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This is a review of the theory of cosmic microwave background (CMB) anisotropies. It is an
updated version of a course given in spring 1999 at the ‘troisieme cycle de la Suisse Romande’. An

introduction to gauge invariant cosmological perturbation theory is given and CMB anisotropies
are treated in this context. Simple analytical approximations for the acoustic peak positions for
adiabatic and isocurvature perturbations are derived. Silk damping is discussed by an analytic
approximation. A short description of the present status of observations and parameter estimation
followed by a critical discussion terminated the review. The full system of differential equations for
CMB anisotropies and polarization needed in a numerical treatment is also developed and given in

an appendix.
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I. INTRODUCTION

In this review I would like to show the importance and
the power of measurements of anisotropies in the CMB.

CMB anisotropies are so useful mainly because they
are small: For a given model, they can be calculated
within linear perturbation theory, to very good approxi-
mation. They are influenced only little by the non-linear
processes of galaxy formation. This allows us to compute
them very precisely (to about 1%, which is high preci-
sion for present cosmological standards). For given initial
fluctuations, the result depends only on the cosmologi-
cal parameters. If we can measure CMB anisotropies to
a precision of, say 1%, this allows us therefore to de-
termine cosmological parameters to about 1%. An un-
precedented possibility! Consider that at present, after
the work of two generations, e.g., the Hubble parame-
ter is known only to about 25%, the baryon density is
known to about 10% and the uncertainties in the dark
matter density, the cosmological constant and the space
curvature are even larger.
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This somewhat too optimistic conclusion has however
three caveats which we want to mention before entering
the subject of this review.

1. Initial conditions: The result depends on the
model for the initial fluctuations. The simplest in-
flationary scenarios which lead to adiabatic pertur-
bations, contain in general three to four free param-
eters, like the ratio of tensor to scalar perturbations
(r) and the spectral index of the scalar and tensor
perturbations (ns and nr), so a few more param-
eters need to be fitted additionally to the data.

More generic initial conditions allow for at least
four additional isocurvature modes with arbitrary
(anti-)correlations. The initial conditions are then
given by a b x b positive semi-definite matrix, and,
in principle, several spectral indices [1,2]. In most
of this review we shall ignore this possibility and
assume that initial perturbations are purely adia-
batic. Even if isocurvature constributions cannot
be excluded, this most simple model is in good
agreement with the present data.

If the perturbations are generated by active sources
like, e.g., topological defects, then the modeling is
far more complicated, and the analysis is too dif-
ferent to be included in this review.

2. Degeneracy: Even though we can measure over
1000 independent modes (C;’s) of the CMB
anisotropy spectrum, there are certain combina-
tions of the cosmological parameters that lead to
degeneracies in the CMB spectrum. The result is,
e.g., very sensitive to the sum Quatter + 24, but
not to the difference (“cosmic confusion”).

3. Cosmic variance: Since the fluctuations are cre-
ated by random processes, we can only calculate ex-
pectation values. Yet we have only one universe to
take measurements (“cosmic variance”). For small—
scale fluctuations we can in general assume that
the expectation value over ensembles of universes
is the same as a spatial average (a kind of ergodic
hypothesis), but for large scales we cannot escape
large statistical errors.

A. Friedmann—Lemaitre universes

Friedmann—Lemaitre universes are homogeneous and
isotropic solutions of Einstein’s equations. The hyper-
surfaces of constant time are homogeneous and
isotropic, t.e., spaces of constant curvature with metric
a?(n)yijdzide?, where v;; is the metric of a space with
constant curvature x. This metric can be expressed in
the form

vijde'dzd = dr? 4 2 (r) (d¥® + sin® ¥dp?) (1.1)

r? , k=0
i(r)={ sin®r | k=1 (1.2)
sinh’r |, k= —1,

bl

178

where we have rescaled a(n) such that x = +1 or 0. (With
this normalization the scale factor a has the dimension
of a length and 7 and r are dimensionless for £ # 0.) The
four-dimensional metric is then of the form

gupdztde’ = —a*(n)dn? + a*(n)vijdeide’. (1.3)

Here 7 is called the conformal time.
Einstein’s equations reduce to ordinary differential
equations for the function a(n) (with "= d/dn):

o\ 2
a _ 8rG 1, 5
(a) + k= 5 @ p+ 3Aa , (1.4)
A 4rG 1, 5
2y =27 ZA
(a) 5 ¢ (p+3p)+3 a
a a\’
- (5) _ (5) , (1.5)

where p = —T9, p = T? (no sum!) and all other compo-
nents of the energy momentum tensor have to vanish by
the requirement of isotropy and homogeneity. A is the
cosmological constant.

Energy momentum “conservation” (which is also a
consequence of (1.4) and (1.5) due to the contracted

Bianchi identity) reads

p=-3(2) o0

After these preliminaries (which we suppose to be
known to the audience) let us answer the following ques-
tion: Given an object with comoving diameter A (or phys-
ical size a(n)A = d) at a redshift z(n) = (ag/a)—1. Under
which angle J(A, z) do we see this object today and how
does this angle depend on Q24 and 2,7

We define
Qm = (‘SFGPC;Z) bl
3(8)° /=,

o

(1.6)

N
(%)
where the index ( indicates the value of a given variable
today. Friedmann’s equation (1.4) then requires

=70

1=Qp 4+ Qa + Q. (1.8)

7=7, n:nl
Mo ,Z:O --------------------------------
ot L 7“
""""" B

Fig. 1. The two ends of the object emit a flash simultane-
ously from A and B at z; which reaches us today.
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Back to our problem: Without loss of generality we
set » = 0 at our position and thus » = r; = iy — 1 at
the position of the flashes, A and B at redshift z;. If A
denotes the comoving arc length between A and B we
have A = x(r1)d = x(no — )9, i.e.,

A

9= m. (1.9)

It remains to calculate (o — 91)(21).

Note that in the case kK = 0 we can still normalize the
scale factor a as we want, and it is convenient to choose
ag = 1, so that comoving scales today become physical
scales. However, for k # 0, we have already normalized
a such that Kk = £1 and y = sinr or sinhr. We have in
principle no normalization constant left.

From the Friedmann equation we have

.9 _ 877Ga4

1
a p+ —Aa* — ka®.

; . (1.10)

We assume that p is a combination of “dust” (cold,
non-relativistic matter) with pgs = 0 and radiation with

Prad = 1/3prad~

From (1.6) we find that praq o a™* and pg o a”3.
Therefore, with Hy = (;—2) (n0), we define
87
3 atp = HZ (aéQrad + Qdaag’) , (1.11)
1
gAa‘1 = HZQpa®, (1.12)
—ra® = HiQ.aa2. (1.13)
The Friedmann equation then implies
da a at a’ 2
— = Hoaj | Qvad + —a + 5% + - 1.14
an 0%( d-i-ao d+a§ A—I-ag ) ( )
so that
- (1.15)
M= Hoag .

o dz
0 [Qraalz + 1)* + Qalz + 1% + Q4 + Qulz +1)2)7

Here we have introduced the cosmological redshift z+1 =
ap/a. (In principle we could of course also add other mat-
ter components like, e.g., “quintessence” [9], which would
lead to a somewhat different form of the integral (1.15),
but for definiteness, we remain with dust, radiation and
a cosmological constant.)

In general, this integral has to be solved numerically.
It determines the angle J(A, z1) under which an object
with comoving size A at z; is seen.

On the other hand, the angular diameter distance to
an object of physical size d seen under angle ¢ is given

by ng—m=r = ! (aliﬂ)' If we are able to measure

the redshift and the comoving angular diameter distance
of a certain class of objects comparing with Eq. (1.15)
allows in principle to determine the parameters €2,,, Q4,

Q, and Hg.

Q,= 0; 0 = -08, -03, 0,03, 0.8
8 [T

L / i

L / ,
L / ,

4+ / -

x(ng—n,)(z)

0.01 0.1 1 10 100 1000
4

Q¢ =0, Q,=-08 -03, 0,03, 0.8

6 T

x(ng—n,)(z)

0.01 0.1 1 10 100 1000
4

Fig. 2. The function x(no — m ) as a function of the red-
shift z for different values of the cosmological parameters €2,
(top, with 2,=0) and Q4 (bottom, with ©,=0), namely —0.8
[dotted], —0.3 [short—dashed], 0 [solid], 0.3 [dot—dashed], 0.8
[long—dashed].

—K _ 1
We have m_ﬁn = Hpag = \/mfor Q. #0.

Observationally we know 107° < Qpaq < 1077 as well
as 0.1 <0y <1, |Qa] <1and |Q < 1.

If we are interested in small redshifts, z; < 10, we may
safely neglect pqq. In this region, Eq. (1.15) is very sen-
sitive to Q4 and provides an excellent mean to constrain
the cosmological constant.

At high redshift, z; 2> 1000, neglecting radiation is no
longer a good approximation.

We shall later need the opening angle of the horizon
distance,

o (1.16)

S (CTEA

1
o Hoao

m (1.17)

S5

e dz
X/ .
a1 [Qraal(z + 1)+ Qa2 4+ 1) 4+ Qa + Qi (2 + 1)7]
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(Clearly this integral diverges if Qvaq = Q4 = 0. This is
exactly what happens during an inflationary period and
leads there to the solution of the horizon problem.)

0,=0; 0= -08 -03,0, 03,08

T T

100

0.1 |
1 10 100 1000
z

0, = 0; Q,= -08, -0.3, 0, 0.3, 0.8

T T T

100

0.1 |
1 10 100 1000
z

Fig. 3. 9g(z1) (in degrees) for different values of the cos-
mological parameters €2, and a the line styles are as in
Fig. 2.

The value of the radiation density is well known. For
photons plus three sorts of massless neutrinos we have

prad = 7.94 x 107°4(15/2.737 K)* g/em® .

This gives
Qragh® = 4.2-107°(T/2.737 K)* | (1.18)
km
Hy = 100h . 1.19
0 s - Mpc ( )
Neglecting Qp5q, for €24 = 0 and small curvature,

0 < Q] <« Q4 at high enough redshift, z; > 10,
one has ng —m ~ 21/|Q%|/Qa = 2/(Hoag/Q4). This
yields 9(A, z1) ~ V/QaHoag\/2 = %\/Q_dHO/\phys/(zl—l—l),
where Apnys = a1 A is the physical scale corresponding to
comoving size A.
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B. Recombination and the cosmic microwave
background (CMB)

During its expansion, the universe cools adiabatically.
At early times, it is dominated by a thermal radiation
background with p = C/a* = gegaspT?* [10], and we
find that T o< a=!. Here geg = np + 7/8np is the effec-
tive number of degrees of freedom, bosons counting as
1 and fermions counting as 7/8 (see, e.g., [14]). At tem-
peratures below 0.5 MeV only neutrinos and photons are
still relativistic leading to the density parameter given in
Eq. (1.18). (Neutrinos have a somewhat lower tempera-
ture than photons, T, = (4/11)'/3T since they have al-
ready dropped out of thermal equilibrium at 7'~ 1 MeV,
before et annihilation which therefore reheats the pho-
tons but not the neutrinos, see, e.g., [14,15].)

The photons obey a Planck distribution,

1
At a temperature of about 7'~ 4000 K ~ 0.4 €V, the
number density of photons with energies above the hy-
drogen ionization energy drops below the baryon density
of the universe, and the protons begin to (re-)combine
to neutral hydrogen. (Helium has already recombined
earlier.) Photons and baryons are tightly coupled before
(re-) combination by non-relativistic Thomson scattering
of electrons. During recombination the free electron den-
sity drops sharply and the mean free path of the photons
grows larger than the Hubble scale. At the temperature
Taec ~ 3000 K (corresponding to the redshift zgec ~ 1100
and the physical time tqoc = agfgec ~ 10° years) photons
become free and the universe becomes transparent.
After recombination, the photon distribution evolves
according to Liouville’s equation (geodesic spray):

L — 1y,f =0,

g (1.21)

prouf — Tl php”

where i = 1,2, 3. Since the photons are massless, |p|? =
Z?:l pipt = w? (w = ap’). Isotropy of the distribution
implies that f depends on p’ only via |p| = w, and so

3f_3w3f_pi3_f

- = —— = — 1.22
op  Opt Ow  w Jw ( )
In a Friedmann universe (also if & # 0!) we find for
pipy = —w? + p? = 0 [exercise!]
, , 190f a\ of
0 f =T phppi—=—— = —w? [ = | ==, 1.2
ot wl PP “ (az)ﬁw (1.23)
Inserting this result into (1.21) leads to
a\ of
0 -)=—=0 1.24
nf e (a) Jw ’ ( )

which is satisfied by an arbitrary function f = f(wa).
Hence the distribution of free-streaming photons changes
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just by redshifting the momenta. Therefore, setting 7" o
a~! even after recombination, the blackbody shape of

the photon distribution remains unchanged.

Note however that after recombination the photons
are no longer in thermal equilibrium and the 7" in the
Planck distribution is not a temperature in the thermo-
dynamical sense but merely a parameter in the photon
distribution function.

5mm 2mm 1 mm 500 um
[ | 1 1 | 1 1

T T T T
< 4
Error bars magnified 20 times

Flux

(10“Scrgs em%s 5 HZ )
2
T

0 3 10 15 20
Frequency
(em™)

' ' ]

I, (ergs om™sec™'sr™Hz™)

L L 1
100 10

1
WAVELENGTH (cm)

Fig. 4. Spectrum of the cosmic background radiation. The
graph on the top shows the measurements of the FIRAS ex-
periment on COBE (the vertical bars), overlaid by a black-
body spectrum at a temperature of 2.73 K. The error bars
are 20 times magnified! The image on the bottom shows a
larger number of measurements. The FIRAS data is repre-
sented by the fat line around the peak of the spectrum (from
Peebles [15]).

The blackbody spectrum of these cosmic photons
which are called the “cosmic microwave background”
(CMB) is extremely well verified observationally (see
Fig. 4). The limits on deviations are often parameterized
in terms of three parameters: The chemical potential g,
the Compton y parameter (which quantifies a well de-
fined change in the spectrum arising from interactions
with a non-relativistic electron gas at a different temper-
ature, see, e.g., [15]) and Yg (describing a contamination
by free-free emission).

The present limits on these parameters are (at 95%

CL, [7])

| < 9-107°, |y < 1.2-1075, |Yg| < 1.9-107°.

(1.25)

The CMB photons have not only a very thermal spec-
trum, but they are also distributed very isotropically,
apart from a dipole which is (most probably) simply due
to our motion relative to the surface of last scattering:

An observer moving with velocity v relative to a source
emitting a photon with proper momentum p = —wn sees
this photon redshifted with frequency

(1.26)

W =qw(l —nv),

1

where v = T is the relativistic y-factor. For an

isotropic emission of photons coming from all directions
n this leads to a dipole anisotropy in first order in v.
This dipole anisotropy, which is of the order of

(g) ~ 1073
r dipole

has already been discovered in the 70ties [16,17]. Inter-
preting it as due to our motion with respect to the last
scattering surface implies a velocity for the solar-system
bary-center of v = 371+ 0.5 km/s at 68% CL ([7]).

The COBE [11] DMR experiment (Differential Mi-
crowave Radiometer) has found fluctuations of

2
()~
T
on all angular scales ¢ > 7° [8]. On smaller angular scales
many experiments have found fluctuations (we shall de-
scribe the experimental results in more detail later), but
all of them are <10~%.

As we shall see later, the CMB fluctuations on large
scales provide a measure for the deviation of the geom-
etry from the Friedmann—Lemaitre one. The geometry
perturbations are thus small and we may calculate their
effects by linear perturbation theory. On smaller scales,
AT/T reflects the fluctuations in the energy density
in the baryon/radiation plasma prior to recombination.
Their amplitude is just about right to allow the forma-
tion of the presently observed non-linear structures (like
galaxies, clusters, etc.) out of small initial fluctuations
by gravitational instability.

These findings strongly support the hypothesis which
we assume here, namely that the large scale struc-
ture (i.e., galaxy distribution) observed in the universe
formed by gravitational instability from relatively small
(~107%*—=107") initial fluctuations. As we shall see, such
initial fluctuations leave an interesting “fingerprint” on
the cosmic microwave background.

(1.27)

II. PERTURBATION THEORY

The tool for the analysis of CMB anisotropies is cos-
mological perturbation theory. We spend therefore some
time on this subject, especially on the fundamental level.
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Once all the variables are defined, we will be rather
brief in the derivation of the basic perturbation equa-
tions. First of all, because these derivations are in general
not very illuminating and secondly because nowadays all
of you can obtain them very easily by setting

Juv :guu+5azhuu (21)
(g being the unperturbed Friedmann metric) and ask-
ing Mathematica or Maple to calculate the Einstein Ten-
sor using the condition €2 = 0. We conventionally set
(absorbing the “smallness” parameter ¢ into h,,)

GJuv = guu + azhuua

goo = —a’,

2

9i; = a vij,

|h;w| < I

TH =T 46",

—0 B

TO - P

T; = pgj,

|041/p < 1. (2.2)

A. Gauge transformation, gauge invariance

The first fundamental problem we want to discuss is
the problem of ‘choice of gauge’ in cosmological pertur-
bation theory:

For linear perturbation theory to apply, the spacetime
manifold M with metric ¢ and the energy momentum
tensor T of the real, observable universe must be in some
sense close to a Friedmann universe, i.e., the manifold M
with a Robertson—Walker metric g and a homogeneous
and isotropic energy momentum tensor 7. It is an in-
teresting, non-trivial unsolved problem how to construct
g and T from the physical fields ¢ and T in practice.
There are two main difficulties: Spatial averaging proce-
dures depend on the choice of a hyper-surface of constant
time and do not commute with derivatives, so that aver-
aged fields g and 7' will in general not satisfy Einstein’s
equations. Secondly, averaging is in practice impossible
over super-horizon scales.

Even though we cannot give a constructive prescrip-
tion, we now assume that there exists an averaging proce-
dure which leads to a Friedmann universe with spatially
averaged tensor fields @, such that the deviations (Tyw —

T )/ maxiasy{[Tapl} and (9 — )/ Maxiasy{Tast
are small, and § and T satisfy Friedmann’s equations. Let
us call such an averaging procedure ‘admissible’. There
may be many different admissible averaging procedures
(e.g. over a different hyper-surface) leading to slightly
different Friedmann backgrounds. But since |g — g| is
small of order ¢, the difference of the two Friedmann
backgrounds must also be small of order ¢ and we can
regard it as part of the perturbation.
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We consider now a fixed admissible Friedmann back-
ground (g,T) as chosen. Since the theory is invariant
under diffeomorphisms (coordinate transformations), the
perturbations are not unique. For an arbitrary diffeo-
morphism ¢ and 1ts pullback ¢*, the two metrics ¢ and
¢*(g) describe the same geometry. Since we have chosen
the background metric § we only allow diffeomorphisms
which leave g invariant, i.e., which deviate only in first
order form the identity. Such an ‘infinitesimal’ isomor-
phism can be represented as the infinitesimal flow of a
vector field X, ¢ = ¢X. Remember the definition of the
flow: For the integral curve v, (s) of X with starting point
z, i.e., v: (s = 0) = z we have ¢X(z) = 7,(s). In terms
of the vector field X, to first order in ¢, its pullback 1is
then of the form

qf)* =1id+elx

(Lx denotes the Lie derivative in direction X). The
transformation g — ¢*(g) is equivalent to g + ea’h —
g+e(a’h+ Lxg), i.e. under an ‘infinitesimal coordinate
transformation’ the metric perturbation A transforms as
h—h+a*Lxy . (2.3)

In the context of cosmological perturbation theory, in-
finitesimal coordinate transformations are called ‘gauge
transformation’. The perturbation of a arbitrary tensor
field Q@ = Q+eQ() obeys the gauge transformations law
QY - QW+ 1xQ . (2.4)

Since every vector field X generates a gauge transfor-
mation ¢ = ¢X | we can conclude that only perturbations
of tensor fields with Lx@Q = 0 for all vector fields X,
i.e., with vanishing (or constant) ‘background contribu-
tion’ are gauge invariant. This simple result is sometimes
referred to as the ‘Stewart—Walker Lemma’ [3].

The gauge dependence of perturbations has caused
many controversies in the literature, since it 1s often diffi-
cult to extract the physical meaning of gauge dependent
perturbations, especially on super-horizon scales. This
has led to the development of gauge invariant perturba-
tion theory which we are going to use throughout this re-
view. The advantage of the gauge-invariant formalism is
that the variables used have simple geometric and phys-
ical meanings and are not plagued by gauge modes. Al-
though the derivation requires somewhat more work, the
final system of perturbation equations i1s usually simple
and well suited for numerical treatment. We shall also
see, that on sub-horizon scales, the gauge invariant mat-
ter perturbations variables approach the usual, gauge de-
pendent ones. Since one of the gauge invariant geometri-
cal perturbation variables corresponds to the Newtonian
potential, the Newtonian limit can be performed easily.

First we note that since all relativistic equations are
covariant (i.e. can be written in the form @ = 0 for some
tensor field @), it is always possible to express the cor-
responding perturbation equations in terms of gauge in-
variant variables [4-6].
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B. Gauge invariant perturbation variables

Since the {n = const} hyper-surfaces are homogeneous
and isotropic, it 1s sensible to perform a harmonic anal-
ysis: A (spatial) tensor field @ on these hyper-surfaces
can be decomposed into components which transform ir-
reducibly under translations and rotations. All such com-
ponents evolve independently. For a scalar quantity f in
the case k = 0 this is nothing else than its Fourier de-
composition:

f(x,n) = / 4k f (k)e*>. (2.5)

(The exponentials Yi(x) = e** are the unitary ir-

reducible representations of the Euclidean translation
group.) For £ = 1 such a decomposition also exists, but
the values k are discrete, k? = (£ + 2) and for k = —1,
they are bounded from below, k? > 1. Of course, the
functions Yy are different for x # 0.

They are always the complete orthogonal set of eigen-
functions of the Laplacian,

AY) = g2y (9), (2.6)
In addition, a tensorial variable (at fixed position x)
can be decomposed into irreducible components under
the rotation group SO(3).
For a vector field, this is its decomposition into a gra-
dient and a rotation,

Vi=Vip+ B, (2.7)

where

iIO,

|2

(2.8)

where we used X)|; to denote the three-dimensional co-
variant derivative of X. ¢ is the spin 0 and B is the spin
1 component of V.

For a symmetric tensor field we have

L

Hi; = Hpvij + (Vivj —3

A%’j) Hr

(g g (1)
+3 (Hl.lj +H, ) +H, (2.9)
where
HOW = g™ = g1 =0 (2.10)
7 7 7|7 ) )
Here H; and Hrp are spin 0 components, HZ»(V) is a spin

1 component and HZ»(]»T) s a spin 2 component.

We shall not need higher tensors (or spinors). As a
basis for vector and tensor modes we use the vector and
tensor type eigenfunctions to the Laplacian,

V) _ 2v-(V)
AYj = —k Y] , (2.11)
and
(T) _ 2v/(T)
Ain = —k Y]Z , (2.12)

V) Vld

is a transverse vector, Y = 0 and

J
T) - . T)j
Yj(» ) 1s a syminetric transverse traceless tensor, Yj( -

Y =0.

where Y]

l
J?

According to Egs. (2.7) and (2.9) we can construct
scalar type vectors and tensors and vector type tensors.

To this goal we define

(5) = _p=1y(5)

v = -kt (2.13)
1

A R g%jY“), (2.14)

vy Loy

v = - )+ Y. (2.15)

In the following we shall extensively use this decompo-
sition and write down the perturbation equations for a
given mode k.

The decomposition of a vector field is then of the form

B; = BY*) + BV, (2.16)

The decomposition of a tensor field is given by (com-

pare (2.9))

Hyj = HyY Oy + HpyO + mOy Y 4 g @y,
(2.17)

where B, BZ(V), Hyp, Hr, HZ»(V) and HZ»(]»T) are functions
of n and k

1. Metric perturbations

Perturbations of the metric are of the form

Gy = Guv + a Ry (2.18)

We parameterize them as

hudetdz” = —2Adn* — 2B;dnde’ + 2H;;dx'dx?
(2.19)

and we decompose the perturbation variables B; and H;;
according to (2.16) and (2.17).

Let us consider the behavior of h,, under gauge trans-
formations. We set the vector field defining the gauge
transformation to

X =T, + L'0;. (2.20)
Using simple identities from differential geometry like
Lx(df) = d(Lx f)
and
(Lx7)i; = X + Xj),

we obtaln
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Ixg = a’ [—2 (9T+ T) dn? + 2 (Li — T,i) dndz’
a

+ (29T~m + Lj; + LW) dxidxj] . (2.21)
a
Comparing this with (2.19) and using (2.3) we ob-
tain the following behavior of our perturbation vari-
ables under gauge transformations (decomposing L; =

LYZ(S) 4 L(V)YZ(V))

A=A+ Ir47, (2.22)
a

B— B—L—kT, (2.23)

BY) — pV) — (V) (2.24)
' k

Hp — Hp+ 27+ 2 (2.25)
a

Hp — Hyp — kL, (2.26)

HY) - gV — k1), (2.27)

HD o g1, (2.28)

Two scalar and one vector variable can be brought to
disappear by gauge transformations. .

One often chooses kL. = Hy and T'= B + L, so that
the variables Hp and B vanish. In this gauge (longitudi-
nal gauge), scalar perturbations of the metric are of the
form (Hp = B = 0):

hgf,) = —2Wdn? + Q@Wijdxidxj.

(2.29)

U and @ are the so called Bardeen potentials. In general
they are defined by

U=A-2klo— k6, (2.30)
a

1 .
= Hy + 5 Hr - e (2.31)
a
with ¢ = k~'Hp — B. A short calculation using Egs.
(2.22) to (2.26) shows that they are gauge invariant.
For vector perturbations it is convenient to set
ELY) = HY) so that H(Y) vanishes and we have
v vV 7
hg{,)dl‘“dl‘ = QU(V)YZ»( )dndx. (2.32)
We shall call this gauge the “vector gauge”. In general
o) = k= HY) — BV) is gauge invariant [12]
Clearly there are no tensorial (spin 2) gauge transfor-

(T)

mation and hence H;; ' is gauge invariant.

2. Perturbations of the energy momentum tensor

Let TF = TZ + 04 be the full energy momentum ten-
sor. We define its energy density p and its energy flow
4-vector u as the time-like eigenvalue and eigenvector of
TH:

Thu” = —put, u? = —1.

14

(2.33)

We then define their perturbations by
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p=p(1+8), u=u0 +u'd;. (2.34)
u? is fixed by the normalization condition,
u’ = 2(1 — A). (2.35)
We further set
uf = o = oy (0 gy (2.36)

We define P} = utu, + 6%, the projection tensor onto
the part of tangent space normal to u and set the stress
tensor

TH = PEPYTP. (2.37)

In the unperturbed case we have 70 = 0,7 = pét.
Including perturbations, to first order we still obtain
0 0

_ ot
=1 =15 =0.

(2.38)

But T]Z: contains in general perturbations. We set

=p[(1+M) 8 +15], with I, =0. (2.39)
We decompose Hé» as
I =y S oMy @y M (2.40)

We shall not derive the gauge transformation proper-
ties in detail, but just state some results which can be
obtained as an exercise (see also [5]):

e Of the variables defined above only the I1(5V:T)
are gauge invariant; they describe the anisotropic
stress tensor, IT¥ = 7/ — 1/3785F. They are gauge
invariant due to the Stewart—Walker lemma, since
I = 0. For perfect fluids IT# = 0.

e A second gauge invariant variable is

(2.41)

where ¢2 = p/p is the adiabatic sound speed and

w = p/p is the enthalpy. One can show that T' is
proportional to the divergence of the entropy flux
of the perturbations. Adiabatic perturbations are
characterized by I' = 0.

e Gauge invariant density and velocity perturbations
can be found by combining ¢, v and vl(v) with met-

ric perturbations.
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We shall use
1.

V=v— cHr = pllone) (2.42)
Dg =)+ 3(1 + w) (HL + %HT) = (5(long)’
+3(1 + w)®, (2.43)
— s(long) E K
= 60ome) 4 3(1 + w) (a) o (2.44)
V) = (V) _ %m ) = ylvee), (2.45)
Q= (V) _ BV) = ylvee) _ g(v), (2.46)
Qv = () (2.47)

Here vpllong) = §long) 5nq vl(vec) are the velocity (and den-
sity) perturbations in the longitudinal and vector gauge
respectively and o(V) is the metric perturbation in vector
gauge (see Eq. (2.32)). These variables can be interpreted
nicely in terms of gradients of the energy density and the
shear and vorticity of the velocity field [18].

But we just want to show that on scales much smaller
than the Hubble scale, k5 > 1, the metric perturbations

are much smaller than é and v and we can thus “forget
them” (which will be important when comparing exper-
imental results with calculations in this formalism):

The perturbations of the Einstein tensor are given by
second derivatives of the metric perturbations. Einstein’s
equations yield the following order of magnitude esti-
mate:

5T 1 k
0 (—) O@BrGT) =0 (—2h + —h+ kzh) , (2.48)
T —_— n n

o(£)*=0(n-2)

0 (%T) = O (h+ knh + (kn)*h) . (2.49)

For kn > 1 this gives O(4,v) = O (5%) > O(h). On
sub-horizon scales the difference between &, §(1°18) D,
and D is negligible as well as the difference between v
and V or "), VV) and Q).

Later we shall also need other perturbation variables
like the perturbation of the photon brightness (energy-
integrated photon distribution function), but we shall
introduce them as we get there and discuss some appli-
cations first.

C. Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down those which we shall need later:

1. Constraint equations

drGa’pD =
ArGa’(p+p)V =k

(k? — 3K)®,

TN

—_

8rGa’(p+p)Q = = (26 — k?) aV).(04)

[\]

2. Dynamical equations

k2 (® 4 V) = 87Ga’pll®),

K (w 49 (_) U<V>) — SrGa?pllV),
a

HT) 49 (E) 7T 4 (2/@ + /{72) HT = SNGaszZ(»jT). (tensor)
a

(00) |
<%> o <I>), (04) } (scalar) (2.50)
(vector) (2.51)
(scalar) (2.52)
(vector) (2.53)
(2.54)

There is a second dynamical scalar equations, which is however complicated and not needed, since we may instead use

one of the conservation equations below. Note that for perfect fluids, where II% = 0, we have & = —W, ¢!

V) & 1/a®

and H obeys a damped wave equation. The damping term can be neglected on small scales (over short time periods)
when 772 < 2k + k?, and H;; represents propagating gravitational waves. For vanishing curvature, these are just the
sub-horizon scales, kn > 1. For k < 0, waves oscillate with a somewhat smaller frequency, w = v/2x + k2, while for

% > 0 the frequency is somewhat larger.
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8. Conservation equations

The conservation equations, T = 0 lead to the following perturbation equations

Dy +3(c?

w) () Dy

V4 (9)(1-3¢

V=
Qi+ (1-3c2) (9)9
a

( - 362(1)) + 1+w

1+ka+3w( )

(k— 2—“) ")
p+p k)

=0,
wk [F 2 (1 _ Z_,;) H] ’ } (scalar)

I11I. SIMPLE APPLICATIONS

We first discuss some simple applications which will be important for the CMB. We could of course also write
(2.55) in terms of D, but we shall just work with the relation

D =Dy +3(1+w) (—q>+ (g) k—lv) :

(3.1)

A. The pure dust fluid at k =0,A =0

We assume the dust to have w = ¢ = p = 0 and Il = I = 0. The equations (2.55), (2.52) and (2.50) then reduce

to

In a pure dust universe p o< a=3 = (a/a)? ! which
is solved by @ o n?. The Einstein equations then give im-
mediately 4rGpa? = 3/(a/a)? = 6/n°. Setting kn = z
and ' = d/dx, the system (3.2-3.5) then becomes

D, =-Vv, (3.6)
2

Vit SV =, (3.7)

6 2

S Det3(v+ov))=-v (3.8)

We use (3.8) to eliminate ¥ and (3.6) to eliminate D,,

leading to
72 72
(18 +2%) V" + <?—|—4x) V- ( +4) V=0
The general solution of Eq. (3.9) is
Vi
V= Voz+ —
x
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P
—k*W = 4nGa®p (Dg +3 <\If —+ (E) k_1V)) . (Poisson eqn.)
a

(energy conservation eqn.)

(gravitational acceleration eqn.)

with arbitrary constants V4 and V. Since the perturba-
tions are supposed to be small initially, they cannot di-
verge for x — 0, and we have therefore to choose V4 =0
(the growing mode). Another way to argue is as follows:
If the mode Vi has to be small already at some early ini-
tial time 7, 1t will be even much smaller at later times
and may hence be neglected. The perturbation variables
are then given by

V = Ve, (3.11)
1 2

Dy = —15Vp — 5 Vor?, (3.12)

U =3V (3.13)

The constancy of the gravitational potential ¥ in a
matter dominated universe and the growth of the den-
sity perturbations like the scale factor a led Lifshitz to
conclude 1946 [19] that pure gravitational instability can-
not be the cause for structure formation: If we start from
tiny thermal fluctuations of the order of 1073% they can
only grow to about 1073 through this process during
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the matter dominated regime. Or, to put it differently,
if we do not want to modify the process of structure for-
mation, we need initial fluctuations of the order of at
least 107°. One possibility to create such fluctuations
1s due to quantum particle production in the classical
gravitational field during inflation. The rapid expansion
of the universe during inflation quickly transforms micro-
scopic scales at which quantum fluctuations are impor-
tant into cosmological scales where these fluctuations are
then “frozen in” as classical perturbations in the energy
density and the geometry.
We distinguish two regimes:
i) super-horizon, < 1 where we have

D, = —15V4, (3.14)
U =315, (3.15)
V=V (3.16)

and ¢7) sub-horizon, £ >3 1 where the solution is domi-
nated by the terms

V = Vo, (3.17)
1

Dy = —§V0x2, (3.18)

¥ = 3V, = const. (3.19)

Note that for dust
6 1 9
D:Dg—|—3\I!—|—;V:—§V0x .

In the variable D the constant term has disappeared and
we have D < W on super horizon scales, © < 1.

B. The pure radiation fluid, xk =0,A =0

In this limit we set w = ¢? = 1/3 and I = 0. We con-
clude from p o a~* that @« o  and ® = —¥, and the
perturbation equations become (with the same notation
as above):

D; = —§V, (3.20)
1
Vi =2¥ + ZDg’ (3.21)
9 12
—2x°V = 3D, + 12¥ + —V. (3.22)
x
The general solution of this system is
T \/§ T
D,=D — ] -2 —
g 2 [cos <\/§) L sin (\/_)]
\/§ T
+ D4 |sin (—) + 2—cos (—) , 3.23
3
V= —ZD;, (3.24)
—-3D, — (12
gy = =30 = (12/2)V (3.25)

Again, regularity at = 0 requires Dy = 0.
In the super-horizon, x < 1 regime we obtain

V=V, Dy=Dy— §v0x2, V=V (3.26)
with

Dy = —6Wy = —Ds, (3.27)

Vo = %\IJO = —%Do. (3.28)

On sub-horizon, z > 1 scales we find oscillating solu-
tions with constant amplitude with a frequency of 1//3:

x
V=Vsn|—], 3.29
’ (ﬁ) (3:29)
D, = Dy cos | —— U = —§$_2D (3.30)
g = Do NI =3 95 .
4
D, = (3.31)

V3

Note that also for radiation perturbations
2., 9
D= —gvoa: <« ¥

is small on super horizon scales, x < 1. The perturba-
tion amplitude is given by the largest gauge invariant
perturbation variable. We conclude therefore that per-
turbations outside the Hubble horizon are frozen to first
order. Once they enter the horizon they start to collapse,
but pressure resists the gravitational force and the radi-
ation fluid starts to oscillate. The perturbations of the
gravitational potential oscillate and decay like 1/a? in-
side the horizon.

C. Adiabatic and isocurvature initial conditions for
a matter & radiation fluid

In this section we want to investigate a system with
a matter and a radiation component that are coupled
only by gravity. The matter component acts therefore as
dark matter, since it does not interact directly with the
radiation.

Since the matter and radiation perturbations behave
in the same way on super-horizon scales,

D) = A+ Ba?, D™ = A+ B'2%, VD o VI o g,
(3.32)

we may require a constant relation between matter and
radiation perturbations. As we have seen in the previous
section, inside the horizon (z > 1) radiation perturba-
tions start to oscillate while matter perturbations keep
following a power law. On sub-horizon scales a constant
ratio can thus no longer be maintained. There are two
interesting possibilities:
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1. Adiabatic initial conditions

Adiabaticity requires that matter and radiation per-
turbations are initially in perfect thermal equilibrium.
This implies that their velocity fields agree (see below,
section on Boltzmann equation!)

v =y, (3.33)

so that the energy flux in the two fluids is coupled ini-
tially.

Let us investigate the radiation solution in the matter
dominated era, when the corresponding scale is already
sub-horizon. Since ¥ is dominated by the matter contri-
bution, we have ¥ ~ const = ¥y. We neglect the (decay-
ing) contribution from the sub-dominant radiation to V.
Energy-momentum conservation for radiation then gives

Dy = —gv“), (3.34)
1
v = ow 4 ZD;’“). (3.35)

Now W is just a constant given by the matter pertur-
bations, and it acts like a constant source term. The full
solution of this system is then

=35 v 3

x
—8¥ |cos|—=)—1], 3.36
()] b
V3. (=
V) = Bcos (i) + —Asin (—)
V3 4 V3
x
—2V3¥sin [ —= | . 3.37
(%) B30
Our adiabatic initial conditions require
(r) (m)
lim v =V, = lim v < 0. (3.38)
=0 x z—=0 X

Therefore B = 0 and A = 4V, — 8W¥. Using in addition
T = 315 (see (3.19)) we obtain

” 44 x
DY) = — W cos (ﬁ) + 8, (3.39)
1 x
V) = —Wsin (—) , 3.40
7 7 (3.40)
. 1
Dim = —w (5 + 6932) , (3.41)
Vi = Zgg, 3.42
T = 3V%. (3.43)
On super-horizon scales, z < 1 we have
. 20 o1
DY) ~ -3 V)~ ;¥ (3.44)

note that Ds(f) = (4/3)D£(,m) and V) = V") for adia-

batic initial conditions.
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2. Isocurvature initial conditions

Here we want to solve the system (2.50) and (2.55) for
dark matter and radiation under the condition that the
metric perturbations vanish initially, ¢.e., ¥ = 0,

2
+ 3(1 + w) (g) k—lv] =0.

o3 (g)z k™ [Dy +3(1 4+ w)¥
(3.45)

In principle, we have four evolution and one constraint
equations. We therefore have four constants to adjust.
Condition (3.45), however, requires an entire function to
vanish. This may be impossible. Let us nevertheless try:

If ¥ = 0 the solutions of the radiation dominated equa-
tions are simply

DY) = Acos (i) + Bsin (i) , 3.46
! V3 V3 (349)
v = ﬁAsin (i) - EB cos (i) . (347
4 V3 4 V3
For the matter perturbations we find

my _ Yo s

V — T T a Xz, 1§6§2’ (348)
a
Vo =z
(m) —g(m) _ 0 =

Dy C 7 1a if 3#£1, (3.49)
Dim =™ — Vylog(z) if B=1. (3.50)

Here (3 is the exponent of the scale factor a o< 5”, hence
3 = 1 in the radiation era and f = 2 in the matter era.
¥ = 0 implies with

1
_ L po (m)
D= (DS + pm DY) (3.51)
1
=—((pr +p) V) + p, V(™) 3.52
() VO ) (35
that
0=2"p) 4 pim
Pm
. 1,
+ (g) k1 [piv“) +3v<m>] . (3.53)

Since V(") 1/a it can compensate, for small val-
ues of x, the term o cos(x/v/3) of V") which behaves
like 1/a as well, due to the pre-factor p,/p.,. This term

can also be compensated in Ds(f) by the term Voa/a of

Ds(,m). In the purely radiation dominated universe, the
log-dependence of Ds(,m) renders this compensation im-
perfect. However, there is no way to compensate C"™) or
the term proportional to A. We therefore have to choose

A= =0 and
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r 3 m
ap——\/_B:VO, B =" /3v,.
pm 3 apy

(3.54)

(The compensation of the smaller terms in Ds(f) and ng)
is only complete if 3 ~ 2.)
With ¢, = 1/\/§ we find

p
D,S/T) ~ - i
PrCs

Vosin (es2), (isocurvature) (3.55)

. 44 _
Dg ) ~ ¥ (8 -3 cos (csx)) . (adiabatic) (3.56)

The CMB anisotropies, which we are going to determine
in the next section, contain a term

AT
_(k’no’n):...+

1 .
- DU (K, ngee) eXn00=naee)

479
(3.57)

On scales where this term dominates, the peaks in D,
translate into peaks in the angular power spectrum of
CMB anisotropies.

For isocurvature initial conditions, we find a first peak
in D, at

1
xz(l) = kz(l)ndec = _Ea
cs 2
w_ T _
Ai —_ k(l) —_ QCsndeCa
90 ~ w. (3.58)
! X (770 - ndec)

Here 792(»1) is the angle under which the comoving scale
/\2(1) at comoving distance 7y — 7qec 1s seen. In the next
section, we will expand the temperature fluctuations
in terms of spherical harmonics. An fluctuation on the
angular scale ¥ then shows up around the harmonic
£~ w/8. As an indication, we note that for A = k = 0,

the harmonic of the first isocurvature peak 1is
(Y ~ o ~ 110

In the adiabatic case the first “peak” is at k((ll) =0.

Since Ds(f) is negative for small =, the first peaks are
“expansion peaks”, and due to the gravitational attrac-
tion of the baryons (which we have neglected in this sim-
ple argument) they are less pronounced than the second
(“compression”) peaks.

These second peaks are usually called the “first acous-
tic peak”. (It is the first compression peak and we shall
adopt the convention to call 1t the “first peak” mainly
for consistency with the literature.) They correspond to
wavelengths and angular scales

/\2(2) — chndec’ 792('2) ~ (2/3)csndec ’
3 X (770 - ndec)
Egz) ~ 350 (isocurvature); (3.59)
/\512) = Cydec, 79512) ~ &’
X (10 — Ndec)
(2 ~ 200 (adiabatic). (3.60)

Here the indicated harmonic is the one obtained in the
case A = k¥ = 0, for a typical baryon density inferred
from nucleosynthesis.

It is interesting to note that the distance between con-
secutive peaks is independent of the initial condi-
tion. It is given by

Aki = k7 — kY = 7/ (conaee) = Akg

AY = — e Ap < 900,

X (M0 — 7dec) (361)

Again, the numerical value indicated for A¢ corresponds
to a universe with A = x = 0. The result is strongly de-
pendent especially on . This is the reason why the mea-
surement of the peak position (or better of the inter-peak
distance) allows an accurate determination of curvature.

From our analysis we can draw the following important
conclusions: For scales where the Dy)—term dominates,
the CMB anisotropies show a series of acoustic oscilla-

tions with spacing Ak, the position of the first significant
(2)

peaks is at k = k'az/i, depending on the initial condition.

The spacing Ak is independent of initial conditions.
The angle A# onto which this scale is projected in the
sky 1s determined entirely by the matter content and the
geometry of the universe. According to our findings in
Section I, ¥ will be larger if £2,, < 0 (positive curvature)
and smaller if 2, > 0 (see Fig. 3).

In our analysis we have neglected the presence of
baryons, in order to obtain simple analytical results.
Baryons have two effects: They lead to (p+ 3p)radtbar >
0, and therefore to an enhancement of the compression
peaks (the first, third, etc. acoustic peak). In addition,
the baryons slightly decrease the sound speed ¢;, increas-

ing thereby Ak and decreasing A4.

Another point which we have neglected 1s the fact
that the universe became matter dominated at 74, only
shortly before decoupling: ngec >~ 41eq, for 2, = 1. As
we have seen, the gravitational potential on sub-horizon
scales is decaying in the radiation dominated era. If the
radiation dominated era is not very long before decou-
pling, the gravitational potential is still slightly decaying
and free streaming photons fall into a deeper gravita-
tional potential than they have to climb out of. This ef-
fect, called “early integrated Sachs—Wolfe effect” adds to
the photon temperature fluctuations at scales which are
only slightly larger than the position of the first acous-
tic peak for adiabatic perturbations. It therefore ‘boosts’
this peak and, at the same time, moves it to lightly larger
scales (larger angles, lower spherical harmonics). Since
Neq < k™7, the first acoustic peak is larger if A is smaller.

A small Hubble parameter increases therefore the
acoustic peaks. A similar effect is observed if a cosmo-
logical constant or negative curvature are present, since
Teq 18 retarded in those cases.

The real universe contains not only photons and dark
matter, but also neutrinos and baryons. It has actually
be found recently [20] that this 4-fluid mixture allows five
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different modes which grow or stay constant. The adia-
batic mode, the dark matter isocurvature mode which we
have just discussed, a similar baryon isocurvature mode
and two neutrino isocurvature modes. The most generic
initial conditions which allow for arbitrary correlations
between the different modes are very unpredictable. We
can maybe just say that they lead to a first acoustic
peak in the range of 150 < £(2) < 350 for a spatially flat
universe. In the rest of this review, we only discuss adi-
abatic perturbations, which are by far the most studied,
but it 1s important to keep in mind that all the results
especially concerning the estimation of cosmological pa-
rameters is not valid if we allow for more generic initial
conditions [1,2].

8. Vector perturbations of perfect fluids

If TI'V) = 0 equation (2.56) implies

3c2

Qo< a®t (3.62)
For p/p = ¢? < 1/3, this leads to a non-growing vorticity.
The dynamical Einstein equation implies

(3.63)

and the constraint (2.51) reads (at early times, so we can
neglect curvature)

Q~ 22 (3.64)

If perturbations are created in the very early universe
on super-horizon scales (e.g., during an inflationary pe-
riod), vector perturbations of the metric decay and be-
come soon entirely negligible. Even if €; remains con-
stant 1n a radiation dominated universe, 1t has to be so
small on relevant scales at formation (x;, < 1) that we
may safely neglect it.

4. Tensor perturbations

The situation is different for tensor perturbations.
Again we consider the perfect fluid case, HZ(»]»T) = 0. There
(2.54) implies (if x is negligible)

20
with 8 = 1 in the radiation dominated era and § = 2 in
the matter dominated era. The less decaying mode so-
lution to Eq. (3.65) is H;; = eijxl/z_ﬁjl/z_@(x), where
J, denotes the Bessel function of order v and ¢;; is a

transverse traceless polarization tensor. This leads to

for » < 1, (3.66)

H;; = const

1
Hij =~ forz 1. (3.67)
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IV. CMB ANISOTROPIES
A. Light-like geodesics

After decoupling, n > 7dec, photons follow to a
good approximation light-like geodesics. The tempera-
ture shift is then given by the energy shift of a given
photon.

The unperturbed photon trajectory follows (z#) =
(n,n(n — no) + Xo), where xg is the photon position
at time 7o and n is the (parallel transported) photon
direction. With respect to a geodesic basis (e)?zl, the
components of n are constant. If k = 0 we may choose
e; = 0/9z%; if Kk # 0 these vector fields are no longer
parallel transported and therefore do not form a geodesic
basis (Ve,e; = 0).

Our metric is of the form

ds? = a?ds?, (4.1)
with
ds® = (Vuw + hp) detde”,
Yoo = —1, vio = 0, vij = V5 (4.2)
as before.

We make use of the fact that light-like geodesics are
conformally invariant. More precisely ds? and ds? have
the same light-like geodesics, only the corresponding
affine parameters are different. Let us denote the two
affine parameters by A and A respectively, and the tan-
gent vectors to the geodesic by

d d
n:—x n= i n“=n?>=0, n’=1, n’=1.

d)’ X
(4.3)

We set n® = 1+ 6n". The geodesic equation for the per-
turbed metric

ds® = (Y + hyy)dztdz” (4.4)
yields, to first order,
ién“ = —0T* _n%n” (4.5)
™ = f . .

For the energy shift, we have to determine én®. Since
¢ = —1 - &y, + first order, we obtain (5Fgﬁ =

—1/2(hao)s + hpoja — jla@), so that
d 1.
ﬁéno = haomnﬁno‘ — §haﬁn°‘nﬁ. (46)

Integrating this equation we use hqg)gn” = %(haono‘),
so that the change of n® between some initial time 7; and
some final time 7y is given by

. 1
n°lf = [hoo + hOj”]]{ B 5/ hun¥n”dA . (4.7)
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On the other hand, the ratio of the energy of a photon
measured by some observer at t; to the energy emitted
at ¢; 1s

Ey _ (n-u)y

E; (ﬁ : U)Z = : (4.8)

where u; and wu; are the four-velocities of the observer
and emitter respectively, and the factor T} /T; is the
usual (unperturbed) redshift, which relates n and n. The
velocity field of observer and emitter is given by

u=(1—A)d, +v'0; . (4.9)

An observer measuring a temperature 7 receives pho-
tons that were emitted at the time 7ge. of decoupling of
matter and radiation, at the fixed temperature Tye.. In
first-order perturbation theory, we find the following re-
lation between the unperturbed temperatures 7%, T3, the
measurable temperatures Ty, Tgec, and the photon den-
sity perturbation:

T T T T T 1
o Do (00 JOLN T () Lo
E Tdec Tf E Tdec 4 !

(4.10)

where §(") is the intrinsic density perturbation in the ra-
diation and we used p{") o T in the last equality. Insert-
ing the above equation and Eq. (4.7) into Eq. (4.8), and
using Eq. (2.19) for the definition of Ay, , one finds, af-
ter integration by parts [6] the following result for scalar
perturbations:

Ey T
Ei B Tdec

+ /if(\ﬁ—d))d/\}.

Here Ds(f) denotes the density perturbation in the radia-
tion fluid, and V(%) is the peculiar velocity of the baryonic
matter component (the emitter and observer of radia-
tion). The final time values in the square bracket of Eq.
(4.11) give rise only to monopole contributions and to
the dipole due to our motion with respect to the CMB,
and will be neglected in what follows.

Evaluating Eq. (4.11) at final time 5o (today) and ini-
tial time 74ec, we obtain the temperature difference of
photons coming from different directions n and n’

f
{1 - Epgﬂ + VOl 1w - @

K3

(4.11)

AT 8T 0T (n’
AT _ 0T(n) _ ﬂ’ (4.12)
T T T
with temperature perturbation
AT(H) 1 r b :
T = |:ZD£(7 ) + V]( )n] +v -3¢ (ndecaxdec)

+ [ = @)t (0.3

Ndec

where x(n) is the unperturbed photon position at time
n for an observer at xg, and Xgec = X(Ngec) (If & = 0

we simply have x(n) = xg — (170 — n)n.). The first term
in Eq. (4.13) describes the intrinsic inhomogeneities on
the surface of last scattering, due to acoustic oscilla-
tions prior to decoupling. Depending on the initial con-
ditions, it can contribute significantly on super-horizon
scales. This is especially important in the case of adia-
batic initial conditions. As we have seen in Eq. (3.44),
in a dust + radiation universe with £ = 1, adiabatic

initial conditions imply Ds(f)(k', n) = —20/3¥(k,n) and
V® = V() « DY) for kn < 1. With & = —¥ the the
square bracket of Eq. (4.13) gives

(o)

==V ec) ec
T (Ndec, Xdec)

adiabatic

on super-horizon scales. The contribution to (%T from the
last scattering surface on very large scales is called the

‘ordinary Sachs—Wolfe effect” (OSW). It has been derived
for the first time by Sachs and Wolfe [27]. For isocurva-

ture perturbations, the initial condition Ds(f)(k', n) — 0
for n — 0 is satisfied and the contribution of D, to the
ordinary Sachs—Wolfe effect can be neglected

AT (OSW)
(#) = Q\Ij(ndecaxdec)~

isocurvature

The second term in (4.13) describes the relative motions
of emitter and observer. This is the Doppler contribu-
tion to the CMB anisotropies. It appears on the same
angular scales as the acoustic term, and we thus call the
sum of the acoustic and Doppler contributions “acoustic
peaks”.

The last two terms are due to the inhomogeneities
in the spacetime geometry; the first contribution deter-
mines the change in the photon energy due to the dif-
ference of the gravitational potential at the position of
emitter and observer. Together with the part contained

in Ds(f) they represent the “ordinary” Sachs—Wolfe effect.
The integral accounts for red-shift or blue-shift caused
by the time dependence of the gravitational field along
the path of the photon, and represents the so-called in-
tegrated Sachs—Wolfe (ISW) effect. In a Q@ = 1, pure
dust universe, the Bardeen potentials are constant and
there is no integrated Sachs—Wolfe effect; the blue-shift
which the photons acquire by falling into a gravitational
potential is exactly canceled by the redshift induced by
climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a
cosmological constant.

The sum of the ordinary Sachs—Wolfe term and the
integral is the full Sachs—Wolfe contribution (SW).

For vector perturbations d(") and A vanish and

Eq. (4.8) leads to

(B1/E)Y) = (aifag) |1 = V™0l |]

oo
+/ GindA|.

(4.14)
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We obtain a Doppler term and a gravitational contribu-
tion. For tensor perturbations, i.e., gravitational waves,
only the gravitational part remains:

! .
(Ef/Ei)(T):(ai/af)[l—/ Hljnln]d/\] . (4.15)

Equations (4.11), (4.14) and (4.15) are the manifestly
gauge invariant results for the Sachs—Wolfe effect for
scalar vector and tensor perturbations. Disregarding
again the dipole contribution due to our proper motion,
Egs. (4.14), (4.15) imply the vector and tensor tempera-
ture fluctuations

AT(n)\ Y . .
(#) = VJ( )(ndecaxdec)n]

f .
+ / ¢(n, x(n)n’dA, (4.16)

(ATT(“))(T) - _/if H(p, x(m)ninidh. (4.17)

Note that for models where initial fluctuations have been
led down in the very early universe, vector perturbations
are irrelevant as we have already pointed out. In this
sense Eq. (4.16) is here mainly for completeness. How-
ever, in models where perturbations are sourced by some
inherently inhomogeneous component (e.g., topological
defects) vector perturbation can be important.

B. Power spectra

One of the basic tools to compare models of large scale
structure with observations are power spectra. They are
the “harmonic transforms” of the two point correlation
functions. If the perturbations of the model under con-
sideration are Gaussian (a relatively generic prediction
from inflationary models), then the power spectra con-
tain the full statistical information of the model.

One important power spectrum is the dark matter
power spectrum,

2
Pp(k) = <‘D§m> (k, no)‘ > (4.18)
where () indicates a statistical average over “initial con-
ditions” in a given model. Pp(k) is usually compared
with the observed power spectrum of the galaxy distri-
bution.

Another power spectrum is given by the velocity per-
turbations,

Py (k) = <|V (k, n0)|2> ~ HZQY2Pp(k)E~2 . (4.19)

For ~ we have used that |kV|(n) = ng)(no) ~
HoQ%®Dy on sub-horizon scales (see, e.g., [15]).

The power spectrum we are most interested in is the
CMB anisotropy power spectrum. It is defined as follows:
AT/T is a function of position xg, time 79 and photon
direction n. We develop the n-dependence in terms of
spherical harmonics. We will suppress the argument g
and often also xg in the following calculations. All results
are for today (19) and here (x¢). By statistical homogene-
ity expectation values are supposed to be independent of
position. Furthermore, we assume that the process gen-
erating the initial perturbations is statistically isotropic.
Then, the off-diagonal correlators of the expansion coef-
ficients ay,, vanish and we have

% (X0,1,70) = > _ agm(X0)Vem (n),
Lm
<a5m . Clz/m/> = (Sml(smm/Cz. (420)

The Cy’s are the CMB power spectrum. We assume
that the perturbations are generated by a homogeneous
and sotropic process, so that €y depends neither on xg
nor on m, and that {asm - a},,,,) vanishes for £ # ¢ or
m#£m'.

Let us, at this point insert a comment on the problem
of cosmic variance: Even if our ‘ergodic hypothesis’
is correct and we may interchange ensemble and spatial
averages, we cannot obtain very precise averages for mea-
surements of large scale characteristics, due to the fact
that we can observe only the universe around a given
position. For example, let us assume that temperature
fluctuations are Gaussian, as they are in most inflation-
ary models. The functions ay,, are then also Gaussian
distributed, and we have a variance of

J2

1 obs
ST 2 lamlf = Cef = 165" = Ce| =
m=—4£

Cy
20+17

on the average of the 2/4 1 values ayy, which can in prin-
ciple be measured from one point with full sky coverage.
For simplicity, we neglect the increase of the variance due
to the fact that our own Milky Way blocks a portion of
sky of about 20%. Wick’s theorem now gives

(CF) = (Co)* = (Jaem|®) = (laem]*)* = 2Jaem[*)*.

For a given multipole £ we then expect a variance of the C}’s

(= _

Cy

2
Voer1’

(4.21)

in real experiments, this ‘cosmic variance’ is in general much larger due to the limited sky coverage.
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The two point correlation function is related to the Cy’s by

(FrmTrm) = 5 i) Vi (i)

2,0 mym!

_ZcZ Z Yim(0) Y, (n') = iZ(%H)cﬁPZ(ﬂ), (4.22)

m=—{ 4

2P, (o)

where we have used the addition theorem of spherical harmonics for the last equality. The P,’s are the Legendre
polynomials.
Clearly the a;,,’s from scalar, vector and tensor perturbations are uncorrelated,

(alafin) = (aintaiin) = (al)alih) = 0. (1.23)

V)

Since vector perturbations decay, their contributions, the C;"’, are negligible in models where initial perturbations
have been laid down very early, e.g., after an inflationary period. Tensor perturbations are constant on super-horizon
scales and perform damped oscillations once they enter the horizon.

Let us first discuss in somewhat more detail scalar perturbations. We specialize to the case k = 0 for simplicity.
We suppose the initial perturbations to be given by a spectrum,

<|\IJ|2> = ALyl (4.24)

We multiply by the constant ng_l, the actual comoving size of the horizon, in order to keep A dimensionless for all
values of n. A then represents the amplitude of metric perturbations at horizon scale today, k = 1/1q.
On super-horizon scales we have, for adiabatic perturbations:

1
P00 = 2w o), VO =V = o) (4.25)

The dominant contribution on super-horizon scales (neglecting the integrated Sachs—Wolfe effect [ P — \I!) is then

AT 1
—(x0,m,70) = g\If(l‘dec, Ndec)- (4.26)

The Fourier transform of (4.26) gives

AT 1 :
_(ka n, 770) = _\Ij(ka ndeC) : elkn(nu_ndEC) : (427)
T 3
Using the decomposition
eknmo=nac) =% (204 1)itje(k(no — Naee)) Pe(k - m),
£=0

where j; are the spherical Bessel functions, we obtain

<%(Xo,n,no)%(><o,n’,no)> = %/d?’l‘o <%(X0anano)%(xo,n/,ﬂo)> (4.28)
- (2711_)3 Bk <ATT(k n, 7o) (%)* (k,n’,n0)>
= (Qi)?) /d3k (1w”) i (204 1)(2€ 4+ 1)jie (k{10 — 1aee)) e (k(no — nace))i™ Po(k - n) Por(k - ).

Inserting Pz(l;n) = 221% Yom Y[;n( )Y (n) and Pz/(l;n’) = 2£'+1 Zm, Y[?m,(k)Yz/m/(n’), integration over the direc-
tions dQ; gives doodmms Y, Yo, ()Y (n'). Using as well >~ V¥ (n)Yy,(n') = Zi—j;le(u), where gy = n-n’, we
find
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AT AT
<—(X0, n, UO)T(XO, n’, 770)>

T

:ZZ: 2{;; lpz(/i)% / i—k <%|\Ij|2> kS]Zz(k(UO - ndec))' (429)

nn'=yu

Comparing this equation with Eq. (4.22) we obtain for adiabatic perturbations on scales 2 < £ < x (10 — Ndec) /MNdec
~ 100

(sw) _ ~oswy _ 2 [T dk []1
o =0 _71'/0 3"

> K257 (k (10 — Naec)) - (4.30)

If ¥ is a pure power law and we set k(1o — 9dec) ~ ko, the integral (4.30) can be performed analytically. For the
ansatz (4.24) one finds for =3 < n <3

2 I3-nl(f—-3+2
CZ(SW) _ A7 (3—n)I(f—3 +52) . (4.31)
9 23-n12(2 - 5)I' 0+ 3 - 3)

2
Of special interest is the scale invariant spectrum, n = 1. This spectrum with a time and scale independent
gravitational potential has first been investigated by Harrison and by Zel’dovich [29]. Tt is therefore called the
Harrison—Zel’dovich spectrum. It leads to

o0+ 1)C,ésw) = const ~ <<%(7BZ))2> , Ye=m/l. (4.32)

This is precisely (within the accuracy of the experiment) the behavior observed by the DMR experiment aboard
COBE [8].

Inflationary models predict very generically a HZ spectrum (up to small corrections). The DMR discovery has
therefore been regarded as a great success, if not a proof, of inflation. There are however other models like topological
defects [31-33] or certain string cosmology models [34] which also predict scale-invariant, i.e., Harrison Zel’dovich
spectra of fluctuations. These models do however not belong to the class investigated here, since in these models
perturbations are induced by seeds which evolve non-linearly in time.

For isocurvature perturbations, the main contribution on large scales comes from the integrated Sachs—Wolfe effect

and (4.30) is replaced by
aswy _ 8 [ dk ?
~— [ —3 . 4,
e =2 [ 4 < > (4.3

Inside the horizon ¥ is roughly constant (matter dominated). Using the ansatz (4.24) for ¥ inside the horizon and
setting the integral in (4.33) ~ 2W(k,n = 1/k)j7(kno), we obtain again (4.31), but with A?/9 replaced by 44%. The
Sachs—Wolfe temperature anisotropies coming from isocurvature perturbations are therefore about a factor of 6 times
larger than those coming from adiabatic perturbations.

On smaller scales, £ > 100 the contribution to AT/T is usually dominated by acoustic oscillations, the first two

terms in Eq. (4.13). Instead of (4.33) we then obtain
2
> . (4.34)

On sub-horizon scales Ds(f) and V(") are oscillating like sine or cosine waves depending on the initial conditions.

Correspondingly the C’éAC) will show peaks and minima. On very small scales they are damped by the photon
diffusion which takes place during the recombination process (see next section).
For gravitational waves (tensor fluctuations), a formula analogous to (4.31) can be derived (see appendix),

o = %/dk k2< /% dn 11y, ) 20— 1) 2> G (4.35)

Mo (ko —m)* | [ (£=2)!
To a very crude approximation we may assume H = 0 on super-horizon scales and f dUsz(k’(ﬂo —n) ~ H(n=
1/k)je(kno). For a pure power law,

/no U (k,n)j7 (k(no — n))dn

Ndec

2 [ dk 1 , . .
) == / -k <‘1Dg’“><k, Nace) e (ko) + VO (k, ace) i (ko)
0

K (1 (k= 1/K)17) = A3k 95 "7 (4.36)
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Fig. 5. A COBE normalized sample adiabatic (solid line) and isocurvature (dashed line) CMB anisotropy spectrum,
£(£ 4+ 1)Cy, are shown on the top panel. The quantity shown in the bottom panel is the ratio of temperature fluctuations
for fixed value of A (from Kanazawa et al. [35]).
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Fig. 6. Adiabatic scalar and tensor CMB anisotropy spectra are shown (top panels). The bottom panels show the corre-
sponding polarization spectra (see Section IV.D). (from [25]).

this gives

2(0+2) , [de , j2(z) ((+2)! T'(6 — np)T(£ — 2+ BT)
C(T) ~ 2 T A2 /— nr L = A2 2 . 4.37
CER 2 T = e T — T+ 4 — ) 37
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For a scale invariant spectrum (np = 0) this results in

00+ 10" ~ T ﬁ(g;(r;_) 3 %15% (4.38)

The singularity at £ = 2 in this crude approximation is
not real, but there is some enhancement of £(¢ + 1)CLET)
at £ ~ 2.

Since tensor perturbations decay on sub-horizon
scales, £ 2 60, they are not very sensitive to cosmological
parameters.

Again, inflationary models (and topological defects)
predict a scale invariant spectrum of tensor fluctuations
(nT ~ 0)

On very small angular scales, £ 2> 800, fluctuations are
damped by collisional damping (Silk damping). This ef-
fect has to be discussed with the Boltzmann equation for
photons derived in the next section.

C. The Boltzmann equation
1. Elements of the derivation

When particles are not very tightly coupled, the fluid
approximation breaks down and they have to be de-
scribed by a Boltzmann equation,

i [e% 8f
P'Ouf — Tiysp®p” o = Cl -

(4.39)

C[f] is a collision integral which describes the inter-
actions with other matter components. The left hand
side of (4.39) just requires the particles to move along
geodesics in the absence of collisions.

Let us first consider the situation where collisions are
negligible, C[f] = 0. The unperturbed Boltzmann equa-
tion implies that f be a function of v = ap only. Setting
f = f(v)+ F(n,x,v,n), where n denotes the momentum
directions, leads then to the perturbation equation

Lor

i Sye 5
OpF' —n &F—F;k) n'n o

(4.40)

df r . . )
:vd_{: nZAyi—nln] (B“j—HZ'j) —|—HL} .
Here F;”Z)i are the Christoffel symbols of the space of

constant curvature x.
To derive (4.40), we have used p? = 0. The Liouville
equation for particles with non-vanishing mass can be

found in Ref. [6].

The ansatz

_f ¢® 5 _/ Tw
fle,p)=f (%) =f (ﬁ) (4.41)
with T'(z,n) = T(n) + AT (z,n) leads to

TN
f:f—vd—f%. (4.42)
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Integrating (4.40) over photon energies, we can also
write

AT 1

— == 4.43

T A" (4.43)

where 2 is the brightness perturbation,

4 (o]
1= — [ Feldv. (4.44)
pPa” Jo
Setting F' = —vi—{AT—T, we find
AT Lo (AT svi  x0(85)
o () e (57 ) - S

= — {nZA,Z — (Bz|] — H”) nind + HL} .

The fact that gravitational perturbations of Liouville’s
equation can be cast purely in temperature perturbations
of the original distribution is not astonishing. This is just
an expression of gravity being “achromatic”, i.e., inde-
pendent of the photon energy.

We now decompose (4.45) into scalar, vector and ten-
sor components. Even though AT/T is just a function,
it can be represented in the form

AT ©0 . .
Zxm) = a0t (446)
£=0

where the oy, ;, are symmetric traceless tensor fields
that contain scalar, vector, 2-tensor and in principle also
higher tensor components. Since spin components larger
than 2 are not sourced by the right hand side of equation
(4.46) and since they are suppressed at early times, when
collisions are important, we neglect them here.

For the scalar contribution to AT/T we obtain from

(4.46)

AT\ ®) AT\ ®) P L0(80)®
Oy | — +hky | — — F(»”Z) njnkM

T T J on’

272 ' Loy

- |:]<7/1A—|—/,L J (B—HT) +Hy+ gk Hr |, (447)
where we have introduced the “direction cosine” p de-
fined by n'Y,; = kuY. Note that in flat space, k = 0, we
have just p =ik - n.

This equation i1s not manifestly gauge-invariant. How-
ever, setting

(5) )
M) = (ﬂ) Hp 4 K2+ k(- B)

T
(4.48)
1t reduces to
;s OM)
Ay M) 4 kM) — F;”Z) nd nk /g/:ﬁ =kp(®-V),
(4.49)
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where ® and ¥ are the Bardeen potentials. If n/ are com-
ponents with respect to a geodesic basis (or £ = 0), the
third term on the left hand side of Eq. (4.49) vanishes.
For simplicity we now concentrate on the case k = 0. We
can then integrate the equation and obtain

M) (o, 0, k) = explik - 0 — 10)] M) (1, 1, k)

+ /770 iexplik -mn(n—no)n-k(® — ) dn. (4.50)

Nin

Integration by parts and neglecting the monopole term

(® — W) (no), leads to

M(S)(Uo ,n, k) = explik - n(nin — o))
X [M“)(mn, n, k) + (@ — ¥) (7in, k)}

= [ exvlike oty o) (8- ) dn

(4.51)

Comparing this equation with (4.13), we see again that

M) = (AT—T)(S) (up to gauge dependent monopole and
dipole contributions) if the initial condition is

M@mmmm:}wmmm+nkww%xm

which 1s equivalent to require that M(S)(Um) has no
higher than first moments. As we shall see below, this
assumption is quite reasonable since collisions suppress
the build up of higher moments before recombination.

Since the right hand side of (4.49) is gauge invariant,
the left hand side must be so as well and we conclude
that M(®) is a gauge-invariant variable (a direct proof
of this, analyzing the gauge transformation properties of
the distribution function, can be found in Ref. [6]).

M) used in this work coincides with the scalar
temperature fluctuations up a to a gauge dependent
monopole and dipole contribution. In other work [48] the
gauge invariant variable © = M%) — & has been used.
Since @ is independent of the photon direction n this dif-
ference in the definition shows up only in the monopole,
Ch.

The vector and tensor parts of AT/T are gauge—
invariant by themselves and we denote them by M)
and M) for consistency. In the absence of collisions
and with vanishing spatial curvature, they satisfy the
equations

M) Lk MY = —infn" ko (V)
M) 4 iuk/\/l(T) = —inzanmz.

(4.52)
(4.53)

The components of the energy momentum tensor are
obtained by integrating the second moments of the dis-
tribution function over the mass shell,

p?dp dQp

™ = / P fp r)—5—, (4.54)
P (x) P

where (g denotes the angular integration over momen-

tum directions. One finds for kK = 0 and setting p = n-k:

D) = l/MS)dQ, (4.55)
T
v = j—l/ﬂM(S)dQ (4.56)
T
e = 2 o~ 1) g0 A
5 | (W =3 )M : (4.57)
) =0, (4.58)
V) = %/ni/\/l(v)d(l, (4.59)
T
vy 6
") = ;/ﬂn]/\/l(v)dﬁ, (4.60)
nl = %/nian(T)dQ. (4.61)

Let us now turn to the collision term. At recombi-
nation (when the fluid description of radiation breaks
down) the temperature is ~ 0.4 eV. The electrons and
nuclei are non-relativistic and the dominant collision pro-
cess is non-relativistic Thomson scattering. Since colli-
sions are important only before and during recombina-
tion, where curvature effects are entirely negligible, we
set £ = 0 in the reminder of this section.

The collision term is given by

4.62
- (4.62)

where fi and f_ denote the distribution of photons scat-
tered into respectively out of the beam due to Compton
scattering.

In the matter (baryon/electron) rest frame, which we
indicate by a prime, we know

&

OT TN,
7 (pm) = Z—F/f’(p’,n’)W(n,n’)dQ/,

where n. denotes the number density of free electrons,
o 1s the Thomson cross section, and w is the normalized
angular dependence of the Thomson cross section:

3
i, a0) = /401 + (0] = 1+ g

with
1

ngj = ngn; —

In the baryon rest frame which moves with four velocity
u, the photon energy is given by

P =puut .

We denote by p the photon energy with respect to a
tetrad adapted to the slicing of spacetime into {n =
constant} hyper-surfaces:

p=pun*, with n=a"'[(1- A)9, + B,

The unit vector n is the normal to the hyper-surfaces of
constant time. The lapse function and the shift vector of
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the slicing are given by a = a(14 A) and 3 = —B0;. In
first order,
po = ap(l + A) — apn; B',

and in zeroth order, clearly,

pi = apn;.
Furthermore, the baryon four-velocity has the form ul =
a=t(1—A), u' = uv’ up to first order. This yields

p=puut =p(l+ n;(v' — BY)).

Using this identity and performing the integration over
photon energies, we find

diy(n)

pr = prornel + 4n;(v' — B")

1
+ gy t(n)w(n,n’)dQ].
The distribution of photons scattered out of the beam,
has the well known form (see, e.g., Lifshitz and Pitajew-

ski [1983])

df_
v

= orn.f'(p',n),
so that we finally obtain
in dfy  df-
C/ — d T 3
prat / P ( a — ar )’
=opn.[d, — ¢+ 4ni(vi — Bi)

3
+ m—ﬂnij/L(n/)ngde/],

where d, = (1/4m) [ ¢(n)d2 is the photon energy density
perturbation.

Using the definitions of the gauge-invariant variables
M) and V) for the photon brightness perturbation
and the baryon velocity potential, we can write €’ in
gauge-invariant form

1 ) 1 "
C' = dorn.[7DJ) = M) + ni v 4 i M), (4.63)

with
r) _ S
Dl = (1/71')//\/1( )

and

M = ;/M(S)(n/)ngjdfl/.
m

Since the term in square brackets of (4.63) is already
first order we can set dt’ = dt which yields C' = Z—ZC” =
j—;C” = aC’. The Boltzmann equation for scalar pertur-

bations expressed in terms of the gauge invariant variable
M) then becomes

M) L nig M) = ni&'(q) —-U) + aUTne[%Ds(f)

. 1 Ny
— MY —pigv® 4 §nijM”]~ (4.64)
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For vector and tensor perturbations we obtain in the
same way

MY i MY = —n'n oy
+ aocrne [niVi(Vb) 4 %nijMi(jV) _ M(V)] ’
MD) Lk MT) = —pind Hy;

+ aorne [nijMi(jT) — M(T)} )

(4.65)

(4.66)

2. The tight coupling limat

Before recombination, when n. >~ py/m,,

L 10 (1+2)7 <
~ AN
aoTn,e Quh s

nr =

Zeq Z z Z Zdec)

(4.67)

10
Quh

Z 2 Zeq-

1+ zeq) "2 (14 2) "1,
(4.68)

To lowest order in 5y, collisions force the photon dis-
tribution to be of the form

1 . 1 ..
M(S) — _Dg + nzvi(b) + —n”Mij,

; . (4.69)

the building up of higher moments is strongly suppressed
by collisions.

During recombination, the number density of free elec-
trons, n., decreases rapidly and the collision term be-
comes less and less important. Higher moments in the
photon distribution develop by free streaming.

The collision term C[M )] of equation (4.64) also ap-
pears in the equation of motion of the baryons as a drag.
The Thomson drag force is given by

—4aocrncp,

(M + Vi),

Fj = Z—;/C[M(S)]n]dﬁ =
(4.70)

with .
My = /an(S)dQ.

T an

This yields the following scalar baryon equation of mo-
tion in an ionized plasma

daocrn.p,

VO 4 (a/a) VO = kT —
(i/a) o

(—];’ij + V(b)) ,
(4.71)

where we have added the drag force to the second eq. of
(2.55) with w = ¢2 = 0.

We now want to discuss equations (4.64,4.71) in the
limit of very many collisions. The comoving photon mean
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free path is given by ny = Iy = (aorn.)~!. In lowest or-
der np/n and Ip/X [13], M) is given by (4.69), and
Eq. (4.71) implies

—M;+V® =0,

Inserting the solution (4.69) in the Boltzmann equa-
tion (4.64) and integrating over directions this implies
-3

VO =k M; = kv = D)

7 (4.72)

Implying especially V®) = V") = V. Eq. (4.72) is equiv-
alent to the energy conservation equation (2.55) for ra-
diation. Using also (2.55) for baryons, w = 0, we obtain

This shows that entropy per baryon is conserved, I' = 0.
Before recombination, when the collisions are sufficiently
frequent, baryons and photons are adiabatically coupled.
Inserting (4.69) in (4.64) we find up to first order in nr

r . g 1 ij
ME) = D) —4ind ;v + i MY
) 1 L
— nr[D{) — 4indk;V + i MY
+ind kD) + 4n'nd kik;V

?

QninmjkiMmj — i4nd ki (@ — )]

n (4.73)

Using (4.73) to calculate the drag force yields
Fy = ikj(p, /3)[4V — DY) + 4(® — )] .
Inserting F; in (4.71), we obtain

(po + (4/3)p)V + po(@/a)V = (p,/3) DY
+ (oo + (4/3)pr)¥ — (4pr /3)® .

This is equivalent to momentum conservation, the sec-
ond equation of (2.55) for p = pp + pr, p = pr/3 and
=11 =0, if we use

r b
Dy = Png(z : +pr£(7).

r) b
DY) = (4/3)D)  and P,

In this limit therefore, baryons and photons behave like
a single fluid with density p = p, + pp and pressure
p=pr/3.

From (2.55) we can derive a second order equation for
Dy. This equation can be simplified if expressed in terms
of the variable D related by (3.1). We obtain

D+ kD + (1 + 3¢2 — 6w)(a/a) D — 3[w(i/a)
= (a/a)*(3(ci — w) = (1/2)(1 + w))]D = 0.

For small wavelengths (sub-horizon), which are however
sufficiently large for the fluid approximation to be valid,
1/nr > ek > 1/n, we may drop the term in square
brackets. The ansatz D(t) = A(t) exp(—i [ keydt) then

eliminates the term of order ¢2k?. For the terms of order
esk/n we obtain the equation

QAJA+ (1432 —6w)(aja) + ¢sfes =0 . (4.74)

For the case ¢ = w = const. This equation is solved by
A o (kn)t=" with v = 2/(3w + 1), i.e., the short wave

limit. In our situation we have

w=
3(p7' +Pb)’
_ Pr _ (4/3)pr
3(p7' + pb) 4pr + 3pb’
. . Pb
ofes = =3/2(afa)—L—.
& /e / (a/a)4pT+3pb

Using all this, one finds that

A:(M)W:(Hp)m

cs(pr + po)?at csprat

solves (4.74) exactly, so that we finally obtain the approx-
imate solution for the tightly coupled matter radiation
fluid on sub-horizon scales

1/2
p+p .
D(t) « (csp2a4) exp (—zk/csdn) .

Note that this short wave approximation is only valid
in the limit n > 1/(cs;k), thus the limit to the mat-
ter dominated regime, ¢, — 0 cannot be performed. In
the limit to the radiation dominated regime, ¢? — 1/3
and p o« a™*

(4.75)

we recover the acoustic waves with con-
stant amplitude which we have already found in the last
subsection. But also in this limit, we still need matter
to ensure np = 1/(aorn.) < 1. In the opposite case,
nr > 0, radiation does not behave like an ideal fluid
but 1t becomes collisionless and has to be treated with
Liouville’s equation ((4.64) without the collision term).

8. Damping by photon diffusion

In this subsection we discuss the Boltzmann equation
in the next order, (ny/n)?. In this order we will obtain
the damping of fluctuations in an ionized plasma due to
the finiteness of the mean free path; the non-perfect cou-
pling. We follow the treatment by Peebles [21] (using our
gauge-invariant approach instead of synchronous gauge).
Again we consider Eqs. (4.64) and (4.71), but since we
are mainly interested in collisions which take place on
time scales np < 7, we neglect gravitational effects and
the time dependence of the coefficients. We can then look
for solutions of the form

V oc MP) o exp(i(k - x — wny)).
In (4.64) and (4.71) this yields (neglecting also the an-
gular dependence of Compton scattering, i.e., the term

nijMij)
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s _ 1 DY) —4ik nv

M _Zl—inT(w—lcn)

(4.76)

and

nrkwV = (4p,/3p,) (ikV + M), (4.77)

with M = (3/47) [ nM)dQ. Integrating (4.64) over
angles, one obtains Ds(f) + (i/3)k; M = 0. With our
ansatz therefore k- M = 3wD£(7T). Using this after scalar
multiplication of (4.77) with k, we find, setting R =

3pv/4pr,
__B/4wny”
 prk?Rw — ik?
Inserting this result for V in (4.76) leads to

r Buw/k
Dg(7 ) 1 + 1—?77TwR

41— inr(w — k)’

M) =

where we have set p = k - n. This is the result of Pee-
bles [21], where the same calculation is performed in syn-
chronous gauge. Like there (§92), one obtains in lowest
non-vanishing order wnp the following dispersion rela-
tion: Using

which yields

Buw/k

1 ! I+ —inpw
1= —/ —_—Y——————— Loinrwht d/,L
2 )11 —inp(w—kpy)

one finds
w=wy— 1y
with
wo = k/[3(1+ R)]M?
and

R*+ 2(R+1)

Y= (k’zﬁT/G) (R—|— 1)2

(4.78)

In the baryon dominated regime, R > 1, therefore

v~ knr /6 . (4.79)

(If the angular dependence of Thompson scattering is
not neglected, the term %(R—I— 1) in Eq. (IV C3) becomes
%(R + 1). If also polarization is taken into account, one
obtains %(R +1))

Posing kdampnr/6 = 1, this leads to a damping scale
Adamp ~ N7 (Ndec)/2, which is projected in the microwave
sky to an angle

17 (Mdec)

7Bdam ~ 5 5
P 2X(770 - ndec)
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For k = 0 this corresponds to a few arc minutes and to
the harmonic number

o ~ (1 + Zdec)2
2077T(77dec) o 20

Edamp = F/ﬁdamp ~ Quh .

(4.80)

This estimate is very crude since we are using the ap-
proximation for np from the tight coupling regime just
where coupling stops to be tight, and we assume an arbi-
trary value of n, ~ 0.1n, at the moment of decoupling.
Both these errors enhance the value of £gamp somewhat.
Numerical results give

Laamp ~ 800—1000

in a Kk = 0 universe. In open (closed) universes, this scale
(which of course also depends on ) is moved to larger
(lower) ¢ due to projection. A reasonable approximation
for the damping harmonic is

‘ 1000 2ok
damp 0.02(1— Q)72 )

Temperature fluctuations on smaller scales, £ > fyamp
are exponentially damped by photon diffusion.

D. Polarization and moment expansion

Thomson scattering is not isotropic. And what is more,
for a non-isotropic photon distribution it depends on the
polarization: Even if the incident photon beam is unpo-
larized, the scattered beam will be, unless the incident
distribution is perfectly isotropic. In the previous section
we have neglected this effect by summing over initial po-
larizations and averaging over final polarizations. Now
we want to derive the difference in the Boltzmann equa-
tion taking into account polarization.

Polarization is usually characterized by means of the
Stokes parameters [22-24].

For a harmonic electromagnetic wave with electric field

E(x,1) = (e1 By + eaFy) x| (4.81)
where n, g1 and e, form an orthonormal basis and the
complex field amplitudes are parameterized as FE; =
aje“;j, the Stokes parameters are given by

_ 2 2
I =aj+as,

2 2
Q:al_ab

U = 2ajascos(dz — d1),
V= 2&1&2 sin((52 — 61)

I is the intensity of the wave (whose perturbation ¢ has
been introduced in the previous section), while @ is a
measure of the strength of linear polarization (the ra-
tio of the principal axis of the polarization ellipse). V
measures circular polarization which is not generated by
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Thomson scattering and therefore V vanishes if the ini-
tial circular polarization vanishes (which we assume). U
is then determined via the identity I? = Q2 + U?.

Since ) vanishes in the background, to first order it
obeys the unperturbed Boltzmann equation,

0,0+ in ki@ 1D wint 02 = clq]
where C'is the collision integral. The same type of equa-
tion, with a somewhat different collision integral is sat-
isfied by U. The collision integral for V' does not couple
to I,@ or U and hence V = 0 1s a consistent solution.
An explicit derivation of the following Boltzmann
hierarchy including polarization is presented in Ap-
pendix III A. Here we just repeat the necessary defini-
tions and the results.

The brightness anisotropy M and the non-vanishing
Stokes parameters ) and U can be expanded as

(4.86)

2

M kn) =37 3" MU (0, k)G (n).

L m=-2

(4.87)

The B-mode vanishes for scalar perturbations, °B; = 0

Q(nkn) iU (nkn)=> > (B

L m=-2

+iB{™),G7 (n). (4.88)

The special functions .G are described in Ap-
pendix IIT A. The coefficients m = 0,m = =£1 and
m = £2 describe the scalar (5), vector (V') and tensor
(T) components respectively. The Boltzmann equation

for the coefficients Xz(m) is given by

(m oKy’ m Oﬁzn 1 m m m
) [0 ) S ] < o S (2 50
. 2m 2K
folm) _ g 2Ry flm) _ plm) _ 2041 plm) | . olm) (m)§ 4.
‘ [%— TEC ey T ara st | = neoral BT 4 VECT b, (4.90)
sm) [ 2R pmy o 2m Ly 2KE pomy| (m)
B g [%_ B+ B 2£+3Bz+1] = —neoraB™ | (4.91)
where we set
S(()O) = neUTa/\/lgo), SEO) = neopadVy + 4k(¥ — @), Sgo) = neUTaC'(O),
Sgl) = neoradws, Sgl) = n.opaCt) + 43, ng) = neopaC® + 40 (4.92)

and (™) = L[/\/l(zm) - \/éEém)] The coupling coeffi-

: 10
clents are

The CMB temperature and polarization power spec-
tra are given in terms of the expansion coefficients /\/lgm),
Eém) and Blgm) as

20+ 1)2CXY ) = Im

8w

/kzdelfm)YZ(m)* . (4.93)

where n,, = 1 for m = 0 and n, = 2 for m = 1,2,
accounting for the number of modes. Since B is parity
odd, the only non-vanishing cross correlation spectrum
is CTE,

10-10 ;
10-1t ;

10712 ;

10-13 ;

10-14 ;7 - , i é

1(1+1)C,/2m

10-15 ;, / 7;
10718 ’ =
10-17 3 L 4

ool 4

10-10 L | | .4
10 100 1000
1

Fig. 7. The temperature anisotropy (solid), the polariza-
tion (dashed) and their correlation (dotted) are shown for a
purely scalar standard CMD model.
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The Boltzmann hierarchy presented above can be
solved numerically with publicly available fast numer-
ical codes like CMBfast [37] or CAMCODE [38]. This .
enables us to compute the CMB anisotropy and polar-
ization spectra for many different values of cosmological
parameters, and compare them with present data.

E. Parameter estimation

In the last paragraph of this section of this section we
make some general remarks about the dependence of the
CMB anisotropy spectrum on different parameters and
about degeneracies. We start by enumerating the rele- .
vant physical processes.

1. Physical processes

e Before recombination, photons and baryons form a
tightly coupled fluid which performs acoustic oscil-
lations on sub-horizon scales.

e Depending on the initial conditions, these oscilla-
tions are sine waves (isocurvature case) or cosine
waves (adiabatic case).

e After recombination, the photons move along per-
turbed geodesics, only influenced by the metric per-
turbations.

o Vector perturbations of the metric decay as a=? af- .
ter creation and their effects on CMB anisotropies
are negligible for models where initial fluctuations
are created early, e.g., during an inflationary phase.
This is different for models which constantly seed
fluctuations in the geometry, e.g., topological de-
fects.

e Tensor perturbations of the metric have constant
amplitude on super-horizon scales and perform
damped oscillations o< @~' once they enter the
horizon.

e Scalar perturbations of the metric are roughly con- .
stant if they enter the horizon only after the time
of matter and radiation equality. On scales which
enter the horizon before equality they are damped
by a factor (zeq/zin)?, where zeq and zj, are the
redshift of equality and of horizon crossing, respec-
tively.

o Perturbations on small scales, & 2 kp =~
(21 /20)(24ec + 1)? Hg are exponentially damped
by collisional damping during recombination (Silk
damping).

202

2. Scale dependence

On large scales (larger than the horizon scale at
recombination, ¢ < fy ~ w/dy, with Jg =
Ndec/X (Mo — 7dec), perturbations are dominated
by gravitational effects: Inflationary models typ-
ically lead to k3<|\I! — <I>|2(k,77dec)> ~ const and
k3 <H2> ~ const on these scales. This implies a
flat “Harrison—Zel’dovich” spectrum,

2
(%) (9¢) ~ £(L+ 1)Cy ~ const, ¥, =

On intermediate scales, g < £ < fgamp ~ 800,
CMB anisotropies mainly reflect the acoustic os-
cillations of the photon/baryon plasma prior to
recombination. The position of the first peak is
severely affected by initial conditions (adiabatic
or isocurvature). For k = 0, the first contraction

peak is at about E(la) ~ 200 if the initial conditions
are adiabatic, while the first contraction peak is at

E(li) ~ 350 for isocurvature initial conditions. The
amplitude of and the distance between the peaks
depend strongly on cosmological parameters.

On small scales, fqamp < £, fluctuations are
collisionally damped during recombination (“Silk
damping”). The damping scale depends mainly on

Qph and Q.

8. The main influence of cosmological parameters

Curvature, h%Q,:

— Mainly affects the inter-peak distance, A/,
and, for given initial conditions, the position
of the first peak. Positive curvature lowers A¢
while negative curvature enhances it.

— Curvature also leads to an integrated Sachs—
Wolfe contribution which is especially impor-
tant for & > 0 at very low £. Overall, this leads
to some enhancement of the Sachs—Wolfe con-
tribution and therefore (after normalization
to the COBE measurements) to somewhat
lower acoustic peaks.

Baryon density, p, = Q,h%- 10729 g/cm3:

— A high baryonic density enhances the com-
pression peaks and decreases the expansion
peaks via the self-gravity of the baryons.

— It also reduces the damping scale, Ap =
1/(adecoTne(Ndec)), leading to an increase in
Edamp~

— Baryons decrease the plasma sound velocity,
¢s = 1/3(1+ps/py) "', and hence prolongs the
oscillation period. This increases the spacing
between acoustic peaks.
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Qah? 10—29

¢ Cosmological Constant, A = 2% g/cm3:

The presence of a cosmological constant at fixed
Qiot = Oy + Qa delays the epoch of equal matter
and radiation. During the radiation dominated era,
the gravitational potential 1s not constant, but de-
cays as soon as a given scale enters the horizon. If
Neq ~ Ndec this induces an integrated Sachs—Wolfe
(ISW) contribution which boosts mainly the first
acoustic peak. 2, also boosts the late integrated
Sachs—Wolfe contribution.

e Hubble Parameter, Hy = 100h km/(s- Mpc):
The influence of the Hubble parameter is com-
plicated and depends sensitively on the variables
which are kept fixed during its variation (2, or
We = hZQ.). As one example of its influence: for
fixed curvature and cosmological constant, lower-
ing the Hubble parameter also delays the epoch of
equal matter and radiation, eq — 7dec, since

Qm
Qrad

Zeq+1= ~ 2.4 10*Q,, h*. (4.95)

Therefore the same type of ISW contribution as for
A-models boosts the first acoustic peak.

e Initial conditions:

— A tensor contribution enhances the large
scales fluctuations but not the acoustic peaks,
thereby lowering their relative amplitude.

— A “blue” fluctuation spectrum, n > 1, en-
hances fluctuations on smaller scales and
raises thereby the acoustic peaks.

4. Degeneracy

One important issue in determining cosmological pa-
rameters from CMB anisotropy measurements is the
choise of good variables, which requires physical insight
in how anisotropies are influenced. As we have argued
before, the Hubble parameter, & is not a good variable
since its influence is very complicated. It enters the cos-
mic densities p, o Q4h% and the length scales like 7c or
Ndec- Another limitation for parameter estimation from
CMB anisotropies is degeneracy. We illustrate here just
one example. As we have discussed in Section 3, the posi-
tion of the first acoustic peak only depends on the sound
horizon, 7, = f”dec csdn and the angular diameter dis-
tance to the last scattering surface, x(19o — 7dec). The
distance between subsequent peaks in the CMB power
spectrum is proportional to

AE — X(UO - ndec) )

Ts

Lol L Lol

10 100 1000

{

L Lol L

Fig. 8. Left: The lines of constant R are shown in the 24—, plane. The values 4, Q,, for which the CMB anisotropy

spectra are shown right are indicated as black dots.

Right: Three CMB anisotropy spectra with different values of Q4 and

Q but fixed R are shown. For £ 2 50 these spectra are clearly degenerate.The solid line represents a flat model, while the
dotted line corresponds to a closed and the dashed line to an open universe.
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In Fig. 8 (left panel) we show lines of constant R =
AL/ALy in the 9,y plane. Here Afy = Aly(Qp =
0, = 0) is the value of Af in a spatially flat universe
with vanishing cosmological constant. To the right the
CMB anisotropy spectra for scalar perturbations with
fixed index n = 1 and fixed values of the matter den-
sity wy, and the baryon density wy. But the cosmolog-
ical constant and h vary, so that Q4 and €, corre-
spond to the values indicated by bullets on the left panel.
Clearly, for £ > 50 these spectra are perfectly degener-
ate. On the other hand, due to cosmic variance, the low
£ CMB anisotropies will never be known to very good
accuracy so that this degeneracy cannot be lifted by
CMB anisotropy observations alone. Additional data like
the supernova type la measurements, observations of the
galaxy distribution (large scale structure) or CMB polar-
ization are needed.

There are also other degeneracies like the optical depth
to reionization and the tensor contribution or the scalar
spectral index and the tensor contribution. The impor-
tant lesson to learn is that even if the very stringent
model assumptions are correct, we still need other data
to measure cosmological parameters and especially we
will only feel comfortable with a sufficient amount of re-
dundancy.

V. OBSERVATIONS AND RESULTS

In this short, final section we want to discuss briefly
the experimental situation which is very much in flow and

6000

4000

11+1)C,/(2m) [(uK)?]

2000

0
0 200 400 600 800
1

1000

may have changed considerably already at the moment
when this review appears. It has been clear for a long
time that, if initial fluctuations have led to the forma-
tion of large scale structure by gravitational instability,
they should have induced fluctuations in the cosmic mi-
crowave background [27,28]. Before spring 1992, however,
only the dipole anisotropy had been detected [16,17]. Its
value is [7]

AT 9\ dipole
<<T) > = (1.528 £ 0.004) x 107°,

After many upper limits, the DMR, experiment aboard
the COBE satellite measured for the first time convine-
ingly positive anisotropies [8]. It found

(7)) (6) ~ (30uK)* (1)

on all angular scales § > 7°. Many more positive mea-
surements have been performed since then. In Fig. 9 we
just show the COBE DMR results [39] together with
the three most recent experiments, BOOMERANG [40],
MAXIMA-1 [41] and DAST [42]

6000
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1(1+1)C,/(2m) [(uK)?]
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1 10 100
1
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Fig. 9. The measured temperature anisotropies, £(¢+ 1)C; are shown in a lin-lin plot (left) and in a log-lin plot (right) with
the theoretical curve from a standard, adiabatic cold dark matter model. The data points shown are those from COBE DMR
(solid, low ), BOOMERANG (solid), DASI (dashed) and MAXIMA-1 (dotted).
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As one sees in this figure, present data agrees very well
with a simple flat model of purely scalar, scale invariant,
ns = 1, adiabatic fluctuations with cosmological param-
eter wp = 0.02, Q, = 0, Q4 = 0.7, A = 0.65 which are
also preferred from other cosmological data. However,
the error-bars are still considerable.

The experiments can be split into three classes: Satel-
lite experiments, balloon-borne experiments and ground
based experiments. The technical and economical advan-
tages of ground based experiments are obvious. Their
main problem 1s atmospheric fluctuation. This can be
reduced by two methods:

e Choose a very high altitude and very cold site,
e.g., the south pole. Several experiments like SP,
Python and White Dish have chosen this site.

e Measure anisotropies on small scales, preferably by

interferometry (DASI, CAT, VSA| Jodrell Bank).

Balloon-borne experiments flying at about 40 km alti-
tude have less problems with the Earth atmosphere but
they face the following difficulties:

e They are limited in weight.
e They cannot be manipulated at will in flight.
e They have a rather short duration.

e To secure all the data taken on the balloon, they
have to be recovered intact.

Yet the advantages of overcoming the atmosphere
are so significant that many groups have chosen this
approach, like, e.g., MAXIMA-1, TopHat, etc. The
BOOMERANG experiment combines the two advan-
tages of a cold site and balloon altitude. It has performed
a long-duration flight (10 days) on the south pole in De-
cember 1998.

The third possibility are satellite experiments. They
avoid atmospheric problems altogether, but this solution
is very expensive. So far two satellite experiments have

been launched: COBE in 1989 (NASA mission) and MAP
in June 2001 (Microwave Anisotropy Probe, a NASA
MIDEX mission), one more is planned: PLANCK, an
ESA medium size mission of the “Horizon 2000” pro-
gram, to be launched in 2007.

As I am writing this lines, MAP has safely arrived at
its destination, the Lagrange point L2 of the sun-earth
system. It will perform measurements at five frequen-
cies in the range from 22 to 90 GHz. The instruments
of PLANCK will operate at nine frequencies, covering
20 to 800 GHz. At low frequencies (below 100 GHz) ra-
dio receivers are used (so called “HEMTs”, high elec-
tron mobility transistors) while the high frequency in-
struments are bolometers. Recent progress in detector
technologies should enable the two new satellites to per-
form significantly better than COBE — the radio re-
ceivers of PLANCK, e.g., are supposed to be 1000 times
more sensitive than the ones used for COBE, and the an-
gular resolution has improved from seven degrees to four
arc minutes. For more details also on other experiments
see:

e http://astro.estec.esa.nl/PLANCK

e http://map.gsfc.nasa.gov

e http://www.gsfc.nasa.gov/astro/cobe/cobe home.html
e http://spectrum.1bl.gov/www/max.html

e http://oberon.romal.infn.it/boomerang/

I finish this short section with Table 1 which shows
the ranges for the cosmological parameters oy = 1 —
Q., h*Q and n, as determined purely by CMB
anisotropies. Except for the last reference, a purely
scalar spectrum of adiabatic fluctuations is assumed. The
parameter estimation process also assumes ‘weak priors’
on the values of other cosmological observables, like, e.g.,
that the age of the Universe be larger than 10 Gyrs. or
0.4 < h < 0.9. 1 do not comment this table much fur-
ther but refer the reader to the original literature and
many improved papers on this subject which will appear
shortly.

Ref. Data Qiot Quh? N errors
[43]|BOOM and DMR data [1.02%5 58| 0.022%5 902 10.9615 1| 1-0 errors
[44]| DASI and DMR data [1.05750°] 0.022%005% [1.011552|1-0 errors
[45]| MAX and DMR, data [0.90%51%0.0325700152/0.991513|2-0 errors
46 all data, no priors 1.067959 (.02t008 0.931’0'75 2-0 errors
[ ) p 0.13 0.01 0.16

allows also tensor mode

Table 1. Some results from parameter estimations from recent CMB data alone. The errors given are formal 1 or 2-o errors

which assume the underlying model to be correct and no systematic problems in the data. They are obtained by marginalization

or maximization over all other model parameters.
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Clearly, the results shown in Table 1 are very consis-
tent. It is interesting to note, how the upper limit on
the scalar spectral index deteriorates if one allows for a
tensor component. This is one of the degeneracies in the
CMB data which can be broken by including large scale
structure data in the analysis (see [46]). Other cosmolog-
ical parameters are not well constrained by CMB data
alone. However, if CMB data is combined with SN1a and
large scale structure data, the error bars are significantly
reduced and evidence for a non-vanishing cosmological
constant 24 ~ 0.7 becomes very strong (see [43,44,46]).
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APPENDIX A: THE C,’S FROM
GRAVITATIONAL WAVES

We consider metric perturbations which are produced
by some isotropic random process (for example dur-
ing inflation). After production, they evolve according
to a deterministic equation of motion. By reasons of
isotropy and due to symmetry, the correlation functions
of hi;(k,n) have to be of the form

(hij (&, n)hiy, (k. n')) = [kikjkikm Hy(k, 0, 0) + (kikidjm + kikmdj 4 kikiSim + kjkpdu) Ho(k, n, ')

+kik;ibim Hs(k,n,n') + kikmdi Hi (k, ', n) + 85 61m Ha(k, m,0') + (8:10m + Simdji) Hs(k,m,7')] -

(A.1)

Here the functions H, are functions of the modulus k& = |k| only. Furthermore, all of them except Hs are hermitian
in p and %’. This is the most general ansatz for an isotropic correlation tensor satisfying the required symmetries. To
project out the tensorial part of this correlation tensor we act on h;; it with the tensor projection operator,

Tij mno— Pimpjn — (I/Q)P”Pmn with Pz'j = (Sij — k’zk’] .

This yields

<h(~T)(k, U)h(T)*(k, )y = Hs(k,n,0)[0i85m + dimdj1 — 8ij0im + k™2 (8;jkikm

im

+ (Slmk’ik’j — (Silk’jk’m — (Simk’lk’j — (Sjlk’ik’m — (Sjmk’lk’l) + k’_4k’l’k’jk’lk’m].

From Eq. (4.17), we then obtain

(SFmStw)

L[ (S0

- (%)3/1{2 dk dS /no dn/no diy exp(ik - (o — 1)) exp(—ik - n(n — 7))

T Ndec

% {<hg)(77’k)hz(i)*(ﬁlak»nmjnfn%} '

(A.2)
(A.3)
(A4)

Here df2; denotes the integral over directions in k space. We use the normalization of the Fourier transform

1

f(k) = %/d?’x exp(ix - k) f(x), f(x)= W/d?’k exp(—ix - k)f(k) ;

where V is an (arbitrary) normalization volume.

We now introduce the form (A.3) of (A(T)A(T)). We further make use of the assumption that the perturbations
have been created at some early epoch, e.g., during an inflationary phase, after which they evolved deterministically.

The function Hs(k,n,n') is thus a product of the form

Hs(k,n,n') = H(k,n) - H* (k7).

Introducing this in Eq. (A.4) yields
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/k’z dkdQ [(n-n')? = 14 p0% + p® —dpp’ (n-n') + p?p?]
o 7o . .

< [ n [t (B G expGhntn - m)exp(-ik o = o)) (4
Ndec Ndec

where g = (n-k) and g/ = (n’/ R) To proceed, we use the identity [47]

oQ

exp((ikp(no —n) = > (2r + )i jir (k(no — 0)) Pr(n) . (A7)

r=0

Here j, denotes the spherical Bessel function of order r and P, is the Legendre polynomial of degree r.
Furthermore, we replace each factor of p in Eq. (A.6) by a derivative of the exponential exp(iku(no — 7)) with
respect to k(o — 1) and correspondingly with p/. We then obtain

<%(n)%(n/)> = (%)32(2%1— 1) (2 + 1)i(’”"“')/k2 dk dQp Py (1) P (1)

rr!

 [2tw9® [ 3. (k0 = )i (6O = ) ) (s )

- /dn dn’ [ (k(no = n))drs (k (o = 1)) + 37 (k(no = 0)) g (k(no = 1))

+ G (k(no — )i (k(no — ') = 5 (k(no = m)ls (k (o — 0')1H (k, ) H* (k, 1)

—4(n - n) / dndn’ jy (k(no = )i (k(no — n')) H (k, ) H* (k, 77’)} : (A.8)

Here only the Legendre polynomials, P,(p) and Py (u') depend on the direction k. To perform the integration dQy,
we use the addition theorem for the spherical harmonics Y,

4 ! R
Pop) = —— Y, (m)Y” (k) . A9
)= gy 2 YV (A9)
The orthogonality of the spherical harmonics then yields
(2r+1)(2r +1) / dQp Py (p) Prr(pt ) = 16726, Z Y,s(n)Y> (n') = 476, P.(n - n'). (A.10)

S=—r

In Eq. (A.8) the integration over d€; then leads to terms of the form (n-n’)P.(n-n’) and (n - n')?P.(n - n'). To
reduce them, we use

r+1 r
— P, —P._q. A1l
1T ! (A.11)

Prx) =
Py (x) 2+ 1

Applying this and its iteration for z?P,(z), we obtain

<%(n)%*(n/)> = Z % +1) /kzdk/dndn H (k) H* (k, )

(r+1)(r+2) 1 2r(r—1)
—PT P, P._
X{ [(2r+ Ner+3) T onerr s @ oD@
g (k(no —n))jr (k(o = 0')) = P [jr (k(no — )3/ (k(no — n'))
+ir (ko = 0'))3 (k(no = m)) = 37/ (k(no = 0)) 7’ (k(no — n'))]
r+1 r
—4 A — P, k(no — -7 , A12
P 4 g Pk = ik = 1)) (A12)
where the argument of the Legendre polynomials, n - n’, has been suppressed. Using the relations
y r+1 . ro
= - . . Al
Jr 27”—1—1] +1+2r+1.7 1 ( 3)
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for Bessel functions, and its iteration for j”, we can rewrite Eq. (A.12) in terms of the Bessel functions j,_2 to jr42.

We now insert the definition of Cj:

<%(n) . %(n/)>(n'n1):m€ i&(% 1)y Py(cos 6) | (A.14)
and compare the coefficients in Eqs. (A.12) and (A.14). We obtain the somewhat lengthy expression
Co=2 [ara [ ananf fr(kn) i o) (ko = )i (koo — 1)
1 20207 + 20— 1) (202 4 20 — 1)? 443 4(€+1)3
. ((213_ 1)(20+3)  (20—1)(20+3) ' (20—-1)2(2043)2  (20—1)2(20+1) (20+1)(20+ 3)2)
— [je(k(no = m))jes2(k(no — 1)) + jes2(k(no — ) je(k(no — 1'))]
1 20+ 2)(6+1)(202 +20—1) 200+ 1)(L+2) B({L+1)2(L+2)
. 21+1< 20— 1) (20 + 3)2 20+3) 20+ 3)72 )
= Le(k(mo — m))je—2(k(no — n')) + Je—2(k(no — n)je(k(no — 1'))]
1 (200 —=1)(2024+20—1)  20(0—1) 820 —1)
. 21+1< (20— 1)2(20 + 3) 20-D@2 (213—1)2)
. . o 20042)(04+1) A+ 1) (E+2)? (4 1)2(¢ +2)?
tJesa (ko = m)es2(k(mo = ') ((zg T1(20+3) 20+ D)20+3)2 T 20+ )220+ 3)2)
. , , 2(¢ —1) A6(L — 1)? 20— 1)
T de-2(k (o = m))ie-2(k{mo =) ((zz TDEI1) @D T i1t 1)2)} - (A

An analysis of the coefficient of each term reveals that
the curly bracket in this expression is just

mum—mvz

{“}:gu—nw+0@+”(naﬁfﬁﬁ

and the result is equivalent to

Co = %/dk R 16 k)06 = 1) (6+ 1) (€ +2) , (A.16)

with

16, k) :/% dn fi (y, k) 2Lk (0 = 1)),

Nace (k(no —m))? (4.17)

APPENDIX B: BOLTZMANN EQUATION AND
POLARIZATION

In this appendix we derive the Boltzmann equation
taking into account polarization, and we write it as a hi-
erarchy of equations using an orthonormal expansion in
the space of photon directions. Up to the collision term,
the Eqgs. (4.64), (4.66) and (4.67) are still valid. We first
re-derive the collision term taking into account the po-
larization dependence of Thomson scattering.

Just before the process of recombination during which
the fluid description of radiation breaks down, the tem-
perature is ~ 0.4 eV. The electrons and nuclei are non-
relativistic and the dominant collision process is non-
relativistic Thomson scattering.
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Thomson scattering depends on the polarization of
the incoming radiation field. We describe the polariza-
tion state of the radiation field by the Stokes parame-
ters [22,24,25,23]:

For a harmonic electro-magnetic wave with electric

field

E(X,t) = (61E1 + EzEz) lpnx—iwt , (Bl)

where n, €; and €3 form an orthonormal basis and the
complex field amplitudes are parameterized as FE; =
aje“sj, the Stokes parameters are given by

I =ai+d, (B.2)
Q= a% - a%a (B3)
U = 2a1a9 cos(dz — 1), (B.4)
V = 2a1a9 8in(d2 — 7). (B.5)

I is the intensity of the wave (whose perturbation M
has interested us so far), while @ is a measure of the
strength of linear polarization (the ratio of the princi-
pal axis of the polarization ellipse). U and V' give phase
information (the orientation of the ellipse). For non-
relativistic Thomson scattering V' is completely decou-
pled and (since it vanishes at early times) is therefore
never generated.

As @ and U vanish in the background, perturbations
cannot couple to them (since such terms are 2nd order),
and the Liouville equations for @ and U become (ne-
glecting scattering and spatial curvature)

Oy (Q; U) +inke(Q; U) = 0. (B.6)
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The differential cross section of Thomson scattering for
a photon with incident polarization €(;) scattering into
the outgoing polarization €(,) = € is [22]

do 3 2
€
T n 0, e
/82 n'

Fig. 10. Definition of the angles and vectors for Thomson
scattering in the (n, €2) plane.

X
Fig. 11. Definition of the angles and vectors for Thomson
scattering in the general case. The polarization vectors are
oriented like in figure 10.

It is often convenient to introduce the two ‘partial’ in-
tensities [1 = a? = (I + Q)/2 and I = a3 = (I — Q) /2.
A wave scattered in the (m, e3) plane (see figure 10) by
an angle # has the intensities

I = ?’gﬂﬂ) 2, (B.8)
or, expressed in terms of the Stokes parameters,
(I(s))_&ﬂ(l—i—coszﬁ sin” 0 )(I(i))
Q) | T 167 sin?d 14 cos®f QW )

(B.9)

|

5 2(1 — p?)(1 -
p0) — T E

A rotation in the (€1, €2) plane doesn’t change the in-
tensity of the wave, but it changes ¢ and U to

Q' = Qcos(2¢) + Usin(2¢),
U' = —Usin(2¢) + Q cos(24).

(B.10)
(B.11)

To determine the cross section that a given ‘initial’ wave
(1%, QW U®) propagating in direction n be scattered
into a wave (1), Q1) U(*)) with direction n’, we need
to go through the following steps (we will use the plane
(y, z) as reference plane, see figure (11) for definitions of
the angles and vectors):

1. Rotate around n such that the plane (n,n’) turns
into the plane (nz). One needs to apply the rota-
tion (B.10,B.11) for ¢ = o to the Stokes parame-
ters.

2. Rotate the new plane (n,n’) around z into the ref-
erence plane (y, z). This operation does not influ-
ence the incoming Stokes parameters.

3. Now we are in the known case of (B.8) and (B.9).
Hence we can apply the scattering matrix.

4. We then rotate the scattering plane back around z
into the old (z,n’) plane. This does not change the
scattered Stokes parameters.

5. Finally we rotate around n’ by the angle o’ to reach
the original state. To do this, we have to apply
the rotation matrix (B.10,B.11) again, but now for

o =a.

Following the steps outlined above, we recover the
scattering matrix in the basis (11, I, U) given in equa-
tions (B.13)—(B.16) (see also [23]). V is completely de-
coupled from the other parameters and follows an evolu-
tion which is independent of the rest. Hence by starting
with V(¢ < tqec) = 0 it will stay zero and can be ne-
glected. The scattering matrix P, which determines the
(non vanishing) scattered Stokes parameters from the
initial ones,

o) 140
i | =2Zp | (B.12)
U (s) @)

is then given by

[+\/1——

w2 pl +P<2>], (B.13)

where

)+ P 0
1 0|, (B.14)
00
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4pp/ cos(¢’ — @) 0 2usin(¢’ — @)
0 0 0 , (B.15)
—4p'sin(¢’ — @) 0 2cos(¢’ — ¢)

o woncos[2(8" =)~ cos[2(¢! — ¢)] pusin[2(¢ — ¢)]

PO =2l —ucos[2(¢' =) cosl2(¢/ =) —u/sin[2(¢' = 9)] | - (B.16)
—2pp?sin[2(¢" — ¢)]  2usin[2(¢" — ¢)]  2pp’ cos[2(¢" — )]

As we are in an isotropic situation, we will perform all the calculations in a special coordinate system with k || 2

and n,n’ as in Fig. 11. Clearly the results are independent of this coordinate choice.
The matrix R connecting (I1, o, U) with (I,Q,U) is given by

I 1/2(1 4 Q) e I I
L |=|120-Q |=5[1-10 Ql=r|oq]|. (B.17)
U U 0 02 U U

To calculate the collision term including polarization, we change into the (11, I2) basis. For each of the two intensities
A € {1,2} we then have the collision term given by

ary 4
M = d; ~ o (B.18)

where f_(l_A) and f(_A) denote the distribution of photons in the polarization state A scattered into respectively out of
the beam due to Compton scattering.
In the matter (baryon/electron) rest frame, which we indicate by a prime, we know that

df-(l-A)/ orn () X
— ¢ ool ! i i
o) = T2 [ O )P )

where n. denotes the electron number density and PJ* is the 2 x 2 upper left corner of the normalized Thomson
scattering matrix (B.13). In the baryon rest frame which moves with four velocity u, the photon energy is given by

P = puut.

We denote the photon energy with respect to a tetrad adapted to the slicing of space-time into {n = constant}
hyper-surfaces by p :

p=pum*, with n=a[(1-A)d, + B3],
The lapse function and the shift vector of the slicing are given by a = a(1 + A) and 8 = —B!9;. In first order,
po = ap(l + A) — apn; B',

and to zeroth order p; = apn;. Furthermore, the baryon four-velocity has the form u® = a=1(1 — A), wu® = «%" up
to first order. This yields

p=puut =p(l+ ni(vi - BZ))

Using this identity and performing the integration over photon energies, we obtain

dbg)(n) i 1 5 A
van/ = apyorn. [1 +4dn;(v' = B )—I— E/L( )(n/)P5 (n,n’) dQ

Photons which are scattered leave the beam, with the probability given by the Thomson cross section (see, e.g., [26])

dr

T = O-Tnef(A)/(p/a n)a

so that we finally have
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Am i) dar 1 i pi 1
o = Nﬁ/dp( d; - PP = §O'Tne[4ni(v — BY) _L<*>+E/Aé)(n')P;(n,n')dQ']. (B.19)

By setting CM) = ¢ 4 ¢ and (@) = ¢ — C?) we transform the collision integral back to the normal
Stokes parameters. The term for U has the same form as the one for @, just with the corresponding matrix elements
in the integral. The Boltzmann equation then finally becomes (setting £ = (M, @, U) and for the flat case, x = 0):

M+ ipkM = 4ipk(® — ¥ + ™SV 4+ 4n*n™ H,p 4 aopn, [—M — 4ipVy + An‘wy o + / dQ’Pf‘S;] . (B.20)

Q + ipkQ = acrn. [—Q + /dQ’PZO‘ ;], (B.21)
U+ ipklU = aocrn, [—U + /dQ’P??‘é‘;] , (B.22)

where we have to use the scattering matrix transformed into the (M, @, U) basis,

P=Ps+ Py + Pr (B.23)
; 3— g —p? 37 (1= 3p%)(1 = p?) 0

Ps=R'POR= | = =37) 30— )1 —p?) 0 |, (B.24)
0 0 0

p'Copp' € —pS
Pe = VT= 2V T= PR PR = SVT=T=3P | gl € gl € =S | (B.25)
ws u's  C
— )1 =p)Cr == p?)(1+p?)Cr 201 = p?)p/ St
+u?) (1= p*)Cp (L4 p*)(1+ p*)Cr —2(1+ p*)u' St
—2p(1 — p'?) St 2p(1 + 1) Sr App' Cr

(1
Pr=RPOR=2] _(

4 8
with C' = cos(¢ — ¢'), S = sin(¢ — ¢’) and Cr = cos(2(¢ — ¢')), St = sin(2(¢ — ¢')). The parts Ps, Py, Pp of P
describe the scattering of the scalar, vector and tensor contribution to £ respectively.

The functions M, @ and U depend on the wave vector k, the photon direction n and conformal time 1. We
choose for each k-mode a reference system with z-axis parallel to k. For scalar perturbations we achieve in this
way azimuthal symmetry — the right-hand side of the Boltzmann equation and therefore also the brightness M)
depend only on g = (k- n) and can be expanded in Legendre polynomials. The right-hand side of the Boltzmann
equation also determines the azimuthal dependence of vector and tensor perturbations. One can continue with this

approach, but the resulting equations for () and U and especially also their power spectra depend explicitly on the
coordinate system. Therefore, we prefer an approach which is inherently covariant under rotation.

A. Electric and magnetic polarization

The Stokes parameters explicitly depend on the coordinate system, and Eqgs. (B.21) and (B.22) transform rather
complicated under rotations of the coordinate system. A method to characterize CMB polarization due to non-
relativistic Thomson scattering which is more convenient than the Stokes parameters since its transformation prop-
erties are very simple has been developed some years ago [51-53,55,56]. A detailed derivation of this method goes
beyond the scope of this report. Here we just repeat the definitions and the main results. We set

T = (M,Q+ilU,Q — ill). (B.26)

In terms of this vector the collision integral above can we written (in vector form) as

1 ! ! 1 : ! m ! !
C[T]:aaTne[—TJr(E/dQM Jr(rl.vb),o,o)JrE > /dQP( J(n,n')T"]. (B.27)

m=—2

From Egs. (B.13) to (B.17) one can determine the scattering matrix for the vector T
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Yzmlyzm _\/§ZY2m/Y2m _\/g_zyzmlyzm
P(m) = _\/gyzmlzyzm 3 2Y2m/2Y2m 3 _2Y2m/2Y2m (B28)
_\/gyzm/_zyzm 3 2Y2m/—2Y2m 3 _2Y2m/_2Y2m
where ;Y = ,Y*(n’) and Y are the spin-weighted spherical harmonics [54,55].

We now decompose the Fourier components of the temperature anisotropy M and the polarization variables F
and B as

2
M=3"3" mMoar, (B.29)
¢ m=-2
2
QiU =3 3 (B £iB{™ )Gy (n). (B.30)
L m=-2

Here m = 0 is the scalar mode, m = +£1 are the vector and m = £2 are the tensor modes. The functions ,G7* are
closely related to the spin weighted harmonics Y,;™:

G ) = (=) Y (),

The evolution equations in term of these variables can be given in the following compact form [56]

(m OKm m 0“2” m m m

M = [~ S ] = meorard 5z )
o) o [ 2R my  2m my 2R omy] (m) (m)

Bem—k [212— e Ty 2£+3E‘+1] == nerralB" 4 VECTd (B.32)
Somy o [ 2kl om) 2m oy 2K | (m)

B! k[%_1@4+w“+UEZ %+3@H]_ neopaB™, (B.33)

where we have set

S(()O) = neO'Ta./\/léO), SEO) = neopadVy + 4k(¥ — @), Sgo) = neUTaC'(O),
Sgl) = neoradwy, Sgl) = neO'TaC(l) + 4k, ng) = neO'TClC(Z) + AH (B'34)

and C(™) = L[/\/l(zm) — \/gEém)] The coupling coefficients are

m ¢@2—m2y2—ﬁl

Note that for scalar perturbations, m = 0, B-polarization is not sourced and we have BEO) =0.

Finally we want to connect the intensities /\/lgm) with the more familiar expansion of the scalar (5), vector (V)
and tensor (T') contributions to the brightness function in terms of Legendre polynomials. Usually one sets

M=MS + MV 4 M)

Here M) only depends on p = (n-k)/k and the n-dependence of M) and M) can be written as

M, 6) = V= [ MY () cos g+ ML () sin (B.35)
MD (1, 0) = (1= ) [ MY cos(26) + ML sin(26)] (B.36)

S,V,T)(

where ¢ is the azimuthal angle in the plane normal to k. Each of the functions /\/l£ #) is now expanded in

Legendre polynomials
MEYD =S it ee+ Dol Puu) (B.37)
‘

The coefficients O'ESZ’V’T) are then related to /\/lgm) via the identities
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MY = (204 1)l (B.38)

+ v .V v . (v
Mé Y= {L+1) {U;,ZH + ZUE,ZH + Ug,z)—1 + wg,z)—1 ) (B.39)

2(2£—|— 1) (T)

Mgiz) _

C+2!'7 1
— 0
(€—2)1 [204 37 Thi+2

where

(™) (B.40)

U= 1)(20+3) e T ar— 12

Opie = Oqpr F 0y -

We do not repeat this correspondence for the Stokes parameters ¢ and U since it is rather complicated and not

very useful as it depends on the coordinate system chosen.

B. Power spectra

In the previous appendix and in Section 4 we have derived the expression for the CMB anisotropy power spectrum
for scalar and tensor perturbations. Here we give the general expression for scalar, vector and tensor fluctuations,
polarizations and cross correlations. To make contact with the results derived before, one has to use Eqgs. (B.37,B.38)
and (B.40) and neglect the collision term in the Boltzmann equation.

We expand the present CMB anisotropies and polarization in spherical harmonics: AT(n,n0)/Ty =
> om Gem Y (). The coefficients ag,, are random variables with zero mean and rotationally invariant variances,
Cy = {| asm |?). The correlation function of the anisotropy pattern then has the standard expression:

0T 0T 1
<F0(n1)F0(n2)> = > (204 1)Ci Py(cosb), (B.41)
where cos = ny -ns and (- - -) denotes ensemble average. We use the Fourier transform normalization
p 1
flk)= v / f(x)exp(ik - x) d®x | (B.42)
with some normalization volume V. Using statistical homogeneity we have
0T 0T 1 0T 0T 1 0T 0T
—(n1) = == | Pr({— — = &k ( —(k,ni)——(k . B.43
(G o) = ¢ [ (Fmmmn) = b [ @0 (k) ohkn ). @
Inserting our ansatz (B.37) for 6T_€ = %/\/l, and using the addition theorem for spherical harmonics,
Pe(ny -no) = 5757 37 Vi, (101) Yo (n2), we find
6T 6T 1 Z—ZI * * " " *
(Tt ) = B 2 (D (0¥ n) [ b0, 09 (107 1)
1 *
= 53 ZZ:(%—I— 1) Py(ny ~n2)/k2 dk (opo)(k), (B.44)

from which we conclude

(B.45)

S = L [ k(oo ),
8T

where the superscript (*) indicates that Eq. (B.45) gives
the contribution from scalar perturbations and
means that it is the contribution to the intensity per-
turbation.

The QQ, UU, MQ, MU and QU correlators depend
with the Stokes parameters on the particular coordinate
system chosen. It is much more convenient to express

the polarization power spectra in terms of the variables
E and B which are independent of the coordinate sys-
tem. Furthermore, since B is parity odd, its correlators
with M and F vanishes. One finds the simple general
expression [56]

XY (m Nm m m)*
(204 1)20 ):S—F/kzdk)(é 'y ™ (B.46)

where n,, = 1 for m = 0 and n, = 2 for m = 1,2,
accounting for the number of modes. Here X and Y run

over M, F and B.
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THE THEORY OF CMB ANISOTROPIES

TEOPISA AHI3OTPOIIII KOCMIYHOI'O MIKPOXBHJILOBOI'O ®OHY

P. Hiopep
Inemumym meopemuvnror dizuxu 2Kenescorozo ynisepumemy
eyn. BE. Ancepmem, 24, 1211 2Kenesa 4, llsetivapis;
QDaxyavmem npupodHu~UT HayK IHcmumymy nepenexmusHur JdocatoNHcers
Anes Attmwmatina, [pinemon, NJ 08540, CHITA

3pobJteHo orJIsAm Teopli aHI30TPOINl KOCMIYHOTO MIKPOXBHJILOBOTO (HDOHY, AKHUIl € OHOBJIEHOIO BEPCIEI0 KypCy
JIEKINH, mpounTaHux HaBecHl 1999 p. B “troisieme cycle de la Suisse Romande”. Ilomano BcTyn mo KamibpyBaJibHO-
IHBapiaHTHOI Teopil KOCMOJIOTIYHMX 30ypeHb 1 B IIbOMY KOHTEKCTI PO3LIAHYTO aHI30TPOMMI0 MIKpPOXBHJIBOBOIO
dony. OTpuMaHOo IIPOCTI aHAJITHYHI AMPOKCHMAIl] IMOJIOKEHb aKyCTUIHUX MKIB amdabaTUIHIX 1 130TepMIYHIX
36ypenb. O6roBopeHo 3aracana ClLIKa B aHAJJITHYHOMY MOXOMl. 3aBeplIyIOTH OLJIAI KOPOTKHIl Ommc cydvac-
HOTO CTaHy CIIOCTEPEKEHb, OIHKA KOCMOJIOTIYHIAX IMapaMeTpiB Ta 3akaiouHe obropopernd. Y JlomaTkax BUBEIEHO
MOBHY cHCTeMy OudepeHINIHNX PIBHAHD I/ aHI30TPOMl KOCMIYHOTO MIKPOXBHIBOBOTO (POHY Ta HOro mnosidpusa-

mii, sika HeoOXiIHA B YMCJIOBOMY INIXOI.
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