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This is a review of the theory of osmi mirowave bakground (CMB) anisotropies. It is an

updated version of a ourse given in spring 1999 at the `troisieme yle de la Suisse Romande'. An

introdution to gauge invariant osmologial perturbation theory is given and CMB anisotropies

are treated in this ontext. Simple analytial approximations for the aousti peak positions for

adiabati and isourvature perturbations are derived. Silk damping is disussed by an analyti

approximation. A short desription of the present status of observations and parameter estimation

followed by a ritial disussion terminated the review. The full system of di�erential equations for

CMB anisotropies and polarization needed in a numerial treatment is also developed and given in

an appendix.
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I. INTRODUCTION

In this review I would like to show the importane and

the power of measurements of anisotropies in the CMB.

CMB anisotropies are so useful mainly beause they

are small: For a given model, they an be alulated

within linear perturbation theory, to very good approxi-

mation. They are inuened only little by the non-linear

proesses of galaxy formation. This allows us to ompute

them very preisely (to about 1%, whih is high prei-

sion for present osmologial standards). For given initial

utuations, the result depends only on the osmologi-

al parameters. If we an measure CMB anisotropies to

a preision of, say 1%, this allows us therefore to de-

termine osmologial parameters to about 1%. An un-

preedented possibility! Consider that at present, after

the work of two generations, e.g., the Hubble parame-

ter is known only to about 25%, the baryon density is

known to about 10% and the unertainties in the dark

matter density, the osmologial onstant and the spae

urvature are even larger.
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This somewhat too optimisti onlusion has however

three aveats whih we want to mention before entering

the subjet of this review.

1. Initial onditions: The result depends on the

model for the initial utuations. The simplest in-

ationary senarios whih lead to adiabati pertur-

bations, ontain in general three to four free param-

eters, like the ratio of tensor to salar perturbations

(r) and the spetral index of the salar and tensor

perturbations (n

S

and n

T

), so a few more param-

eters need to be �tted additionally to the data.

More generi initial onditions allow for at least

four additional isourvature modes with arbitrary

(anti-)orrelations. The initial onditions are then

given by a 5�5 positive semi-de�nite matrix, and,

in priniple, several spetral indies [1,2℄. In most

of this review we shall ignore this possibility and

assume that initial perturbations are purely adia-

bati. Even if isourvature onstributions annot

be exluded, this most simple model is in good

agreement with the present data.

If the perturbations are generated by ative soures

like, e.g., topologial defets, then the modeling is

far more ompliated, and the analysis is too dif-

ferent to be inluded in this review.

2. Degeneray: Even though we an measure over

1000 independent modes (C

`

's) of the CMB

anisotropy spetrum, there are ertain ombina-

tions of the osmologial parameters that lead to

degeneraies in the CMB spetrum. The result is,

e.g., very sensitive to the sum 


matter

+ 


�

, but

not to the di�erene (\osmi onfusion").

3. Cosmi variane: Sine the utuations are re-

ated by random proesses, we an only alulate ex-

petation values. Yet we have only one universe to

take measurements (\osmi variane"). For small{

sale utuations we an in general assume that

the expetation value over ensembles of universes

is the same as a spatial average (a kind of ergodi

hypothesis), but for large sales we annot esape

large statistial errors.

A. Friedmann{Lemâ�tre universes

Friedmann{Lemâ�tre universes are homogeneous and

isotropi solutions of Einstein's equations. The hyper-

surfaes of onstant time are homogeneous and

isotropi, i.e., spaes of onstant urvature with metri

a

2

(�)

ij

dx

i

dx

j

, where 

ij

is the metri of a spae with

onstant urvature �. This metri an be expressed in

the form



ij

dx

i

dx

j

= dr

2

+ �

2

(r)

�

d#

2

+ sin

2

#d'

2

�

; (1.1)

�

2

(r) =

8

<

:

r

2

; � = 0

sin

2

r ; � = 1

sinh

2

r ; � = �1;

(1.2)

where we have resaled a(�) suh that � = �1 or 0. (With

this normalization the sale fator a has the dimension

of a length and � and r are dimensionless for � 6= 0.) The

four-dimensional metri is then of the form

g

��

dx

�

dx

�

= �a

2

(�)d�

2

+ a

2

(�)

ij

dx

i

dx

j

: (1.3)

Here � is alled the onformal time.

Einstein's equations redue to ordinary di�erential

equations for the funtion a(�) (with _� d=d�):

�

_a

a

�

2

+ � =

8�G

3

a

2

�+

1

3

�a

2

; (1.4)

�

_a

a

�

�

= �

4�G

3

a

2

(� + 3p) +

1

3

�a

2

=

�

�a

a

�

�

�

_a

a

�

2

; (1.5)

where � = �T

0

0

, p = T

i

i

(no sum!) and all other ompo-

nents of the energy momentum tensor have to vanish by

the requirement of isotropy and homogeneity. � is the

osmologial onstant.

Energy momentum \onservation" (whih is also a

onsequene of (1.4) and (1.5) due to the ontrated

Bianhi identity) reads

_� = �3

�

_a

a

�

(� + p): (1.6)

After these preliminaries (whih we suppose to be

known to the audiene) let us answer the following ques-

tion: Given an objet with omoving diameter � (or phys-

ial size a(�)� = d) at a redshift z(�) = (a

0

=a)�1. Under

whih angle #(�; z) do we see this objet today and how

does this angle depend on 


�

and 


�

?

We de�ne




m

=

 

8�G�a

2

3

�

_a

a

�

2

!

�=�

0

;




�

=

�a

2

3

�

_a

a

�

2

�

�

�

�

�

�=�

0

; (1.7)




�

=

��

�

_a

a

�

2

�

�

�

�

�

�=�

0

;

where the index

0

indiates the value of a given variable

today. Friedmann's equation (1.4) then requires

1 = 


m

+


�

+ 


�

: (1.8)

Fig. 1. The two ends of the objet emit a ash simultane-

ously from A and B at z

1

whih reahes us today.
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Bak to our problem: Without loss of generality we

set r = 0 at our position and thus r = r

1

= �

0

� �

1

at

the position of the ashes, A and B at redshift z

1

. If �

denotes the omoving ar length between A and B we

have � = �(r

1

)# = �(�

0

� �

1

)#, i.e.,

# =

�

�(�

0

� �

1

)

: (1.9)

It remains to alulate (�

0

� �

1

)(z

1

).

Note that in the ase � = 0 we an still normalize the

sale fator a as we want, and it is onvenient to hoose

a

0

= 1, so that omoving sales today beome physial

sales. However, for � 6= 0, we have already normalized

a suh that � = �1 and � = sin r or sinh r. We have in

priniple no normalization onstant left.

From the Friedmann equation we have

_a

2

=

8�G

3

a

4

� +

1

3

�a

4

� �a

2

: (1.10)

We assume that � is a ombination of \dust" (old,

non-relativisti matter) with p

d

= 0 and radiation with

p

rad

=

1

=

3

�

rad

.

From (1.6) we �nd that �

rad

/ a

�4

and �

d

/ a

�3

.

Therefore, with H

0

=

�

_a

a

2

�

(�

0

), we de�ne

8�G

3

a

4

� = H

2

0

�

a

4

0




rad

+ 


d

aa

3

0

�

; (1.11)

1

3

�a

4

= H

2

0




�

a

4

; (1.12)

��a

2

= H

2

0




�

a

2

a

2

0

: (1.13)

The Friedmann equation then implies

da

d�

= H

0

a

2

0

�




rad

+

a

a

0




d

+

a

4

a

4

0




�

+

a

2

a

2

0




�

�

1

2

(1.14)

so that

�

0

� �

1

=

1

H

0

a

0

(1.15)

�

Z

z

1

0

dz

[


rad

(z + 1)

4

+ 


d

(z + 1)

3

+


�

+ 


�

(z + 1)

2

℄

1

2

:

Here we have introdued the osmologial redshift z+1 =

a

0

=a. (In priniple we ould of ourse also add other mat-

ter omponents like, e.g., \quintessene" [9℄, whih would

lead to a somewhat di�erent form of the integral (1.15),

but for de�niteness, we remain with dust, radiation and

a osmologial onstant.)

In general, this integral has to be solved numerially.

It determines the angle #(�; z

1

) under whih an objet

with omoving size � at z

1

is seen.

On the other hand, the angular diameter distane to

an objet of physial size d seen under angle # is given

by �

0

� �

1

= r

1

= �

�1

�

d

a

1

#

�

. If we are able to measure

the redshift and the omoving angular diameter distane

of a ertain lass of objets omparing with Eq. (1.15)

allows in priniple to determine the parameters 


m

, 


�

,




�

and H

0

.

Fig. 2. The funtion �(�

0

� �

1

) as a funtion of the red-

shift z for di�erent values of the osmologial parameters 


�

(top, with 


�

=0) and 


�

(bottom, with 


�

=0), namely �0:8

[dotted℄, �0:3 [short{dashed℄, 0 [solid℄, 0:3 [dot{dashed℄, 0:8

[long{dashed℄.

We have

��

H

2

0

a

2

0

= 


�

) H

0

a

0

=

1

p

j


�

j

for 


�

6= 0.

Observationally we know 10

�5

< 


rad

� 10

�4

as well

as 0:1 � 


d

. 1, j


�

j . 1 and j


�

j . 1.

If we are interested in small redshifts, z

1

. 10, we may

safely neglet 


rad

. In this region, Eq. (1.15) is very sen-

sitive to 


�

and provides an exellent mean to onstrain

the osmologial onstant.

At high redshift, z

1

& 1000, negleting radiation is no

longer a good approximation.

We shall later need the opening angle of the horizon

distane,

#

H

(z

1

) =

�

1

�(�

0

� �

1

)

; (1.16)

�

1

=

1

H

0

a

0

(1.17)

�

Z

1

z

1

dz

[


rad

(z + 1)

4

+ 


d

(z + 1)

3

+


�

+ 


�

(z + 1)

2

℄

1

2

:
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(Clearly this integral diverges if 


rad

= 


d

= 0. This is

exatly what happens during an inationary period and

leads there to the solution of the horizon problem.)

Fig. 3. #

H

(z

1

) (in degrees) for di�erent values of the os-

mologial parameters 


�

and 


�

the line styles are as in

Fig. 2.

The value of the radiation density is well known. For

photons plus three sorts of massless neutrinos we have

�

rad

= 7:94� 10

�34

(T

0

=2:737 K)

4

g=m

3

:

This gives




rad

h

2

= 4:2 � 10

�5

(T

0

=2:737 K)

4

; (1.18)

H

0

= 100h

km

s �Mp

: (1.19)

Negleting 


rad

, for 


�

= 0 and small urvature,

0 < j


�

j � 


d

at high enough redshift, z

1

� 10,

one has �

0

� �

1

' 2

p

j


�

j=


d

= 2=(H

0

a

0

p




d

). This

yields #(�; z

1

) '

p




d

H

0

a

0

�=2 =

1

2

p




d

H

0

�

phys

=(z

1

+1),

where �

phys

= a

1

� is the physial sale orresponding to

omoving size �.

B. Reombination and the osmi mirowave

bakground (CMB)

During its expansion, the universe ools adiabatially.

At early times, it is dominated by a thermal radiation

bakground with � = C=a

4

= g

e�

a

SB

T

4

[10℄, and we

�nd that T / a

�1

. Here g

e�

= n

b

+ 7=8n

F

is the e�e-

tive number of degrees of freedom, bosons ounting as

1 and fermions ounting as 7=8 (see, e.g., [14℄). At tem-

peratures below 0:5 MeV only neutrinos and photons are

still relativisti leading to the density parameter given in

Eq. (1.18). (Neutrinos have a somewhat lower tempera-

ture than photons, T

�

= (4=11)

1=3

T , sine they have al-

ready dropped out of thermal equilibrium at T ' 1 MeV,

before e

�

annihilation whih therefore reheats the pho-

tons but not the neutrinos, see, e.g., [14,15℄.)

The photons obey a Plank distribution,

f(!) =

1

e

!=T

� 1

: (1.20)

At a temperature of about T � 4000 K � 0:4 eV, the

number density of photons with energies above the hy-

drogen ionization energy drops below the baryon density

of the universe, and the protons begin to (re-)ombine

to neutral hydrogen. (Helium has already reombined

earlier.) Photons and baryons are tightly oupled before

(re-) ombination by non-relativisti Thomson sattering

of eletrons. During reombination the free eletron den-

sity drops sharply and the mean free path of the photons

grows larger than the Hubble sale. At the temperature

T

de

� 3000 K (orresponding to the redshift z

de

' 1100

and the physial time t

de

= a

0

�

de

' 10

5

years) photons

beome free and the universe beomes transparent.

After reombination, the photon distribution evolves

aording to Liouville's equation (geodesi spray):

p

�

�

�

f � �

i

��

p

�

p

�

�f

�p

i

� L

X

g

f = 0; (1.21)

where i = 1; 2; 3. Sine the photons are massless, jpj

2

=

P

3

i=1

p

i

p

i

= !

2

(! = ap

0

). Isotropy of the distribution

implies that f depends on p

i

only via jpj = !, and so

�f

�p

i

=

�!

�p

i

�f

�!

=

p

i

!

�f

�!

: (1.22)

In a Friedmann universe (also if � 6= 0!) we �nd for

p

�

p

�

= �!

2

+ p

2

= 0 [exerise!℄

p

i

�

i

f � �

i

��

p

�

p

�

p

i

1

!

�f

�!

= �!

2

�

_a

a

2

�

�f

�!

: (1.23)

Inserting this result into (1.21) leads to

�

�

f + !

�

_a

a

�

�f

�!

= 0; (1.24)

whih is satis�ed by an arbitrary funtion f = f(!a).

Hene the distribution of free-streaming photons hanges
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just by redshifting the momenta. Therefore, setting T /

a

�1

even after reombination, the blakbody shape of

the photon distribution remains unhanged.

Note however that after reombination the photons

are no longer in thermal equilibrium and the T in the

Plank distribution is not a temperature in the thermo-

dynamial sense but merely a parameter in the photon

distribution funtion.

Fig. 4. Spetrum of the osmi bakground radiation. The

graph on the top shows the measurements of the FIRAS ex-

periment on COBE (the vertial bars), overlaid by a blak-

body spetrum at a temperature of 2.73 K. The error bars

are 20 times magni�ed! The image on the bottom shows a

larger number of measurements. The FIRAS data is repre-

sented by the fat line around the peak of the spetrum (from

Peebles [15℄).

The blakbody spetrum of these osmi photons

whih are alled the \osmi mirowave bakground"

(CMB) is extremely well veri�ed observationally (see

Fig. 4). The limits on deviations are often parameterized

in terms of three parameters: The hemial potential �,

the Compton y parameter (whih quanti�es a well de-

�ned hange in the spetrum arising from interations

with a non-relativisti eletron gas at a di�erent temper-

ature, see, e.g., [15℄) and Y

�

(desribing a ontamination

by free-free emission).

The present limits on these parameters are (at 95%

CL, [7℄)

j�j < 9 � 10

�5

; jyj < 1:2 � 10

�5

; jY

�

j < 1:9 � 10

�5

:

(1.25)

The CMB photons have not only a very thermal spe-

trum, but they are also distributed very isotropially,

apart from a dipole whih is (most probably) simply due

to our motion relative to the surfae of last sattering:

An observer movingwith veloity v relative to a soure

emitting a photon with proper momentump = �!n sees

this photon redshifted with frequeny

!

0

= ! (1� nv) ; (1.26)

where  =

1

p

1�v

2

is the relativisti -fator. For an

isotropi emission of photons oming from all diretions

n this leads to a dipole anisotropy in �rst order in v.

This dipole anisotropy, whih is of the order of

�

�T

T

�

dipole

' 10

�3

has already been disovered in the 70ties [16,17℄. Inter-

preting it as due to our motion with respet to the last

sattering surfae implies a veloity for the solar-system

bary-enter of v = 371� 0:5 km=s at 68% CL ([7℄).

The COBE [11℄ DMR experiment (Di�erential Mi-

rowave Radiometer) has found utuations of

v

u

u

t

*

�

�T

T

�

2

+

� 10

�5

(1.27)

on all angular sales � � 7

Æ

[8℄. On smaller angular sales

many experiments have found utuations (we shall de-

sribe the experimental results in more detail later), but

all of them are . 10

�4

.

As we shall see later, the CMB utuations on large

sales provide a measure for the deviation of the geom-

etry from the Friedmann{Lemâ�tre one. The geometry

perturbations are thus small and we may alulate their

e�ets by linear perturbation theory. On smaller sales,

�T=T reets the utuations in the energy density

in the baryon/radiation plasma prior to reombination.

Their amplitude is just about right to allow the forma-

tion of the presently observed non-linear strutures (like

galaxies, lusters, et.) out of small initial utuations

by gravitational instability.

These �ndings strongly support the hypothesis whih

we assume here, namely that the large sale stru-

ture (i.e., galaxy distribution) observed in the universe

formed by gravitational instability from relatively small

(� 10

�4

�10

�5

) initial utuations. As we shall see, suh

initial utuations leave an interesting \�ngerprint" on

the osmi mirowave bakground.

II. PERTURBATION THEORY

The tool for the analysis of CMB anisotropies is os-

mologial perturbation theory. We spend therefore some

time on this subjet, espeially on the fundamental level.

181



R. DURRER

One all the variables are de�ned, we will be rather

brief in the derivation of the basi perturbation equa-

tions. First of all, beause these derivations are in general

not very illuminating and seondly beause nowadays all

of you an obtain them very easily by setting

g

��

= �g

��

+ "a

2

h

��

(2.1)

(�g

��

being the unperturbed Friedmann metri) and ask-

ing Mathematia or Maple to alulate the Einstein Ten-

sor using the ondition "

2

= 0. We onventionally set

(absorbing the \smallness" parameter " into h

��

)

g

��

= �g

��

+ a

2

h

��

;

�g

00

= �a

2

;

�g

ij

= a

2



ij

;

jh

��

j � 1;

T

�

�

= T

�

�

+ �

�

�

;

T

0

0

= ���;

T

i

j

= �pÆ

i

j

;

j�

�

�

j=��� 1: (2.2)

A. Gauge transformation, gauge invariane

The �rst fundamental problem we want to disuss is

the problem of `hoie of gauge' in osmologial pertur-

bation theory:

For linear perturbation theory to apply, the spaetime

manifold M with metri g and the energy momentum

tensor T of the real, observable universe must be in some

sense lose to a Friedmann universe, i.e., the manifoldM

with a Robertson{Walker metri �g and a homogeneous

and isotropi energy momentum tensor T . It is an in-

teresting, non-trivial unsolved problem how to onstrut

�g and T from the physial �elds g and T in pratie.

There are two main diÆulties: Spatial averaging proe-

dures depend on the hoie of a hyper-surfae of onstant

time and do not ommute with derivatives, so that aver-

aged �elds �g and T will in general not satisfy Einstein's

equations. Seondly, averaging is in pratie impossible

over super-horizon sales.

Even though we annot give a onstrutive presrip-

tion, we now assume that there exists an averaging proe-

dure whih leads to a Friedmann universe with spatially

averaged tensor �elds Q, suh that the deviations (T

��

�

T

��

)=max

f��g

fjT

��

jg and (g

��

� g

��

)=max

f��g

fg

��

g

are small, and �g and T satisfy Friedmann's equations. Let

us all suh an averaging proedure `admissible'. There

may be many di�erent admissible averaging proedures

(e.g. over a di�erent hyper-surfae) leading to slightly

di�erent Friedmann bakgrounds. But sine jg � �gj is

small of order �, the di�erene of the two Friedmann

bakgrounds must also be small of order � and we an

regard it as part of the perturbation.

We onsider now a �xed admissible Friedmann bak-

ground (�g;

�

T ) as hosen. Sine the theory is invariant

under di�eomorphisms (oordinate transformations), the

perturbations are not unique. For an arbitrary di�eo-

morphism � and its pullbak �

�

, the two metris g and

�

�

(g) desribe the same geometry. Sine we have hosen

the bakground metri �g we only allow di�eomorphisms

whih leave �g invariant, i.e., whih deviate only in �rst

order form the identity. Suh an `in�nitesimal' isomor-

phism an be represented as the in�nitesimal ow of a

vetor �eld X, � = �

X

�

. Remember the de�nition of the

ow: For the integral urve 

x

(s) ofX with starting point

x, i.e., 

x

(s = 0) = x we have �

X

s

(x) = 

x

(s). In terms

of the vetor �eld X, to �rst order in �, its pullbak is

then of the form

�

�

= id + �L

X

(L

X

denotes the Lie derivative in diretion X). The

transformation g ! �

�

(g) is equivalent to �g + �a

2

h !

�g+ �(a

2

h+L

X

�g), i.e. under an `in�nitesimal oordinate

transformation' the metri perturbation h transforms as

h! h+ a

�2

L

X

�g : (2.3)

In the ontext of osmologial perturbation theory, in-

�nitesimal oordinate transformations are alled `gauge

transformation'. The perturbation of a arbitrary tensor

�eld Q =

�

Q+�Q

(1)

obeys the gauge transformations law

Q

(1)

! Q

(1)

+ L

X

�

Q : (2.4)

Sine every vetor �eld X generates a gauge transfor-

mation � = �

X

�

, we an onlude that only perturbations

of tensor �elds with L

X

Q = 0 for all vetor �elds X,

i.e., with vanishing (or onstant) `bakground ontribu-

tion' are gauge invariant. This simple result is sometimes

referred to as the `Stewart{Walker Lemma' [3℄.

The gauge dependene of perturbations has aused

many ontroversies in the literature, sine it is often diÆ-

ult to extrat the physial meaning of gauge dependent

perturbations, espeially on super-horizon sales. This

has led to the development of gauge invariant perturba-

tion theory whih we are going to use throughout this re-

view. The advantage of the gauge-invariant formalism is

that the variables used have simple geometri and phys-

ial meanings and are not plagued by gauge modes. Al-

though the derivation requires somewhat more work, the

�nal system of perturbation equations is usually simple

and well suited for numerial treatment. We shall also

see, that on sub-horizon sales, the gauge invariant mat-

ter perturbations variables approah the usual, gauge de-

pendent ones. Sine one of the gauge invariant geometri-

al perturbation variables orresponds to the Newtonian

potential, the Newtonian limit an be performed easily.

First we note that sine all relativisti equations are

ovariant (i.e. an be written in the form Q = 0 for some

tensor �eld Q), it is always possible to express the or-

responding perturbation equations in terms of gauge in-

variant variables [4{6℄.
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B. Gauge invariant perturbation variables

Sine the f� = onstg hyper-surfaes are homogeneous

and isotropi, it is sensible to perform a harmoni anal-

ysis: A (spatial) tensor �eld Q on these hyper-surfaes

an be deomposed into omponents whih transform ir-

reduibly under translations and rotations. All suh om-

ponents evolve independently. For a salar quantity f in

the ase � = 0 this is nothing else than its Fourier de-

omposition:

f(x; �) =

Z

d

3

k

^

f (k)e

ikx

: (2.5)

(The exponentials Y

k

(x) = e

ikx

are the unitary ir-

reduible representations of the Eulidean translation

group.) For � = 1 suh a deomposition also exists, but

the values k are disrete, k

2

= `(` + 2) and for � = �1,

they are bounded from below, k

2

> 1. Of ourse, the

funtions Y

k

are di�erent for � 6= 0.

They are always the omplete orthogonal set of eigen-

funtions of the Laplaian,

�Y

(S)

= �k

2

Y

(S)

: (2.6)

In addition, a tensorial variable (at �xed position x)

an be deomposed into irreduible omponents under

the rotation group SO(3).

For a vetor �eld, this is its deomposition into a gra-

dient and a rotation,

V

i

= r

i

' +B

i

; (2.7)

where

B

i

ji

= 0; (2.8)

where we used X

ji

to denote the three-dimensional o-

variant derivative of X. ' is the spin 0 and B is the spin

1 omponent of V .

For a symmetri tensor �eld we have

H

ij

= H

L



ij

+

�

r

i

r

j

�

1

3

�

ij

�

H

T

+

1

2

�

H

(V )

ijj

+H

(V )

jji

�

+H

(T )

ij

; (2.9)

where

H

(V )ji

i

= H

(T )

i

i

= H

(T )

j

ijj

= 0: (2.10)

Here H

L

and H

T

are spin 0 omponents, H

(V )

i

is a spin

1 omponent and H

(T )

ij

is a spin 2 omponent.

We shall not need higher tensors (or spinors). As a

basis for vetor and tensor modes we use the vetor and

tensor type eigenfuntions to the Laplaian,

�Y

(V )

j

= �k

2

Y

(V )

j

; (2.11)

and

�Y

(T )

ji

= �k

2

Y

(T )

ji

; (2.12)

where Y

(V )

j

is a transverse vetor, Y

(V )jj

j

= 0 and

Y

(T )

ji

is a symmetri transverse traeless tensor, Y

(T )j

j

=

Y

(T )ji

ji

= 0.

Aording to Eqs. (2.7) and (2.9) we an onstrut

salar type vetors and tensors and vetor type tensors.

To this goal we de�ne

Y

(S)

j

� �k

�1

Y

(S)

jj

; (2.13)

Y

(S)

ij

� k

�2

Y

(S)

jij

+

1

3



ij

Y

(S)

; (2.14)

Y

(V )

ij

� �

1

2k

(Y

(V )

ijj

+ Y

(V )

jji

): (2.15)

In the following we shall extensively use this deompo-

sition and write down the perturbation equations for a

given mode k.

The deomposition of a vetor �eld is then of the form

B

i

= BY

(S)

i

+B

(V )

Y

(V )

i

: (2.16)

The deomposition of a tensor �eld is given by (om-

pare (2.9))

H

ij

= H

L

Y

(S)



ij

+H

T

Y

(S)

ij

+H

(V )

Y

(V )

ij

+H

(T )

Y

(T )

ij

;

(2.17)

where B, B

(V )

i

, H

L

, H

T

, H

(V )

i

and H

(T )

ij

are funtions

of � and k

1. Metri perturbations

Perturbations of the metri are of the form

g

��

= �g

��

+ a

2

h

��

: (2.18)

We parameterize them as

h

��

dx

�

dx

�

= �2Ad�

2

� 2B

i

d�dx

i

+ 2H

ij

dx

i

dx

j

;

(2.19)

and we deompose the perturbation variables B

i

andH

ij

aording to (2.16) and (2.17).

Let us onsider the behavior of h

��

under gauge trans-

formations. We set the vetor �eld de�ning the gauge

transformation to

X = T�

�

+ L

i

�

i

: (2.20)

Using simple identities from di�erential geometry like

L

X

(df) = d(L

X

f)

and

(L

X

)

ij

= X

ijj

+X

jji

;

we obtain
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L

X

�g = a

2

�

�2

�

_a

a

T +

_

T

�

d�

2

+ 2

�

_

L

i

� T

;i

�

d�dx

i

+

�

2

_a

a

T

ij

+ L

ijj

+ L

jji

�

dx

i

dx

j

�

: (2.21)

Comparing this with (2.19) and using (2.3) we ob-

tain the following behavior of our perturbation vari-

ables under gauge transformations (deomposing L

i

=

LY

(S)

i

+ L

(V )

Y

(V )

i

):

A! A +

_a

a

T +

_

T ; (2.22)

B ! B �

_

L � kT; (2.23)

B

(V )

! B

(V )

�

_

L

(V )

; (2.24)

H

L

! H

L

+

_a

a

T +

k

3

L; (2.25)

H

T

! H

T

� kL; (2.26)

H

(V )

! H

(V )

� kL

(V )

; (2.27)

H

(T )

! H

(T )

: (2.28)

Two salar and one vetor variable an be brought to

disappear by gauge transformations.

One often hooses kL = H

T

and T = B +

_

L, so that

the variables H

T

and B vanish. In this gauge (longitudi-

nal gauge), salar perturbations of the metri are of the

form (H

T

= B = 0):

h

(S)

��

= �2	d�

2

+ 2�

ij

dx

i

dx

j

: (2.29)

	 and � are the so alled Bardeen potentials. In general

they are de�ned by

	 = A �

_a

a

k

�1

� � k

�1

_�; (2.30)

� = H

L

+

1

3

H

T

�

_a

a

k

�1

� (2.31)

with � = k

�1

_

H

T

� B. A short alulation using Eqs.

(2.22) to (2.26) shows that they are gauge invariant.

For vetor perturbations it is onvenient to set

kL

(V )

= H

(V )

so that H

(V )

vanishes and we have

h

(V )

��

dx

�

dx

�

= 2�

(V )

Y

(V )

i

d�dx

i

: (2.32)

We shall all this gauge the \vetor gauge". In general

�

(V )

= k

�1

_

H

(V )

� B

(V )

is gauge invariant [12℄

Clearly there are no tensorial (spin 2) gauge transfor-

mation and hene H

(T )

ij

is gauge invariant.

2. Perturbations of the energy momentum tensor

Let T

�

�

= T

�

�

+�

�

�

be the full energy momentum ten-

sor. We de�ne its energy density � and its energy ow

4-vetor u as the time-like eigenvalue and eigenvetor of

T

�

�

:

T

�

�

u

�

= ��u

�

; u

2

= �1: (2.33)

We then de�ne their perturbations by

� = �� (1 + Æ) ; u = u

0

�

t

+ u

i

�

i

: (2.34)

u

0

is �xed by the normalization ondition,

u

0

=

1

a

(1 �A): (2.35)

We further set

u

i

=

1

a

v

i

= vY

(S)i

+ v

(V )

Y

(V )i

: (2.36)

We de�ne P

�

�

� u

�

u

�

+ Æ

�

�

, the projetion tensor onto

the part of tangent spae normal to u and set the stress

tensor

�

��

= P

�

�

P

�

�

T

��

: (2.37)

In the unperturbed ase we have �

0

0

= 0; �

i

j

= �pÆ

i

j

.

Inluding perturbations, to �rst order we still obtain

�

0

0

= �

0

i

= �

i

0

= 0: (2.38)

But �

i

j

ontains in general perturbations. We set

�

i

j

= �p

�

(1 + �

L

) Æ

i

j

+�

i

j

�

; with �

i

i

= 0: (2.39)

We deompose �

i

j

as

�

i

j

= �

(S)

Y

(S) i

j

+�

(V )

Y

(V ) i

j

+�

(T )

Y

(T ) i

j

: (2.40)

We shall not derive the gauge transformation proper-

ties in detail, but just state some results whih an be

obtained as an exerise (see also [5℄):

� Of the variables de�ned above only the �

(S;V;T )

are gauge invariant; they desribe the anisotropi

stress tensor, �

�

�

= �

�

�

�

1

=

3

�

�

�

Æ

�

�

. They are gauge

invariant due to the Stewart{Walker lemma, sine

�

� = 0. For perfet uids �

�

�

= 0.

� A seond gauge invariant variable is

� = �

L

�



2

s

w

Æ; (2.41)

where 

2

s

� _p= _� is the adiabati sound speed and

w � p=� is the enthalpy. One an show that � is

proportional to the divergene of the entropy ux

of the perturbations. Adiabati perturbations are

haraterized by � = 0.

� Gauge invariant density and veloity perturbations

an be found by ombining Æ, v and v

(V )

i

with met-

ri perturbations.
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We shall use

V � v �

1

k

_

H

T

= v

(long)

; (2.42)

D

g

� Æ + 3(1 + w)

�

H

L

+

1

3

H

T

�

= Æ

(long)

;

+3(1 + w)�; (2.43)

D � Æ

(long)

+ 3(1 + w)

�

_a

a

�

V

k

; (2.44)

V

(V )

� v

(V )

�

1

k

_

H

(V )

= v

(ve)

; (2.45)


 � v

(V )

�B

(V )

= v

(ve)

�B

(V )

; (2.46)


� V

(V )

= �

(V )

: (2.47)

Here v

(long)

; Æ

(long)

and v

(ve)

i

are the veloity (and den-

sity) perturbations in the longitudinal and vetor gauge

respetively and �

(V )

is the metri perturbation in vetor

gauge (see Eq. (2.32)). These variables an be interpreted

niely in terms of gradients of the energy density and the

shear and vortiity of the veloity �eld [18℄.

But we just want to show that on sales muh smaller

than the Hubble sale, k� � 1, the metri perturbations

are muh smaller than Æ and v and we an thus \forget

them" (whih will be important when omparing exper-

imental results with alulations in this formalism):

The perturbations of the Einstein tensor are given by

seond derivatives of the metri perturbations. Einstein's

equations yield the following order of magnitude esti-

mate:

O

�

ÆT

T

�

O (8�GT )

| {z }

O

(

_a

a

)

2

=O(�

�2

)

= O

�

1

�

2

h+

k

�

h+ k

2

h

�

; (2.48)

O

�

ÆT

T

�

= O

�

h+ k�h+ (k�)

2

h

�

: (2.49)

For k� � 1 this gives O(Æ; v) = O

�

ÆT

T

�

� O(h). On

sub-horizon sales the di�erene between Æ, Æ

(long)

, D

g

and D is negligible as well as the di�erene between v

and V or v

(V )

, V

(V )

and 


(V )

.

Later we shall also need other perturbation variables

like the perturbation of the photon brightness (energy-

integrated photon distribution funtion), but we shall

introdue them as we get there and disuss some appli-

ations �rst.

C. Basi perturbation equations

As already announed, we do not derive Einstein's equations but just write down those whih we shall need later:

1. Constraint equations

4�Ga

2

�D = (k

2

� 3�)�; (00)

4�Ga

2

(� + p)V = k

�

�

_a

a

�

	�

_

�

�

; (0i)

)

(salar) (2.50)

8�Ga

2

(� + p)
 =

1

2

�

2�� k

2

�

�

(V )

: (0i) (vetor) (2.51)

2. Dynamial equations

�k

2

(� + 	) = 8�Ga

2

p�

(S)

; (salar) (2.52)

k

�

_�

(V )

+ 2

�

_a

a

�

�

(V )

�

= 8�Ga

2

p�

(V )

; (vetor) (2.53)

�

H

(T )

+ 2

�

_a

a

�

_

H

(T )

+

�

2�+ k

2

�

H

(T )

= 8�Ga

2

p�

(T )

ij

: (tensor) (2.54)

There is a seond dynamial salar equations, whih is however ompliated and not needed, sine we may instead use

one of the onservation equations below. Note that for perfet uids, where �

i

j

� 0, we have � = �	, �

(V )

/ 1=a

2

and H obeys a damped wave equation. The damping term an be negleted on small sales (over short time periods)

when �

�2

. 2�+ k

2

, and H

ij

represents propagating gravitational waves. For vanishing urvature, these are just the

sub-horizon sales, k� & 1. For � < 0, waves osillate with a somewhat smaller frequeny, ! =

p

2�+ k

2

, while for

� > 0 the frequeny is somewhat larger.
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3. Conservation equations

The onservation equations, T

��

;�

= 0 lead to the following perturbation equations

_

D

g

+ 3

�



2

s

� w

� �

_a

a

�

D

g

+ (1 + w)kV + 3w

�

_a

a

�

� = 0;

_

V +

�

_a

a

� �

1� 3

2

s

�

V = k

�

	� 3

2

s

�

�

+



2

s

k

1+w

D

g

+

wk

1+w

�

��

2

3

�

1�

3�

k

2

�

�

�

;

)

(salar) (2.55)

_




i

+

�

1� 3

2

s

�

�

_a

a

�




i

=

p

2(� + p)

�

k �

2�

k

�

�

(V )

i

: (vetor) (2.56)

III. SIMPLE APPLICATIONS

We �rst disuss some simple appliations whih will be important for the CMB. We ould of ourse also write

(2.55) in terms of D, but we shall just work with the relation

D = D

g

+ 3(1 +w)

�

��+

�

_a

a

�

k

�1

V

�

: (3.1)

A. The pure dust uid at � = 0;� = 0

We assume the dust to have w = 

2

s

= p = 0 and � = � = 0. The equations (2.55), (2.52) and (2.50) then redue

to

_

D

g

= �kV; (energy onservation eqn:) (3.2)

_

V +

�

_a

a

�

V = k	; (gravitational aeleration eqn:) (3.3)

� = �	; (3.4)

�k

2

	 = 4�Ga

2

�

�

D

g

+ 3

�

	 +

�

_a

a

�

k

�1

V

��

: (Poisson eqn:) (3.5)

In a pure dust universe � / a

�3

) ( _a=a)

2

/ a

�1

, whih

is solved by a / �

2

. The Einstein equations then give im-

mediately 4�G�a

2

=

3

=

2

( _a=a)

2

= 6=�

2

. Setting k� = x

and

0

= d=dx, the system (3.2-3.5) then beomes

D

0

g

= �V; (3.6)

V

0

+

2

x

V = 	; (3.7)

6

x

2

�

D

g

+ 3

�

	+

2

x

V

��

= �	: (3.8)

We use (3.8) to eliminate 	 and (3.6) to eliminateD

g

,

leading to

�

18 + x

2

�

V

00

+

�

72

x

+ 4x

�

V

0

�

�

72

x

2

+ 4

�

V = 0:

(3.9)

The general solution of Eq. (3.9) is

V = V

0

x+

V

1

x

4

(3.10)

with arbitrary onstants V

0

and V

1

. Sine the perturba-

tions are supposed to be small initially, they annot di-

verge for x! 0, and we have therefore to hoose V

1

= 0

(the growing mode). Another way to argue is as follows:

If the mode V

1

has to be small already at some early ini-

tial time �

in

, it will be even muh smaller at later times

and may hene be negleted. The perturbation variables

are then given by

V = V

0

x; (3.11)

D

g

= �15V

0

�

1

2

V

0

x

2

; (3.12)

	 = 3V

0

: (3.13)

The onstany of the gravitational potential 	 in a

matter dominated universe and the growth of the den-

sity perturbations like the sale fator a led Lifshitz to

onlude 1946 [19℄ that pure gravitational instability an-

not be the ause for struture formation: If we start from

tiny thermal utuations of the order of 10

�35

, they an

only grow to about 10

�30

through this proess during
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the matter dominated regime. Or, to put it di�erently,

if we do not want to modify the proess of struture for-

mation, we need initial utuations of the order of at

least 10

�5

. One possibility to reate suh utuations

is due to quantum partile prodution in the lassial

gravitational �eld during ination. The rapid expansion

of the universe during ination quikly transforms miro-

sopi sales at whih quantum utuations are impor-

tant into osmologial sales where these utuations are

then \frozen in" as lassial perturbations in the energy

density and the geometry.

We distinguish two regimes:

i) super-horizon, x� 1 where we have

D

g

= �15V

0

; (3.14)

	 = 3V

0

; (3.15)

V = V

0

x (3.16)

and ii) sub-horizon, x � 1 where the solution is domi-

nated by the terms

V = V

0

x; (3.17)

D

g

= �

1

2

V

0

x

2

; (3.18)

	 = 3V

0

= onst: (3.19)

Note that for dust

D = D

g

+ 3	 +

6

x

V = �

1

2

V

0

x

2

:

In the variable D the onstant term has disappeared and

we have D � 	 on super horizon sales, x� 1.

B. The pure radiation uid, � = 0;� = 0

In this limit we set w = 

2

s

=

1

=

3

and � = 0. We on-

lude from � / a

�4

that a / � and � = �	, and the

perturbation equations beome (with the same notation

as above):

D

0

g

= �

4

3

V; (3.20)

V

0

= 2	 +

1

4

D

g

; (3.21)

�2x

2

	 = 3D

g

+ 12	 +

12

x

V: (3.22)

The general solution of this system is

D

g

= D

2

"

os

�

x

p

3

�

� 2

p

3

x

sin

�

x

p

3

�

#

+D

1

"

sin

�

x

p

3

�

+ 2

p

3

x

os

�

x

p

3

�

#

; (3.23)

V = �

3

4

D

0

g

; (3.24)

	 =

�3D

g

� (12=x)V

12 + 2x

2

: (3.25)

Again, regularity at x = 0 requires D

1

= 0.

In the super-horizon, x� 1 regime we obtain

	 = 	

0

; D

g

= D

0

�

2

3

V

0

x

2

; V = V

0

x (3.26)

with

D

0

= �6	

0

= �D

2

; (3.27)

V

0

=

1

2

	

0

= �

1

12

D

0

: (3.28)

On sub-horizon, x � 1 sales we �nd osillating solu-

tions with onstant amplitude with a frequeny of 1=

p

3:

V = V

2

sin

�

x

p

3

�

; (3.29)

D

g

= D

2

os

�

x

p

3

�

; 	 = �

3

2

x

�2

D

g

; (3.30)

D

2

=

4V

2

p

3

: (3.31)

Note that also for radiation perturbations

D = �

2

3

V

0

x

2

� 	

is small on super horizon sales, x � 1. The perturba-

tion amplitude is given by the largest gauge invariant

perturbation variable. We onlude therefore that per-

turbations outside the Hubble horizon are frozen to �rst

order. One they enter the horizon they start to ollapse,

but pressure resists the gravitational fore and the radi-

ation uid starts to osillate. The perturbations of the

gravitational potential osillate and deay like 1=a

2

in-

side the horizon.

C. Adiabati and isourvature initial onditions for

a matter & radiation uid

In this setion we want to investigate a system with

a matter and a radiation omponent that are oupled

only by gravity. The matter omponent ats therefore as

dark matter, sine it does not interat diretly with the

radiation.

Sine the matter and radiation perturbations behave

in the same way on super-horizon sales,

D

(r)

g

= A +Bx

2

; D

(m)

g

= A

0

+B

0

x

2

; V

(r)

/ V

(m)

/ x;

(3.32)

we may require a onstant relation between matter and

radiation perturbations. As we have seen in the previous

setion, inside the horizon (x > 1) radiation perturba-

tions start to osillate while matter perturbations keep

following a power law. On sub-horizon sales a onstant

ratio an thus no longer be maintained. There are two

interesting possibilities:
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1. Adiabati initial onditions

Adiabatiity requires that matter and radiation per-

turbations are initially in perfet thermal equilibrium.

This implies that their veloity �elds agree (see below,

setion on Boltzmann equation!)

V

(r)

= V

(m)

; (3.33)

so that the energy ux in the two uids is oupled ini-

tially.

Let us investigate the radiation solution in the matter

dominated era, when the orresponding sale is already

sub-horizon. Sine 	 is dominated by the matter ontri-

bution, we have 	 ' onst = 	

0

. We neglet the (deay-

ing) ontribution from the sub-dominant radiation to 	.

Energy-momentum onservation for radiation then gives

D

(r)0

g

= �

4

3

V

(r)

; (3.34)

V

(r)0

= 2	+

1

4

D

(r)

g

: (3.35)

Now 	 is just a onstant given by the matter pertur-

bations, and it ats like a onstant soure term. The full

solution of this system is then

D

(r)

g

= A os

�

x

p

3

�

�

4

p

3

B sin

�

x

p

3

�

� 8	

�

os

�

x

p

3

�

� 1

�

; (3.36)

V

(r)

= B os

�

x

p

3

�

+

p

3

4

A sin

�

x

p

3

�

� 2

p

3	 sin

�

x

p

3

�

: (3.37)

Our adiabati initial onditions require

lim

x!0

V

(r)

x

= V

0

= lim

x!0

V

(m)

x

<1: (3.38)

Therefore B = 0 and A = 4V

0

� 8	. Using in addition

	 = 3V

0

(see (3.19)) we obtain

D

(r)

g

= �

44

3

	 os

�

x

p

3

�

+ 8	; (3.39)

V

(r)

=

1

p

3

	 sin

�

x

p

3

�

; (3.40)

D

(m)

g

= �	

�

5 +

1

6

x

2

�

; (3.41)

V

(m)

=

1

3

	x; (3.42)

	 = 3V

0

: (3.43)

On super-horizon sales, x� 1 we have

D

(r)

g

' �

20

3

	; V

(r)

'

1

3

x	; (3.44)

note that D

(r)

g

= (4=3)D

(m)

g

and V

(r)

= V

(m)

for adia-

bati initial onditions.

2. Isourvature initial onditions

Here we want to solve the system (2.50) and (2.55) for

dark matter and radiation under the ondition that the

metri perturbations vanish initially, i.e., 	 = 0,

	 = �

3

2

�

_a

a

�

2

k

�2

[D

g

+ 3(1 + w)	

+ 3(1 + w)

�

_a

a

�

k

�1

V

�

= 0: (3.45)

In priniple, we have four evolution and one onstraint

equations. We therefore have four onstants to adjust.

Condition (3.45), however, requires an entire funtion to

vanish. This may be impossible. Let us nevertheless try:

If 	 = 0 the solutions of the radiation dominated equa-

tions are simply

D

(r)

g

= A os

�

x

p

3

�

+ B sin

�

x

p

3

�

; (3.46)

V

(r)

=

p

3

4

A sin

�

x

p

3

�

�

p

3

4

B os

�

x

p

3

�

: (3.47)

For the matter perturbations we �nd

V

(m)

= �

V

0

a

; a / x

�

; 1 � � � 2; (3.48)

D

(m)

g

= C

(m)

�

V

0

� � 1

x

a

if � 6= 1; (3.49)

D

(m)

g

= C

(m)

� V

0

log(x) if � = 1: (3.50)

Here � is the exponent of the sale fator a / �

�

, hene

� = 1 in the radiation era and � = 2 in the matter era.

	 = 0 implies with

D

g

=

1

�

�

�

r

D

(r)

g

+ �

m

D

(m)

g

�

(3.51)

V =

1

� + p

�

(�

r

+ p

r

)V

(r)

+ �

m

V

(m)

�

(3.52)

that

0 =

�

r

�

m

D

(r)

g

+D

(m)

g

+

�

_a

a

�

k

�1

�

4�

r

�

m

V

(r)

+ 3V

(m)

�

: (3.53)

Sine V

(m)

/ 1=a it an ompensate, for small val-

ues of x, the term / os(x=

p

3) of V

(r)

, whih behaves

like 1=a as well, due to the pre-fator �

r

=�

m

. This term

an also be ompensated in D

(r)

g

by the term V

0

x=a of

D

(m)

g

. In the purely radiation dominated universe, the

log-dependene of D

(m)

g

renders this ompensation im-

perfet. However, there is no way to ompensate C

(m)

or

the term proportional to A. We therefore have to hoose

A = C

(m)

= 0 and
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a

�

r

�

m

p

3

3

B = V

0

; B =

�

m

a�

r

p

3V

0

: (3.54)

(The ompensation of the smaller terms inD

(r)

g

andD

(m)

g

is only omplete if � ' 2.)

With 

s

= 1=

p

3 we �nd

D

(r)

g

'

�

m

a�

r



s

V

0

sin (

s

x) ; (isourvature) (3.55)

D

(r)

g

' 	

�

8�

44

3

os (

s

x)

�

: (adiabati) (3.56)

The CMB anisotropies, whih we are going to determine

in the next setion, ontain a term

�T

T

(k; �

0

;n) = � � �+

1

4

D

(r)

g

(k; �

de

) e

ikn(�

0

��

de

)

� � � :

(3.57)

On sales where this term dominates, the peaks in D

g

translate into peaks in the angular power spetrum of

CMB anisotropies.

For isourvature initial onditions, we �nd a �rst peak

in D

g

at

x

(1)

i

= k

(1)

i

�

de

=

1



s

�

2

;

�

(1)

i

=

�

k

(1)

i

= 2

s

�

de

;

#

(1)

i

'

2

s

�

de

� (�

0

� �

de

)

: (3.58)

Here #

(1)

i

is the angle under whih the omoving sale

�

(1)

i

at omoving distane �

0

� �

de

is seen. In the next

setion, we will expand the temperature utuations

in terms of spherial harmonis. An utuation on the

angular sale # then shows up around the harmoni

` � �=#. As an indiation, we note that for � = � = 0,

the harmoni of the �rst isourvature peak is

`

(1)

i

� �=#

(1)

i

� 110 ;

In the adiabati ase the �rst \peak" is at k

(1)

a

= 0.

Sine D

(r)

g

is negative for small x, the �rst peaks are

\expansion peaks", and due to the gravitational attra-

tion of the baryons (whih we have negleted in this sim-

ple argument) they are less pronouned than the seond

(\ompression") peaks.

These seond peaks are usually alled the \�rst aous-

ti peak". (It is the �rst ompression peak and we shall

adopt the onvention to all it the \�rst peak" mainly

for onsisteny with the literature.) They orrespond to

wavelengths and angular sales

�

(2)

i

=

2

3



s

�

de

; #

(2)

i

'

(2=3)

s

�

de

� (�

0

� �

de

)

;

`

(2)

i

� 350 (isourvature); (3.59)

�

(2)

a

= 

s

�

de

; #

(2)

a

'



s

�

de

� (�

0

� �

de

)

;

`

(2)

a

� 200 (adiabati): (3.60)

Here the indiated harmoni is the one obtained in the

ase � = � = 0, for a typial baryon density inferred

from nuleosynthesis.

It is interesting to note that the distane between on-

seutive peaks is independent of the initial ondi-

tion. It is given by

�k

i

= k

(2)

i

� k

(1)

i

= �=(

s

�

de

) = �k

a

;

�# =



s

�

de

� (�

0

� �

de

)

; �` � 200: (3.61)

Again, the numerial value indiated for �` orresponds

to a universe with � = � = 0. The result is strongly de-

pendent espeially on �. This is the reason why the mea-

surement of the peak position (or better of the inter-peak

distane) allows an aurate determination of urvature.

From our analysis we an draw the following important

onlusions: For sales where the D

(r)

g

-term dominates,

the CMB anisotropies show a series of aousti osilla-

tions with spaing �k, the position of the �rst signi�ant

peaks is at k = k

(2)

a=i

, depending on the initial ondition.

The spaing �k is independent of initial onditions.

The angle �# onto whih this sale is projeted in the

sky is determined entirely by the matter ontent and the

geometry of the universe. Aording to our �ndings in

Setion I, # will be larger if 


�

< 0 (positive urvature)

and smaller if 


�

> 0 (see Fig. 3).

In our analysis we have negleted the presene of

baryons, in order to obtain simple analytial results.

Baryons have two e�ets: They lead to (�+3p)

rad+bar

>

0, and therefore to an enhanement of the ompression

peaks (the �rst, third, et. aousti peak). In addition,

the baryons slightly derease the sound speed 

s

, inreas-

ing thereby �k and dereasing �#.

Another point whih we have negleted is the fat

that the universe beame matter dominated at �

eq

, only

shortly before deoupling: �

de

' 4�

eq

, for 


m

= 1. As

we have seen, the gravitational potential on sub-horizon

sales is deaying in the radiation dominated era. If the

radiation dominated era is not very long before deou-

pling, the gravitational potential is still slightly deaying

and free streaming photons fall into a deeper gravita-

tional potential than they have to limb out of. This ef-

fet, alled \early integrated Sahs{Wolfe e�et" adds to

the photon temperature utuations at sales whih are

only slightly larger than the position of the �rst aous-

ti peak for adiabati perturbations. It therefore `boosts'

this peak and, at the same time, moves it to lightly larger

sales (larger angles, lower spherial harmonis). Sine

�

eq

/ h

�2

, the �rst aousti peak is larger if h is smaller.

A small Hubble parameter inreases therefore the

aousti peaks. A similar e�et is observed if a osmo-

logial onstant or negative urvature are present, sine

�

eq

is retarded in those ases.

The real universe ontains not only photons and dark

matter, but also neutrinos and baryons. It has atually

be found reently [20℄ that this 4-uid mixture allows �ve
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di�erent modes whih grow or stay onstant. The adia-

bati mode, the dark matter isourvature mode whih we

have just disussed, a similar baryon isourvature mode

and two neutrino isourvature modes. The most generi

initial onditions whih allow for arbitrary orrelations

between the di�erent modes are very unpreditable. We

an maybe just say that they lead to a �rst aousti

peak in the range of 150 � `

(2)

� 350 for a spatially at

universe. In the rest of this review, we only disuss adi-

abati perturbations, whih are by far the most studied,

but it is important to keep in mind that all the results

espeially onerning the estimation of osmologial pa-

rameters is not valid if we allow for more generi initial

onditions [1,2℄.

3. Vetor perturbations of perfet uids

If �

(V )

= 0 equation (2.56) implies


 / a

3

2

s

�1

: (3.62)

For _p= _� = 

2

s

�

1

=

3

, this leads to a non-growing vortiity.

The dynamial Einstein equation implies

�

(V )

/ a

�2

; (3.63)

and the onstraint (2.51) reads (at early times, so we an

neglet urvature)


 � x

2

�

(V )

: (3.64)

If perturbations are reated in the very early universe

on super-horizon sales (e.g., during an inationary pe-

riod), vetor perturbations of the metri deay and be-

ome soon entirely negligible. Even if 


i

remains on-

stant in a radiation dominated universe, it has to be so

small on relevant sales at formation (x

in

� 1) that we

may safely neglet it.

4. Tensor perturbations

The situation is di�erent for tensor perturbations.

Again we onsider the perfet uid ase, �

(T )

ij

= 0. There

(2.54) implies (if � is negligible)

H

00

ij

+

2�

x

H

0

ij

+H

ij

= 0 ; (3.65)

with � = 1 in the radiation dominated era and � = 2 in

the matter dominated era. The less deaying mode so-

lution to Eq. (3.65) is H

ij

= e

ij

x

1=2��

J

1=2��

(x), where

J

�

denotes the Bessel funtion of order � and e

ij

is a

transverse traeless polarization tensor. This leads to

H

ij

= onst for x� 1; (3.66)

H

ij

=

1

a

for x

>

� 1: (3.67)

IV. CMB ANISOTROPIES

A. Light-like geodesis

After deoupling, � > �

de

, photons follow to a

good approximation light-like geodesis. The tempera-

ture shift is then given by the energy shift of a given

photon.

The unperturbed photon trajetory follows (x

�

) �

(�;n(� � �

0

) + x

0

), where x

0

is the photon position

at time �

0

and n is the (parallel transported) photon

diretion. With respet to a geodesi basis (e)

3

i=1

, the

omponents of n are onstant. If � = 0 we may hoose

e

i

= �=�x

i

; if � 6= 0 these vetor �elds are no longer

parallel transported and therefore do not form a geodesi

basis (r

e

i

e

j

= 0).

Our metri is of the form

d�s

2

= a

2

ds

2

; (4.1)

with

ds

2

= (

��

+ h

��

) dx

�

dx

�

;



00

= �1; 

i0

= 0; 

ij

= 

ji

(4.2)

as before.

We make use of the fat that light-like geodesis are

onformally invariant. More preisely ds

2

and d�s

2

have

the same light-like geodesis, only the orresponding

aÆne parameters are di�erent. Let us denote the two

aÆne parameters by � and

�

� respetively, and the tan-

gent vetors to the geodesi by

n =

dx

d�

; �n =

dx

d

�

�

; n

2

= �n

2

= 0 ; n

0

= 1 ; n

2

= 1:

(4.3)

We set n

0

= 1+ Æn

0

. The geodesi equation for the per-

turbed metri

ds

2

= (

��

+ h

��

)dx

�

dx

�

(4.4)

yields, to �rst order,

d

d�

Æn

�

= �Æ�

�

��

n

�

n

�

: (4.5)

For the energy shift, we have to determine Æn

0

. Sine

g

0�

= �1 � Æ

0�

+ �rst order, we obtain Æ�

0

��

=

�

1

=

2

(h

�0j�

+ h

�0j�

�

_

h

��

), so that

d

d�

Æn

0

= h

�0j�

n

�

n

�

�

1

2

_

h

��

n

�

n

�

: (4.6)

Integrating this equation we use h

�0j�

n

�

=

d

d�

(h

�0

n

�

),

so that the hange of n

0

between some initial time �

i

and

some �nal time �

f

is given by

Æn

0

j

f

i

=

�

h

00

+ h

0j

n

j

�

f

i

�

1

2

Z

f

i

_

h

��

n

�

n

�

d� : (4.7)
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On the other hand, the ratio of the energy of a photon

measured by some observer at t

f

to the energy emitted

at t

i

is

E

f

E

i

=

(�n � u)

f

(�n � u)

i

=

T

f

T

i

(n � u)

f

(n � u)

i

; (4.8)

where u

f

and u

i

are the four-veloities of the observer

and emitter respetively, and the fator T

f

=T

i

is the

usual (unperturbed) redshift, whih relates n and �n. The

veloity �eld of observer and emitter is given by

u = (1� A)�

�

+ v

i

�

i

: (4.9)

An observer measuring a temperature T

0

reeives pho-

tons that were emitted at the time �

de

of deoupling of

matter and radiation, at the �xed temperature T

de

. In

�rst-order perturbation theory, we �nd the following re-

lation between the unperturbed temperatures T

f

, T

i

, the

measurable temperatures T

0

, T

de

, and the photon den-

sity perturbation:

T

f

T

i

=

T

0

T

de

�

1�

ÆT

f

T

f

+

ÆT

i

T

i

�

=

T

0

T

de

�

1�

1

4

Æ

(r)

j

f

i

�

;

(4.10)

where Æ

(r)

is the intrinsi density perturbation in the ra-

diation and we used �

(r)

/ T

4

in the last equality. Insert-

ing the above equation and Eq. (4.7) into Eq. (4.8), and

using Eq. (2.19) for the de�nition of h

��

, one �nds, af-

ter integration by parts [6℄ the following result for salar

perturbations:

E

f

E

i

=

T

0

T

de

(

1�

�

1

4

D

(r)

g

+ V

(b)

j

n

j

+	 ��

�

f

i

+

Z

f

i

(

_

	 �

_

�)d�

)

: (4.11)

Here D

(r)

g

denotes the density perturbation in the radia-

tion uid, and V

(b)

is the peuliar veloity of the baryoni

matter omponent (the emitter and observer of radia-

tion). The �nal time values in the square braket of Eq.

(4.11) give rise only to monopole ontributions and to

the dipole due to our motion with respet to the CMB,

and will be negleted in what follows.

Evaluating Eq. (4.11) at �nal time �

0

(today) and ini-

tial time �

de

, we obtain the temperature di�erene of

photons oming from di�erent diretions n and n

0

�T

T

�

ÆT (n)

T

�

ÆT (n

0

)

T

; (4.12)

with temperature perturbation

�T (n)

T

=

�

1

4

D

(r)

g

+ V

(b)

j

n

j

+ 	� �

�

(�

de

;x

de

)

+

Z

�

0

�

de

(

_

	�

_

�)(�;x(�))d� ; (4.13)

where x(�) is the unperturbed photon position at time

� for an observer at x

0

, and x

de

= x(�

de

) (If � = 0

we simply have x(�) = x

0

� (�

0

� �)n.). The �rst term

in Eq. (4.13) desribes the intrinsi inhomogeneities on

the surfae of last sattering, due to aousti osilla-

tions prior to deoupling. Depending on the initial on-

ditions, it an ontribute signi�antly on super-horizon

sales. This is espeially important in the ase of adia-

bati initial onditions. As we have seen in Eq. (3.44),

in a dust + radiation universe with 
 = 1, adiabati

initial onditions imply D

(r)

g

(k; �) = �20=3	(k; �) and

V

(b)

= V

(r)

� D

(r)

g

for k� � 1. With � = �	 the the

square braket of Eq. (4.13) gives

�

�T (n)

T

�

(OSW)

adiabati

=

1

3

	(�

de

;x

de

)

on super-horizon sales. The ontribution to

ÆT

T

from the

last sattering surfae on very large sales is alled the

`ordinary Sahs{Wolfe e�et' (OSW). It has been derived

for the �rst time by Sahs and Wolfe [27℄. For isourva-

ture perturbations, the initial ondition D

(r)

g

(k; �) ! 0

for �! 0 is satis�ed and the ontribution of D

g

to the

ordinary Sahs{Wolfe e�et an be negleted

�

�T (n)

T

�

(OSW)

isourvature

= 2	(�

de

;x

de

):

The seond term in (4.13) desribes the relative motions

of emitter and observer. This is the Doppler ontribu-

tion to the CMB anisotropies. It appears on the same

angular sales as the aousti term, and we thus all the

sum of the aousti and Doppler ontributions \aousti

peaks".

The last two terms are due to the inhomogeneities

in the spaetime geometry; the �rst ontribution deter-

mines the hange in the photon energy due to the dif-

ferene of the gravitational potential at the position of

emitter and observer. Together with the part ontained

inD

(r)

g

they represent the \ordinary" Sahs{Wolfe e�et.

The integral aounts for red-shift or blue-shift aused

by the time dependene of the gravitational �eld along

the path of the photon, and represents the so-alled in-

tegrated Sahs{Wolfe (ISW) e�et. In a 
 = 1, pure

dust universe, the Bardeen potentials are onstant and

there is no integrated Sahs{Wolfe e�et; the blue-shift

whih the photons aquire by falling into a gravitational

potential is exatly aneled by the redshift indued by

limbing out of it. This is no longer true in a universe

with substantial radiation ontribution, urvature or a

osmologial onstant.

The sum of the ordinary Sahs{Wolfe term and the

integral is the full Sahs{Wolfe ontribution (SW).

For vetor perturbations Æ

(r)

and A vanish and

Eq. (4.8) leads to

(E

f

=E

i

)

(V )

= (a

i

=a

f

)

"

1� V

(m)

j

n

j

j

f

i

+

Z

f

i

_�

j

n

j

d�

#

: (4.14)

191



R. DURRER

We obtain a Doppler term and a gravitational ontribu-

tion. For tensor perturbations, i.e., gravitational waves,

only the gravitational part remains:

(E

f

=E

i

)

(T )

= (a

i

=a

f

)

"

1�

Z

f

i

_

H

lj

n

l

n

j

d�

#

: (4.15)

Equations (4.11), (4.14) and (4.15) are the manifestly

gauge invariant results for the Sahs{Wolfe e�et for

salar vetor and tensor perturbations. Disregarding

again the dipole ontribution due to our proper motion,

Eqs. (4.14), (4.15) imply the vetor and tensor tempera-

ture utuations

�

�T (n)

T

�

(V )

= V

(m)

j

(�

de

;x

de

)n

j

+

Z

f

i

_�

j

(�;x(�))n

j

d�; (4.16)

�

�T (n)

T

�

(T )

= �

Z

f

i

_

H

lj

(�;x(�))n

l

n

j

d�: (4.17)

Note that for models where initial utuations have been

led down in the very early universe, vetor perturbations

are irrelevant as we have already pointed out. In this

sense Eq. (4.16) is here mainly for ompleteness. How-

ever, in models where perturbations are soured by some

inherently inhomogeneous omponent (e.g., topologial

defets) vetor perturbation an be important.

B. Power spetra

One of the basi tools to ompare models of large sale

struture with observations are power spetra. They are

the \harmoni transforms" of the two point orrelation

funtions. If the perturbations of the model under on-

sideration are Gaussian (a relatively generi predition

from inationary models), then the power spetra on-

tain the full statistial information of the model.

One important power spetrum is the dark matter

power spetrum,

P

D

(k) =

�

�

�

�

D

(m)

g

(k; �

0

)

�

�

�

2

�

; (4.18)

where h i indiates a statistial average over \initial on-

ditions" in a given model. P

D

(k) is usually ompared

with the observed power spetrum of the galaxy distri-

bution.

Another power spetrum is given by the veloity per-

turbations,

P

V

(k) =

D

jV (k; �

0

)j

2

E

' H

2

0




1:2

P

D

(k)k

�2

: (4.19)

For ' we have used that jkV j(�

0

) =

_

D

(m)

g

(�

0

) �

H

0




0:6

D

g

on sub-horizon sales (see, e.g., [15℄).

The power spetrum we are most interested in is the

CMB anisotropy power spetrum. It is de�ned as follows:

�T=T is a funtion of position x

0

, time �

0

and photon

diretion n. We develop the n-dependene in terms of

spherial harmonis. We will suppress the argument �

0

and often also x

0

in the following alulations. All results

are for today (�

0

) and here (x

0

). By statistial homogene-

ity expetation values are supposed to be independent of

position. Furthermore, we assume that the proess gen-

erating the initial perturbations is statistially isotropi.

Then, the o�-diagonal orrelators of the expansion oef-

�ients a

`m

vanish and we have

�T

T

(x

0

;n; �

0

) =

X

`;m

a

`m

(x

0

)Y

`m

(n);

ha

`m

� a

�

`

0

m

0

i = Æ

``

0

Æ

mm

0

C

`

: (4.20)

The C

`

's are the CMB power spetrum. We assume

that the perturbations are generated by a homogeneous

and isotropi proess, so that C

`

depends neither on x

0

nor on m, and that ha

`m

� a

�

`

0

m

0

i vanishes for ` 6= `

0

or

m 6= m

0

.

Let us, at this point insert a omment on the problem

of osmi variane: Even if our `ergodi hypothesis'

is orret and we may interhange ensemble and spatial

averages, we annot obtain very preise averages for mea-

surements of large sale harateristis, due to the fat

that we an observe only the universe around a given

position. For example, let us assume that temperature

utuations are Gaussian, as they are in most ination-

ary models. The funtions a

`m

are then also Gaussian

distributed, and we have a variane of

�

�

�

�

�

1

2`+ 1

`

X

m=�`

ja

`m

j

2

� C

`

�

�

�

�

�

= jC

obs

`

� C

`

j =

C

`

2`+ 1

;

on the average of the 2`+1 values a

`m

whih an in prin-

iple be measured from one point with full sky overage.

For simpliity, we neglet the inrease of the variane due

to the fat that our own Milky Way bloks a portion of

sky of about 20%. Wik's theorem now gives

hC

2

`

i � hC

`

i

2

= hja

`m

j

4

i � hja

`m

j

2

i

2

= 2hja

`m

j

2

i

2

:

For a given multipole ` we then expet a variane of the C

`

's

q

(C

obs

`

)

2

� C

2

`

C

`

=

r

2

2`+ 1

; (4.21)

in real experiments, this `osmi variane' is in general muh larger due to the limited sky overage.

192



THE THEORY OF CMB ANISOTROPIES

The two point orrelation funtion is related to the C

`

's by

�

�T

T

(n)

�T

T

(n

0

)

�

n�n

0

=�

=

X

`;`

0

;m;m

0

ha

`m

� a

�

`

0

m

0

iY

`m

(n)Y

�

`

0

m

0

(n

0

)

=

X

`

C

`

`

X

m=�`

Y

`m

(n)Y

�

`m

(n

0

)

| {z }

2`+1

4�

P

`

(n�n

0

)

=

1

4�

X

`

(2` + 1)C

`

P

`

(�); (4.22)

where we have used the addition theorem of spherial harmonis for the last equality. The P

`

's are the Legendre

polynomials.

Clearly the a

lm

's from salar, vetor and tensor perturbations are unorrelated,

D

a

(S)

`m

a

(V )

`

0

m

0

E

=

D

a

(S)

`m

a

(T )

`

0

m

0

E

=

D

a

(V )

`m

a

(T )

`

0

m

0

E

= 0: (4.23)

Sine vetor perturbations deay, their ontributions, the C

(V )

`

, are negligible in models where initial perturbations

have been laid down very early, e.g., after an inationary period. Tensor perturbations are onstant on super-horizon

sales and perform damped osillations one they enter the horizon.

Let us �rst disuss in somewhat more detail salar perturbations. We speialize to the ase � = 0 for simpliity.

We suppose the initial perturbations to be given by a spetrum,

D

j	j

2

E

k

3

= A

2

k

n�1

�

n�1

0

: (4.24)

We multiply by the onstant �

n�1

0

, the atual omoving size of the horizon, in order to keep A dimensionless for all

values of n. A then represents the amplitude of metri perturbations at horizon sale today, k = 1=�

0

.

On super-horizon sales we have, for adiabati perturbations:

1

4

D

(r)

g

= �

5

3

	 +O(x

2

); V

(b)

= V

(r)

= O(x): (4.25)

The dominant ontribution on super-horizon sales (negleting the integrated Sahs{Wolfe e�et

R

_

��

_

	) is then

�T

T

(x

0

;n; �

0

) =

1

3

	(x

de

; �

de

): (4.26)

The Fourier transform of (4.26) gives

�T

T

(k;n; �

0

) =

1

3

	(k; �

de

) � e

ikn(�

0

��

de

)

: (4.27)

Using the deomposition

e

ikn(�
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��

de

)

=

1

X
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(2`+ 1)i

`

j

`

(k(�

0

� �

de

))P

`

(

b

k � n);

where j

`

are the spherial Bessel funtions, we obtain
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; �

0

)

�

=

1

V

Z

d

3

x

0

�

�T

T

(x

0

;n; �

0

)

�T

T

(x

0

;n

0

; �

0

)

�

(4.28)

=
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^
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Inserting P

`

(

^

kn) =

4�

2`+1

P

m

Y

�

`m

(

^

k)Y

`m

(n) and P

`

0

(

^

kn

0

) =

4�
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0

+1

P
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`

0

m

0

(

^

k)Y

`

0

m

0
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0

), integration over the dire-

tions d


^

k

gives Æ
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0

Æ

mm

0

P

m

Y

�

`m

(n)Y

`m

(n

0

). Using as well

P

m

Y

�

`m

(n)Y

`m
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) =
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(�), where � = n � n

0

, we

�nd
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)): (4.29)

Comparing this equation with Eq. (4.22) we obtain for adiabati perturbations on sales 2 � ` � �(�

0

� �

de

)=�

de

� 100

C
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`

' C

(OSW)

`
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2

�
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� �
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)) : (4.30)

If 	 is a pure power law and we set k(�

0

� �

de

) � k�

0

, the integral (4.30) an be performed analytially. For the

ansatz (4.24) one �nds for �3 < n < 3

C

(SW)
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=

A

2

9

�(3� n)�(`�
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+
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)�(`+
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�

n

2

)

: (4.31)

Of speial interest is the sale invariant spetrum, n = 1. This spetrum with a time and sale independent

gravitational potential has �rst been investigated by Harrison and by Zel'dovih [29℄. It is therefore alled the

Harrison{Zel'dovih spetrum. It leads to

`(` + 1)C

(SW)

`

= onst '

*

�

�T

T

(#

`

)

�

2

+

; #

`

� �=` : (4.32)

This is preisely (within the auray of the experiment) the behavior observed by the DMR experiment aboard

COBE [8℄.

Inationary models predit very generially a HZ spetrum (up to small orretions). The DMR disovery has

therefore been regarded as a great suess, if not a proof, of ination. There are however other models like topologial

defets [31{33℄ or ertain string osmology models [34℄ whih also predit sale-invariant, i.e., Harrison Zel'dovih

spetra of utuations. These models do however not belong to the lass investigated here, sine in these models

perturbations are indued by seeds whih evolve non-linearly in time.

For isourvature perturbations, the main ontribution on large sales omes from the integrated Sahs{Wolfe e�et

and (4.30) is replaed by
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+

: (4.33)

Inside the horizon 	 is roughly onstant (matter dominated). Using the ansatz (4.24) for 	 inside the horizon and

setting the integral in (4.33) � 2	(k; � = 1=k)j

2

`

(k�

0

), we obtain again (4.31), but with A

2

=9 replaed by 4A

2

. The

Sahs{Wolfe temperature anisotropies oming from isourvature perturbations are therefore about a fator of 6 times

larger than those oming from adiabati perturbations.

On smaller sales, ` & 100 the ontribution to �T=T is usually dominated by aousti osillations, the �rst two

terms in Eq. (4.13). Instead of (4.33) we then obtain
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: (4.34)

On sub-horizon sales D

(r)

g

and V

(r)

are osillating like sine or osine waves depending on the initial onditions.

Correspondingly the C

(AC)

`

will show peaks and minima. On very small sales they are damped by the photon

di�usion whih takes plae during the reombination proess (see next setion).

For gravitational waves (tensor utuations), a formula analogous to (4.31) an be derived (see appendix),

C

(T )

`

=

2

�

Z

dk k

2

*

�

�

�

�

Z

�

0

�

de

d�

_

H(�; k)

j

`

(k(�

0

� �))

(k(�

0

� �))

2

�

�

�

�

2

+

(` + 2)!

(` � 2)!

: (4.35)

To a very rude approximation we may assume

_

H = 0 on super-horizon sales and

R

d�

_

Hj

`

(k(�

0

� �)) � H(� =

1=k)j

`

(k�

0

). For a pure power law,

k

3

D

jH(k; � = 1=k)j

2

E

= A

2

T

k

n

T

�

�n

T

0

; (4.36)
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Fig. 5. A COBE normalized sample adiabati (solid line) and isourvature (dashed line) CMB anisotropy spetrum,

`(` + 1)C

`

, are shown on the top panel. The quantity shown in the bottom panel is the ratio of temperature utuations

for �xed value of A (from Kanazawa et al. [35℄).

Fig. 6. Adiabati salar and tensor CMB anisotropy spetra are shown (top panels). The bottom panels show the orre-

sponding polarization spetra (see Setion IV.D). (from [25℄).

this gives

C

(T )

`

'

2

�

(` + 2)!

(` � 2)!

A

2

T

Z

dx

x

x

n

T

j

2

`

(x)

x

4

=

(` + 2)!

(` � 2)!

A

2

T

�(6� n

T

)�(` � 2 +

n

T

2

)

2

6�n

T

�

2

(

7

2

� n

T

)�(` + 4�

n

T

2

)

: (4.37)

195



R. DURRER

For a sale invariant spetrum (n

T

= 0) this results in

`(` + 1)C

(T )

`

'

`(` + 1)

(`+ 3)(`� 2)

A

2

T

8

15�

: (4.38)

The singularity at ` = 2 in this rude approximation is

not real, but there is some enhanement of `(` + 1)C

(T )

`

at ` � 2.

Sine tensor perturbations deay on sub-horizon

sales, ` & 60, they are not very sensitive to osmologial

parameters.

Again, inationary models (and topologial defets)

predit a sale invariant spetrum of tensor utuations

(n

T

� 0).

On very small angular sales, ` & 800, utuations are

damped by ollisional damping (Silk damping). This ef-

fet has to be disussed with the Boltzmann equation for

photons derived in the next setion.

C. The Boltzmann equation

1. Elements of the derivation

When partiles are not very tightly oupled, the uid

approximation breaks down and they have to be de-

sribed by a Boltzmann equation,

p

�

�

�

f � �

i

��

p

�

p

�

�f

�p

i

= C[f ℄ : (4.39)

C[f ℄ is a ollision integral whih desribes the inter-

ations with other matter omponents. The left hand

side of (4.39) just requires the partiles to move along

geodesis in the absene of ollisions.

Let us �rst onsider the situation where ollisions are

negligible, C[f ℄ = 0. The unperturbed Boltzmann equa-

tion implies that f be a funtion of v = ap only. Setting

f =

�

f (v)+F (�;x; v;n), where n denotes the momentum

diretions, leads then to the perturbation equation

�

�

F � n

i

�

i

F � �

(S) i

jk

n

j

n

k

�F

�n

i

(4.40)

= v

d

�

f

dv

h

n

i

A

;i

� n

i

n

j

�

B

ijj

�

_

H

ij

�

+H

L

i

:

Here �

(S) i

jk

are the Christo�el symbols of the spae of

onstant urvature �.

To derive (4.40), we have used p

2

= 0. The Liouville

equation for partiles with non-vanishing mass an be

found in Ref. [6℄.

The ansatz

f(x;p) =

�

f

 

g

(3)

(p;p)

1

2

T (x;n)

!

=

�

f

�

Tv

T (x;n)

�

(4.41)

with T (x;n) = T (�) + �T (x;n) leads to

f =

�

f � v

d

�

f

dv

�T

T

: (4.42)

Integrating (4.40) over photon energies, we an also

write

�T

T

=

1

4

{; (4.43)

where { is the brightness perturbation,

{ =

4�

��a

4

Z

1

0

Fv

3

dv: (4.44)

Setting F = �v

d

�

f

dv

�T

T

, we �nd

�

�

�

�T

T

�

+ n

i

�

i

�

�T

T

�

� �

(S) i

jk

n

j

n

k

�

�

�T

T

�

�n

i

(4.45)

= �

h

n

i

A;

i

�

�

B

ijj

�

_

H

ij

�

n

i

n

j

+H

L

i

:

The fat that gravitational perturbations of Liouville's

equation an be ast purely in temperature perturbations

of the original distribution is not astonishing. This is just

an expression of gravity being \ahromati", i.e., inde-

pendent of the photon energy.

We now deompose (4.45) into salar, vetor and ten-

sor omponents. Even though �T=T is just a funtion,

it an be represented in the form

�T

T

(x;n) =

1

X

`=0

�

i

1

;:::;i

`

(x)n

i

1

� � �n

i

`

; (4.46)

where the �

i

1

;:::;i

`

are symmetri traeless tensor �elds

that ontain salar, vetor, 2-tensor and in priniple also

higher tensor omponents. Sine spin omponents larger

than 2 are not soured by the right hand side of equation

(4.46) and sine they are suppressed at early times, when

ollisions are important, we neglet them here.

For the salar ontribution to �T=T we obtain from

(4.46)

�

�

�

�T

T

�

(S)

+ k�

�

�T

T

�

(S)

� �

(S) i

jk

n

j

n

k

�

�

�T

T

�

(S)

�n

i

= �

�

k�A+ �

2

k

2

�

B �

_

H

T

�

+H

L

+

1

3

k

2

_

H

T

�

; (4.47)

where we have introdued the \diretion osine" � de-

�ned by n

i

Y;

i

= k�Y . Note that in at spae, � = 0, we

have just � = i

^

k �n.

This equation is not manifestly gauge-invariant. How-

ever, setting

M

(S)

=

�

�T

T

�

(S)

+H

L

+

1

3

k

2

H

T

+ k�

�

_

H �B

�

;

(4.48)

it redues to

�

�

M

(S)

+ k�M

(S)

� �

(S) i

jk

n

j

n

k

�M

(S)

�n

i

= k� (��	) ;

(4.49)
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where � and 	 are the Bardeen potentials. If n

j

are om-

ponents with respet to a geodesi basis (or � = 0), the

third term on the left hand side of Eq. (4.49) vanishes.

For simpliity we now onentrate on the ase � = 0. We

an then integrate the equation and obtain

M

(S)

(�

0

;n;k) = exp[ik �n(�

in

� �

0

)℄M

(S)

(�

in

;n;k)

+

Z

�

0

�

in

i exp[ik �n(� � �

0

)℄n � k (� �	) d� : (4.50)

Integration by parts and negleting the monopole term

(��	) (�

0

), leads to

M

(S)

(�

0

;n;k) = exp[ik �n(�

in

� �

0

)℄ (4.51)

�

h

M

(S)

(�

in

;n;k) + (� �	) (�

in

;k)

i

�

Z

�

0

�

in

exp[ik � n(� � �

0

)℄

�

_

��

_

	

�

d� :

Comparing this equation with (4.13), we see again that

M

(S)

=

�

�T

T

�

(S)

(up to gauge dependent monopole and

dipole ontributions) if the initial ondition is

M

(S)

(�

in

;n;k) =

1

4

D

(r)

g

(�

in

;k) + n � kV

(b)

(�

in

;k);

whih is equivalent to require that M

(S)

(�

in

) has no

higher than �rst moments. As we shall see below, this

assumption is quite reasonable sine ollisions suppress

the build up of higher moments before reombination.

Sine the right hand side of (4.49) is gauge invariant,

the left hand side must be so as well and we onlude

that M

(S)

is a gauge-invariant variable (a diret proof

of this, analyzing the gauge transformation properties of

the distribution funtion, an be found in Ref. [6℄).

M

(S)

used in this work oinides with the salar

temperature utuations up a to a gauge dependent

monopole and dipole ontribution. In other work [48℄ the

gauge invariant variable � � M

(S)

� � has been used.

Sine � is independent of the photon diretion n this dif-

ferene in the de�nition shows up only in the monopole,

C

0

.

The vetor and tensor parts of �T=T are gauge{

invariant by themselves and we denote them by M

(V )

and M

(T )

for onsisteny. In the absene of ollisions

and with vanishing spatial urvature, they satisfy the

equations

_

M

(V )

+ i�kM

(V )

= �in

`

n

m

k

`

�

(V )

m

; (4.52)

_

M

(T )

+ i�kM

(T )

= �in

`

n

m

_

H

m`

: (4.53)

The omponents of the energy momentum tensor are

obtained by integrating the seond moments of the dis-

tribution funtion over the mass shell,

T

��

=

Z

P

m

(x)

p

�

p

�

f(p; x)

p

2

dp d


p̂

p

0

; (4.54)

where 


p̂

denotes the angular integration over momen-

tum diretions. One �nds for � = 0 and setting � = n �

^

k:

D

(r)

g

=

1

�

Z

M

(S)

d
; (4.55)

V

(r)

=

3i

4�

Z

�M

(S)

d
; (4.56)

�

(r)

=

9

2�

Z

�

�

2

�

1

3

�

M

(S)

d
; (4.57)

�

(r)

= 0; (4.58)

V

(V )

i

=

1

4�

Z

n

i

M

(V )

d
; (4.59)

�

(V )

j

=

6

�

Z

�n

j

M

(V )

d
; (4.60)

�

(T )

ij

=

3

�

Z

n

i

n

j

M

(T )

d
: (4.61)

Let us now turn to the ollision term. At reombi-

nation (when the uid desription of radiation breaks

down) the temperature is � 0:4 eV. The eletrons and

nulei are non-relativisti and the dominant ollision pro-

ess is non-relativisti Thomson sattering. Sine olli-

sions are important only before and during reombina-

tion, where urvature e�ets are entirely negligible, we

set � = 0 in the reminder of this setion.

The ollision term is given by

C[f ℄ =

df

+

d�

�

df

�

d�

; (4.62)

where f

+

and f

�

denote the distribution of photons sat-

tered into respetively out of the beam due to Compton

sattering.

In the matter (baryon/eletron) rest frame, whih we

indiate by a prime, we know

df

0

+

dt

0

(p;n) =

�

T

n

e

4�

Z

f

0

(p

0

;n

0

)!(n;n

0

)d


0

;

where n

e

denotes the number density of free eletrons,

�

T

is the Thomson ross setion, and ! is the normalized

angular dependene of the Thomson ross setion:

!(n;n

0

) = 3=4[1 + (n � n

0

)

2

℄ = 1 +

3

4

n

ij

n

0

ij

with

n

ij

� n

i

n

j

�

1

3

Æ

ij

:

In the baryon rest frame whih moves with four veloity

u, the photon energy is given by

p

0

= p

�

u

�

:

We denote by p the photon energy with respet to a

tetrad adapted to the sliing of spaetime into f� =

onstantg hyper-surfaes:

p = p

�

n

�

; with n = a

�1

[(1� A)�

�

+B

i

�

i

℄:

The unit vetor n is the normal to the hyper-surfaes of

onstant time. The lapse funtion and the shift vetor of
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the sliing are given by � = a(1+A) and � = �B

i

�

i

. In

�rst order,

p

0

= ap(1 +A) � apn

i

B

i

;

and in zeroth order, learly,

p

i

= apn

i

:

Furthermore, the baryon four-veloity has the form u

0

=

a

�1

(1�A); u

i

= u

0

v

i

up to �rst order. This yields

p

0

= p

�

u

�

= p(1 + n

i

(v

i

�B

i

)):

Using this identity and performing the integration over

photon energies, we �nd

�

r

d�

+

(n)

dt

0

= �

r

�

T

n

e

[1 + 4n

i

(v

i

�B

i

)

+

1

4�

Z

�(n

0

)!(n; n

0

)d


0

℄:

The distribution of photons sattered out of the beam,

has the well known form (see, e.g., Lifshitz and Pitajew-

ski [1983℄)

df

�

dt

0

= �

T

n

e

f

0

(p

0

;n);

so that we �nally obtain
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)

+
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16�
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ij
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�(n
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)n

0

ij

d


0

℄;

where Æ

r

= (1=4�)

R

�(n)d
 is the photon energy density

perturbation.

Using the de�nitions of the gauge-invariant variables

M

(S)

and V

(b)

for the photon brightness perturbation

and the baryon veloity potential, we an write C

0

in

gauge-invariant form

C

0

= 4�

T

n

e

[

1

4

D

(r)

g

�M

(S)

+ n

i

V

(b)

i

+

1

2

n

ij

M

ij

℄; (4.63)

with

D

(r)

g

= (1=�)

Z

M

(S)

d


and

M

ij

�

3

8�

Z

M

(S)

(n

0

)n

0

ij

d


0

:

Sine the term in square brakets of (4.63) is already

�rst order we an set dt

0

= dt whih yields C =

dt

0

d�

C

0

=

dt

d�

C

0

= aC

0

. The Boltzmann equation for salar pertur-

bations expressed in terms of the gauge invariant variable

M

(S)

then beomes

_

M

(S)

+ n

i

�

i

M

(S)

= n

i

�

i
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e
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g

�M

(S)

� n

i

�

i

V

(b)

+

1

2

n

ij

M

ij

℄: (4.64)

For vetor and tensor perturbations we obtain in the

same way

_

M

(V )

+ i�kM

(V )

= �n

i

n

j

�

ijj

(4.65)

+ a�
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n

e

�

n

i

V

(V b)

i

+

1

2

n

ij

M

(V )

ij

�M

(V )

�

;

_

M

(T )

+ i�kM

(T )
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i

n

j

_

H

ij

(4.66)

+ a�

T

n

e

h

n

ij

M

(T )

ij

�M

(T )

i

:

2. The tight oupling limit

Before reombination, when n

e

' �

b

=m

p

,

�

T

�

1

a�

T

n

e

�

10
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h

(1 + z)

�

3

2
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z

eq

& z & z

de

; (4.67)

�

10




b

h

(1 + z
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)

�

1

2

(1 + z)

�1

�;

z & z

eq

: (4.68)

To lowest order in �

T

, ollisions fore the photon dis-

tribution to be of the form

M

(S)

=

1

4

D

g

+ n

i

V

(b)

i

+

1

2

n

ij

M

ij

; (4.69)

the building up of higher moments is strongly suppressed

by ollisions.

During reombination, the number density of free ele-

trons, n

e

, dereases rapidly and the ollision term be-

omes less and less important. Higher moments in the

photon distribution develop by free streaming.

The ollision term C[M

(S)

℄ of equation (4.64) also ap-

pears in the equation of motion of the baryons as a drag.

The Thomson drag fore is given by

F

j

=

�

r

4�

Z

C[M

(S)

℄n

j

d
 =

�4a�

T

n

e

�

r

3

(M

j

+ V

(b)

i

);

(4.70)

with

M

j

=

3i

4�

Z

n

j

M

(S)

d
:

This yields the following salar baryon equation of mo-

tion in an ionized plasma

_

V

(b)

+ (_a=a)V

(b)

= k	 �

4a�

T

n

e

�

r

3�

b

(�

^

k

j

M

j

+ V

(b)

) ;

(4.71)

where we have added the drag fore to the seond eq. of

(2.55) with w = 

2

s

= 0.

We now want to disuss equations (4.64,4.71) in the

limit of very many ollisions. The omoving photon mean
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free path is given by �

T

= l

T

= (a�

T

n

e

)

�1

. In lowest or-

der �

T

=� and l

T

=� [13℄, M

(S)

is given by (4.69), and

Eq. (4.71) implies

�

^

k

j

M

j

+ V

(b)

= 0 :

Inserting the solution (4.69) in the Boltzmann equa-

tion (4.64) and integrating over diretions this implies

kV

(b)

= k

j

M

j

= kV

(r)

=

�3

4

_

D

(r)

g

; (4.72)

Implying espeially V

(b)

= V

(r)

� V . Eq. (4.72) is equiv-

alent to the energy onservation equation (2.55) for ra-

diation. Using also (2.55) for baryons, w = 0, we obtain

_

D

(r)

g

=

�4k

3

V

(b)

=

4

3

_

D

(b)

g

:

This shows that entropy per baryon is onserved, � = 0.

Before reombination, when the ollisions are suÆiently

frequent, baryons and photons are adiabatially oupled.

Inserting (4.69) in (4.64) we �nd up to �rst order in �

T
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(� �	)℄: (4.73)

Using (4.73) to alulate the drag fore yields

F

j

= ik

j

(�

r

=3)[4

_

V �D

(r)

g

+ 4(� �	)℄ :

Inserting F

j

in (4.71), we obtain
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+ (4=3)�

r

)	 � (4�

r

=3)� :

This is equivalent to momentum onservation, the se-

ond equation of (2.55) for � = �

b

+ �

r

, p = �

r

=3 and

� = � = 0, if we use

D

(r)

g

= (4=3)D

(b)

g

and D

g

=

�

r

D

(r)

g

+ �

b

D

(b)

g

�

b

+ �

r

:

In this limit therefore, baryons and photons behave like

a single uid with density � = �

r

+ �

b

and pressure

p = �

r

=3.

From (2.55) we an derive a seond order equation for

D

g

. This equation an be simpli�ed if expressed in terms

of the variable D related by (3.1). We obtain

�

D + 

2

s

k

2

D + (1 + 3

2

s

� 6w)( _a=a)

_

D � 3[w(�a=a)

� ( _a=a)

2

(3(

2

s

� w)� (1=2)(1 + w))℄D = 0:

For small wavelengths (sub-horizon), whih are however

suÆiently large for the uid approximation to be valid,

1=�

T

� 

s

k � 1=�, we may drop the term in square

brakets. The ansatz D(t) = A(t) exp(�i

R

k

s

dt) then

eliminates the term of order 

2

s

k

2

. For the terms of order



s

k=� we obtain the equation

2

_

A=A+ (1 + 3

2

s

� 6w)( _a=a) + _

s

=

s

= 0 : (4.74)

For the ase 

2

s

= w = onst. This equation is solved by

A / (k�)

1��

with � = 2=(3w + 1), i.e., the short wave

limit. In our situation we have

w =

�

r

3(�

r

+ �

b

)

;



2

s

=

_�

r

3( _�

r

+ _�

b

)

=

(4=3)�

r

4�

r

+ 3�

b

;

_

s

=

s

= �3=2( _a=a)

�

b

4�

r

+ 3�

b

:

Using all this, one �nds that

A =

�

�

b

+ (4=3)�

r



s

(�

r

+ �

b

)

2

a

4

�

1=2

=

�

�+ p



s

�

2

a

4

�

1=2

solves (4.74) exatly, so that we �nally obtain the approx-

imate solution for the tightly oupled matter radiation

uid on sub-horizon sales

D(t) /

�

� + p



s

�

2

a

4

�

1=2

exp

�

�ik

Z



s

d�

�

: (4.75)

Note that this short wave approximation is only valid

in the limit � � 1=(

s

k), thus the limit to the mat-

ter dominated regime, 

s

! 0 annot be performed. In

the limit to the radiation dominated regime, 

2

s

! 1=3

and � / a

�4

we reover the aousti waves with on-

stant amplitude whih we have already found in the last

subsetion. But also in this limit, we still need matter

to ensure �

T

= 1=(a�

T

n

e

) � �. In the opposite ase,

�

T

� �, radiation does not behave like an ideal uid

but it beomes ollisionless and has to be treated with

Liouville's equation ((4.64) without the ollision term).

3. Damping by photon di�usion

In this subsetion we disuss the Boltzmann equation

in the next order, (�

T

=�)

2

. In this order we will obtain

the damping of utuations in an ionized plasma due to

the �niteness of the mean free path; the non-perfet ou-

pling. We follow the treatment by Peebles [21℄ (using our

gauge-invariant approah instead of synhronous gauge).

Again we onsider Eqs. (4.64) and (4.71), but sine we

are mainly interested in ollisions whih take plae on

time sales �

T

� �, we neglet gravitational e�ets and

the time dependene of the oeÆients. We an then look

for solutions of the form

V /M

(S)

/ exp(i(k � x � !�)):

In (4.64) and (4.71) this yields (negleting also the an-

gular dependene of Compton sattering, i.e., the term

n

ij

M

ij

)
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M

(S)

=

1

4

D

(r)

g

� 4ik � nV

1� i�

T

(! � k � n)

(4.76)

and

�

T

k!V = (4�

r

=3�

b

)(ikV +M); (4.77)

with M = (3=4�)

R

nM

(S)

d
. Integrating (4.64) over

angles, one obtains

_

D

(r)

g

+ (i=3)k

j

M

i

= 0. With our

ansatz therefore k �M = 3!D

(r)

g

. Using this after salar

multipliation of (4.77) with k, we �nd, setting R =

3�

b

=4�

r

,

V =

(3=4)!D

(r)

g

�

T

k

2

R! � ik

2

:

Inserting this result for V in (4.76) leads to

M

(S)

=

D

(r)

g

4

1 +

3�!=k

1�i�

T

!R

1� i�

T

(! � k�)

;

where we have set � =

^

k � n. This is the result of Pee-

bles [21℄, where the same alulation is performed in syn-

hronous gauge. Like there (x92), one obtains in lowest

non-vanishing order !�

T

the following dispersion rela-

tion: Using

1

2

Z

1

�1

M

(S)

d� =

D

(r)

g

4

;

whih yields

1 =

1

2

Z

1

�1

1 +

3�!=k

1�i�

T

!R

1� i�

T

(! � k�)

d�

one �nds

! = !

0

� i

with

!

0

= k=[3(1 + R)℄

1=2

and

 = (k

2

�

T

=6)

R

2

+

4

5

(R+ 1)

(R+ 1)

2

: (4.78)

In the baryon dominated regime, R � 1, therefore

 � k

2

�

T

=6 : (4.79)

(If the angular dependene of Thompson sattering is

not negleted, the term

4

5

(R+1) in Eq. (IVC3) beomes

8

9

(R + 1). If also polarization is taken into aount, one

obtains

16

15

(R+ 1).)

Posing k

damp

�

T

=6 = 1, this leads to a damping sale

�

damp

� �

T

(�

de

)=2, whih is projeted in the mirowave

sky to an angle

#

damp

�

�

T

(�

de

)

2�(�

0

� �

de

)

:

For � = 0 this orresponds to a few ar minutes and to

the harmoni number

`

damp

= �=#

damp

'

��

0

20�

T

(�

de

)

'

(1 + z

de

)

2

20




b

h :

(4.80)

This estimate is very rude sine we are using the ap-

proximation for �

T

from the tight oupling regime just

where oupling stops to be tight, and we assume an arbi-

trary value of n

e

� 0:1n

b

at the moment of deoupling.

Both these errors enhane the value of `

damp

somewhat.

Numerial results give

`

damp

� 800�1000

in a � = 0 universe. In open (losed) universes, this sale

(whih of ourse also depends on 


b

) is moved to larger

(lower) ` due to projetion. A reasonable approximation

for the damping harmoni is

`

damp

� 1000

�




b

h

0:02(1�


�

)

1=2

�

:

Temperature utuations on smaller sales, ` > `

damp

are exponentially damped by photon di�usion.

D. Polarization and moment expansion

Thomson sattering is not isotropi. And what is more,

for a non-isotropi photon distribution it depends on the

polarization: Even if the inident photon beam is unpo-

larized, the sattered beam will be, unless the inident

distribution is perfetly isotropi. In the previous setion

we have negleted this e�et by summing over initial po-

larizations and averaging over �nal polarizations. Now

we want to derive the di�erene in the Boltzmann equa-

tion taking into aount polarization.

Polarization is usually haraterized by means of the

Stokes parameters [22{24℄.

For a harmoni eletromagneti wave with eletri �eld

E(x; t) = ("

1

E

1

+ "

2

E

2

) e

i!(nx�t)

; (4.81)

where n, "

1

and "

2

form an orthonormal basis and the

omplex �eld amplitudes are parameterized as E

j

=

a

j

e

iÆ

j

, the Stokes parameters are given by

I = a

2

1

+ a

2

2

; (4.82)

Q = a

2

1

� a

2

2

; (4.83)

U = 2a

1

a

2

os(Æ

2

� Æ

1

); (4.84)

V = 2a

1

a

2

sin(Æ

2

� Æ

1

): (4.85)

I is the intensity of the wave (whose perturbation { has

been introdued in the previous setion), while Q is a

measure of the strength of linear polarization (the ra-

tio of the prinipal axis of the polarization ellipse). V

measures irular polarization whih is not generated by
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Thomson sattering and therefore V vanishes if the ini-

tial irular polarization vanishes (whih we assume). U

is then determined via the identity I

2

= Q

2

+ U

2

.

Sine Q vanishes in the bakground, to �rst order it

obeys the unperturbed Boltzmann equation,

�

�

Q+ in

j

k

j

Q� �

(S) i

jk

n

j

n

k

�Q

�n

i

= C[Q℄; (4.86)

where C is the ollision integral. The same type of equa-

tion, with a somewhat di�erent ollision integral is sat-

is�ed by U . The ollision integral for V does not ouple

to I;Q or U and hene V � 0 is a onsistent solution.

An expliit derivation of the following Boltzmann

hierarhy inluding polarization is presented in Ap-

pendix III A. Here we just repeat the neessary de�ni-

tions and the results.

The brightness anisotropy M and the non-vanishing

Stokes parameters Q and U an be expanded as

M(�;k;n) =

X

`

2

X

m=�2

M

(m)

`

(�; k)

0

G

m

`

(n): (4.87)

The B-mode vanishes for salar perturbations,

0

B

l

� 0

Q(�;k;n)� iU (�;k;n) =

X

`

2

X

m=�2

(E

(m)

`

� iB

(m)

`

)

2

G

m

`

(n): (4.88)

The speial funtions

s

G

m

`

are desribed in Ap-

pendix III A. The oeÆients m = 0;m = �1 and

m = �2 desribe the salar (S), vetor (V ) and tensor

(T ) omponents respetively. The Boltzmann equation

for the oeÆients X

(m)

`

is given by

_

M

(m)

`

� k

�

0

�

m

`

2`� 1

M

(m)

`�1

�

0

�

m

`+1

2` + 3

M

(m)

`+1

�

= � n

e

�

T

aM

(m)

`

+ S

(m)

`

; (` � m); (4.89)

_

E

(m)

`

� k

�

2

�

m

`

2`� 1

E

(m)

`�1

�

2m

`(` + 1)

B

(m)

`

�

2

�

m

`+1

2`+ 3

E

(m)

`+1

�

= � n

e

�

T

a[E

(m)

`

+

p

6C

(m)

Æ

`;2

; (4.90)

_

B

(m)

`

� k

�

2

�

m

`

2`� 1

B

(m)

`�1

+

2m

`(` + 1)

E

(m)

`

�

2

�

m

`+1

2` + 3

B

(m)

`+1

�

= � n

e

�

T

aB

(m)

`

: (4.91)

where we set

S

(0)

0

= n

e

�

T

aM

(0)

0

; S

(0)

1

= n

e

�

T

a4V

b

+ 4k(	� �); S

(0)

2

= n

e

�

T

aC

(0)

;

S

(1)

1

= n

e

�

T

a4!

b

; S

(1)

2

= n

e

�

T

aC

(1)

+ 4�; S

(2)

2

= n

e

�

T

aC

(2)

+ 4

_

H (4.92)

and C

(m)

=

1

10

[M

(m)

2

�

p

6E

(m)

2

℄. The oupling oeÆ-

ients are

s

�

m

`

=

r

(`

2

�m

2

)(`

2

� s

2

)

`

2

:

The CMB temperature and polarization power spe-

tra are given in terms of the expansion oeÆientsM

(m)

`

,

E

(m)

`

and B

(m)

`

as

(2` + 1)

2

C

XY (m)

`

=

n

m

8�

Z

k

2

dkX

(m)

`

Y

(m)�

`

; (4.93)

where n

m

= 1 for m = 0 and n

m

= 2 for m = 1; 2,

aounting for the number of modes. Sine B is parity

odd, the only non-vanishing ross orrelation spetrum

is C

TE

.

Fig. 7. The temperature anisotropy (solid), the polariza-

tion (dashed) and their orrelation (dotted) are shown for a

purely salar standard CMD model.
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The Boltzmann hierarhy presented above an be

solved numerially with publily available fast numer-

ial odes like CMBfast [37℄ or CAMCODE [38℄. This

enables us to ompute the CMB anisotropy and polar-

ization spetra for many di�erent values of osmologial

parameters, and ompare them with present data.

E. Parameter estimation

In the last paragraph of this setion of this setion we

make some general remarks about the dependene of the

CMB anisotropy spetrum on di�erent parameters and

about degeneraies. We start by enumerating the rele-

vant physial proesses.

1. Physial proesses

� Before reombination, photons and baryons form a

tightly oupled uid whih performs aousti osil-

lations on sub-horizon sales.

� Depending on the initial onditions, these osilla-

tions are sine waves (isourvature ase) or osine

waves (adiabati ase).

� After reombination, the photons move along per-

turbed geodesis, only inuened by the metri per-

turbations.

� Vetor perturbations of the metri deay as a

�2

af-

ter reation and their e�ets on CMB anisotropies

are negligible for models where initial utuations

are reated early, e.g., during an inationary phase.

This is di�erent for models whih onstantly seed

utuations in the geometry, e.g., topologial de-

fets.

� Tensor perturbations of the metri have onstant

amplitude on super-horizon sales and perform

damped osillations / a

�1

one they enter the

horizon.

� Salar perturbations of the metri are roughly on-

stant if they enter the horizon only after the time

of matter and radiation equality. On sales whih

enter the horizon before equality they are damped

by a fator (z

eq

=z

in

)

2

, where z

eq

and z

in

are the

redshift of equality and of horizon rossing, respe-

tively.

� Perturbations on small sales, k & k

T

'

(


b

h=20)(z

de

+ 1)

2

H

0

are exponentially damped

by ollisional damping during reombination (Silk

damping).

2. Sale dependene

� On large sales (larger than the horizon sale at

reombination, ` . `

H

' �=#

H

, with #

H

=

�

de

=�(�

0

� �

de

), perturbations are dominated

by gravitational e�ets: Inationary models typ-

ially lead to k

3




j	��j

2

(k; �

de

)

�

' onst and

k

3




H

2

�

' onst on these sales. This implies a

at \Harrison{Zel'dovih" spetrum,

�

�T

T

�

2

(#

`

) ' `(` + 1)C

`

' onst; #

`

=

�

`

:

(4.94)

� On intermediate sales, `

H

< ` < `

damp

� 800,

CMB anisotropies mainly reet the aousti os-

illations of the photon/baryon plasma prior to

reombination. The position of the �rst peak is

severely a�eted by initial onditions (adiabati

or isourvature). For � = 0, the �rst ontration

peak is at about `

(a)

1

� 200 if the initial onditions

are adiabati, while the �rst ontration peak is at

`

(i)

1

� 350 for isourvature initial onditions. The

amplitude of and the distane between the peaks

depend strongly on osmologial parameters.

� On small sales, `

damp

< `, utuations are

ollisionally damped during reombination (\Silk

damping"). The damping sale depends mainly on




b

h and 
.

3. The main inuene of osmologial parameters

� Curvature, h

2




�

:

{ Mainly a�ets the inter-peak distane, �`,

and, for given initial onditions, the position

of the �rst peak. Positive urvature lowers �`

while negative urvature enhanes it.

{ Curvature also leads to an integrated Sahs{

Wolfe ontribution whih is espeially impor-

tant for � > 0 at very low `. Overall, this leads

to some enhanement of the Sahs{Wolfe on-

tribution and therefore (after normalization

to the COBE measurements) to somewhat

lower aousti peaks.

� Baryon density, �

b

= 


b

h

2

� 10

�29

g=m

3

:

{ A high baryoni density enhanes the om-

pression peaks and dereases the expansion

peaks via the self{gravity of the baryons.

{ It also redues the damping sale, �

T

=

1=(a

de

�

T

n

e

(�

de

)), leading to an inrease in

`

damp

.

{ Baryons derease the plasma sound veloity,



s

=

1

=

3

(1+ _�

b

= _�



)

�1

, and hene prolongs the

osillation period. This inreases the spaing

between aousti peaks.
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� Cosmologial Constant, � =




�

h

2

8�G

10

�29

g=m

3

:

The presene of a osmologial onstant at �xed




tot

= 


m

+ 


�

delays the epoh of equal matter

and radiation. During the radiation dominated era,

the gravitational potential is not onstant, but de-

ays as soon as a given sale enters the horizon. If

�

eq

� �

de

this indues an integrated Sahs{Wolfe

(ISW) ontribution whih boosts mainly the �rst

aousti peak. 


�

also boosts the late integrated

Sahs{Wolfe ontribution.

� Hubble Parameter, H

0

= 100h km=(s �Mp):

The inuene of the Hubble parameter is om-

pliated and depends sensitively on the variables

whih are kept �xed during its variation (


�

or

!

�

= h

2




�

). As one example of its inuene: for

�xed urvature and osmologial onstant, lower-

ing the Hubble parameter also delays the epoh of

equal matter and radiation, �

eq

! �

de

, sine

z

eq

+ 1 =




m




rad

' 2:4 � 10

4




m

h

2

: (4.95)

Therefore the same type of ISW ontribution as for

�-models boosts the �rst aousti peak.

� Initial onditions:

{ A tensor ontribution enhanes the large

sales utuations but not the aousti peaks,

thereby lowering their relative amplitude.

{ A \blue" utuation spetrum, n > 1, en-

hanes utuations on smaller sales and

raises thereby the aousti peaks.

4. Degeneray

One important issue in determining osmologial pa-

rameters from CMB anisotropy measurements is the

hoise of good variables, whih requires physial insight

in how anisotropies are inuened. As we have argued

before, the Hubble parameter, h is not a good variable

sine its inuene is very ompliated. It enters the os-

mi densities �

�

/ 


�

h

2

and the length sales like �

eq

or

�

de

. Another limitation for parameter estimation from

CMB anisotropies is degeneray. We illustrate here just

one example. As we have disussed in Setion 3, the posi-

tion of the �rst aousti peak only depends on the sound

horizon, �

s

=

R

�

de



s

d� and the angular diameter dis-

tane to the last sattering surfae, �(�

0

� �

de

). The

distane between subsequent peaks in the CMB power

spetrum is proportional to

�` =

�(�

0

� �

de

)

�

s

:

1 10 100 1000
0

20

40

60

80

100

Fig. 8. Left: The lines of onstant R are shown in the 


�

{


m

plane. The values 


�

;


m

for whih the CMB anisotropy

spetra are shown right are indiated as blak dots. Right: Three CMB anisotropy spetra with di�erent values of 


�

and




m

but �xed R are shown. For ` & 50 these spetra are learly degenerate.The solid line represents a at model, while the

dotted line orresponds to a losed and the dashed line to an open universe.

203



R. DURRER

In Fig. 8 (left panel) we show lines of onstant R =

�`=�`

0

in the 


m

{


�

plane. Here �`

0

= �`

0

(


�

=




�

= 0) is the value of �` in a spatially at universe

with vanishing osmologial onstant. To the right the

CMB anisotropy spetra for salar perturbations with

�xed index n = 1 and �xed values of the matter den-

sity !

m

and the baryon density !

b

. But the osmolog-

ial onstant and h vary, so that 


�

and 


m

orre-

spond to the values indiated by bullets on the left panel.

Clearly, for ` > 50 these spetra are perfetly degener-

ate. On the other hand, due to osmi variane, the low

` CMB anisotropies will never be known to very good

auray so that this degeneray annot be lifted by

CMB anisotropy observations alone. Additional data like

the supernova type Ia measurements, observations of the

galaxy distribution (large sale struture) or CMB polar-

ization are needed.

There are also other degeneraies like the optial depth

to reionization and the tensor ontribution or the salar

spetral index and the tensor ontribution. The impor-

tant lesson to learn is that even if the very stringent

model assumptions are orret, we still need other data

to measure osmologial parameters and espeially we

will only feel omfortable with a suÆient amount of re-

dundany.

V. OBSERVATIONS AND RESULTS

In this short, �nal setion we want to disuss briey

the experimental situation whih is very muh in ow and

may have hanged onsiderably already at the moment

when this review appears. It has been lear for a long

time that, if initial utuations have led to the forma-

tion of large sale struture by gravitational instability,

they should have indued utuations in the osmi mi-

rowave bakground [27,28℄.Before spring 1992, however,

only the dipole anisotropy had been deteted [16,17℄. Its

value is [7℄

*

�

�T

T

�

2

+

dipole

= (1:528� 0:004)� 10

�6

:

After many upper limits, the DMR experiment aboard

the COBE satellite measured for the �rst time onvin-

ingly positive anisotropies [8℄. It found

D

(�T )

2

E

(�) � (30�K)

2

(5.1)

on all angular sales � � 7

Æ

. Many more positive mea-

surements have been performed sine then. In Fig. 9 we

just show the COBE DMR results [39℄ together with

the three most reent experiments, BOOMERANG [40℄,

MAXIMA-1 [41℄ and DASI [42℄

Fig. 9. The measured temperature anisotropies, `(`+1)C

`

are shown in a lin-lin plot (left) and in a log-lin plot (right) with

the theoretial urve from a standard, adiabati old dark matter model. The data points shown are those from COBE DMR

(solid, low `), BOOMERANG (solid), DASI (dashed) and MAXIMA-1 (dotted).
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As one sees in this �gure, present data agrees very well

with a simple at model of purely salar, sale invariant,

n

s

= 1, adiabati utuations with osmologial param-

eter !

b

= 0:02, 


�

= 0, 


�

= 0:7, h = 0:65 whih are

also preferred from other osmologial data. However,

the error-bars are still onsiderable.

The experiments an be split into three lasses: Satel-

lite experiments, balloon-borne experiments and ground

based experiments. The tehnial and eonomial advan-

tages of ground based experiments are obvious. Their

main problem is atmospheri utuation. This an be

redued by two methods:

� Choose a very high altitude and very old site,

e.g., the south pole. Several experiments like SP,

Python and White Dish have hosen this site.

� Measure anisotropies on small sales, preferably by

interferometry (DASI, CAT, VSA, Jodrell Bank).

Balloon-borne experiments ying at about 40 km alti-

tude have less problems with the Earth atmosphere but

they fae the following diÆulties:

� They are limited in weight.

� They annot be manipulated at will in ight.

� They have a rather short duration.

� To seure all the data taken on the balloon, they

have to be reovered intat.

Yet the advantages of overoming the atmosphere

are so signi�ant that many groups have hosen this

approah, like, e.g., MAXIMA-1, TopHat, et. The

BOOMERANG experiment ombines the two advan-

tages of a old site and balloon altitude. It has performed

a long-duration ight (10 days) on the south pole in De-

ember 1998.

The third possibility are satellite experiments. They

avoid atmospheri problems altogether, but this solution

is very expensive. So far two satellite experiments have

been launhed: COBE in 1989 (NASA mission) and MAP

in June 2001 (Mirowave Anisotropy Probe, a NASA

MIDEX mission), one more is planned: PLANCK, an

ESA medium size mission of the \Horizon 2000" pro-

gram, to be launhed in 2007.

As I am writing this lines, MAP has safely arrived at

its destination, the Lagrange point L2 of the sun-earth

system. It will perform measurements at �ve frequen-

ies in the range from 22 to 90 GHz. The instruments

of PLANCK will operate at nine frequenies, overing

20 to 800 GHz. At low frequenies (below 100 GHz) ra-

dio reeivers are used (so alled \HEMTs", high ele-

tron mobility transistors) while the high frequeny in-

struments are bolometers. Reent progress in detetor

tehnologies should enable the two new satellites to per-

form signi�antly better than COBE | the radio re-

eivers of PLANCK, e.g., are supposed to be 1000 times

more sensitive than the ones used for COBE, and the an-

gular resolution has improved from seven degrees to four

ar minutes. For more details also on other experiments

see:

� http://astro.este.esa.nl/PLANCK

� http://map.gsf.nasa.gov

� http://www.gsf.nasa.gov/astro/obe/obe home.html

� http://spetrum.lbl.gov/www/max.html

� http://oberon.roma1.infn.it/boomerang/

I �nish this short setion with Table 1 whih shows

the ranges for the osmologial parameters 


tot

= 1 �




�

, h

2




b

and n

s

as determined purely by CMB

anisotropies. Exept for the last referene, a purely

salar spetrum of adiabati utuations is assumed. The

parameter estimation proess also assumes `weak priors'

on the values of other osmologial observables, like, e.g.,

that the age of the Universe be larger than 10 Gyrs. or

0:4 < h < 0:9. I do not omment this table muh fur-

ther but refer the reader to the original literature and

many improved papers on this subjet whih will appear

shortly.

Ref. Data 


tot




b

h

2

n

s

errors

[43℄ BOOM and DMR data 1:02

+0:06

�0:05

0:022

+0:004

�0:003

0:96

+0:1

�0:09

1-� errors

[44℄ DASI and DMR data 1:05

+0:06

�0:06

0:022

+0:004

�0:004

1:01

+0:09

�0:07

1-� errors

[45℄ MAX and DMR data 0:90

+0:18

�0:16

0:0325

+0:0125

�0:0125

0:99

+0:14

�0:14

2-� errors

[46℄ all data, no priors 1:06

+0:59

�0:13

0:02

+0:06

�0:01

0:93

+0:75

�0:16

2-� errors

allows also tensor mode

Table 1. Some results from parameter estimations from reent CMB data alone. The errors given are formal 1 or 2-� errors

whih assume the underlying model to be orret and no systemati problems in the data. They are obtained by marginalization

or maximization over all other model parameters.
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Clearly, the results shown in Table 1 are very onsis-

tent. It is interesting to note, how the upper limit on

the salar spetral index deteriorates if one allows for a

tensor omponent. This is one of the degeneraies in the

CMB data whih an be broken by inluding large sale

struture data in the analysis (see [46℄). Other osmolog-

ial parameters are not well onstrained by CMB data

alone. However, if CMB data is ombined with SN1a and

large sale struture data, the error bars are signi�antly

redued and evidene for a non-vanishing osmologial

onstant 


�

� 0:7 beomes very strong (see [43,44,46℄).
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APPENDIX A: THE C

`

'S FROM

GRAVITATIONAL WAVES

We onsider metri perturbations whih are produed

by some isotropi random proess (for example dur-

ing ination). After prodution, they evolve aording

to a deterministi equation of motion. By reasons of

isotropy and due to symmetry, the orrelation funtions

of h

ij

(k; �) have to be of the form

hh

ij

(k; �)h

�

lm

(k; �

0

)i = [k

i

k

j

k

l

k

m

H

1

(k; �; �

0

) + (k

i

k

l

Æ

jm

+ k

i

k

m

Æ

jl

+ k

j

k

l

Æ

im

+ k

j

k

m

Æ

il

)H

2

(k; �; �

0

)

+k

i

k

j

Æ

lm

H

3

(k; �; �

0

) + k

l

k

m

Æ

ij

H

�

3

(k; �

0

; �) + Æ

ij

Æ

lm

H

4

(k; �; �

0

) + (Æ

il

Æ

jm

+ Æ

im

Æ

jl

)H

5

(k; �; �

0

)℄ : (A.1)

Here the funtions H

a

are funtions of the modulus k = jkj only. Furthermore, all of them exept H

3

are hermitian

in � and �

0

. This is the most general ansatz for an isotropi orrelation tensor satisfying the required symmetries. To

projet out the tensorial part of this orrelation tensor we at on h

ij

it with the tensor projetion operator,

T

mn

ij

= P

m

i

P

n

j

� (1=2)P

ij

P

mn

with P

ij

= Æ

ij

�

^

k

i

^

k

j

: (A.2)

This yields

hh

(T )

ij

(k; �)h

(T )�

lm

(k; �

0

)i = H

5

(k; �; �

0

)[Æ

il

Æ

jm

+ Æ

im

Æ

jl

� Æ

ij

Æ

lm

+ k

�2

(Æ

ij

k

l

k

m

+ Æ

lm

k

i

k

j

� Æ

il

k

j
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m

� Æ

im

k

l
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j

� Æ

jl

k
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k

m

� Æ

jm

k

l

k

i

) + k

�4

k

i

k

j

k

l

k

m

℄: (A.3)

From Eq. (4.17), we then obtain

�

�T

T

(n)

�T

T

(n

0

)

�

�

1

V

Z

d

3

x

�

�T

T

(n;x)

�T

T

(n

0

;x)

�

=

�

1

2�

�

3

Z

k

2

dk d


^

k

Z

�

0

�

de

d�

Z

�

0

�

de

d�

0

exp(ik � n(�

0

� �)) exp(�ik � n(�

0

� �

0

))

�

h
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_
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ij

(�;k)

_

h

(T )�

lm

(�

0

;k)in

i

n

j

n

0

l

n

0

m

i

: (A.4)

Here d


^

k

denotes the integral over diretions in k spae. We use the normalization of the Fourier transform

^

f (k) =

1

p

V

Z

d

3

x exp(ix � k)f(x) ; f(x) =

1

(2�)

3

Z

d

3

k exp(�ix � k)

^

f (k) ;

where V is an (arbitrary) normalization volume.

We now introdue the form (A.3) of hh

(T )

h

(T )

i. We further make use of the assumption that the perturbations

have been reated at some early epoh, e.g., during an inationary phase, after whih they evolved deterministially.

The funtion H

5

(k; �; �

0

) is thus a produt of the form

H

5

(k; �; �

0

) = H(k; �) �H

�

(k; �

0

) : (A.5)

Introduing this in Eq. (A.4) yields
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; (A.6)

where � = (n �

^

k) and �

0

= (n

0

�

^

k). To proeed, we use the identity [47℄

exp((ik�(�
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� �)) =

1

X
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(2r + 1)i
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0
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(�) : (A.7)

Here j

r

denotes the spherial Bessel funtion of order r and P

r

is the Legendre polynomial of degree r.

Furthermore, we replae eah fator of � in Eq. (A.6) by a derivative of the exponential exp(ik�(�

0

� �)) with

respet to k(�

0

� �) and orrespondingly with �
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. We then obtain

�

�T

T

(n)

�T

T

(n

0

)

�

=

�

1

2�

�

3

X

r;r

0

(2r + 1)(2r

0

+ 1)i

(r�r

0

)

Z

k

2

dk d


^

k

P

r

(�)P

r

0

(�

0

)

�

h

2(n � n

0

)

2

Z

d� d�

0

j

r

(k(�

0

� �))j

r

0

(k(�

0

� �

0

))

_

H(k; �)

_

H

�

(k; �

0

)

�

Z

d� d�

0

[j

r

(k(�

0

� �))j

r

0

(k(�

0

� �

0

)) + j

00

r

(k(�

0

� �))j

r

0

(k(�

0

� �

0

))

+ j

r

(k(�

0

� �))j

00

r

0

(k(�

0

� �

0

)) � j

00

r

(k(�

0

� �))j

00

r

0

(k(�

0

� �

0

))℄

_

H(k; �)

_

H

�

(k; �

0

)

� 4(n � n

0

)

Z

d� d�

0

j

0

r

(k(�

0

� �))j

0

r

0

(k(�

0

� �

0

))

_

H(k; �)

_

H

�

(k; �

0

)

i

: (A.8)

Here only the Legendre polynomials, P

r

(�) and P

r

0

(�

0

) depend on the diretion

^

k. To perform the integration d
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,

we use the addition theorem for the spherial harmonis Y
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The orthogonality of the spherial harmonis then yields
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In Eq. (A.8) the integration over d
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then leads to terms of the form (n � n
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Applying this and its iteration for x
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where the argument of the Legendre polynomials, n � n

0

, has been suppressed. Using the relations
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(A.13)
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for Bessel funtions, and its iteration for j

00

, we an rewrite Eq. (A.12) in terms of the Bessel funtions j

r�2

to j

r+2

.

We now insert the de�nition of C
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and ompare the oeÆients in Eqs. (A.12) and (A.14). We obtain the somewhat lengthy expression
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An analysis of the oeÆient of eah term reveals that

the urly braket in this expression is just
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APPENDIX B: BOLTZMANN EQUATION AND

POLARIZATION

In this appendix we derive the Boltzmann equation

taking into aount polarization, and we write it as a hi-

erarhy of equations using an orthonormal expansion in

the spae of photon diretions. Up to the ollision term,

the Eqs. (4.64), (4.66) and (4.67) are still valid. We �rst

re-derive the ollision term taking into aount the po-

larization dependene of Thomson sattering.

Just before the proess of reombination during whih

the uid desription of radiation breaks down, the tem-

perature is � 0:4 eV. The eletrons and nulei are non-

relativisti and the dominant ollision proess is non-

relativisti Thomson sattering.

Thomson sattering depends on the polarization of

the inoming radiation �eld. We desribe the polariza-

tion state of the radiation �eld by the Stokes parame-

ters [22,24,25,23℄:

For a harmoni eletro-magneti wave with eletri

�eld

E(x; t) = (�

1

E

1

+ �

2

E

2

) e

ipn�x�i!t

; (B.1)

where n, �

1

and �

2

form an orthonormal basis and the

omplex �eld amplitudes are parameterized as E

j

=

a

j

e

iÆ

j

, the Stokes parameters are given by

I = a

2

1

+ a

2

2

; (B.2)

Q = a

2

1

� a

2

2

; (B.3)

U = 2a

1

a

2

os(Æ

2

� Æ

1

); (B.4)

V = 2a

1

a

2

sin(Æ

2

� Æ

1

): (B.5)

I is the intensity of the wave (whose perturbation M

has interested us so far), while Q is a measure of the

strength of linear polarization (the ratio of the prini-

pal axis of the polarization ellipse). U and V give phase

information (the orientation of the ellipse). For non-

relativisti Thomson sattering V is ompletely deou-

pled and (sine it vanishes at early times) is therefore

never generated.

As Q and U vanish in the bakground, perturbations

annot ouple to them (sine suh terms are 2nd order),

and the Liouville equations for Q and U beome (ne-

gleting sattering and spatial urvature)

�

�

(Q;U ) + in

`

k

`

(Q;U ) = 0: (B.6)
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The di�erential ross setion of Thomson sattering for

a photon with inident polarization �

(i)

sattering into

the outgoing polarization �

(s)

� �

0

is [22℄

d�

d


=

3

8�

�

T

�

�

�

�

�

(s)

�

(i)

�

�

�

2

: (B.7)

Fig. 10. De�nition of the angles and vetors for Thomson

sattering in the (n;�

2

) plane.

Fig. 11. De�nition of the angles and vetors for Thomson

sattering in the general ase. The polarization vetors are

oriented like in �gure 10.

It is often onvenient to introdue the two `partial' in-

tensities I

1

� a

2

1

= (I + Q)=2 and I

2

� a

2

2

= (I � Q)=2.

A wave sattered in the (n; �

2

) plane (see �gure 10) by

an angle � has the intensities

I

(s)

1

=

3�

T

8�

I

(i)

1

;

I

(s)

2

=

3�

T

8�

I

(i)

2

os

2

�; (B.8)

or, expressed in terms of the Stokes parameters,

 

I

(s)

Q

(s)

!

=

3�

T

16�

 

1 + os

2

� sin

2

�

sin

2

� 1 + os

2

�

! 

I

(i)

Q

(i)

!

:

(B.9)

A rotation in the (�

1

; �

2

) plane doesn't hange the in-

tensity of the wave, but it hanges Q and U to

Q

0

= Q os(2�) + U sin(2�); (B.10)

U

0

= �U sin(2�) + Q os(2�): (B.11)

To determine the ross setion that a given `initial' wave

(I

(i)

; Q

(i)

; U

(i)

) propagating in diretion n be sattered

into a wave (I

(s)

; Q

(s)

; U

(s)

) with diretion n

0

, we need

to go through the following steps (we will use the plane

(y; z) as referene plane, see �gure (11) for de�nitions of

the angles and vetors):

1. Rotate around n suh that the plane (n;n

0

) turns

into the plane (nz). One needs to apply the rota-

tion (B.10,B.11) for � = � to the Stokes parame-

ters.

2. Rotate the new plane (n;n

0

) around z into the ref-

erene plane (y; z). This operation does not inu-

ene the inoming Stokes parameters.

3. Now we are in the known ase of (B.8) and (B.9).

Hene we an apply the sattering matrix.

4. We then rotate the sattering plane bak around z

into the old (z;n

0

) plane. This does not hange the

sattered Stokes parameters.

5. Finally we rotate around n

0

by the angle �

0

to reah

the original state. To do this, we have to apply

the rotation matrix (B.10,B.11) again, but now for

� = �

0

.

Following the steps outlined above, we reover the

sattering matrix in the basis (I

1

; I

2

; U ) given in equa-

tions (B.13){(B.16) (see also [23℄). V is ompletely de-

oupled from the other parameters and follows an evolu-

tion whih is independent of the rest. Hene by starting

with V (t � t

de

) = 0 it will stay zero and an be ne-

gleted. The sattering matrix P , whih determines the

(non vanishing) sattered Stokes parameters from the

initial ones,

0

B

�

I

(s)

1

I

(s)

2

U

(s)

1

C

A

=

�

T

4�

P

0

B

�

I

(i)

1

I

(i)

2

U

(i)

1

C

A

(B.12)

is then given by

P =

h

P

(0)

+

p

1� �

2

p

1� �

02

P

(1)

+ P

(2)

i

; (B.13)

where

P

(0)

=

3

4

0

B

�

2(1� �

2

)(1� �

02

) + �

2

�

02

�

2

0

�

02

1 0

0 0 0

1

C

A

; (B.14)
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P

(1)

=

3

4

0

B

�

4��

0

os(�

0

� �) 0 2� sin(�

0

� �)

0 0 0

�4�

0

sin(�

0

� �) 0 2 os(�

0

� �)

1

C

A

; (B.15)

P

(2)

=

3

4

0

B

�

�

2

�

02

os[2(�

0

� �)℄ ��

2

os[2(�

0

� �)℄ �

2

�

0

sin[2(�

0

� �)℄

��

02

os[2(�

0

� �)℄ os[2(�

0

� �)℄ ��

0

sin[2(�

0

� �)℄

�2��

02

sin[2(�

0

� �)℄ 2� sin[2(�

0

� �)℄ 2��

0

os[2(�

0

� �)℄

1

C

A

: (B.16)

As we are in an isotropi situation, we will perform all the alulations in a speial oordinate system with k k ẑ

and n;n

0

as in Fig. 11. Clearly the results are independent of this oordinate hoie.

The matrix R onneting (I

1

; I

2

; U ) with (I;Q; U ) is given by

0

B

�

I

1

I

2

U

1

C

A

=

0

B

�

1=2(I +Q)

1=2(I �Q)

U

1

C

A

=

1

2

0

B

�

1 1 0

1 �1 0

0 0 2

1

C

A

0

B

�

I

Q

U

1

C

A

� R

0

B

�

I

Q

U

1

C

A

: (B.17)

To alulate the ollision term inluding polarization, we hange into the (I

1

; I

2

) basis. For eah of the two intensities

� 2 f1; 2g we then have the ollision term given by

C[f

(�)

℄ =

df

(�)

+

d�

�

df

(�)

�

d�

; (B.18)

where f

(�)

+

and f

(�)

�

denote the distribution of photons in the polarization state � sattered into respetively out of

the beam due to Compton sattering.

In the matter (baryon/eletron) rest frame, whih we indiate by a prime, we know that

df

(�)0

+

dt

0

(p;n) =

�

T

n

e

4�

Z

f

(Æ)0

(p

0

;n

0

)P

�

Æ

(n;n

0

)d


0

;

where n

e

denotes the eletron number density and P

�

Æ

is the 2 � 2 upper left orner of the normalized Thomson

sattering matrix (B.13). In the baryon rest frame whih moves with four veloity u, the photon energy is given by

p

0

= p

�

u

�

:

We denote the photon energy with respet to a tetrad adapted to the sliing of spae-time into f� = onstantg

hyper-surfaes by p :

p = p

�

n

�

; with n = a

�1

[(1� A)�

�

+ B

i

�

i

℄;

The lapse funtion and the shift vetor of the sliing are given by � = a(1 + A) and � = �B

i

�

i

. In �rst order,

p

0

= ap(1 + A) � apn

i

B

i

;

and to zeroth order p

i

= apn

i

. Furthermore, the baryon four-veloity has the form u

0

= a

�1

(1 � A); u

i

= u

0

v

i

up

to �rst order. This yields

p

0

= p

�

u

�

= p(1 + n

i

(v

i

� B

i

)):

Using this identity and performing the integration over photon energies, we obtain

�



d�

(�)

+

(n)

d�

0

= a�



�

T

n

e

�

1 + 4n

i

(v

i

� B

i

)+

1

4�

Z

�

(Æ)

(n

0

)P

�

Æ

(n;n

0

) d


0

�

:

Photons whih are sattered leave the beam, with the probability given by the Thomson ross setion (see, e.g., [26℄)

df

(�)

�

dt

0

= �

T

n

e

f

(�)0

(p

0

;n);

so that we �nally have
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C

(�)0

=

4�

�



a

4

Z

dp

 

df

(�)

+

dt

0

�

df

(�)

�

dt

0

!

p

3

=

1

2

�

T

n

e

�

4n

i

(v

i

� B

i

) � �

(�)

+

1

4�

Z

�

(Æ)

(n

0

)P

�

Æ

(n;n

0

)d


0

�

: (B.19)

By setting C

(M)

= C

(1)

+ C

(2)

and C

(Q)

= C

(1)

� C

(2)

we transform the ollision integral bak to the normal

Stokes parameters. The term for U has the same form as the one for Q, just with the orresponding matrix elements

in the integral. The Boltzmann equation then �nally beomes (setting E � (M; Q; U ) and for the at ase, � = 0):

_

M+ i�kM = 4i�k(�� 	+ n

m

�

(V )

m

) + 4n

`

n

m

_

H

m`

+ a�

T

n

e

�

�M� 4i�V

b

+ 4n

`

!

b;`

+

Z

d


0

P

�

1

E

0

�

�

; (B.20)

_

Q+ i�kQ = a�

T

n

e

�

�Q+

Z

d


0

P

�

2

E

0

�

�

; (B.21)

_

U + i�kU = a�

T

n

e

�

�U +

Z

d


0

P

�

3

E

0

�

�

; (B.22)

where we have to use the sattering matrix transformed into the (M; Q; U ) basis,

P = P

S

+ P

V

+ P

T

(B.23)

P

S

= R

�1

P

(0)

R =

3

8

0

B

�

3� �

2

� �

02

+ 3�

2

�

02

(1� 3�

2

)(1� �

02

) 0

(1� �

2

)(1� 3�

02

) 3(1� �

2

)(1� �

02

) 0

0 0 0

1

C

A

; (B.24)

P

V

=

p

1� �

2

p

1� �

02

R

�1

P

(1)

R =

3

2

p

1� �

2

p

1� �

02

0

B

�

��

0

C ��

0

C ��S

��

0

C ��

0

C ��S

�

0

S �

0

S C

1

C

A

; (B.25)

P

T

= R

�1

P

(2)

R =

3

8

0

B

�

(1 � �

2

)(1� �

02

)C

T

�(1� �

2

)(1 + �

02

)C

T

2(1� �

2

)�

0

S

T

�(1 + �

2

)(1� �

02

)C

T

(1 + �

2

)(1 + �

02

)C

T

�2(1 + �

2

)�

0

S

T

�2�(1� �

02

)S

T

2�(1 + �

02

)S

T

4��

0

C

T

1

C

A

with C = os(� � �

0

), S = sin(� � �

0

) and C

T

= os(2(� � �

0

)), S

T

= sin(2(� � �

0

)). The parts P

S

; P

V

; P

T

of P

desribe the sattering of the salar, vetor and tensor ontribution to E respetively.

The funtions M, Q and U depend on the wave vetor k, the photon diretion n and onformal time �. We

hoose for eah k-mode a referene system with z-axis parallel to k. For salar perturbations we ahieve in this

way azimuthal symmetry | the right-hand side of the Boltzmann equation and therefore also the brightness M

(S)

depend only on � = (

^

k � n) and an be expanded in Legendre polynomials. The right-hand side of the Boltzmann

equation also determines the azimuthal dependene of vetor and tensor perturbations. One an ontinue with this

approah, but the resulting equations for Q and U and espeially also their power spetra depend expliitly on the

oordinate system. Therefore, we prefer an approah whih is inherently ovariant under rotation.

A. Eletri and magneti polarization

The Stokes parameters expliitly depend on the oordinate system, and Eqs. (B.21) and (B.22) transform rather

ompliated under rotations of the oordinate system. A method to haraterize CMB polarization due to non-

relativisti Thomson sattering whih is more onvenient than the Stokes parameters sine its transformation prop-

erties are very simple has been developed some years ago [51{53,55,56℄. A detailed derivation of this method goes

beyond the sope of this report. Here we just repeat the de�nitions and the main results. We set

T = (M; Q+ iU;Q� iU ): (B.26)

In terms of this vetor the ollision integral above an we written (in vetor form) as

C[T ℄ = a�

T

n

e

�

� T +

�

1

4�

Z

d


0

M

0

+ (n � v

b

); 0; 0

�

+

1

10

2

X

m=�2

Z

d


0

P

(m)

(n;n

0

)T

0

�

: (B.27)

From Eqs. (B.13) to (B.17) one an determine the sattering matrix for the vetor T
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�
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Y

m

2
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m
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p
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Y

m

2
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m

2

3
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2

�2

Y

m

2

1

C

C

A

(B.28)

where

s

Y

m0

l

=

s

Y

m�

l

(n

0

) and

s

Y

m

l

are the spin-weighted spherial harmonis [54,55℄.

We now deompose the Fourier omponents of the temperature anisotropy M and the polarization variables E

and B as

M =

X

`

2

X

m=�2

M

(m)

`

0

G

m

`

; (B.29)

Q� iU =

X

`

2

X

m=�2

(E

(m)

`

� iB

(m)

`

)

2

G

m

`

(n): (B.30)

Here m = 0 is the salar mode, m = �1 are the vetor and m = �2 are the tensor modes. The funtions

s

G

m

`

are

losely related to the spin weighted harmonis

s

Y

m

`

:

s

G

m

`

(n) = (�i)

`

r

4�

2`+ 1

s

Y

m

`

(n):

The evolution equations in term of these variables an be given in the following ompat form [56℄

_

M

(m)

`

� k

�

0

�

m

`

2` � 1

M

(m)

`�1

�

0

�

m

`+1

2`+ 3

M

(m)

`+1

�

=� n

e

�

T

aM

(m)

`

+ S

(m)

`

; (` � m); (B.31)

_

E
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`

� k

�

2

�

m

`

2` � 1

E

(m)

`�1

�

2m

`(` + 1)

B

(m)

`

�

2

�

m

`+1

2` + 3
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`+1

�

=� n

e

�

T

a[E
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`

+

p

6C

(m)

Æ

`;2

; (B.32)

_

B
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`+1
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; (B.33)

where we have set

S

(0)

0

= n

e

�

T

aM

(0)

0

; S

(0)

1

= n

e

�

T

a4V

b

+ 4k(	� �); S

(0)
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= n

e

�
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aC
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(1)
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= n
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(1)
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e

�

T
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_

H (B.34)

and C

(m)

=

1

10

[M

(m)

2

�

p

6E

(m)

2

℄. The oupling oeÆients are

s

�

m

`

=

r

(`

2

�m

2

)(`

2

� s

2

)

`

2

:

Note that for salar perturbations, m = 0, B-polarization is not soured and we have B

(0)

`

� 0.

Finally we want to onnet the intensities M

(m)

`

with the more familiar expansion of the salar (S), vetor (V )

and tensor (T ) ontributions to the brightness funtion in terms of Legendre polynomials. Usually one sets

M = M

(S)

+M

(V )

+M

(T )

:

Here M

(S)

only depends on � = (n � k)=k and the n-dependene of M

(V )

and M

(T )

an be written as

M

(V )

(�; �) =

p

1��

2

h

M

(V )

1

(�) os�+M

(V )

2

(�) sin �

i

; (B.35)

M

(T )

(�; �) = (1� �

2

)

h

M

(T )

+

os(2�) +M

(T )

�

sin(2�)

i

; (B.36)

where � is the azimuthal angle in the plane normal to k. Eah of the funtions M

(S;V;T )

�

(�) is now expanded in

Legendre polynomials

M

(S;V;T )

�

=

X

`

(�i)

`

(2`+ 1)�

(S;V;T )

�;`

P

`

(�) : (B.37)

The oeÆients �

(S;V;T )

�;`

are then related toM

(m)

`

via the identities
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M

(0)

`

= (2` + 1)�
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; (B.38)
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; (B.39)
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s
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where

�

"#;`

= �

+`

� i�

�`

:

We do not repeat this orrespondene for the Stokes parameters Q and U sine it is rather ompliated and not

very useful as it depends on the oordinate system hosen.

B. Power spetra

In the previous appendix and in Setion 4 we have derived the expression for the CMB anisotropy power spetrum

for salar and tensor perturbations. Here we give the general expression for salar, vetor and tensor utuations,

polarizations and ross orrelations. To make ontat with the results derived before, one has to use Eqs. (B.37,B.38)

and (B.40) and neglet the ollision term in the Boltzmann equation.

We expand the present CMB anisotropies and polarization in spherial harmonis: �T (n; �

0

)=T

0
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are random variables with zero mean and rotationally invariant varianes,
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i. The orrelation funtion of the anisotropy pattern then has the standard expression:
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where os � = n

1

� n

2

and h� � �i denotes ensemble average. We use the Fourier transform normalization

^

f (k) =

1

V

Z

f(x) exp(ik � x) d

3

x ; (B.42)

with some normalization volume V . Using statistial homogeneity we have
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Inserting our ansatz (B.37) for
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=
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M, and using the addition theorem for spherial harmonis,
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from whih we onlude
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(t

0

; k)j
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where the supersript

(S)

indiates that Eq. (B.45) gives

the ontribution from salar perturbations and

MM

means that it is the ontribution to the intensity per-

turbation.

The QQ, UU , MQ, MU and QU orrelators depend

with the Stokes parameters on the partiular oordinate

system hosen. It is muh more onvenient to express

the polarization power spetra in terms of the variables

E and B whih are independent of the oordinate sys-

tem. Furthermore, sine B is parity odd, its orrelators

with M and E vanishes. One �nds the simple general

expression [56℄

(2`+ 1)

2
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XY (m)
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n

m

8�

Z

k

2

dkX

(m)

`

Y

(m)�

`

; (B.46)

where n

m

= 1 for m = 0 and n

m

= 2 for m = 1; 2,

aounting for the number of modes. Here X and Y run

over M; E and B.
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THE THEORY OF CMB ANISOTROPIES

TEOR�� AN�ZOTROP�Õ KOSM�QNOGO M�KROHVIL^OVOGO FONU

R. D�rer

�nstitut teoretiqnoÝ f�ziki �enevs~kogo un�veritetu

vul. E. Ansermet, 24, 1211 �eneva 4, Xve�ar��;

Fakul~tet prirodniqih nauk �nstitutu perspektivnih dosl�d�en~

Ale� A�nxta�na, Pr�nston, NJ 08540, SXA

Zrobleno ogl�d teor�Ý an�zotrop�Ý kosm�qnogo m�krohvil~ovogo fonu, �ki�  onovleno� vers�� kursu

lek��, proqitanih navesn� 1999 r. v \troisieme yle de la Suisse Romande". Podano vstup do kal�bruval~no-

�nvar�antnoÝ teor�Ý kosmolog�qnih zburen~ � v ~omu kontekst� rozgl�nuto an�zotrop�� m�krohvil~ovogo

fonu. Otrimano prost� anal�tiqn� aproksima�Ý polo�en~ akustiqnih p�k�v ad��batiqnih � �zoterm�qnih

zburen~. Obgovoreno zagasann� S�lka v anal�tiqnomu p�dhod�. Zaverxu�t~ ogl�d korotki� opis suqas-

nogo stanu spostere�en~, o�nki kosmolog�qnih parametr�v ta zakl�qne obgovorenn�. U Dodatkah vivedeno

povnu sistemu diferen��nih r�vn�n~ dl� an�zotrop�Ý kosm�qnogo m�krohvil~ovogo fonu ta �ogo pol�riza-

�Ý, �ka neobh�dna v qislovomu p�dhod�.
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