparrow} | X_s^{\uparrow 0} \rangle \rangle$$

$$- \sum_{i,i \neq p} t'_{pi} \langle \langle (X_p^{0+} + X_p^{\uparrow}) X_i^{\downarrow 2} | X_s^{\uparrow 0} \rangle \rangle$$

$$- \sum_{i,i \neq p} t'_{pi} \langle \langle X_p^{02} X_i^{\downarrow 0} | X_s^{\uparrow 0} \rangle \rangle$$

$$+ \sum_{i,i \neq p} t'_{pi} \langle \langle X_p^{\downarrow \uparrow} X_i^{\uparrow 2} | X_s^{\uparrow 0} \rangle \rangle \quad (2.10)$$

s

перші три суми, що отримані внаслідок комутування $[X_p^{0\uparrow}, H_1]$, ураховуємо методом узагальненого наближення Гартрі-Фока [21]:

$$\left[X_p^{0\uparrow}, H_1\right] = \sum_i \epsilon(pi) X_i^{0\uparrow}.$$
 (2.11)

Останні три суми в рівнянні (2.10) ураховуємо в наближенні середнього поля

$$\left[X_p^{0\uparrow}, H_1'\right] = -\langle X_p^{\uparrow} + X_p^0 \rangle \sum_i t_{pi}' \langle \langle X_i^{\downarrow 2} | X_s^{\uparrow 0} \rangle \rangle.$$
(2.12)

Доцільність використання різних наближень у рівняннях (2.11) та (2.12) зумовлена відмінностями в операторній структурі членів гамільтоніяна H_1 та H'_1 ; це відповідає енерґетичній нееквівалентності процесів, що описуються H_1 та H'_1 .

Для функції (2.7) відповідна процедура має вигляд

$$\left[X_p^{\downarrow 2}, H_1\right] = \sum_i \tilde{\epsilon}(pi) X_i^{\downarrow 2}, \qquad (2.13)$$

$$\left[X_p^{\downarrow 2}, H_1'\right] = -\langle X_p^{\downarrow} + X_p^2 \rangle \sum_i t_{pi}' \langle \langle X_i^{0\uparrow} | X_s^{\uparrow 0} \rangle \rangle.$$
(2.14)

Для неоператорних коефіцієнтів $\epsilon(pi)$ та $\tilde{\epsilon}(pi)$, згідно з методом праці [6], у парамагнетному стані при концентрації електронів n = 1 отримуємо

$$\epsilon(pi) = (1 - 2d + 2d^2)t_{pi} - 2d^2\tilde{t}_{pi},$$

$$\tilde{\epsilon}(pi) = (1 - 2d + 2d^2)\tilde{t}_{pi} - 2d^2t_{pi},$$
 (2.15)

де $d \equiv \langle X_p^2 \rangle$ — концентрація подвійно зайнятих вуз-

лів (двійок), для n = 1 рівна концентрації $c \equiv \langle X_p^0 \rangle$ незайнятих вузлів (дірок).

Розв'язок системи рівнянь для фур'є-компонент функцій (2.6), (2.7) з урахуванням (2.15) дає

$$G_{\mathbf{k}}^{1} = \frac{1}{4\pi} \left(\frac{A_{\mathbf{k}}^{1}}{E - E_{1}(\mathbf{k})} + \frac{B_{\mathbf{k}}^{1}}{E - E_{2}(\mathbf{k})} \right), \qquad (2.16)$$
$$A_{\mathbf{k}}^{1} = \frac{1}{2} \left(1 - \frac{U - (t(\mathbf{k}) - \tilde{t}(\mathbf{k}))(1 - 2d - 2d^{2})}{E_{2}(\mathbf{k}) - E_{1}(\mathbf{k})} \right), \qquad B_{\mathbf{k}}^{1} = 1 - A_{\mathbf{k}}^{1},$$

$$G_{\mathbf{k}}^{2} = \frac{1}{8\pi} \frac{t'(\mathbf{k})}{E_{2}(\mathbf{k}) - E_{1}(\mathbf{k})} \left(\frac{1}{E - E_{1}(\mathbf{k})} - \frac{1}{E - E_{2}(\mathbf{k})} \right).$$
(2.17)

Тут $t(\mathbf{k}), t'(\mathbf{k})$ та $\tilde{t}(\mathbf{k})$ є фур'є-компонентами інтеґралів переносу t_{ij}, t'_{ij} та \tilde{t}_{ij} відповідно,

$$E_{1,2}(\mathbf{k}) = -\mu + \frac{U}{2} + (1 - 2d)\frac{t(\mathbf{k}) + \tilde{t}(\mathbf{k})}{2} \mp \frac{1}{2}\sqrt{\left[U - (t(\mathbf{k}) - \tilde{t}(\mathbf{k}))(1 - 2d + 4d^2)\right]^2 + (t'(\mathbf{k}))^2}$$
(2.18)

є енерґетичний спектр системи.

Аналогічно отримаємо для фур'є-компонент функцій (2.8), (2.9):

$$G_{\mathbf{k}}^{3} = \frac{1}{8\pi} \frac{t'(\mathbf{k})}{E_{2}(\mathbf{k}) - E_{1}(\mathbf{k})} \left(\frac{1}{E - E_{1}(\mathbf{k})} - \frac{1}{E - E_{2}(\mathbf{k})} \right),$$
(2.19)

$$G_{\mathbf{k}}^{4} = \frac{1}{4\pi} \left(\frac{A_{\mathbf{k}}^{4}}{E - E_{1}(\mathbf{k})} + \frac{B_{\mathbf{k}}^{4}}{E - E_{2}(\mathbf{k})} \right), \quad A_{\mathbf{k}}^{4} = B_{\mathbf{k}}^{1}, \quad B_{\mathbf{k}}^{4} = A_{\mathbf{k}}^{1}.$$
(2.20)

Вираз для одноелектронної функції Ґріна (2.5) матиме вигляд

$$G_{\mathbf{k}} = \frac{1}{2\pi} \left(\frac{A_{\mathbf{k}}}{E - E_{1}(\mathbf{k})} + \frac{B_{\mathbf{k}}}{E - E_{2}(\mathbf{k})} \right), \quad A_{\mathbf{k}} = \frac{1}{2} \left(1 - \frac{t'(\mathbf{k})}{E_{2}(\mathbf{k}) - E_{1}(\mathbf{k})} \right), \quad B_{\mathbf{k}} = 1 - A_{\mathbf{k}}.$$
 (2.21)

Г

Функція Ґріна (2.21) та енерґетичний спектр системи (2.18) є точними в граничних випадках $t_{\mathbf{k}} = 0$ та U = 0 (атомна та зонна границі відповідно). При $\tilde{t}(\mathbf{k}) = t'(\mathbf{k}) = t(\mathbf{k})$ вирази (2.18) та (2.21) переходять відповідно у вирази для спектра та одночастинкової функції Ґріна, отримані в праці [22].

III. ПЕРЕХІД МЕТАЛ-ДІЕЛЕКТРИК

З енерґетичного спектра (2.18) знайдімо енерґетичну щілину як різницю енерґій між найнижчим дозволеним рівнем верхньої зони та найвищим дозволеним рівнем нижньої зони:

$$\Delta E = -2w(1-2d)(1-\tau) + \frac{Q_1 + Q_2}{2}, \qquad (3.1)$$

$$Q_{1,2} = \left((U \mp 2\tau Cw)^2 + (1 - 2\tau)^2 w^2 \right)^{\frac{1}{2}},$$

$$C = 1 - 2d + 4d^2,$$

 $w = z|t_{ij}|, z-$ кількість найближчих до вузла сусідів. Залежність $\Delta E/U$ від параметра U/w при різних значеннях параметра корельованого переносу τ показана на рис. 1.

При певному критичному значенні $(\frac{U}{w})_c$ щілина зникає — в системі відбувається перехід діелектрикметал. Нижня крива на рис. 1 відтворює залежність $\Delta E/U$ від U/w, знайдену в праці [22] для моделі Габбарда. Видно, що корельований перенос зменшує значення $(U/w)_c$. Зміна критичного значення $(U/w)_c$ з ростом τ показана на рис. 2.

Величини $(U/w)_c$, які ми знайшли, при фіксованих значеннях параметра корельованого переносу є меншими, ніж відповідні критичні значення, одержані в праці [24]. На рис. З енерґетична щілина, отримана з формули (3.1) при певному зна-

ченні параметра корельованого переносу, порівнюється з відповідним результатом праць [16–19]. Застосоване тут наближення дає дещо менше значення $(U/w)_c$, ніж отримане у вказаних працях.

Рис. 1. Енергетична щілина як функція параметра U/w: нижній графік відповідає значенню $\tau = 0$, середній — $\tau = 0.1$, верхній — $\tau = 0.2$

Рис. 2. Зміна критичного значення $(U/w)_c$ при збільшенні параметра корельованого переносу τ (τ =0 відповідає моделі Габбарда).

На відміну від результату праць [16–19], розклад спектра (3.1) при великих U/w містить коректний доданок, пропорційний до w^2/U . Важливо відзначити, що наш підхід до розгляду ПМД в моделі з нееквівалентними підзонами відтворює точний результат

праць [25–28]. При $t'_{\mathbf{k}} = 0$ отримуємо з (3.1)

$$U_c = w + \tilde{w}, \tag{3.2}$$

де w — напівширина нижньої габбардівської підзони, $\tilde{w} = z |\tilde{t}_{ij}|$ — напівширина верхньої габбардівської підзони.

Рис. 3. Енергетична щілина, знайдена в цій праці (верхня крива), та відповідний результат праць [16 –19] (нижня крива). Параметр корельованого переносу $\tau = 0.1$.

IV. КОНЦЕНТРАЦІЯ ПОЛЯРНИХ СТАНІВ

Для знаходження концентрації двійок d з функції (2.20) при T = 0 приймемо прямокутну густину станів. Тоді

$$d = \frac{1}{2N} \sum_{\mathbf{k}} \left(\frac{A_{\mathbf{k}}^4}{e^{\frac{E_1(\mathbf{k})}{k_B T}} + 1} + \frac{B_{\mathbf{k}}^4}{e^{\frac{E_2(\mathbf{k})}{k_B T}} + 1} \right)$$
$$= \frac{1}{4w} \int_{-w}^{w} \left(A^4(\epsilon)\Theta(-E_1(\epsilon)) + B^4(\epsilon)\Theta(-E_2(\epsilon)) \right) d\epsilon. \quad (4.1)$$

Значення цього інтеґрала залежить від співвідношення між $|\varepsilon_{1,2}|$ та w, де $\varepsilon_{1,2}$ є розв'язками рівнянь $E_{1,2} = 0.$ З виразу (4.1) при $|\varepsilon_{1,2}| < w$ отримуємо для d самоузгоджене рівняння

$$d = \frac{1}{4} - \frac{U}{2w} \frac{\tau^2 C^2}{(1-\tau)(1-2d)D} - \frac{U}{8w} \frac{(1-\tau)^2}{D^{\frac{3}{2}}} \ln \frac{L_1}{L_2}, \quad (4.2)$$

де

$$D = 4\tau^2 C^2 + (1-\tau)^2,$$
$$L_{1,2} = 1 \mp \frac{D^{\frac{1}{2}}}{2(1-\tau)(1-2d)}$$

З рівняння (4.2) видно, що $d\to \frac{1}{4}$ при $U/w\to 0.$ При $\tau=0$ (модель Габбарда) отримуємо

$$d = \frac{1}{4} - \frac{U}{8w} \ln \left| \frac{1 - 4d}{3 - 4d} \right|, \qquad (4.3)$$

що збігається з відповідним результатом праці [22] для концентрації полярних станів у металічній фазі.

При $|\varepsilon|_{1,2} > w$ з функції (2.20) одержуємо

$$d = \frac{1}{4} - \frac{1}{4w} \frac{\tau C}{D^{\frac{1}{2}}} (Q_1 - Q_2)$$

$$- \frac{U}{8w} \frac{(1-\tau)^2}{D^{\frac{3}{2}}} \ln \left| \frac{D^{\frac{1}{2}}Q_1 - Dw - 2\tau UC}{D^{\frac{1}{2}}Q_1 + Dw - 2\tau UC} \right|.$$
(4.4)

При $\tau = 0$ (модель Габбарда) звідси отримуємо

$$d = \frac{1}{4} + \frac{U}{8w} \ln \left| \frac{\sqrt{1 + \frac{U^2}{w}} + 1}{\sqrt{1 + \frac{U^2}{w}} - 1} \right|,$$
(4.5)

що збігається з результатом праці [22] для концентрації полярних станів у діелектричній фазі.

На рис. 4 показана концентрація двійок d як функція параметра U/w при різних значеннях параметра корельованого переносу τ . З рисунка видно,

Рис. 4. Концентрація двійок як функція параметра U/w: нижній графік відповідає значенню $\tau = 0.2$, середній — $\tau = 0.1$, верхній — $\tau = 0$.

що збільшення параметра корельованого переносу приводить до зменшення концентрації полярних станів при фіксованих значеннях U/w. На рис. 5 концентрація двійок, отримана з формул (4.2–4.4), порівнюється з результатом праць [16–19]. На відміну від результату праць [16–19], знайдені тут значення d відмінні від нуля у всій ділянці значень U/w.

Рис. 5. Концентрація двійок, знайдена в цій праці, та відповідний результат праць [16–19]. Параметр корельованого переносу $\tau = 0.1$.

Важливо відзначити, що при зростанні параметра U/w вид залежности d(U/w) змінюється. Як наслідок крива має злам у точці переходу метал-діелектрик. Отримана тут залежність d(U/w) для випадку $\tau = 0$ (модель Габбарда) добре узгоджується з результатом праці [29], одержаним для моделі Габбарда в границі нескінченної розмірности простору (на рис. 6 порівняно концентрації двійок як функції U/ε_0 , де ε_0 є середня зонна енерґія електронів).

V. ΕΗΕΡΓΊЯ ΟСНОВНОГО СТАНУ

Енертію основного стану системи в розрахунку на вузол ґратки запишімо як суму кінетичної та потенціяльної енертії електронів

$$\frac{E_0}{N} = \frac{E_k}{N} + Ud, \tag{5.1}$$

тут d задається виразом (4.2) в металічній фазі і виразом (4.4) в діелектричній фазі. Для знаходження кінетичної енерґії електронів використовуємо формулу

$$\frac{E_k}{N} = \frac{1}{N} \left(\sum_{ij\sigma} t_{ij} \langle X_i^{\sigma 0} X_j^{0\sigma} \rangle + \sum_{ij\sigma} \tilde{t}_{ij} \langle X_i^{2\bar{\sigma}} X_j^{\bar{\sigma}2} \rangle + \sum_{ij\sigma} \eta_{\sigma} t_{ij}' (\langle X_i^{\sigma 0} X_j^{\bar{\sigma}2} \rangle + e.c.) \right).$$
(5.2)

Середні у виразі (5.2) знайдімо за допомогою функцій (2.6)-(2.9):

$$\left\langle \sum_{ij} t_{ij} X_i^{\sigma 0} X_j^{0 \sigma} \right\rangle = \frac{1}{2N} \sum_{\mathbf{k}} \left(\frac{A_{\mathbf{k}}^1}{e^{\frac{E_1(\mathbf{k})}{k_B T}} + 1} + \frac{B_{\mathbf{k}}^1}{e^{\frac{E_2(\mathbf{k})}{k_B T}} + 1} \right), \tag{5.3}$$

$$\left\langle \sum_{ij} \tilde{t}_{ij} X_i^{2\bar{\sigma}} X_j^{\bar{\sigma}^2} \right\rangle = \frac{1}{2N} \sum_{\mathbf{k}} \left(\frac{A_{\mathbf{k}}^4}{e^{\frac{E_1(\mathbf{k})}{k_B T}} + 1} + \frac{B_{\mathbf{k}}^4}{e^{\frac{E_2(\mathbf{k})}{k_B T}} + 1} \right), \tag{5.4}$$

$$\left\langle \sum_{ij} t_{ij}' X_i^{\sigma 0} X_j^{\bar{\sigma}^2} \right\rangle = \frac{\eta_{\sigma}}{4N} \sum_{\mathbf{k}} \frac{t'(\mathbf{k})}{E_2(\mathbf{k}) - E_1(\mathbf{k})} \left(\frac{1}{e^{\frac{E_1(\mathbf{k})}{E_B T}} + 1} - \frac{1}{e^{\frac{E_2(\mathbf{k})}{E_B T}} + 1} \right).$$
(5.5)

Для розрахунку (5.3-5.5) при нульовій температурі перейдімо до інтеґрування з прямокутною густиною станів:

$$\left\langle \sum_{ij} t_{ij} X_i^{\sigma 0} X_j^{0\sigma} \right\rangle = \frac{1}{4w} \int_{-w}^{w} \left(A^1(\epsilon) \Theta(-E_1(\epsilon)) + B^1(\epsilon) \Theta(-E_2(\epsilon)) \right) d\epsilon,$$
(5.6)

$$\langle \sum_{ij} \tilde{t}_{ij} X_i^{2\bar{\sigma}} X_j^{\bar{\sigma}2} \rangle = \frac{1}{4w} \int_{-w}^{w} \left(A^4(\epsilon) \Theta(-E_1(\epsilon)) + B^4(\epsilon) \Theta(-E_2(\epsilon)) \right) d\epsilon,$$
(5.7)

$$\left\langle \sum_{ij} t_{ij}' X_i^{\sigma 0} X_j^{\bar{\sigma} 2} \right\rangle = \frac{\eta_{\sigma}}{4w} \int_{-w}^{w} \frac{(1-\tau)\epsilon}{E_2(\epsilon) - E_1(\epsilon)} \left(\Theta(-E_1(\epsilon)) - \Theta(-E_2(\epsilon))\right) d\epsilon.$$
(5.8)

Таким чином, отримаємо для $|\varepsilon|_{1,2} < w$ (металічна фаза)

$$\frac{E_0}{N} = Ud - (1 - \tau)\frac{w}{2} + \frac{U^2}{2wg} \left(\frac{1 - \tau}{2g} + P\right)F - \frac{U^2}{w}\frac{\tau^2 C}{gD}(1 + 3CP) + \frac{U^2}{4w}(4\tau^2 C + P(12\tau^2 C^2 - D)D^{-\frac{3}{2}}\ln\frac{L_1}{L_2},$$
(5.9)

де

$$g = (1 - \tau)(1 - 2d),$$

$$P = \frac{(2\tau^2 C - (1 - \tau))}{D},$$

$$F = \left(1 - \frac{1}{4}\frac{(1 - \tau)^2}{g^2 - \tau^2 C^2}\right)^{-1}$$

Для $|\varepsilon|_{1,2} > w$ (діелектрична фаза)

$$\frac{E_0}{N} = Ud + \tau \frac{U^2}{2w} \frac{(Q_1 - Q_2)}{D} (1 + 3CP) + \frac{Q_1 + Q_2}{4}P
+ \frac{U^2}{4w} (4\tau^2 C + P(12\tau^2 C^2 - D)D^{-\frac{3}{2}} \ln \left| \frac{C^{\frac{1}{2}}Q_1 - Cw - 2\tau CU}{C^{\frac{1}{2}}Q_1 + Cw - 2\tau CU} \right|.$$
(5.10)

Рис. 6. Порівняння залежностей $d(U/\varepsilon_0)$: неперервна лінія — наш результат, штрихована лінія — результат ітерованої теорії збурень, точки — результат методу QMC.

За відсутности корельованого переносу ($\tau = 0$) звідси одержуємо відповідні формули праці [22].

Залежності енертії основного стану від U/w для певних значень τ показані на рис. 7. Видно, що E_0/N має злам у точці ПМД. Зростання параметра корельованого переносу τ приводить як до зменшення абсолютної величини кінетичної енертії електронів (звуження енертетичної зони), так і до зменшення потенціяльної енертії електронів (зменшення концентрації подвійно зайнятих вузлів). Отже, корельований перенос електронів суттєво змінює енертію основного стану системи в ділянці поблизу ПМД.

Рис. 7. Енергія основного стану як функція параметра U/w: нижній графік відповідає значенню $\tau = 0$, середній — $\tau = 0.1$, верхній — $\tau = 0.2$.

Подібний висновок зробили автори праць [24,30], які досліджували основний стан моделі методом Гартрі-Фока в одновимірному випадку та методом середнього поля в техніці допоміжних бозонів відповідно. Зауважмо, проте, що існує проблема визначення коректного критерію ПМД в методі допоміжних бозонів (див. у цьому зв'язку праці [18,31]).

При $\tau = 0$ (модель Габбарда) залежність енертії основного стану, яку ми отримали, добре узгоджується з межами на величину енертії основного стану, знайденими для тривимірного випадку в праці [32] (рис. 8)

Рис. 8. Верхня (верхня крива) та нижня (нижня крива) межі на енертію основного стану у тривимірному випадку та енертія основного стану, знайдена в цій праці (середня крива).

VI. ВИСНОВКИ

У цій праці ми дослідили вплив корельованого переносу на перехід метал-діелектрик та середню енертію електронів у парамагнетному основному стані моделі з нееквівалентними габбардівськими підзонами при половинному заповненні. Для знаходження одноелектронної функції Гріна та енергетичного спектра використано нове двополюсне наближення, запропоноване в праці [22]. Знайдено квазічастинковий енергетичний спектр, залежний від величин енергії внутрішньоатомного кулонівського відштовхування U, напівширини енерґетичної зони w, концентрації полярних станів (дірок та двійок) та параметра корельованого переносу т. За допомогою виразу для енерґетичної щілини описано ПМД в системі при половинному заповненні зони (n = 1). Критерій ПМД залежить від величини параметра корельованого переносу. Перехід з діелектричного в металічний стан відбувається при зменшенні параметра U/w (зі збільшенням w при прикладанні зовнішнього тиску чи леґуванні). Отриманий критерій ПМД відтворює точний критерій, знайдений в окремому випадку моделі, коли нехтується гібридизацією між габбардівськими підзонами.

Обчислено концентрацію полярних станів у металічній та діелектричній фазах. У точці ПМД залежність d(U/w) має злам (цей результат узгоджується з результатом праці [29]).

Отримано залежність енерґії основного стану моделі від параметрів U/w та τ . Показано, що в точці ПМД залежність енерґії основного стану моделі від

- J. Hubbard, Proc. R. Soc., London, Ser. A 276, No. 1369, 238 (1963).
- [2] Ю. А. Изюмов, Усп. физ. наук 165, № 4, 403 (1995).
- [3] F. Gebhard, The Mott metal-insulator transition: models and methods (Springer, Berlin, 1997).
- [4] Л. Д. Дидух, Физ. тверд. тела 13, № 8, 1217 (1977).
- [5] J. E. Hirsch, Physica C 158, 326 (1989); J. E. Hirsch, Physica B 199-200, 366 (1994).
- [6] Л. Дідух, Журн. фіз. досл. 1, № 2, 241 (1997).
- [7] Л. Д. Дидух, В. Д. Дидух, Упорядоченные состояния в материалах с узкими зонами проводимости (Высшая школа, Львов, 1980).
- [8] D. K. Campbell, J. T. Gammel, E. Y. Loh, Phys. Rev. B 42, No. 1, 475 (1990).
- [9] J. E. Hirsch, Physica B 163, 291 (1990).
- [10] F. Marsiglio, J. E. Hirsch, Phys. Rev. B 41, No. 10, 6435 (1990).
- [11] J. Appel, M. Grodzicki, F. Paulsen, Phys. Rev. B 47, No. 5, 2812 (1993).
- [12] H. Q. Lin, J. E. Hirsch, Phys. Rev. B 52, No. 22, 16155 (1995).
- [13] Л. Д. Дидух, препринт Ин-та теор.физ. АН УССР, № ИТР-89-22Р, Киев (1989).
- [14] J. C. Amadon, J. E. Hirsch, Phys. Rev. B 54, No 9, 6364 (1996).
- [15] L. A. Didukh, Cond. Matt. Phys. (Lviv) 1, No. 1(13), 125 (1998).
- [16] Л. Дідух, В. Ганкевич, Ю. Довгоп'ятий, Журн. фіз. досл. 2, № 3, 362 (1998).
- [17] L. Didukh, V. Hankevych, Yu. Dovhopyaty, Physica B

U/w має злам (подібну особливість енерґії основного стану знайдено в праці [29]), пов'язаний зі зміною поведінки при переході з металічного в діелектричний стан. Величина енерґії основного стану лежить у межах, установлених у праці [32].

Застосування використаного тут наближення для опису ПМД при ненульових температурах та узагальнення його для опису антиферомагнетного впорядкування в системі будуть проведені в наступних працях.

259 - 261, 719 (1999).

- [18] Л. Д. Дидух, В. В. Ганкевич, Физ. низк. темп. 25, № 5, 481 (1999).
- [19] L. Didukh, V. Hankevych, Phys. Status Solidi B 211, No. 2, 703 (1999).
- [20] Д. Н. Зубарев, Ю. Г. Рудой, Усп. физ. наук 163, № 3, 103 (1993).
- [21] L. Didukh, Phys. Status Solidi B 206, R5 (1998).
- [22] L. Didukh, Acta. Phys. Pol. B 31, 3097 (2000).
- [23] J. Hubbard, Proc. R. Soc., London, Ser. A 285, No. 1403, 542 (1965).
- [24] B. Bułka, Phys. Rev. B 57, No. 17, 10303 (1998).
- [25] R. Strack, D. Vollhardt, Phys. Rev. Lett 70, No. 17, 2637 (1993).
- [26] A. A. Ovchinnikov, J. Phys.: Cond. Matt. 6, 11057 (1994).
- [27] J. de Boer, A. Schadschneider, Phys. Rev. Lett 75, No. 23, 4298 (1995).
- [28] L. Arrachea, A.Aligia, Phys. Rev. Lett 73, No. 16, 2240 (1994).
- [29] G. Kotliar, M. Rozenberg, The Mott transition in infinite dimensions: old ideas and some surprises. In: The Hubbard Model (edited by M. Baeriswyl, New-York and London, Plenum Press, 1995, p. 155-166).
- [30] L. Arrachea, E. R. Gagliano, A. A. Aligia, Phys. Rev. B 55, No. 2, 1173 (1997).
- [31] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, No. 4, 1039 (1998).
- [32] W. D. Langer, D. C. Mattis, Phys. Lett. A 36, 139 (1971).

GROUND STATE ENERGY AND METAL-INSULATOR TRANSITION IN A MODEL OF NARROW-BAND PARAMAGNET

L. Didukh, Yu. Skorenkyy

Ternopil State Technical University, Department of Physics, 56 Rus'ka Str., Ternopil, UA-46001, Ukraine

E-mail: didukh@tu.edu.te.ua

The ground state energy and metal-insulator transition in a model of a narrow-band paramagnet with nonequivalent Hubbard subbands at half-filling and zero temperature are investigated. The single-particle energy spectrum, the criterion of metal-insulator transition, as well as the dependence of current carrier concentration and energy of the system on model parameters are obtained.