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I. INTRODUCTION

In this review I would like to show the importan
e and

the power of measurements of anisotropies in the CMB.

CMB anisotropies are so useful mainly be
ause they

are small: For a given model, they 
an be 
al
ulated

within linear perturbation theory, to very good approxi-

mation. They are in
uen
ed only little by the non-linear

pro
esses of galaxy formation. This allows us to 
ompute

them very pre
isely (to about 1%, whi
h is high pre
i-

sion for present 
osmologi
al standards). For given initial


u
tuations, the result depends only on the 
osmologi-


al parameters. If we 
an measure CMB anisotropies to

a pre
ision of, say 1%, this allows us therefore to de-

termine 
osmologi
al parameters to about 1%. An un-

pre
edented possibility! Consider that at present, after

the work of two generations, e.g., the Hubble parame-

ter is known only to about 25%, the baryon density is

known to about 10% and the un
ertainties in the dark

matter density, the 
osmologi
al 
onstant and the spa
e


urvature are even larger.
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This somewhat too optimisti
 
on
lusion has however

three 
aveats whi
h we want to mention before entering

the subje
t of this review.

1. Initial 
onditions: The result depends on the

model for the initial 
u
tuations. The simplest in-


ationary s
enarios whi
h lead to adiabati
 pertur-

bations, 
ontain in general three to four free param-

eters, like the ratio of tensor to s
alar perturbations

(r) and the spe
tral index of the s
alar and tensor

perturbations (n

S

and n

T

), so a few more param-

eters need to be �tted additionally to the data.

More generi
 initial 
onditions allow for at least

four additional iso
urvature modes with arbitrary

(anti-)
orrelations. The initial 
onditions are then

given by a 5�5 positive semi-de�nite matrix, and,

in prin
iple, several spe
tral indi
es [1,2℄. In most

of this review we shall ignore this possibility and

assume that initial perturbations are purely adia-

bati
. Even if iso
urvature 
onstributions 
annot

be ex
luded, this most simple model is in good

agreement with the present data.

If the perturbations are generated by a
tive sour
es

like, e.g., topologi
al defe
ts, then the modeling is

far more 
ompli
ated, and the analysis is too dif-

ferent to be in
luded in this review.

2. Degenera
y: Even though we 
an measure over

1000 independent modes (C

`

's) of the CMB

anisotropy spe
trum, there are 
ertain 
ombina-

tions of the 
osmologi
al parameters that lead to

degenera
ies in the CMB spe
trum. The result is,

e.g., very sensitive to the sum 


matter

+ 


�

, but

not to the di�eren
e (\
osmi
 
onfusion").

3. Cosmi
 varian
e: Sin
e the 
u
tuations are 
re-

ated by random pro
esses, we 
an only 
al
ulate ex-

pe
tation values. Yet we have only one universe to

take measurements (\
osmi
 varian
e"). For small{

s
ale 
u
tuations we 
an in general assume that

the expe
tation value over ensembles of universes

is the same as a spatial average (a kind of ergodi


hypothesis), but for large s
ales we 
annot es
ape

large statisti
al errors.

A. Friedmann{Lemâ�tre universes

Friedmann{Lemâ�tre universes are homogeneous and

isotropi
 solutions of Einstein's equations. The hyper-

surfa
es of 
onstant time are homogeneous and

isotropi
, i.e., spa
es of 
onstant 
urvature with metri


a

2

(�)


ij

dx

i

dx

j

, where 


ij

is the metri
 of a spa
e with


onstant 
urvature �. This metri
 
an be expressed in

the form




ij

dx

i

dx

j

= dr

2

+ �

2

(r)

�

d#

2

+ sin

2

#d'

2

�

; (1.1)

�

2

(r) =

8

<

:

r

2

; � = 0

sin

2

r ; � = 1

sinh

2

r ; � = �1;

(1.2)

where we have res
aled a(�) su
h that � = �1 or 0. (With

this normalization the s
ale fa
tor a has the dimension

of a length and � and r are dimensionless for � 6= 0.) The

four-dimensional metri
 is then of the form

g

��

dx

�

dx

�

= �a

2

(�)d�

2

+ a

2

(�)


ij

dx

i

dx

j

: (1.3)

Here � is 
alled the 
onformal time.

Einstein's equations redu
e to ordinary di�erential

equations for the fun
tion a(�) (with _� d=d�):

�

_a

a

�

2

+ � =

8�G

3

a

2

�+

1

3

�a

2

; (1.4)

�

_a

a

�

�

= �

4�G

3

a

2

(� + 3p) +

1

3

�a

2

=

�

�a

a

�

�

�

_a

a

�

2

; (1.5)

where � = �T

0

0

, p = T

i

i

(no sum!) and all other 
ompo-

nents of the energy momentum tensor have to vanish by

the requirement of isotropy and homogeneity. � is the


osmologi
al 
onstant.

Energy momentum \
onservation" (whi
h is also a


onsequen
e of (1.4) and (1.5) due to the 
ontra
ted

Bian
hi identity) reads

_� = �3

�

_a

a

�

(� + p): (1.6)

After these preliminaries (whi
h we suppose to be

known to the audien
e) let us answer the following ques-

tion: Given an obje
t with 
omoving diameter � (or phys-

i
al size a(�)� = d) at a redshift z(�) = (a

0

=a)�1. Under

whi
h angle #(�; z) do we see this obje
t today and how

does this angle depend on 


�

and 


�

?

We de�ne




m

=

 

8�G�a

2

3

�

_a

a

�

2

!

�=�

0

;




�

=

�a

2

3

�

_a

a

�

2

�

�

�

�

�

�=�

0

; (1.7)




�

=

��

�

_a

a

�

2

�

�

�

�

�

�=�

0

;

where the index

0

indi
ates the value of a given variable

today. Friedmann's equation (1.4) then requires

1 = 


m

+


�

+ 


�

: (1.8)

Fig. 1. The two ends of the obje
t emit a 
ash simultane-

ously from A and B at z

1

whi
h rea
hes us today.
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Ba
k to our problem: Without loss of generality we

set r = 0 at our position and thus r = r

1

= �

0

� �

1

at

the position of the 
ashes, A and B at redshift z

1

. If �

denotes the 
omoving ar
 length between A and B we

have � = �(r

1

)# = �(�

0

� �

1

)#, i.e.,

# =

�

�(�

0

� �

1

)

: (1.9)

It remains to 
al
ulate (�

0

� �

1

)(z

1

).

Note that in the 
ase � = 0 we 
an still normalize the

s
ale fa
tor a as we want, and it is 
onvenient to 
hoose

a

0

= 1, so that 
omoving s
ales today be
ome physi
al

s
ales. However, for � 6= 0, we have already normalized

a su
h that � = �1 and � = sin r or sinh r. We have in

prin
iple no normalization 
onstant left.

From the Friedmann equation we have

_a

2

=

8�G

3

a

4

� +

1

3

�a

4

� �a

2

: (1.10)

We assume that � is a 
ombination of \dust" (
old,

non-relativisti
 matter) with p

d

= 0 and radiation with

p

rad

=

1

=

3

�

rad

.

From (1.6) we �nd that �

rad

/ a

�4

and �

d

/ a

�3

.

Therefore, with H

0

=

�

_a

a

2

�

(�

0

), we de�ne

8�G

3

a

4

� = H

2

0

�

a

4

0




rad

+ 


d

aa

3

0

�

; (1.11)

1

3

�a

4

= H

2

0




�

a

4

; (1.12)

��a

2

= H

2

0




�

a

2

a

2

0

: (1.13)

The Friedmann equation then implies

da

d�

= H

0

a

2

0

�




rad

+

a

a

0




d

+

a

4

a

4

0




�

+

a

2

a

2

0




�

�

1

2

(1.14)

so that

�

0

� �

1

=

1

H

0

a

0

(1.15)

�

Z

z

1

0

dz

[


rad

(z + 1)

4

+ 


d

(z + 1)

3

+


�

+ 


�

(z + 1)

2

℄

1

2

:

Here we have introdu
ed the 
osmologi
al redshift z+1 =

a

0

=a. (In prin
iple we 
ould of 
ourse also add other mat-

ter 
omponents like, e.g., \quintessen
e" [9℄, whi
h would

lead to a somewhat di�erent form of the integral (1.15),

but for de�niteness, we remain with dust, radiation and

a 
osmologi
al 
onstant.)

In general, this integral has to be solved numeri
ally.

It determines the angle #(�; z

1

) under whi
h an obje
t

with 
omoving size � at z

1

is seen.

On the other hand, the angular diameter distan
e to

an obje
t of physi
al size d seen under angle # is given

by �

0

� �

1

= r

1

= �

�1

�

d

a

1

#

�

. If we are able to measure

the redshift and the 
omoving angular diameter distan
e

of a 
ertain 
lass of obje
ts 
omparing with Eq. (1.15)

allows in prin
iple to determine the parameters 


m

, 


�

,




�

and H

0

.

Fig. 2. The fun
tion �(�

0

� �

1

) as a fun
tion of the red-

shift z for di�erent values of the 
osmologi
al parameters 


�

(top, with 


�

=0) and 


�

(bottom, with 


�

=0), namely �0:8

[dotted℄, �0:3 [short{dashed℄, 0 [solid℄, 0:3 [dot{dashed℄, 0:8

[long{dashed℄.

We have

��

H

2

0

a

2

0

= 


�

) H

0

a

0

=

1

p

j


�

j

for 


�

6= 0.

Observationally we know 10

�5

< 


rad

� 10

�4

as well

as 0:1 � 


d

. 1, j


�

j . 1 and j


�

j . 1.

If we are interested in small redshifts, z

1

. 10, we may

safely negle
t 


rad

. In this region, Eq. (1.15) is very sen-

sitive to 


�

and provides an ex
ellent mean to 
onstrain

the 
osmologi
al 
onstant.

At high redshift, z

1

& 1000, negle
ting radiation is no

longer a good approximation.

We shall later need the opening angle of the horizon

distan
e,

#

H

(z

1

) =

�

1

�(�

0

� �

1

)

; (1.16)

�

1

=

1

H

0

a

0

(1.17)

�

Z

1

z

1

dz

[


rad

(z + 1)

4

+ 


d

(z + 1)

3

+


�

+ 


�

(z + 1)

2

℄

1

2

:
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(Clearly this integral diverges if 


rad

= 


d

= 0. This is

exa
tly what happens during an in
ationary period and

leads there to the solution of the horizon problem.)

Fig. 3. #

H

(z

1

) (in degrees) for di�erent values of the 
os-

mologi
al parameters 


�

and 


�

the line styles are as in

Fig. 2.

The value of the radiation density is well known. For

photons plus three sorts of massless neutrinos we have

�

rad

= 7:94� 10

�34

(T

0

=2:737 K)

4

g=
m

3

:

This gives




rad

h

2

= 4:2 � 10

�5

(T

0

=2:737 K)

4

; (1.18)

H

0

= 100h

km

s �Mp


: (1.19)

Negle
ting 


rad

, for 


�

= 0 and small 
urvature,

0 < j


�

j � 


d

at high enough redshift, z

1

� 10,

one has �

0

� �

1

' 2

p

j


�

j=


d

= 2=(H

0

a

0

p




d

). This

yields #(�; z

1

) '

p




d

H

0

a

0

�=2 =

1

2

p




d

H

0

�

phys

=(z

1

+1),

where �

phys

= a

1

� is the physi
al s
ale 
orresponding to


omoving size �.

B. Re
ombination and the 
osmi
 mi
rowave

ba
kground (CMB)

During its expansion, the universe 
ools adiabati
ally.

At early times, it is dominated by a thermal radiation

ba
kground with � = C=a

4

= g

e�

a

SB

T

4

[10℄, and we

�nd that T / a

�1

. Here g

e�

= n

b

+ 7=8n

F

is the e�e
-

tive number of degrees of freedom, bosons 
ounting as

1 and fermions 
ounting as 7=8 (see, e.g., [14℄). At tem-

peratures below 0:5 MeV only neutrinos and photons are

still relativisti
 leading to the density parameter given in

Eq. (1.18). (Neutrinos have a somewhat lower tempera-

ture than photons, T

�

= (4=11)

1=3

T , sin
e they have al-

ready dropped out of thermal equilibrium at T ' 1 MeV,

before e

�

annihilation whi
h therefore reheats the pho-

tons but not the neutrinos, see, e.g., [14,15℄.)

The photons obey a Plan
k distribution,

f(!) =

1

e

!=T

� 1

: (1.20)

At a temperature of about T � 4000 K � 0:4 eV, the

number density of photons with energies above the hy-

drogen ionization energy drops below the baryon density

of the universe, and the protons begin to (re-)
ombine

to neutral hydrogen. (Helium has already re
ombined

earlier.) Photons and baryons are tightly 
oupled before

(re-) 
ombination by non-relativisti
 Thomson s
attering

of ele
trons. During re
ombination the free ele
tron den-

sity drops sharply and the mean free path of the photons

grows larger than the Hubble s
ale. At the temperature

T

de


� 3000 K (
orresponding to the redshift z

de


' 1100

and the physi
al time t

de


= a

0

�

de


' 10

5

years) photons

be
ome free and the universe be
omes transparent.

After re
ombination, the photon distribution evolves

a

ording to Liouville's equation (geodesi
 spray):

p

�

�

�

f � �

i

��

p

�

p

�

�f

�p

i

� L

X

g

f = 0; (1.21)

where i = 1; 2; 3. Sin
e the photons are massless, jpj

2

=

P

3

i=1

p

i

p

i

= !

2

(! = ap

0

). Isotropy of the distribution

implies that f depends on p

i

only via jpj = !, and so

�f

�p

i

=

�!

�p

i

�f

�!

=

p

i

!

�f

�!

: (1.22)

In a Friedmann universe (also if � 6= 0!) we �nd for

p

�

p

�

= �!

2

+ p

2

= 0 [exer
ise!℄

p

i

�

i

f � �

i

��

p

�

p

�

p

i

1

!

�f

�!

= �!

2

�

_a

a

2

�

�f

�!

: (1.23)

Inserting this result into (1.21) leads to

�

�

f + !

�

_a

a

�

�f

�!

= 0; (1.24)

whi
h is satis�ed by an arbitrary fun
tion f = f(!a).

Hen
e the distribution of free-streaming photons 
hanges
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just by redshifting the momenta. Therefore, setting T /

a

�1

even after re
ombination, the bla
kbody shape of

the photon distribution remains un
hanged.

Note however that after re
ombination the photons

are no longer in thermal equilibrium and the T in the

Plan
k distribution is not a temperature in the thermo-

dynami
al sense but merely a parameter in the photon

distribution fun
tion.

Fig. 4. Spe
trum of the 
osmi
 ba
kground radiation. The

graph on the top shows the measurements of the FIRAS ex-

periment on COBE (the verti
al bars), overlaid by a bla
k-

body spe
trum at a temperature of 2.73 K. The error bars

are 20 times magni�ed! The image on the bottom shows a

larger number of measurements. The FIRAS data is repre-

sented by the fat line around the peak of the spe
trum (from

Peebles [15℄).

The bla
kbody spe
trum of these 
osmi
 photons

whi
h are 
alled the \
osmi
 mi
rowave ba
kground"

(CMB) is extremely well veri�ed observationally (see

Fig. 4). The limits on deviations are often parameterized

in terms of three parameters: The 
hemi
al potential �,

the Compton y parameter (whi
h quanti�es a well de-

�ned 
hange in the spe
trum arising from intera
tions

with a non-relativisti
 ele
tron gas at a di�erent temper-

ature, see, e.g., [15℄) and Y

�

(des
ribing a 
ontamination

by free-free emission).

The present limits on these parameters are (at 95%

CL, [7℄)

j�j < 9 � 10

�5

; jyj < 1:2 � 10

�5

; jY

�

j < 1:9 � 10

�5

:

(1.25)

The CMB photons have not only a very thermal spe
-

trum, but they are also distributed very isotropi
ally,

apart from a dipole whi
h is (most probably) simply due

to our motion relative to the surfa
e of last s
attering:

An observer movingwith velo
ity v relative to a sour
e

emitting a photon with proper momentump = �!n sees

this photon redshifted with frequen
y

!

0

= 
! (1� nv) ; (1.26)

where 
 =

1

p

1�v

2

is the relativisti
 
-fa
tor. For an

isotropi
 emission of photons 
oming from all dire
tions

n this leads to a dipole anisotropy in �rst order in v.

This dipole anisotropy, whi
h is of the order of

�

�T

T

�

dipole

' 10

�3

has already been dis
overed in the 70ties [16,17℄. Inter-

preting it as due to our motion with respe
t to the last

s
attering surfa
e implies a velo
ity for the solar-system

bary-
enter of v = 371� 0:5 km=s at 68% CL ([7℄).

The COBE [11℄ DMR experiment (Di�erential Mi-


rowave Radiometer) has found 
u
tuations of

v

u

u

t

*

�

�T

T

�

2

+

� 10

�5

(1.27)

on all angular s
ales � � 7

Æ

[8℄. On smaller angular s
ales

many experiments have found 
u
tuations (we shall de-

s
ribe the experimental results in more detail later), but

all of them are . 10

�4

.

As we shall see later, the CMB 
u
tuations on large

s
ales provide a measure for the deviation of the geom-

etry from the Friedmann{Lemâ�tre one. The geometry

perturbations are thus small and we may 
al
ulate their

e�e
ts by linear perturbation theory. On smaller s
ales,

�T=T re
e
ts the 
u
tuations in the energy density

in the baryon/radiation plasma prior to re
ombination.

Their amplitude is just about right to allow the forma-

tion of the presently observed non-linear stru
tures (like

galaxies, 
lusters, et
.) out of small initial 
u
tuations

by gravitational instability.

These �ndings strongly support the hypothesis whi
h

we assume here, namely that the large s
ale stru
-

ture (i.e., galaxy distribution) observed in the universe

formed by gravitational instability from relatively small

(� 10

�4

�10

�5

) initial 
u
tuations. As we shall see, su
h

initial 
u
tuations leave an interesting \�ngerprint" on

the 
osmi
 mi
rowave ba
kground.

II. PERTURBATION THEORY

The tool for the analysis of CMB anisotropies is 
os-

mologi
al perturbation theory. We spend therefore some

time on this subje
t, espe
ially on the fundamental level.
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On
e all the variables are de�ned, we will be rather

brief in the derivation of the basi
 perturbation equa-

tions. First of all, be
ause these derivations are in general

not very illuminating and se
ondly be
ause nowadays all

of you 
an obtain them very easily by setting

g

��

= �g

��

+ "a

2

h

��

(2.1)

(�g

��

being the unperturbed Friedmann metri
) and ask-

ing Mathemati
a or Maple to 
al
ulate the Einstein Ten-

sor using the 
ondition "

2

= 0. We 
onventionally set

(absorbing the \smallness" parameter " into h

��

)

g

��

= �g

��

+ a

2

h

��

;

�g

00

= �a

2

;

�g

ij

= a

2




ij

;

jh

��

j � 1;

T

�

�

= T

�

�

+ �

�

�

;

T

0

0

= ���;

T

i

j

= �pÆ

i

j

;

j�

�

�

j=��� 1: (2.2)

A. Gauge transformation, gauge invarian
e

The �rst fundamental problem we want to dis
uss is

the problem of `
hoi
e of gauge' in 
osmologi
al pertur-

bation theory:

For linear perturbation theory to apply, the spa
etime

manifold M with metri
 g and the energy momentum

tensor T of the real, observable universe must be in some

sense 
lose to a Friedmann universe, i.e., the manifoldM

with a Robertson{Walker metri
 �g and a homogeneous

and isotropi
 energy momentum tensor T . It is an in-

teresting, non-trivial unsolved problem how to 
onstru
t

�g and T from the physi
al �elds g and T in pra
ti
e.

There are two main diÆ
ulties: Spatial averaging pro
e-

dures depend on the 
hoi
e of a hyper-surfa
e of 
onstant

time and do not 
ommute with derivatives, so that aver-

aged �elds �g and T will in general not satisfy Einstein's

equations. Se
ondly, averaging is in pra
ti
e impossible

over super-horizon s
ales.

Even though we 
annot give a 
onstru
tive pres
rip-

tion, we now assume that there exists an averaging pro
e-

dure whi
h leads to a Friedmann universe with spatially

averaged tensor �elds Q, su
h that the deviations (T

��

�

T

��

)=max

f��g

fjT

��

jg and (g

��

� g

��

)=max

f��g

fg

��

g

are small, and �g and T satisfy Friedmann's equations. Let

us 
all su
h an averaging pro
edure `admissible'. There

may be many di�erent admissible averaging pro
edures

(e.g. over a di�erent hyper-surfa
e) leading to slightly

di�erent Friedmann ba
kgrounds. But sin
e jg � �gj is

small of order �, the di�eren
e of the two Friedmann

ba
kgrounds must also be small of order � and we 
an

regard it as part of the perturbation.

We 
onsider now a �xed admissible Friedmann ba
k-

ground (�g;

�

T ) as 
hosen. Sin
e the theory is invariant

under di�eomorphisms (
oordinate transformations), the

perturbations are not unique. For an arbitrary di�eo-

morphism � and its pullba
k �

�

, the two metri
s g and

�

�

(g) des
ribe the same geometry. Sin
e we have 
hosen

the ba
kground metri
 �g we only allow di�eomorphisms

whi
h leave �g invariant, i.e., whi
h deviate only in �rst

order form the identity. Su
h an `in�nitesimal' isomor-

phism 
an be represented as the in�nitesimal 
ow of a

ve
tor �eld X, � = �

X

�

. Remember the de�nition of the


ow: For the integral 
urve 


x

(s) ofX with starting point

x, i.e., 


x

(s = 0) = x we have �

X

s

(x) = 


x

(s). In terms

of the ve
tor �eld X, to �rst order in �, its pullba
k is

then of the form

�

�

= id + �L

X

(L

X

denotes the Lie derivative in dire
tion X). The

transformation g ! �

�

(g) is equivalent to �g + �a

2

h !

�g+ �(a

2

h+L

X

�g), i.e. under an `in�nitesimal 
oordinate

transformation' the metri
 perturbation h transforms as

h! h+ a

�2

L

X

�g : (2.3)

In the 
ontext of 
osmologi
al perturbation theory, in-

�nitesimal 
oordinate transformations are 
alled `gauge

transformation'. The perturbation of a arbitrary tensor

�eld Q =

�

Q+�Q

(1)

obeys the gauge transformations law

Q

(1)

! Q

(1)

+ L

X

�

Q : (2.4)

Sin
e every ve
tor �eld X generates a gauge transfor-

mation � = �

X

�

, we 
an 
on
lude that only perturbations

of tensor �elds with L

X

Q = 0 for all ve
tor �elds X,

i.e., with vanishing (or 
onstant) `ba
kground 
ontribu-

tion' are gauge invariant. This simple result is sometimes

referred to as the `Stewart{Walker Lemma' [3℄.

The gauge dependen
e of perturbations has 
aused

many 
ontroversies in the literature, sin
e it is often diÆ-


ult to extra
t the physi
al meaning of gauge dependent

perturbations, espe
ially on super-horizon s
ales. This

has led to the development of gauge invariant perturba-

tion theory whi
h we are going to use throughout this re-

view. The advantage of the gauge-invariant formalism is

that the variables used have simple geometri
 and phys-

i
al meanings and are not plagued by gauge modes. Al-

though the derivation requires somewhat more work, the

�nal system of perturbation equations is usually simple

and well suited for numeri
al treatment. We shall also

see, that on sub-horizon s
ales, the gauge invariant mat-

ter perturbations variables approa
h the usual, gauge de-

pendent ones. Sin
e one of the gauge invariant geometri-


al perturbation variables 
orresponds to the Newtonian

potential, the Newtonian limit 
an be performed easily.

First we note that sin
e all relativisti
 equations are


ovariant (i.e. 
an be written in the form Q = 0 for some

tensor �eld Q), it is always possible to express the 
or-

responding perturbation equations in terms of gauge in-

variant variables [4{6℄.
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B. Gauge invariant perturbation variables

Sin
e the f� = 
onstg hyper-surfa
es are homogeneous

and isotropi
, it is sensible to perform a harmoni
 anal-

ysis: A (spatial) tensor �eld Q on these hyper-surfa
es


an be de
omposed into 
omponents whi
h transform ir-

redu
ibly under translations and rotations. All su
h 
om-

ponents evolve independently. For a s
alar quantity f in

the 
ase � = 0 this is nothing else than its Fourier de-


omposition:

f(x; �) =

Z

d

3

k

^

f (k)e

ikx

: (2.5)

(The exponentials Y

k

(x) = e

ikx

are the unitary ir-

redu
ible representations of the Eu
lidean translation

group.) For � = 1 su
h a de
omposition also exists, but

the values k are dis
rete, k

2

= `(` + 2) and for � = �1,

they are bounded from below, k

2

> 1. Of 
ourse, the

fun
tions Y

k

are di�erent for � 6= 0.

They are always the 
omplete orthogonal set of eigen-

fun
tions of the Lapla
ian,

�Y

(S)

= �k

2

Y

(S)

: (2.6)

In addition, a tensorial variable (at �xed position x)


an be de
omposed into irredu
ible 
omponents under

the rotation group SO(3).

For a ve
tor �eld, this is its de
omposition into a gra-

dient and a rotation,

V

i

= r

i

' +B

i

; (2.7)

where

B

i

ji

= 0; (2.8)

where we used X

ji

to denote the three-dimensional 
o-

variant derivative of X. ' is the spin 0 and B is the spin

1 
omponent of V .

For a symmetri
 tensor �eld we have

H

ij

= H

L




ij

+

�

r

i

r

j

�

1

3

�


ij

�

H

T

+

1

2

�

H

(V )

ijj

+H

(V )

jji

�

+H

(T )

ij

; (2.9)

where

H

(V )ji

i

= H

(T )

i

i

= H

(T )

j

ijj

= 0: (2.10)

Here H

L

and H

T

are spin 0 
omponents, H

(V )

i

is a spin

1 
omponent and H

(T )

ij

is a spin 2 
omponent.

We shall not need higher tensors (or spinors). As a

basis for ve
tor and tensor modes we use the ve
tor and

tensor type eigenfun
tions to the Lapla
ian,

�Y

(V )

j

= �k

2

Y

(V )

j

; (2.11)

and

�Y

(T )

ji

= �k

2

Y

(T )

ji

; (2.12)

where Y

(V )

j

is a transverse ve
tor, Y

(V )jj

j

= 0 and

Y

(T )

ji

is a symmetri
 transverse tra
eless tensor, Y

(T )j

j

=

Y

(T )ji

ji

= 0.

A

ording to Eqs. (2.7) and (2.9) we 
an 
onstru
t

s
alar type ve
tors and tensors and ve
tor type tensors.

To this goal we de�ne

Y

(S)

j

� �k

�1

Y

(S)

jj

; (2.13)

Y

(S)

ij

� k

�2

Y

(S)

jij

+

1

3




ij

Y

(S)

; (2.14)

Y

(V )

ij

� �

1

2k

(Y

(V )

ijj

+ Y

(V )

jji

): (2.15)

In the following we shall extensively use this de
ompo-

sition and write down the perturbation equations for a

given mode k.

The de
omposition of a ve
tor �eld is then of the form

B

i

= BY

(S)

i

+B

(V )

Y

(V )

i

: (2.16)

The de
omposition of a tensor �eld is given by (
om-

pare (2.9))

H

ij

= H

L

Y

(S)




ij

+H

T

Y

(S)

ij

+H

(V )

Y

(V )

ij

+H

(T )

Y

(T )

ij

;

(2.17)

where B, B

(V )

i

, H

L

, H

T

, H

(V )

i

and H

(T )

ij

are fun
tions

of � and k

1. Metri
 perturbations

Perturbations of the metri
 are of the form

g

��

= �g

��

+ a

2

h

��

: (2.18)

We parameterize them as

h

��

dx

�

dx

�

= �2Ad�

2

� 2B

i

d�dx

i

+ 2H

ij

dx

i

dx

j

;

(2.19)

and we de
ompose the perturbation variables B

i

andH

ij

a

ording to (2.16) and (2.17).

Let us 
onsider the behavior of h

��

under gauge trans-

formations. We set the ve
tor �eld de�ning the gauge

transformation to

X = T�

�

+ L

i

�

i

: (2.20)

Using simple identities from di�erential geometry like

L

X

(df) = d(L

X

f)

and

(L

X


)

ij

= X

ijj

+X

jji

;

we obtain
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L

X

�g = a

2

�

�2

�

_a

a

T +

_

T

�

d�

2

+ 2

�

_

L

i

� T

;i

�

d�dx

i

+

�

2

_a

a

T


ij

+ L

ijj

+ L

jji

�

dx

i

dx

j

�

: (2.21)

Comparing this with (2.19) and using (2.3) we ob-

tain the following behavior of our perturbation vari-

ables under gauge transformations (de
omposing L

i

=

LY

(S)

i

+ L

(V )

Y

(V )

i

):

A! A +

_a

a

T +

_

T ; (2.22)

B ! B �

_

L � kT; (2.23)

B

(V )

! B

(V )

�

_

L

(V )

; (2.24)

H

L

! H

L

+

_a

a

T +

k

3

L; (2.25)

H

T

! H

T

� kL; (2.26)

H

(V )

! H

(V )

� kL

(V )

; (2.27)

H

(T )

! H

(T )

: (2.28)

Two s
alar and one ve
tor variable 
an be brought to

disappear by gauge transformations.

One often 
hooses kL = H

T

and T = B +

_

L, so that

the variables H

T

and B vanish. In this gauge (longitudi-

nal gauge), s
alar perturbations of the metri
 are of the

form (H

T

= B = 0):

h

(S)

��

= �2	d�

2

+ 2�


ij

dx

i

dx

j

: (2.29)

	 and � are the so 
alled Bardeen potentials. In general

they are de�ned by

	 = A �

_a

a

k

�1

� � k

�1

_�; (2.30)

� = H

L

+

1

3

H

T

�

_a

a

k

�1

� (2.31)

with � = k

�1

_

H

T

� B. A short 
al
ulation using Eqs.

(2.22) to (2.26) shows that they are gauge invariant.

For ve
tor perturbations it is 
onvenient to set

kL

(V )

= H

(V )

so that H

(V )

vanishes and we have

h

(V )

��

dx

�

dx

�

= 2�

(V )

Y

(V )

i

d�dx

i

: (2.32)

We shall 
all this gauge the \ve
tor gauge". In general

�

(V )

= k

�1

_

H

(V )

� B

(V )

is gauge invariant [12℄

Clearly there are no tensorial (spin 2) gauge transfor-

mation and hen
e H

(T )

ij

is gauge invariant.

2. Perturbations of the energy momentum tensor

Let T

�

�

= T

�

�

+�

�

�

be the full energy momentum ten-

sor. We de�ne its energy density � and its energy 
ow

4-ve
tor u as the time-like eigenvalue and eigenve
tor of

T

�

�

:

T

�

�

u

�

= ��u

�

; u

2

= �1: (2.33)

We then de�ne their perturbations by

� = �� (1 + Æ) ; u = u

0

�

t

+ u

i

�

i

: (2.34)

u

0

is �xed by the normalization 
ondition,

u

0

=

1

a

(1 �A): (2.35)

We further set

u

i

=

1

a

v

i

= vY

(S)i

+ v

(V )

Y

(V )i

: (2.36)

We de�ne P

�

�

� u

�

u

�

+ Æ

�

�

, the proje
tion tensor onto

the part of tangent spa
e normal to u and set the stress

tensor

�

��

= P

�

�

P

�

�

T

��

: (2.37)

In the unperturbed 
ase we have �

0

0

= 0; �

i

j

= �pÆ

i

j

.

In
luding perturbations, to �rst order we still obtain

�

0

0

= �

0

i

= �

i

0

= 0: (2.38)

But �

i

j


ontains in general perturbations. We set

�

i

j

= �p

�

(1 + �

L

) Æ

i

j

+�

i

j

�

; with �

i

i

= 0: (2.39)

We de
ompose �

i

j

as

�

i

j

= �

(S)

Y

(S) i

j

+�

(V )

Y

(V ) i

j

+�

(T )

Y

(T ) i

j

: (2.40)

We shall not derive the gauge transformation proper-

ties in detail, but just state some results whi
h 
an be

obtained as an exer
ise (see also [5℄):

� Of the variables de�ned above only the �

(S;V;T )

are gauge invariant; they des
ribe the anisotropi


stress tensor, �

�

�

= �

�

�

�

1

=

3

�

�

�

Æ

�

�

. They are gauge

invariant due to the Stewart{Walker lemma, sin
e

�

� = 0. For perfe
t 
uids �

�

�

= 0.

� A se
ond gauge invariant variable is

� = �

L

�




2

s

w

Æ; (2.41)

where 


2

s

� _p= _� is the adiabati
 sound speed and

w � p=� is the enthalpy. One 
an show that � is

proportional to the divergen
e of the entropy 
ux

of the perturbations. Adiabati
 perturbations are


hara
terized by � = 0.

� Gauge invariant density and velo
ity perturbations


an be found by 
ombining Æ, v and v

(V )

i

with met-

ri
 perturbations.
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We shall use

V � v �

1

k

_

H

T

= v

(long)

; (2.42)

D

g

� Æ + 3(1 + w)

�

H

L

+

1

3

H

T

�

= Æ

(long)

;

+3(1 + w)�; (2.43)

D � Æ

(long)

+ 3(1 + w)

�

_a

a

�

V

k

; (2.44)

V

(V )

� v

(V )

�

1

k

_

H

(V )

= v

(ve
)

; (2.45)


 � v

(V )

�B

(V )

= v

(ve
)

�B

(V )

; (2.46)


� V

(V )

= �

(V )

: (2.47)

Here v

(long)

; Æ

(long)

and v

(ve
)

i

are the velo
ity (and den-

sity) perturbations in the longitudinal and ve
tor gauge

respe
tively and �

(V )

is the metri
 perturbation in ve
tor

gauge (see Eq. (2.32)). These variables 
an be interpreted

ni
ely in terms of gradients of the energy density and the

shear and vorti
ity of the velo
ity �eld [18℄.

But we just want to show that on s
ales mu
h smaller

than the Hubble s
ale, k� � 1, the metri
 perturbations

are mu
h smaller than Æ and v and we 
an thus \forget

them" (whi
h will be important when 
omparing exper-

imental results with 
al
ulations in this formalism):

The perturbations of the Einstein tensor are given by

se
ond derivatives of the metri
 perturbations. Einstein's

equations yield the following order of magnitude esti-

mate:

O

�

ÆT

T

�

O (8�GT )

| {z }

O

(

_a

a

)

2

=O(�

�2

)

= O

�

1

�

2

h+

k

�

h+ k

2

h

�

; (2.48)

O

�

ÆT

T

�

= O

�

h+ k�h+ (k�)

2

h

�

: (2.49)

For k� � 1 this gives O(Æ; v) = O

�

ÆT

T

�

� O(h). On

sub-horizon s
ales the di�eren
e between Æ, Æ

(long)

, D

g

and D is negligible as well as the di�eren
e between v

and V or v

(V )

, V

(V )

and 


(V )

.

Later we shall also need other perturbation variables

like the perturbation of the photon brightness (energy-

integrated photon distribution fun
tion), but we shall

introdu
e them as we get there and dis
uss some appli-


ations �rst.

C. Basi
 perturbation equations

As already announ
ed, we do not derive Einstein's equations but just write down those whi
h we shall need later:

1. Constraint equations

4�Ga

2

�D = (k

2

� 3�)�; (00)

4�Ga

2

(� + p)V = k

�

�

_a

a

�

	�

_

�

�

; (0i)

)

(s
alar) (2.50)

8�Ga

2

(� + p)
 =

1

2

�

2�� k

2

�

�

(V )

: (0i) (ve
tor) (2.51)

2. Dynami
al equations

�k

2

(� + 	) = 8�Ga

2

p�

(S)

; (s
alar) (2.52)

k

�

_�

(V )

+ 2

�

_a

a

�

�

(V )

�

= 8�Ga

2

p�

(V )

; (ve
tor) (2.53)

�

H

(T )

+ 2

�

_a

a

�

_

H

(T )

+

�

2�+ k

2

�

H

(T )

= 8�Ga

2

p�

(T )

ij

: (tensor) (2.54)

There is a se
ond dynami
al s
alar equations, whi
h is however 
ompli
ated and not needed, sin
e we may instead use

one of the 
onservation equations below. Note that for perfe
t 
uids, where �

i

j

� 0, we have � = �	, �

(V )

/ 1=a

2

and H obeys a damped wave equation. The damping term 
an be negle
ted on small s
ales (over short time periods)

when �

�2

. 2�+ k

2

, and H

ij

represents propagating gravitational waves. For vanishing 
urvature, these are just the

sub-horizon s
ales, k� & 1. For � < 0, waves os
illate with a somewhat smaller frequen
y, ! =

p

2�+ k

2

, while for

� > 0 the frequen
y is somewhat larger.
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3. Conservation equations

The 
onservation equations, T

��

;�

= 0 lead to the following perturbation equations

_

D

g

+ 3

�




2

s

� w

� �

_a

a

�

D

g

+ (1 + w)kV + 3w

�

_a

a

�

� = 0;

_

V +

�

_a

a

� �

1� 3


2

s

�

V = k

�

	� 3


2

s

�

�

+




2

s

k

1+w

D

g

+

wk

1+w

�

��

2

3

�

1�

3�

k

2

�

�

�

;

)

(s
alar) (2.55)

_




i

+

�

1� 3


2

s

�

�

_a

a

�




i

=

p

2(� + p)

�

k �

2�

k

�

�

(V )

i

: (ve
tor) (2.56)

III. SIMPLE APPLICATIONS

We �rst dis
uss some simple appli
ations whi
h will be important for the CMB. We 
ould of 
ourse also write

(2.55) in terms of D, but we shall just work with the relation

D = D

g

+ 3(1 +w)

�

��+

�

_a

a

�

k

�1

V

�

: (3.1)

A. The pure dust 
uid at � = 0;� = 0

We assume the dust to have w = 


2

s

= p = 0 and � = � = 0. The equations (2.55), (2.52) and (2.50) then redu
e

to

_

D

g

= �kV; (energy 
onservation eqn:) (3.2)

_

V +

�

_a

a

�

V = k	; (gravitational a

eleration eqn:) (3.3)

� = �	; (3.4)

�k

2

	 = 4�Ga

2

�

�

D

g

+ 3

�

	 +

�

_a

a

�

k

�1

V

��

: (Poisson eqn:) (3.5)

In a pure dust universe � / a

�3

) ( _a=a)

2

/ a

�1

, whi
h

is solved by a / �

2

. The Einstein equations then give im-

mediately 4�G�a

2

=

3

=

2

( _a=a)

2

= 6=�

2

. Setting k� = x

and

0

= d=dx, the system (3.2-3.5) then be
omes

D

0

g

= �V; (3.6)

V

0

+

2

x

V = 	; (3.7)

6

x

2

�

D

g

+ 3

�

	+

2

x

V

��

= �	: (3.8)

We use (3.8) to eliminate 	 and (3.6) to eliminateD

g

,

leading to

�

18 + x

2

�

V

00

+

�

72

x

+ 4x

�

V

0

�

�

72

x

2

+ 4

�

V = 0:

(3.9)

The general solution of Eq. (3.9) is

V = V

0

x+

V

1

x

4

(3.10)

with arbitrary 
onstants V

0

and V

1

. Sin
e the perturba-

tions are supposed to be small initially, they 
annot di-

verge for x! 0, and we have therefore to 
hoose V

1

= 0

(the growing mode). Another way to argue is as follows:

If the mode V

1

has to be small already at some early ini-

tial time �

in

, it will be even mu
h smaller at later times

and may hen
e be negle
ted. The perturbation variables

are then given by

V = V

0

x; (3.11)

D

g

= �15V

0

�

1

2

V

0

x

2

; (3.12)

	 = 3V

0

: (3.13)

The 
onstan
y of the gravitational potential 	 in a

matter dominated universe and the growth of the den-

sity perturbations like the s
ale fa
tor a led Lifshitz to


on
lude 1946 [19℄ that pure gravitational instability 
an-

not be the 
ause for stru
ture formation: If we start from

tiny thermal 
u
tuations of the order of 10

�35

, they 
an

only grow to about 10

�30

through this pro
ess during
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the matter dominated regime. Or, to put it di�erently,

if we do not want to modify the pro
ess of stru
ture for-

mation, we need initial 
u
tuations of the order of at

least 10

�5

. One possibility to 
reate su
h 
u
tuations

is due to quantum parti
le produ
tion in the 
lassi
al

gravitational �eld during in
ation. The rapid expansion

of the universe during in
ation qui
kly transforms mi
ro-

s
opi
 s
ales at whi
h quantum 
u
tuations are impor-

tant into 
osmologi
al s
ales where these 
u
tuations are

then \frozen in" as 
lassi
al perturbations in the energy

density and the geometry.

We distinguish two regimes:

i) super-horizon, x� 1 where we have

D

g

= �15V

0

; (3.14)

	 = 3V

0

; (3.15)

V = V

0

x (3.16)

and ii) sub-horizon, x � 1 where the solution is domi-

nated by the terms

V = V

0

x; (3.17)

D

g

= �

1

2

V

0

x

2

; (3.18)

	 = 3V

0

= 
onst: (3.19)

Note that for dust

D = D

g

+ 3	 +

6

x

V = �

1

2

V

0

x

2

:

In the variable D the 
onstant term has disappeared and

we have D � 	 on super horizon s
ales, x� 1.

B. The pure radiation 
uid, � = 0;� = 0

In this limit we set w = 


2

s

=

1

=

3

and � = 0. We 
on-


lude from � / a

�4

that a / � and � = �	, and the

perturbation equations be
ome (with the same notation

as above):

D

0

g

= �

4

3

V; (3.20)

V

0

= 2	 +

1

4

D

g

; (3.21)

�2x

2

	 = 3D

g

+ 12	 +

12

x

V: (3.22)

The general solution of this system is

D

g

= D

2

"


os

�

x

p

3

�

� 2

p

3

x

sin

�

x

p

3

�

#

+D

1

"

sin

�

x

p

3

�

+ 2

p

3

x


os

�

x

p

3

�

#

; (3.23)

V = �

3

4

D

0

g

; (3.24)

	 =

�3D

g

� (12=x)V

12 + 2x

2

: (3.25)

Again, regularity at x = 0 requires D

1

= 0.

In the super-horizon, x� 1 regime we obtain

	 = 	

0

; D

g

= D

0

�

2

3

V

0

x

2

; V = V

0

x (3.26)

with

D

0

= �6	

0

= �D

2

; (3.27)

V

0

=

1

2

	

0

= �

1

12

D

0

: (3.28)

On sub-horizon, x � 1 s
ales we �nd os
illating solu-

tions with 
onstant amplitude with a frequen
y of 1=

p

3:

V = V

2

sin

�

x

p

3

�

; (3.29)

D

g

= D

2


os

�

x

p

3

�

; 	 = �

3

2

x

�2

D

g

; (3.30)

D

2

=

4V

2

p

3

: (3.31)

Note that also for radiation perturbations

D = �

2

3

V

0

x

2

� 	

is small on super horizon s
ales, x � 1. The perturba-

tion amplitude is given by the largest gauge invariant

perturbation variable. We 
on
lude therefore that per-

turbations outside the Hubble horizon are frozen to �rst

order. On
e they enter the horizon they start to 
ollapse,

but pressure resists the gravitational for
e and the radi-

ation 
uid starts to os
illate. The perturbations of the

gravitational potential os
illate and de
ay like 1=a

2

in-

side the horizon.

C. Adiabati
 and iso
urvature initial 
onditions for

a matter & radiation 
uid

In this se
tion we want to investigate a system with

a matter and a radiation 
omponent that are 
oupled

only by gravity. The matter 
omponent a
ts therefore as

dark matter, sin
e it does not intera
t dire
tly with the

radiation.

Sin
e the matter and radiation perturbations behave

in the same way on super-horizon s
ales,

D

(r)

g

= A +Bx

2

; D

(m)

g

= A

0

+B

0

x

2

; V

(r)

/ V

(m)

/ x;

(3.32)

we may require a 
onstant relation between matter and

radiation perturbations. As we have seen in the previous

se
tion, inside the horizon (x > 1) radiation perturba-

tions start to os
illate while matter perturbations keep

following a power law. On sub-horizon s
ales a 
onstant

ratio 
an thus no longer be maintained. There are two

interesting possibilities:
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1. Adiabati
 initial 
onditions

Adiabati
ity requires that matter and radiation per-

turbations are initially in perfe
t thermal equilibrium.

This implies that their velo
ity �elds agree (see below,

se
tion on Boltzmann equation!)

V

(r)

= V

(m)

; (3.33)

so that the energy 
ux in the two 
uids is 
oupled ini-

tially.

Let us investigate the radiation solution in the matter

dominated era, when the 
orresponding s
ale is already

sub-horizon. Sin
e 	 is dominated by the matter 
ontri-

bution, we have 	 ' 
onst = 	

0

. We negle
t the (de
ay-

ing) 
ontribution from the sub-dominant radiation to 	.

Energy-momentum 
onservation for radiation then gives

D

(r)0

g

= �

4

3

V

(r)

; (3.34)

V

(r)0

= 2	+

1

4

D

(r)

g

: (3.35)

Now 	 is just a 
onstant given by the matter pertur-

bations, and it a
ts like a 
onstant sour
e term. The full

solution of this system is then

D

(r)

g

= A 
os

�

x

p

3

�

�

4

p

3

B sin

�

x

p

3

�

� 8	

�


os

�

x

p

3

�

� 1

�

; (3.36)

V

(r)

= B 
os

�

x

p

3

�

+

p

3

4

A sin

�

x

p

3

�

� 2

p

3	 sin

�

x

p

3

�

: (3.37)

Our adiabati
 initial 
onditions require

lim

x!0

V

(r)

x

= V

0

= lim

x!0

V

(m)

x

<1: (3.38)

Therefore B = 0 and A = 4V

0

� 8	. Using in addition

	 = 3V

0

(see (3.19)) we obtain

D

(r)

g

= �

44

3

	 
os

�

x

p

3

�

+ 8	; (3.39)

V

(r)

=

1

p

3

	 sin

�

x

p

3

�

; (3.40)

D

(m)

g

= �	

�

5 +

1

6

x

2

�

; (3.41)

V

(m)

=

1

3

	x; (3.42)

	 = 3V

0

: (3.43)

On super-horizon s
ales, x� 1 we have

D

(r)

g

' �

20

3

	; V

(r)

'

1

3

x	; (3.44)

note that D

(r)

g

= (4=3)D

(m)

g

and V

(r)

= V

(m)

for adia-

bati
 initial 
onditions.

2. Iso
urvature initial 
onditions

Here we want to solve the system (2.50) and (2.55) for

dark matter and radiation under the 
ondition that the

metri
 perturbations vanish initially, i.e., 	 = 0,

	 = �

3

2

�

_a

a

�

2

k

�2

[D

g

+ 3(1 + w)	

+ 3(1 + w)

�

_a

a

�

k

�1

V

�

= 0: (3.45)

In prin
iple, we have four evolution and one 
onstraint

equations. We therefore have four 
onstants to adjust.

Condition (3.45), however, requires an entire fun
tion to

vanish. This may be impossible. Let us nevertheless try:

If 	 = 0 the solutions of the radiation dominated equa-

tions are simply

D

(r)

g

= A 
os

�

x

p

3

�

+ B sin

�

x

p

3

�

; (3.46)

V

(r)

=

p

3

4

A sin

�

x

p

3

�

�

p

3

4

B 
os

�

x

p

3

�

: (3.47)

For the matter perturbations we �nd

V

(m)

= �

V

0

a

; a / x

�

; 1 � � � 2; (3.48)

D

(m)

g

= C

(m)

�

V

0

� � 1

x

a

if � 6= 1; (3.49)

D

(m)

g

= C

(m)

� V

0

log(x) if � = 1: (3.50)

Here � is the exponent of the s
ale fa
tor a / �

�

, hen
e

� = 1 in the radiation era and � = 2 in the matter era.

	 = 0 implies with

D

g

=

1

�

�

�

r

D

(r)

g

+ �

m

D

(m)

g

�

(3.51)

V =

1

� + p

�

(�

r

+ p

r

)V

(r)

+ �

m

V

(m)

�

(3.52)

that

0 =

�

r

�

m

D

(r)

g

+D

(m)

g

+

�

_a

a

�

k

�1

�

4�

r

�

m

V

(r)

+ 3V

(m)

�

: (3.53)

Sin
e V

(m)

/ 1=a it 
an 
ompensate, for small val-

ues of x, the term / 
os(x=

p

3) of V

(r)

, whi
h behaves

like 1=a as well, due to the pre-fa
tor �

r

=�

m

. This term


an also be 
ompensated in D

(r)

g

by the term V

0

x=a of

D

(m)

g

. In the purely radiation dominated universe, the

log-dependen
e of D

(m)

g

renders this 
ompensation im-

perfe
t. However, there is no way to 
ompensate C

(m)

or

the term proportional to A. We therefore have to 
hoose

A = C

(m)

= 0 and
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a

�

r

�

m

p

3

3

B = V

0

; B =

�

m

a�

r

p

3V

0

: (3.54)

(The 
ompensation of the smaller terms inD

(r)

g

andD

(m)

g

is only 
omplete if � ' 2.)

With 


s

= 1=

p

3 we �nd

D

(r)

g

'

�

m

a�

r




s

V

0

sin (


s

x) ; (iso
urvature) (3.55)

D

(r)

g

' 	

�

8�

44

3


os (


s

x)

�

: (adiabati
) (3.56)

The CMB anisotropies, whi
h we are going to determine

in the next se
tion, 
ontain a term

�T

T

(k; �

0

;n) = � � �+

1

4

D

(r)

g

(k; �

de


) e

ikn(�

0

��

de


)

� � � :

(3.57)

On s
ales where this term dominates, the peaks in D

g

translate into peaks in the angular power spe
trum of

CMB anisotropies.

For iso
urvature initial 
onditions, we �nd a �rst peak

in D

g

at

x

(1)

i

= k

(1)

i

�

de


=

1




s

�

2

;

�

(1)

i

=

�

k

(1)

i

= 2


s

�

de


;

#

(1)

i

'

2


s

�

de


� (�

0

� �

de


)

: (3.58)

Here #

(1)

i

is the angle under whi
h the 
omoving s
ale

�

(1)

i

at 
omoving distan
e �

0

� �

de


is seen. In the next

se
tion, we will expand the temperature 
u
tuations

in terms of spheri
al harmoni
s. An 
u
tuation on the

angular s
ale # then shows up around the harmoni


` � �=#. As an indi
ation, we note that for � = � = 0,

the harmoni
 of the �rst iso
urvature peak is

`

(1)

i

� �=#

(1)

i

� 110 ;

In the adiabati
 
ase the �rst \peak" is at k

(1)

a

= 0.

Sin
e D

(r)

g

is negative for small x, the �rst peaks are

\expansion peaks", and due to the gravitational attra
-

tion of the baryons (whi
h we have negle
ted in this sim-

ple argument) they are less pronoun
ed than the se
ond

(\
ompression") peaks.

These se
ond peaks are usually 
alled the \�rst a
ous-

ti
 peak". (It is the �rst 
ompression peak and we shall

adopt the 
onvention to 
all it the \�rst peak" mainly

for 
onsisten
y with the literature.) They 
orrespond to

wavelengths and angular s
ales

�

(2)

i

=

2

3




s

�

de


; #

(2)

i

'

(2=3)


s

�

de


� (�

0

� �

de


)

;

`

(2)

i

� 350 (iso
urvature); (3.59)

�

(2)

a

= 


s

�

de


; #

(2)

a

'




s

�

de


� (�

0

� �

de


)

;

`

(2)

a

� 200 (adiabati
): (3.60)

Here the indi
ated harmoni
 is the one obtained in the


ase � = � = 0, for a typi
al baryon density inferred

from nu
leosynthesis.

It is interesting to note that the distan
e between 
on-

se
utive peaks is independent of the initial 
ondi-

tion. It is given by

�k

i

= k

(2)

i

� k

(1)

i

= �=(


s

�

de


) = �k

a

;

�# =




s

�

de


� (�

0

� �

de


)

; �` � 200: (3.61)

Again, the numeri
al value indi
ated for �` 
orresponds

to a universe with � = � = 0. The result is strongly de-

pendent espe
ially on �. This is the reason why the mea-

surement of the peak position (or better of the inter-peak

distan
e) allows an a

urate determination of 
urvature.

From our analysis we 
an draw the following important


on
lusions: For s
ales where the D

(r)

g

-term dominates,

the CMB anisotropies show a series of a
ousti
 os
illa-

tions with spa
ing �k, the position of the �rst signi�
ant

peaks is at k = k

(2)

a=i

, depending on the initial 
ondition.

The spa
ing �k is independent of initial 
onditions.

The angle �# onto whi
h this s
ale is proje
ted in the

sky is determined entirely by the matter 
ontent and the

geometry of the universe. A

ording to our �ndings in

Se
tion I, # will be larger if 


�

< 0 (positive 
urvature)

and smaller if 


�

> 0 (see Fig. 3).

In our analysis we have negle
ted the presen
e of

baryons, in order to obtain simple analyti
al results.

Baryons have two e�e
ts: They lead to (�+3p)

rad+bar

>

0, and therefore to an enhan
ement of the 
ompression

peaks (the �rst, third, et
. a
ousti
 peak). In addition,

the baryons slightly de
rease the sound speed 


s

, in
reas-

ing thereby �k and de
reasing �#.

Another point whi
h we have negle
ted is the fa
t

that the universe be
ame matter dominated at �

eq

, only

shortly before de
oupling: �

de


' 4�

eq

, for 


m

= 1. As

we have seen, the gravitational potential on sub-horizon

s
ales is de
aying in the radiation dominated era. If the

radiation dominated era is not very long before de
ou-

pling, the gravitational potential is still slightly de
aying

and free streaming photons fall into a deeper gravita-

tional potential than they have to 
limb out of. This ef-

fe
t, 
alled \early integrated Sa
hs{Wolfe e�e
t" adds to

the photon temperature 
u
tuations at s
ales whi
h are

only slightly larger than the position of the �rst a
ous-

ti
 peak for adiabati
 perturbations. It therefore `boosts'

this peak and, at the same time, moves it to lightly larger

s
ales (larger angles, lower spheri
al harmoni
s). Sin
e

�

eq

/ h

�2

, the �rst a
ousti
 peak is larger if h is smaller.

A small Hubble parameter in
reases therefore the

a
ousti
 peaks. A similar e�e
t is observed if a 
osmo-

logi
al 
onstant or negative 
urvature are present, sin
e

�

eq

is retarded in those 
ases.

The real universe 
ontains not only photons and dark

matter, but also neutrinos and baryons. It has a
tually

be found re
ently [20℄ that this 4-
uid mixture allows �ve
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di�erent modes whi
h grow or stay 
onstant. The adia-

bati
 mode, the dark matter iso
urvature mode whi
h we

have just dis
ussed, a similar baryon iso
urvature mode

and two neutrino iso
urvature modes. The most generi


initial 
onditions whi
h allow for arbitrary 
orrelations

between the di�erent modes are very unpredi
table. We


an maybe just say that they lead to a �rst a
ousti


peak in the range of 150 � `

(2)

� 350 for a spatially 
at

universe. In the rest of this review, we only dis
uss adi-

abati
 perturbations, whi
h are by far the most studied,

but it is important to keep in mind that all the results

espe
ially 
on
erning the estimation of 
osmologi
al pa-

rameters is not valid if we allow for more generi
 initial


onditions [1,2℄.

3. Ve
tor perturbations of perfe
t 
uids

If �

(V )

= 0 equation (2.56) implies


 / a

3


2

s

�1

: (3.62)

For _p= _� = 


2

s

�

1

=

3

, this leads to a non-growing vorti
ity.

The dynami
al Einstein equation implies

�

(V )

/ a

�2

; (3.63)

and the 
onstraint (2.51) reads (at early times, so we 
an

negle
t 
urvature)


 � x

2

�

(V )

: (3.64)

If perturbations are 
reated in the very early universe

on super-horizon s
ales (e.g., during an in
ationary pe-

riod), ve
tor perturbations of the metri
 de
ay and be-


ome soon entirely negligible. Even if 


i

remains 
on-

stant in a radiation dominated universe, it has to be so

small on relevant s
ales at formation (x

in

� 1) that we

may safely negle
t it.

4. Tensor perturbations

The situation is di�erent for tensor perturbations.

Again we 
onsider the perfe
t 
uid 
ase, �

(T )

ij

= 0. There

(2.54) implies (if � is negligible)

H

00

ij

+

2�

x

H

0

ij

+H

ij

= 0 ; (3.65)

with � = 1 in the radiation dominated era and � = 2 in

the matter dominated era. The less de
aying mode so-

lution to Eq. (3.65) is H

ij

= e

ij

x

1=2��

J

1=2��

(x), where

J

�

denotes the Bessel fun
tion of order � and e

ij

is a

transverse tra
eless polarization tensor. This leads to

H

ij

= 
onst for x� 1; (3.66)

H

ij

=

1

a

for x

>

� 1: (3.67)

IV. CMB ANISOTROPIES

A. Light-like geodesi
s

After de
oupling, � > �

de


, photons follow to a

good approximation light-like geodesi
s. The tempera-

ture shift is then given by the energy shift of a given

photon.

The unperturbed photon traje
tory follows (x

�

) �

(�;n(� � �

0

) + x

0

), where x

0

is the photon position

at time �

0

and n is the (parallel transported) photon

dire
tion. With respe
t to a geodesi
 basis (e)

3

i=1

, the


omponents of n are 
onstant. If � = 0 we may 
hoose

e

i

= �=�x

i

; if � 6= 0 these ve
tor �elds are no longer

parallel transported and therefore do not form a geodesi


basis (r

e

i

e

j

= 0).

Our metri
 is of the form

d�s

2

= a

2

ds

2

; (4.1)

with

ds

2

= (


��

+ h

��

) dx

�

dx

�

;




00

= �1; 


i0

= 0; 


ij

= 


ji

(4.2)

as before.

We make use of the fa
t that light-like geodesi
s are


onformally invariant. More pre
isely ds

2

and d�s

2

have

the same light-like geodesi
s, only the 
orresponding

aÆne parameters are di�erent. Let us denote the two

aÆne parameters by � and

�

� respe
tively, and the tan-

gent ve
tors to the geodesi
 by

n =

dx

d�

; �n =

dx

d

�

�

; n

2

= �n

2

= 0 ; n

0

= 1 ; n

2

= 1:

(4.3)

We set n

0

= 1+ Æn

0

. The geodesi
 equation for the per-

turbed metri


ds

2

= (


��

+ h

��

)dx

�

dx

�

(4.4)

yields, to �rst order,

d

d�

Æn

�

= �Æ�

�

��

n

�

n

�

: (4.5)

For the energy shift, we have to determine Æn

0

. Sin
e

g

0�

= �1 � Æ

0�

+ �rst order, we obtain Æ�

0

��

=

�

1

=

2

(h

�0j�

+ h

�0j�

�

_

h

��

), so that

d

d�

Æn

0

= h

�0j�

n

�

n

�

�

1

2

_

h

��

n

�

n

�

: (4.6)

Integrating this equation we use h

�0j�

n

�

=

d

d�

(h

�0

n

�

),

so that the 
hange of n

0

between some initial time �

i

and

some �nal time �

f

is given by

Æn

0

j

f

i

=

�

h

00

+ h

0j

n

j

�

f

i

�

1

2

Z

f

i

_

h

��

n

�

n

�

d� : (4.7)
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On the other hand, the ratio of the energy of a photon

measured by some observer at t

f

to the energy emitted

at t

i

is

E

f

E

i

=

(�n � u)

f

(�n � u)

i

=

T

f

T

i

(n � u)

f

(n � u)

i

; (4.8)

where u

f

and u

i

are the four-velo
ities of the observer

and emitter respe
tively, and the fa
tor T

f

=T

i

is the

usual (unperturbed) redshift, whi
h relates n and �n. The

velo
ity �eld of observer and emitter is given by

u = (1� A)�

�

+ v

i

�

i

: (4.9)

An observer measuring a temperature T

0

re
eives pho-

tons that were emitted at the time �

de


of de
oupling of

matter and radiation, at the �xed temperature T

de


. In

�rst-order perturbation theory, we �nd the following re-

lation between the unperturbed temperatures T

f

, T

i

, the

measurable temperatures T

0

, T

de


, and the photon den-

sity perturbation:

T

f

T

i

=

T

0

T

de


�

1�

ÆT

f

T

f

+

ÆT

i

T

i

�

=

T

0

T

de


�

1�

1

4

Æ

(r)

j

f

i

�

;

(4.10)

where Æ

(r)

is the intrinsi
 density perturbation in the ra-

diation and we used �

(r)

/ T

4

in the last equality. Insert-

ing the above equation and Eq. (4.7) into Eq. (4.8), and

using Eq. (2.19) for the de�nition of h

��

, one �nds, af-

ter integration by parts [6℄ the following result for s
alar

perturbations:

E

f

E

i

=

T

0

T

de


(

1�

�

1

4

D

(r)

g

+ V

(b)

j

n

j

+	 ��

�

f

i

+

Z

f

i

(

_

	 �

_

�)d�

)

: (4.11)

Here D

(r)

g

denotes the density perturbation in the radia-

tion 
uid, and V

(b)

is the pe
uliar velo
ity of the baryoni


matter 
omponent (the emitter and observer of radia-

tion). The �nal time values in the square bra
ket of Eq.

(4.11) give rise only to monopole 
ontributions and to

the dipole due to our motion with respe
t to the CMB,

and will be negle
ted in what follows.

Evaluating Eq. (4.11) at �nal time �

0

(today) and ini-

tial time �

de


, we obtain the temperature di�eren
e of

photons 
oming from di�erent dire
tions n and n

0

�T

T

�

ÆT (n)

T

�

ÆT (n

0

)

T

; (4.12)

with temperature perturbation

�T (n)

T

=

�

1

4

D

(r)

g

+ V

(b)

j

n

j

+ 	� �

�

(�

de


;x

de


)

+

Z

�

0

�

de


(

_

	�

_

�)(�;x(�))d� ; (4.13)

where x(�) is the unperturbed photon position at time

� for an observer at x

0

, and x

de


= x(�

de


) (If � = 0

we simply have x(�) = x

0

� (�

0

� �)n.). The �rst term

in Eq. (4.13) des
ribes the intrinsi
 inhomogeneities on

the surfa
e of last s
attering, due to a
ousti
 os
illa-

tions prior to de
oupling. Depending on the initial 
on-

ditions, it 
an 
ontribute signi�
antly on super-horizon

s
ales. This is espe
ially important in the 
ase of adia-

bati
 initial 
onditions. As we have seen in Eq. (3.44),

in a dust + radiation universe with 
 = 1, adiabati


initial 
onditions imply D

(r)

g

(k; �) = �20=3	(k; �) and

V

(b)

= V

(r)

� D

(r)

g

for k� � 1. With � = �	 the the

square bra
ket of Eq. (4.13) gives

�

�T (n)

T

�

(OSW)

adiabati


=

1

3

	(�

de


;x

de


)

on super-horizon s
ales. The 
ontribution to

ÆT

T

from the

last s
attering surfa
e on very large s
ales is 
alled the

`ordinary Sa
hs{Wolfe e�e
t' (OSW). It has been derived

for the �rst time by Sa
hs and Wolfe [27℄. For iso
urva-

ture perturbations, the initial 
ondition D

(r)

g

(k; �) ! 0

for �! 0 is satis�ed and the 
ontribution of D

g

to the

ordinary Sa
hs{Wolfe e�e
t 
an be negle
ted

�

�T (n)

T

�

(OSW)

iso
urvature

= 2	(�

de


;x

de


):

The se
ond term in (4.13) des
ribes the relative motions

of emitter and observer. This is the Doppler 
ontribu-

tion to the CMB anisotropies. It appears on the same

angular s
ales as the a
ousti
 term, and we thus 
all the

sum of the a
ousti
 and Doppler 
ontributions \a
ousti


peaks".

The last two terms are due to the inhomogeneities

in the spa
etime geometry; the �rst 
ontribution deter-

mines the 
hange in the photon energy due to the dif-

feren
e of the gravitational potential at the position of

emitter and observer. Together with the part 
ontained

inD

(r)

g

they represent the \ordinary" Sa
hs{Wolfe e�e
t.

The integral a

ounts for red-shift or blue-shift 
aused

by the time dependen
e of the gravitational �eld along

the path of the photon, and represents the so-
alled in-

tegrated Sa
hs{Wolfe (ISW) e�e
t. In a 
 = 1, pure

dust universe, the Bardeen potentials are 
onstant and

there is no integrated Sa
hs{Wolfe e�e
t; the blue-shift

whi
h the photons a
quire by falling into a gravitational

potential is exa
tly 
an
eled by the redshift indu
ed by


limbing out of it. This is no longer true in a universe

with substantial radiation 
ontribution, 
urvature or a


osmologi
al 
onstant.

The sum of the ordinary Sa
hs{Wolfe term and the

integral is the full Sa
hs{Wolfe 
ontribution (SW).

For ve
tor perturbations Æ

(r)

and A vanish and

Eq. (4.8) leads to

(E

f

=E

i

)

(V )

= (a

i

=a

f

)

"

1� V

(m)

j

n

j

j

f

i

+

Z

f

i

_�

j

n

j

d�

#

: (4.14)
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We obtain a Doppler term and a gravitational 
ontribu-

tion. For tensor perturbations, i.e., gravitational waves,

only the gravitational part remains:

(E

f

=E

i

)

(T )

= (a

i

=a

f

)

"

1�

Z

f

i

_

H

lj

n

l

n

j

d�

#

: (4.15)

Equations (4.11), (4.14) and (4.15) are the manifestly

gauge invariant results for the Sa
hs{Wolfe e�e
t for

s
alar ve
tor and tensor perturbations. Disregarding

again the dipole 
ontribution due to our proper motion,

Eqs. (4.14), (4.15) imply the ve
tor and tensor tempera-

ture 
u
tuations

�

�T (n)

T

�

(V )

= V

(m)

j

(�

de


;x

de


)n

j

+

Z

f

i

_�

j

(�;x(�))n

j

d�; (4.16)

�

�T (n)

T

�

(T )

= �

Z

f

i

_

H

lj

(�;x(�))n

l

n

j

d�: (4.17)

Note that for models where initial 
u
tuations have been

led down in the very early universe, ve
tor perturbations

are irrelevant as we have already pointed out. In this

sense Eq. (4.16) is here mainly for 
ompleteness. How-

ever, in models where perturbations are sour
ed by some

inherently inhomogeneous 
omponent (e.g., topologi
al

defe
ts) ve
tor perturbation 
an be important.

B. Power spe
tra

One of the basi
 tools to 
ompare models of large s
ale

stru
ture with observations are power spe
tra. They are

the \harmoni
 transforms" of the two point 
orrelation

fun
tions. If the perturbations of the model under 
on-

sideration are Gaussian (a relatively generi
 predi
tion

from in
ationary models), then the power spe
tra 
on-

tain the full statisti
al information of the model.

One important power spe
trum is the dark matter

power spe
trum,

P

D

(k) =

�

�

�

�

D

(m)

g

(k; �

0

)

�

�

�

2

�

; (4.18)

where h i indi
ates a statisti
al average over \initial 
on-

ditions" in a given model. P

D

(k) is usually 
ompared

with the observed power spe
trum of the galaxy distri-

bution.

Another power spe
trum is given by the velo
ity per-

turbations,

P

V

(k) =

D

jV (k; �

0

)j

2

E

' H

2

0




1:2

P

D

(k)k

�2

: (4.19)

For ' we have used that jkV j(�

0

) =

_

D

(m)

g

(�

0

) �

H

0




0:6

D

g

on sub-horizon s
ales (see, e.g., [15℄).

The power spe
trum we are most interested in is the

CMB anisotropy power spe
trum. It is de�ned as follows:

�T=T is a fun
tion of position x

0

, time �

0

and photon

dire
tion n. We develop the n-dependen
e in terms of

spheri
al harmoni
s. We will suppress the argument �

0

and often also x

0

in the following 
al
ulations. All results

are for today (�

0

) and here (x

0

). By statisti
al homogene-

ity expe
tation values are supposed to be independent of

position. Furthermore, we assume that the pro
ess gen-

erating the initial perturbations is statisti
ally isotropi
.

Then, the o�-diagonal 
orrelators of the expansion 
oef-

�
ients a

`m

vanish and we have

�T

T

(x

0

;n; �

0

) =

X

`;m

a

`m

(x

0

)Y

`m

(n);

ha

`m

� a

�

`

0

m

0

i = Æ

``

0

Æ

mm

0

C

`

: (4.20)

The C

`

's are the CMB power spe
trum. We assume

that the perturbations are generated by a homogeneous

and isotropi
 pro
ess, so that C

`

depends neither on x

0

nor on m, and that ha

`m

� a

�

`

0

m

0

i vanishes for ` 6= `

0

or

m 6= m

0

.

Let us, at this point insert a 
omment on the problem

of 
osmi
 varian
e: Even if our `ergodi
 hypothesis'

is 
orre
t and we may inter
hange ensemble and spatial

averages, we 
annot obtain very pre
ise averages for mea-

surements of large s
ale 
hara
teristi
s, due to the fa
t

that we 
an observe only the universe around a given

position. For example, let us assume that temperature


u
tuations are Gaussian, as they are in most in
ation-

ary models. The fun
tions a

`m

are then also Gaussian

distributed, and we have a varian
e of

�

�

�

�

�

1

2`+ 1

`

X

m=�`

ja

`m

j

2

� C

`

�

�

�

�

�

= jC

obs

`

� C

`

j =

C

`

2`+ 1

;

on the average of the 2`+1 values a

`m

whi
h 
an in prin-


iple be measured from one point with full sky 
overage.

For simpli
ity, we negle
t the in
rease of the varian
e due

to the fa
t that our own Milky Way blo
ks a portion of

sky of about 20%. Wi
k's theorem now gives

hC

2

`

i � hC

`

i

2

= hja

`m

j

4

i � hja

`m

j

2

i

2

= 2hja

`m

j

2

i

2

:

For a given multipole ` we then expe
t a varian
e of the C

`

's

q

(C

obs

`

)

2

� C

2

`

C

`

=

r

2

2`+ 1

; (4.21)

in real experiments, this `
osmi
 varian
e' is in general mu
h larger due to the limited sky 
overage.
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The two point 
orrelation fun
tion is related to the C

`

's by

�

�T

T

(n)

�T

T

(n

0

)

�

n�n

0

=�

=

X

`;`

0

;m;m

0

ha

`m

� a

�

`

0

m

0

iY

`m

(n)Y

�

`

0

m

0

(n

0

)

=

X

`

C

`

`

X

m=�`

Y

`m

(n)Y

�

`m

(n

0

)

| {z }

2`+1

4�

P

`

(n�n

0

)

=

1

4�

X

`

(2` + 1)C

`

P

`

(�); (4.22)

where we have used the addition theorem of spheri
al harmoni
s for the last equality. The P

`

's are the Legendre

polynomials.

Clearly the a

lm

's from s
alar, ve
tor and tensor perturbations are un
orrelated,

D

a

(S)

`m

a

(V )

`

0

m

0

E

=

D

a

(S)

`m

a

(T )

`

0

m

0

E

=

D

a

(V )

`m

a

(T )

`

0

m

0

E

= 0: (4.23)

Sin
e ve
tor perturbations de
ay, their 
ontributions, the C

(V )

`

, are negligible in models where initial perturbations

have been laid down very early, e.g., after an in
ationary period. Tensor perturbations are 
onstant on super-horizon

s
ales and perform damped os
illations on
e they enter the horizon.

Let us �rst dis
uss in somewhat more detail s
alar perturbations. We spe
ialize to the 
ase � = 0 for simpli
ity.

We suppose the initial perturbations to be given by a spe
trum,

D

j	j

2

E

k

3

= A

2

k

n�1

�

n�1

0

: (4.24)

We multiply by the 
onstant �

n�1

0

, the a
tual 
omoving size of the horizon, in order to keep A dimensionless for all

values of n. A then represents the amplitude of metri
 perturbations at horizon s
ale today, k = 1=�

0

.

On super-horizon s
ales we have, for adiabati
 perturbations:

1

4

D

(r)

g

= �

5

3

	 +O(x

2

); V

(b)

= V

(r)

= O(x): (4.25)

The dominant 
ontribution on super-horizon s
ales (negle
ting the integrated Sa
hs{Wolfe e�e
t

R

_

��

_

	) is then

�T

T

(x

0

;n; �

0

) =

1

3

	(x

de


; �

de


): (4.26)

The Fourier transform of (4.26) gives

�T

T

(k;n; �

0

) =

1

3

	(k; �

de


) � e

ikn(�

0

��

de


)

: (4.27)

Using the de
omposition

e

ikn(�

0

��

de


)

=

1

X

`=0

(2`+ 1)i

`

j

`

(k(�

0

� �

de


))P

`

(

b

k � n);

where j

`

are the spheri
al Bessel fun
tions, we obtain

�

�T
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;n; �

0

)

�T

T

(x

0

;n

0

; �

0
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d
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; �

0

)

�

(4.28)

=

1

(2�)

3

Z

d

3

k

�
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(k;n; �

0

)

�

�T
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�

�

(k;n
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; �

0

)

�

=

1

(2�)

3

Z

d

3

k

D

j	j

2

E
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(2`+ 1)(2`
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� �
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))j
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))i
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0

P

`
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^

k � n)P

`

0

(

^

k � n

0

):

Inserting P

`

(

^

kn) =

4�

2`+1

P

m

Y

�

`m

(

^

k)Y

`m

(n) and P

`

0

(

^

kn

0

) =

4�

2`

0

+1

P

m

0

Y

�

`

0

m

0

(

^

k)Y

`

0

m

0

(n

0

), integration over the dire
-

tions d


^

k

gives Æ

``

0

Æ

mm

0

P

m

Y

�

`m

(n)Y

`m

(n

0

). Using as well

P

m

Y

�

`m

(n)Y

`m

(n

0

) =

2`+1

4�

P

`

(�), where � = n � n

0

, we

�nd
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�

�T

T

(x

0

;n; �

0

)

�T

T

(x

0

;n

0

; �

0

)

�

nn

0

=�

=

X

`

2` + 1

4�

P

`

(�)

2

�

Z

dk

k

�

1

9

j	j

2

�

k

3

j

2

`

(k(�

0

� �

de


)): (4.29)

Comparing this equation with Eq. (4.22) we obtain for adiabati
 perturbations on s
ales 2 � ` � �(�

0

� �

de


)=�

de


� 100

C

(SW)

`

' C

(OSW)

`

'

2

�

Z

1

0

dk

k

*

�

�

�

�

1

3

	

�

�

�

�

2

+

k

3

j

2

`

(k (�

0

� �

de


)) : (4.30)

If 	 is a pure power law and we set k(�

0

� �

de


) � k�

0

, the integral (4.30) 
an be performed analyti
ally. For the

ansatz (4.24) one �nds for �3 < n < 3

C

(SW)

`

=

A

2

9

�(3� n)�(`�

1

2

+

n

2

)

2

3�n

�

2

(2�

n

2

)�(`+

5

2

�

n

2

)

: (4.31)

Of spe
ial interest is the s
ale invariant spe
trum, n = 1. This spe
trum with a time and s
ale independent

gravitational potential has �rst been investigated by Harrison and by Zel'dovi
h [29℄. It is therefore 
alled the

Harrison{Zel'dovi
h spe
trum. It leads to

`(` + 1)C

(SW)

`

= 
onst '

*

�

�T

T

(#

`

)

�

2

+

; #

`

� �=` : (4.32)

This is pre
isely (within the a

ura
y of the experiment) the behavior observed by the DMR experiment aboard

COBE [8℄.

In
ationary models predi
t very generi
ally a HZ spe
trum (up to small 
orre
tions). The DMR dis
overy has

therefore been regarded as a great su

ess, if not a proof, of in
ation. There are however other models like topologi
al

defe
ts [31{33℄ or 
ertain string 
osmology models [34℄ whi
h also predi
t s
ale-invariant, i.e., Harrison Zel'dovi
h

spe
tra of 
u
tuations. These models do however not belong to the 
lass investigated here, sin
e in these models

perturbations are indu
ed by seeds whi
h evolve non-linearly in time.

For iso
urvature perturbations, the main 
ontribution on large s
ales 
omes from the integrated Sa
hs{Wolfe e�e
t

and (4.30) is repla
ed by

C

(ISW)

`

'

8

�

Z

dk

k

k

3

*

�

�

�

�

Z

�

0

�

de


_

	(k; �)j

2

`

(k(�

0

� �))d�

�

�

�

�

2

+

: (4.33)

Inside the horizon 	 is roughly 
onstant (matter dominated). Using the ansatz (4.24) for 	 inside the horizon and

setting the integral in (4.33) � 2	(k; � = 1=k)j

2

`

(k�

0

), we obtain again (4.31), but with A

2

=9 repla
ed by 4A

2

. The

Sa
hs{Wolfe temperature anisotropies 
oming from iso
urvature perturbations are therefore about a fa
tor of 6 times

larger than those 
oming from adiabati
 perturbations.

On smaller s
ales, ` & 100 the 
ontribution to �T=T is usually dominated by a
ousti
 os
illations, the �rst two

terms in Eq. (4.13). Instead of (4.33) we then obtain

C

(AC)

`

'

2

�

Z

1

0

dk

k

k

3

*

�

�

�

�

1

4

D

(r)

g

(k; �

de


)j

`

(k�

0

) + V

(r)

(k; �

de


)j

0

`

(k�

0

)

�

�

�

�

2

+

: (4.34)

On sub-horizon s
ales D

(r)

g

and V

(r)

are os
illating like sine or 
osine waves depending on the initial 
onditions.

Correspondingly the C

(AC)

`

will show peaks and minima. On very small s
ales they are damped by the photon

di�usion whi
h takes pla
e during the re
ombination pro
ess (see next se
tion).

For gravitational waves (tensor 
u
tuations), a formula analogous to (4.31) 
an be derived (see appendix),

C

(T )

`

=

2

�

Z

dk k

2

*

�

�

�

�

Z

�

0

�

de


d�

_

H(�; k)

j

`

(k(�

0

� �))

(k(�

0

� �))

2

�

�

�

�

2

+

(` + 2)!

(` � 2)!

: (4.35)

To a very 
rude approximation we may assume

_

H = 0 on super-horizon s
ales and

R

d�

_

Hj

`

(k(�

0

� �)) � H(� =

1=k)j

`

(k�

0

). For a pure power law,

k

3

D

jH(k; � = 1=k)j

2

E

= A

2

T

k

n

T

�

�n

T

0

; (4.36)
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Fig. 5. A COBE normalized sample adiabati
 (solid line) and iso
urvature (dashed line) CMB anisotropy spe
trum,

`(` + 1)C

`

, are shown on the top panel. The quantity shown in the bottom panel is the ratio of temperature 
u
tuations

for �xed value of A (from Kanazawa et al. [35℄).

Fig. 6. Adiabati
 s
alar and tensor CMB anisotropy spe
tra are shown (top panels). The bottom panels show the 
orre-

sponding polarization spe
tra (see Se
tion IV.D). (from [25℄).

this gives

C

(T )

`

'

2

�

(` + 2)!

(` � 2)!

A

2

T

Z

dx

x

x

n

T

j

2

`

(x)

x

4

=

(` + 2)!

(` � 2)!

A

2

T

�(6� n

T

)�(` � 2 +

n

T

2

)

2

6�n

T

�

2

(

7

2

� n

T

)�(` + 4�

n

T

2

)

: (4.37)
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For a s
ale invariant spe
trum (n

T

= 0) this results in

`(` + 1)C

(T )

`

'

`(` + 1)

(`+ 3)(`� 2)

A

2

T

8

15�

: (4.38)

The singularity at ` = 2 in this 
rude approximation is

not real, but there is some enhan
ement of `(` + 1)C

(T )

`

at ` � 2.

Sin
e tensor perturbations de
ay on sub-horizon

s
ales, ` & 60, they are not very sensitive to 
osmologi
al

parameters.

Again, in
ationary models (and topologi
al defe
ts)

predi
t a s
ale invariant spe
trum of tensor 
u
tuations

(n

T

� 0).

On very small angular s
ales, ` & 800, 
u
tuations are

damped by 
ollisional damping (Silk damping). This ef-

fe
t has to be dis
ussed with the Boltzmann equation for

photons derived in the next se
tion.

C. The Boltzmann equation

1. Elements of the derivation

When parti
les are not very tightly 
oupled, the 
uid

approximation breaks down and they have to be de-

s
ribed by a Boltzmann equation,

p

�

�

�

f � �

i

��

p

�

p

�

�f

�p

i

= C[f ℄ : (4.39)

C[f ℄ is a 
ollision integral whi
h des
ribes the inter-

a
tions with other matter 
omponents. The left hand

side of (4.39) just requires the parti
les to move along

geodesi
s in the absen
e of 
ollisions.

Let us �rst 
onsider the situation where 
ollisions are

negligible, C[f ℄ = 0. The unperturbed Boltzmann equa-

tion implies that f be a fun
tion of v = ap only. Setting

f =

�

f (v)+F (�;x; v;n), where n denotes the momentum

dire
tions, leads then to the perturbation equation

�

�

F � n

i

�

i

F � �

(S) i

jk

n

j

n

k

�F

�n

i

(4.40)

= v

d

�

f

dv

h

n

i

A

;i

� n

i

n

j

�

B

ijj

�

_

H

ij

�

+H

L

i

:

Here �

(S) i

jk

are the Christo�el symbols of the spa
e of


onstant 
urvature �.

To derive (4.40), we have used p

2

= 0. The Liouville

equation for parti
les with non-vanishing mass 
an be

found in Ref. [6℄.

The ansatz

f(x;p) =

�

f

 

g

(3)

(p;p)

1

2

T (x;n)

!

=

�

f

�

Tv

T (x;n)

�

(4.41)

with T (x;n) = T (�) + �T (x;n) leads to

f =

�

f � v

d

�

f

dv

�T

T

: (4.42)

Integrating (4.40) over photon energies, we 
an also

write

�T

T

=

1

4

{; (4.43)

where { is the brightness perturbation,

{ =

4�

��a

4

Z

1

0

Fv

3

dv: (4.44)

Setting F = �v

d

�

f

dv

�T

T

, we �nd

�

�

�

�T

T

�

+ n

i

�

i

�

�T

T

�

� �

(S) i

jk

n

j

n

k

�

�

�T

T

�

�n

i

(4.45)

= �

h

n

i

A;

i

�

�

B

ijj

�

_

H

ij

�

n

i

n

j

+H

L

i

:

The fa
t that gravitational perturbations of Liouville's

equation 
an be 
ast purely in temperature perturbations

of the original distribution is not astonishing. This is just

an expression of gravity being \a
hromati
", i.e., inde-

pendent of the photon energy.

We now de
ompose (4.45) into s
alar, ve
tor and ten-

sor 
omponents. Even though �T=T is just a fun
tion,

it 
an be represented in the form

�T

T

(x;n) =

1

X

`=0

�

i

1

;:::;i

`

(x)n

i

1

� � �n

i

`

; (4.46)

where the �

i

1

;:::;i

`

are symmetri
 tra
eless tensor �elds

that 
ontain s
alar, ve
tor, 2-tensor and in prin
iple also

higher tensor 
omponents. Sin
e spin 
omponents larger

than 2 are not sour
ed by the right hand side of equation

(4.46) and sin
e they are suppressed at early times, when


ollisions are important, we negle
t them here.

For the s
alar 
ontribution to �T=T we obtain from

(4.46)

�

�

�

�T

T

�

(S)

+ k�

�

�T

T

�

(S)

� �

(S) i

jk

n

j

n

k

�

�

�T

T

�

(S)

�n

i

= �

�

k�A+ �

2

k

2

�

B �

_

H

T

�

+H

L

+

1

3

k

2

_

H

T

�

; (4.47)

where we have introdu
ed the \dire
tion 
osine" � de-

�ned by n

i

Y;

i

= k�Y . Note that in 
at spa
e, � = 0, we

have just � = i

^

k �n.

This equation is not manifestly gauge-invariant. How-

ever, setting

M

(S)

=

�

�T

T

�

(S)

+H

L

+

1

3

k

2

H

T

+ k�

�

_

H �B

�

;

(4.48)

it redu
es to

�

�

M

(S)

+ k�M

(S)

� �

(S) i

jk

n

j

n

k

�M

(S)

�n

i

= k� (��	) ;

(4.49)
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where � and 	 are the Bardeen potentials. If n

j

are 
om-

ponents with respe
t to a geodesi
 basis (or � = 0), the

third term on the left hand side of Eq. (4.49) vanishes.

For simpli
ity we now 
on
entrate on the 
ase � = 0. We


an then integrate the equation and obtain

M

(S)

(�

0

;n;k) = exp[ik �n(�

in

� �

0

)℄M

(S)

(�

in

;n;k)

+

Z

�

0

�

in

i exp[ik �n(� � �

0

)℄n � k (� �	) d� : (4.50)

Integration by parts and negle
ting the monopole term

(��	) (�

0

), leads to

M

(S)

(�

0

;n;k) = exp[ik �n(�

in

� �

0

)℄ (4.51)

�

h

M

(S)

(�

in

;n;k) + (� �	) (�

in

;k)

i

�

Z

�

0

�

in

exp[ik � n(� � �

0

)℄

�

_

��

_

	

�

d� :

Comparing this equation with (4.13), we see again that

M

(S)

=

�

�T

T

�

(S)

(up to gauge dependent monopole and

dipole 
ontributions) if the initial 
ondition is

M

(S)

(�

in

;n;k) =

1

4

D

(r)

g

(�

in

;k) + n � kV

(b)

(�

in

;k);

whi
h is equivalent to require that M

(S)

(�

in

) has no

higher than �rst moments. As we shall see below, this

assumption is quite reasonable sin
e 
ollisions suppress

the build up of higher moments before re
ombination.

Sin
e the right hand side of (4.49) is gauge invariant,

the left hand side must be so as well and we 
on
lude

that M

(S)

is a gauge-invariant variable (a dire
t proof

of this, analyzing the gauge transformation properties of

the distribution fun
tion, 
an be found in Ref. [6℄).

M

(S)

used in this work 
oin
ides with the s
alar

temperature 
u
tuations up a to a gauge dependent

monopole and dipole 
ontribution. In other work [48℄ the

gauge invariant variable � � M

(S)

� � has been used.

Sin
e � is independent of the photon dire
tion n this dif-

feren
e in the de�nition shows up only in the monopole,

C

0

.

The ve
tor and tensor parts of �T=T are gauge{

invariant by themselves and we denote them by M

(V )

and M

(T )

for 
onsisten
y. In the absen
e of 
ollisions

and with vanishing spatial 
urvature, they satisfy the

equations

_

M

(V )

+ i�kM

(V )

= �in

`

n

m

k

`

�

(V )

m

; (4.52)

_

M

(T )

+ i�kM

(T )

= �in

`

n

m

_

H

m`

: (4.53)

The 
omponents of the energy momentum tensor are

obtained by integrating the se
ond moments of the dis-

tribution fun
tion over the mass shell,

T

��

=

Z

P

m

(x)

p

�

p

�

f(p; x)

p

2

dp d


p̂

p

0

; (4.54)

where 


p̂

denotes the angular integration over momen-

tum dire
tions. One �nds for � = 0 and setting � = n �

^

k:

D

(r)

g

=

1

�

Z

M

(S)

d
; (4.55)

V

(r)

=

3i

4�

Z

�M

(S)

d
; (4.56)

�

(r)

=

9

2�

Z

�

�

2

�

1

3

�

M

(S)

d
; (4.57)

�

(r)

= 0; (4.58)

V

(V )

i

=

1

4�

Z

n

i

M

(V )

d
; (4.59)

�

(V )

j

=

6

�

Z

�n

j

M

(V )

d
; (4.60)

�

(T )

ij

=

3

�

Z

n

i

n

j

M

(T )

d
: (4.61)

Let us now turn to the 
ollision term. At re
ombi-

nation (when the 
uid des
ription of radiation breaks

down) the temperature is � 0:4 eV. The ele
trons and

nu
lei are non-relativisti
 and the dominant 
ollision pro-


ess is non-relativisti
 Thomson s
attering. Sin
e 
olli-

sions are important only before and during re
ombina-

tion, where 
urvature e�e
ts are entirely negligible, we

set � = 0 in the reminder of this se
tion.

The 
ollision term is given by

C[f ℄ =

df

+

d�

�

df

�

d�

; (4.62)

where f

+

and f

�

denote the distribution of photons s
at-

tered into respe
tively out of the beam due to Compton

s
attering.

In the matter (baryon/ele
tron) rest frame, whi
h we

indi
ate by a prime, we know

df

0

+

dt

0

(p;n) =

�

T

n

e

4�

Z

f

0

(p

0

;n

0

)!(n;n

0

)d


0

;

where n

e

denotes the number density of free ele
trons,

�

T

is the Thomson 
ross se
tion, and ! is the normalized

angular dependen
e of the Thomson 
ross se
tion:

!(n;n

0

) = 3=4[1 + (n � n

0

)

2

℄ = 1 +

3

4

n

ij

n

0

ij

with

n

ij

� n

i

n

j

�

1

3

Æ

ij

:

In the baryon rest frame whi
h moves with four velo
ity

u, the photon energy is given by

p

0

= p

�

u

�

:

We denote by p the photon energy with respe
t to a

tetrad adapted to the sli
ing of spa
etime into f� =


onstantg hyper-surfa
es:

p = p

�

n

�

; with n = a

�1

[(1� A)�

�

+B

i

�

i

℄:

The unit ve
tor n is the normal to the hyper-surfa
es of


onstant time. The lapse fun
tion and the shift ve
tor of
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the sli
ing are given by � = a(1+A) and � = �B

i

�

i

. In

�rst order,

p

0

= ap(1 +A) � apn

i

B

i

;

and in zeroth order, 
learly,

p

i

= apn

i

:

Furthermore, the baryon four-velo
ity has the form u

0

=

a

�1

(1�A); u

i

= u

0

v

i

up to �rst order. This yields

p

0

= p

�

u

�

= p(1 + n

i

(v

i

�B

i

)):

Using this identity and performing the integration over

photon energies, we �nd

�

r

d�

+

(n)

dt

0

= �

r

�

T

n

e

[1 + 4n

i

(v

i

�B

i

)

+

1

4�

Z

�(n

0

)!(n; n

0

)d


0

℄:

The distribution of photons s
attered out of the beam,

has the well known form (see, e.g., Lifshitz and Pitajew-

ski [1983℄)

df

�

dt

0

= �

T

n

e

f

0

(p

0

;n);

so that we �nally obtain
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4
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df

+

dt
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�

df
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dt
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�
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3

= �

T

n

e

[Æ
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� �+ 4n
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i
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+

3

16�
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ij

Z

�(n
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)n

0

ij

d


0

℄;

where Æ

r

= (1=4�)

R

�(n)d
 is the photon energy density

perturbation.

Using the de�nitions of the gauge-invariant variables

M

(S)

and V

(b)

for the photon brightness perturbation

and the baryon velo
ity potential, we 
an write C

0

in

gauge-invariant form

C

0

= 4�

T

n

e

[

1

4

D

(r)

g

�M

(S)

+ n

i

V

(b)

i

+

1

2

n

ij

M

ij

℄; (4.63)

with

D

(r)

g

= (1=�)

Z

M

(S)

d


and

M

ij

�

3

8�

Z

M

(S)

(n

0

)n

0

ij

d


0

:

Sin
e the term in square bra
kets of (4.63) is already

�rst order we 
an set dt

0

= dt whi
h yields C =

dt

0

d�

C

0

=

dt

d�

C

0

= aC

0

. The Boltzmann equation for s
alar pertur-

bations expressed in terms of the gauge invariant variable

M

(S)

then be
omes

_

M

(S)

+ n

i

�

i

M

(S)

= n

i

�

i

(� �	) + a�

T

n

e

[

1

4

D

(r)

g

�M

(S)

� n

i

�

i

V

(b)

+

1

2

n

ij

M

ij

℄: (4.64)

For ve
tor and tensor perturbations we obtain in the

same way

_

M

(V )

+ i�kM

(V )

= �n

i

n

j

�

ijj

(4.65)

+ a�

T

n

e

�

n

i

V

(V b)

i

+

1

2

n

ij

M

(V )

ij

�M

(V )

�

;

_

M

(T )

+ i�kM

(T )

= �n

i

n

j

_

H

ij

(4.66)

+ a�

T

n

e

h

n

ij

M

(T )

ij

�M

(T )

i

:

2. The tight 
oupling limit

Before re
ombination, when n

e

' �

b

=m

p

,

�

T

�

1

a�

T

n

e

�

10




b

h

(1 + z)

�

3

2

� � �;

z

eq

& z & z

de


; (4.67)

�

10




b

h

(1 + z

eq

)

�

1

2

(1 + z)

�1

�;

z & z

eq

: (4.68)

To lowest order in �

T

, 
ollisions for
e the photon dis-

tribution to be of the form

M

(S)

=

1

4

D

g

+ n

i

V

(b)

i

+

1

2

n

ij

M

ij

; (4.69)

the building up of higher moments is strongly suppressed

by 
ollisions.

During re
ombination, the number density of free ele
-

trons, n

e

, de
reases rapidly and the 
ollision term be-


omes less and less important. Higher moments in the

photon distribution develop by free streaming.

The 
ollision term C[M

(S)

℄ of equation (4.64) also ap-

pears in the equation of motion of the baryons as a drag.

The Thomson drag for
e is given by

F

j

=

�

r

4�

Z

C[M

(S)

℄n

j

d
 =

�4a�

T

n

e

�

r

3

(M

j

+ V

(b)

i

);

(4.70)

with

M

j

=

3i

4�

Z

n

j

M

(S)

d
:

This yields the following s
alar baryon equation of mo-

tion in an ionized plasma

_

V

(b)

+ (_a=a)V

(b)

= k	 �

4a�

T

n

e

�

r

3�

b

(�

^

k

j

M

j

+ V

(b)

) ;

(4.71)

where we have added the drag for
e to the se
ond eq. of

(2.55) with w = 


2

s

= 0.

We now want to dis
uss equations (4.64,4.71) in the

limit of very many 
ollisions. The 
omoving photon mean
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free path is given by �

T

= l

T

= (a�

T

n

e

)

�1

. In lowest or-

der �

T

=� and l

T

=� [13℄, M

(S)

is given by (4.69), and

Eq. (4.71) implies

�

^

k

j

M

j

+ V

(b)

= 0 :

Inserting the solution (4.69) in the Boltzmann equa-

tion (4.64) and integrating over dire
tions this implies

kV

(b)

= k

j

M

j

= kV

(r)

=

�3

4

_

D

(r)

g

; (4.72)

Implying espe
ially V

(b)

= V

(r)

� V . Eq. (4.72) is equiv-

alent to the energy 
onservation equation (2.55) for ra-

diation. Using also (2.55) for baryons, w = 0, we obtain

_

D

(r)

g

=

�4k

3

V

(b)

=

4

3

_

D

(b)

g

:

This shows that entropy per baryon is 
onserved, � = 0.

Before re
ombination, when the 
ollisions are suÆ
iently

frequent, baryons and photons are adiabati
ally 
oupled.

Inserting (4.69) in (4.64) we �nd up to �rst order in �

T

M

(S)

= D

(r)

g

� 4in

j

k

j

V +

1

2

n

ij

M

ij

� �

T

[

_

D

(r)

g

� 4in

j

k

j

_

V +

1

2

n

ij

_

M

ij

+ in

j

k

j

D

(r)

g

+ 4n

i

n

j

k

i

k

j

V

+

i

2

n

i

n

mj

k

i

M

mj

� i4n

j

k

j

(� �	)℄: (4.73)

Using (4.73) to 
al
ulate the drag for
e yields

F

j

= ik

j

(�

r

=3)[4

_

V �D

(r)

g

+ 4(� �	)℄ :

Inserting F

j

in (4.71), we obtain

(�

b

+ (4=3)�

r

)

_

V + �

b

( _a=a)V = (�

r

=3)D

(r)

g

+ (�

b

+ (4=3)�

r

)	 � (4�

r

=3)� :

This is equivalent to momentum 
onservation, the se
-

ond equation of (2.55) for � = �

b

+ �

r

, p = �

r

=3 and

� = � = 0, if we use

D

(r)

g

= (4=3)D

(b)

g

and D

g

=

�

r

D

(r)

g

+ �

b

D

(b)

g

�

b

+ �

r

:

In this limit therefore, baryons and photons behave like

a single 
uid with density � = �

r

+ �

b

and pressure

p = �

r

=3.

From (2.55) we 
an derive a se
ond order equation for

D

g

. This equation 
an be simpli�ed if expressed in terms

of the variable D related by (3.1). We obtain

�

D + 


2

s

k

2

D + (1 + 3


2

s

� 6w)( _a=a)

_

D � 3[w(�a=a)

� ( _a=a)

2

(3(


2

s

� w)� (1=2)(1 + w))℄D = 0:

For small wavelengths (sub-horizon), whi
h are however

suÆ
iently large for the 
uid approximation to be valid,

1=�

T

� 


s

k � 1=�, we may drop the term in square

bra
kets. The ansatz D(t) = A(t) exp(�i

R

k


s

dt) then

eliminates the term of order 


2

s

k

2

. For the terms of order




s

k=� we obtain the equation

2

_

A=A+ (1 + 3


2

s

� 6w)( _a=a) + _


s

=


s

= 0 : (4.74)

For the 
ase 


2

s

= w = 
onst. This equation is solved by

A / (k�)

1��

with � = 2=(3w + 1), i.e., the short wave

limit. In our situation we have

w =

�

r

3(�

r

+ �

b

)

;




2

s

=

_�

r

3( _�

r

+ _�

b

)

=

(4=3)�

r

4�

r

+ 3�

b

;

_


s

=


s

= �3=2( _a=a)

�

b

4�

r

+ 3�

b

:

Using all this, one �nds that

A =

�

�

b

+ (4=3)�

r




s

(�

r

+ �

b

)

2

a

4

�

1=2

=

�

�+ p




s

�

2

a

4

�

1=2

solves (4.74) exa
tly, so that we �nally obtain the approx-

imate solution for the tightly 
oupled matter radiation


uid on sub-horizon s
ales

D(t) /

�

� + p




s

�

2

a

4

�

1=2

exp

�

�ik

Z




s

d�

�

: (4.75)

Note that this short wave approximation is only valid

in the limit � � 1=(


s

k), thus the limit to the mat-

ter dominated regime, 


s

! 0 
annot be performed. In

the limit to the radiation dominated regime, 


2

s

! 1=3

and � / a

�4

we re
over the a
ousti
 waves with 
on-

stant amplitude whi
h we have already found in the last

subse
tion. But also in this limit, we still need matter

to ensure �

T

= 1=(a�

T

n

e

) � �. In the opposite 
ase,

�

T

� �, radiation does not behave like an ideal 
uid

but it be
omes 
ollisionless and has to be treated with

Liouville's equation ((4.64) without the 
ollision term).

3. Damping by photon di�usion

In this subse
tion we dis
uss the Boltzmann equation

in the next order, (�

T

=�)

2

. In this order we will obtain

the damping of 
u
tuations in an ionized plasma due to

the �niteness of the mean free path; the non-perfe
t 
ou-

pling. We follow the treatment by Peebles [21℄ (using our

gauge-invariant approa
h instead of syn
hronous gauge).

Again we 
onsider Eqs. (4.64) and (4.71), but sin
e we

are mainly interested in 
ollisions whi
h take pla
e on

time s
ales �

T

� �, we negle
t gravitational e�e
ts and

the time dependen
e of the 
oeÆ
ients. We 
an then look

for solutions of the form

V /M

(S)

/ exp(i(k � x � !�)):

In (4.64) and (4.71) this yields (negle
ting also the an-

gular dependen
e of Compton s
attering, i.e., the term

n

ij

M

ij

)
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M

(S)

=

1

4

D

(r)

g

� 4ik � nV

1� i�

T

(! � k � n)

(4.76)

and

�

T

k!V = (4�

r

=3�

b

)(ikV +M); (4.77)

with M = (3=4�)

R

nM

(S)

d
. Integrating (4.64) over

angles, one obtains

_

D

(r)

g

+ (i=3)k

j

M

i

= 0. With our

ansatz therefore k �M = 3!D

(r)

g

. Using this after s
alar

multipli
ation of (4.77) with k, we �nd, setting R =

3�

b

=4�

r

,

V =

(3=4)!D

(r)

g

�

T

k

2

R! � ik

2

:

Inserting this result for V in (4.76) leads to

M

(S)

=

D

(r)

g

4

1 +

3�!=k

1�i�

T

!R

1� i�

T

(! � k�)

;

where we have set � =

^

k � n. This is the result of Pee-

bles [21℄, where the same 
al
ulation is performed in syn-


hronous gauge. Like there (x92), one obtains in lowest

non-vanishing order !�

T

the following dispersion rela-

tion: Using

1

2

Z

1

�1

M

(S)

d� =

D

(r)

g

4

;

whi
h yields

1 =

1

2

Z

1

�1

1 +

3�!=k

1�i�

T

!R

1� i�

T

(! � k�)

d�

one �nds

! = !

0

� i


with

!

0

= k=[3(1 + R)℄

1=2

and


 = (k

2

�

T

=6)

R

2

+

4

5

(R+ 1)

(R+ 1)

2

: (4.78)

In the baryon dominated regime, R � 1, therefore


 � k

2

�

T

=6 : (4.79)

(If the angular dependen
e of Thompson s
attering is

not negle
ted, the term

4

5

(R+1) in Eq. (IVC3) be
omes

8

9

(R + 1). If also polarization is taken into a

ount, one

obtains

16

15

(R+ 1).)

Posing k

damp

�

T

=6 = 1, this leads to a damping s
ale

�

damp

� �

T

(�

de


)=2, whi
h is proje
ted in the mi
rowave

sky to an angle

#

damp

�

�

T

(�

de


)

2�(�

0

� �

de


)

:

For � = 0 this 
orresponds to a few ar
 minutes and to

the harmoni
 number

`

damp

= �=#

damp

'

��

0

20�

T

(�

de


)

'

(1 + z

de


)

2

20




b

h :

(4.80)

This estimate is very 
rude sin
e we are using the ap-

proximation for �

T

from the tight 
oupling regime just

where 
oupling stops to be tight, and we assume an arbi-

trary value of n

e

� 0:1n

b

at the moment of de
oupling.

Both these errors enhan
e the value of `

damp

somewhat.

Numeri
al results give

`

damp

� 800�1000

in a � = 0 universe. In open (
losed) universes, this s
ale

(whi
h of 
ourse also depends on 


b

) is moved to larger

(lower) ` due to proje
tion. A reasonable approximation

for the damping harmoni
 is

`

damp

� 1000

�




b

h

0:02(1�


�

)

1=2

�

:

Temperature 
u
tuations on smaller s
ales, ` > `

damp

are exponentially damped by photon di�usion.

D. Polarization and moment expansion

Thomson s
attering is not isotropi
. And what is more,

for a non-isotropi
 photon distribution it depends on the

polarization: Even if the in
ident photon beam is unpo-

larized, the s
attered beam will be, unless the in
ident

distribution is perfe
tly isotropi
. In the previous se
tion

we have negle
ted this e�e
t by summing over initial po-

larizations and averaging over �nal polarizations. Now

we want to derive the di�eren
e in the Boltzmann equa-

tion taking into a

ount polarization.

Polarization is usually 
hara
terized by means of the

Stokes parameters [22{24℄.

For a harmoni
 ele
tromagneti
 wave with ele
tri
 �eld

E(x; t) = ("

1

E

1

+ "

2

E

2

) e

i!(nx�t)

; (4.81)

where n, "

1

and "

2

form an orthonormal basis and the


omplex �eld amplitudes are parameterized as E

j

=

a

j

e

iÆ

j

, the Stokes parameters are given by

I = a

2

1

+ a

2

2

; (4.82)

Q = a

2

1

� a

2

2

; (4.83)

U = 2a

1

a

2


os(Æ

2

� Æ

1

); (4.84)

V = 2a

1

a

2

sin(Æ

2

� Æ

1

): (4.85)

I is the intensity of the wave (whose perturbation { has

been introdu
ed in the previous se
tion), while Q is a

measure of the strength of linear polarization (the ra-

tio of the prin
ipal axis of the polarization ellipse). V

measures 
ir
ular polarization whi
h is not generated by
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Thomson s
attering and therefore V vanishes if the ini-

tial 
ir
ular polarization vanishes (whi
h we assume). U

is then determined via the identity I

2

= Q

2

+ U

2

.

Sin
e Q vanishes in the ba
kground, to �rst order it

obeys the unperturbed Boltzmann equation,

�

�

Q+ in

j

k

j

Q� �

(S) i

jk

n

j

n

k

�Q

�n

i

= C[Q℄; (4.86)

where C is the 
ollision integral. The same type of equa-

tion, with a somewhat di�erent 
ollision integral is sat-

is�ed by U . The 
ollision integral for V does not 
ouple

to I;Q or U and hen
e V � 0 is a 
onsistent solution.

An expli
it derivation of the following Boltzmann

hierar
hy in
luding polarization is presented in Ap-

pendix III A. Here we just repeat the ne
essary de�ni-

tions and the results.

The brightness anisotropy M and the non-vanishing

Stokes parameters Q and U 
an be expanded as

M(�;k;n) =

X

`

2

X

m=�2

M

(m)

`

(�; k)

0

G

m

`

(n): (4.87)

The B-mode vanishes for s
alar perturbations,

0

B

l

� 0

Q(�;k;n)� iU (�;k;n) =

X

`

2

X

m=�2

(E

(m)

`

� iB

(m)

`

)

2

G

m

`

(n): (4.88)

The spe
ial fun
tions

s

G

m

`

are des
ribed in Ap-

pendix III A. The 
oeÆ
ients m = 0;m = �1 and

m = �2 des
ribe the s
alar (S), ve
tor (V ) and tensor

(T ) 
omponents respe
tively. The Boltzmann equation

for the 
oeÆ
ients X

(m)

`

is given by

_

M

(m)

`

� k

�

0

�

m

`

2`� 1

M

(m)

`�1

�

0

�

m

`+1

2` + 3

M

(m)

`+1

�

= � n

e

�

T

aM

(m)

`

+ S

(m)

`

; (` � m); (4.89)

_

E

(m)

`

� k

�

2

�

m

`

2`� 1

E

(m)

`�1

�

2m

`(` + 1)

B

(m)

`

�

2

�

m

`+1

2`+ 3

E

(m)

`+1

�

= � n

e

�

T

a[E

(m)

`

+

p

6C

(m)

Æ

`;2

; (4.90)

_

B

(m)

`

� k

�

2

�

m

`

2`� 1

B

(m)

`�1

+

2m

`(` + 1)

E

(m)

`

�

2

�

m

`+1

2` + 3

B

(m)

`+1

�

= � n

e

�

T

aB

(m)

`

: (4.91)

where we set

S

(0)

0

= n

e

�

T

aM

(0)

0

; S

(0)

1

= n

e

�

T

a4V

b

+ 4k(	� �); S

(0)

2

= n

e

�

T

aC

(0)

;

S

(1)

1

= n

e

�

T

a4!

b

; S

(1)

2

= n

e

�

T

aC

(1)

+ 4�; S

(2)

2

= n

e

�

T

aC

(2)

+ 4

_

H (4.92)

and C

(m)

=

1

10

[M

(m)

2

�

p

6E

(m)

2

℄. The 
oupling 
oeÆ-


ients are

s

�

m

`

=

r

(`

2

�m

2

)(`

2

� s

2

)

`

2

:

The CMB temperature and polarization power spe
-

tra are given in terms of the expansion 
oeÆ
ientsM

(m)

`

,

E

(m)

`

and B

(m)

`

as

(2` + 1)

2

C

XY (m)

`

=

n

m

8�

Z

k

2

dkX

(m)

`

Y

(m)�

`

; (4.93)

where n

m

= 1 for m = 0 and n

m

= 2 for m = 1; 2,

a

ounting for the number of modes. Sin
e B is parity

odd, the only non-vanishing 
ross 
orrelation spe
trum

is C

TE

.

Fig. 7. The temperature anisotropy (solid), the polariza-

tion (dashed) and their 
orrelation (dotted) are shown for a

purely s
alar standard CMD model.
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The Boltzmann hierar
hy presented above 
an be

solved numeri
ally with publi
ly available fast numer-

i
al 
odes like CMBfast [37℄ or CAMCODE [38℄. This

enables us to 
ompute the CMB anisotropy and polar-

ization spe
tra for many di�erent values of 
osmologi
al

parameters, and 
ompare them with present data.

E. Parameter estimation

In the last paragraph of this se
tion of this se
tion we

make some general remarks about the dependen
e of the

CMB anisotropy spe
trum on di�erent parameters and

about degenera
ies. We start by enumerating the rele-

vant physi
al pro
esses.

1. Physi
al pro
esses

� Before re
ombination, photons and baryons form a

tightly 
oupled 
uid whi
h performs a
ousti
 os
il-

lations on sub-horizon s
ales.

� Depending on the initial 
onditions, these os
illa-

tions are sine waves (iso
urvature 
ase) or 
osine

waves (adiabati
 
ase).

� After re
ombination, the photons move along per-

turbed geodesi
s, only in
uen
ed by the metri
 per-

turbations.

� Ve
tor perturbations of the metri
 de
ay as a

�2

af-

ter 
reation and their e�e
ts on CMB anisotropies

are negligible for models where initial 
u
tuations

are 
reated early, e.g., during an in
ationary phase.

This is di�erent for models whi
h 
onstantly seed


u
tuations in the geometry, e.g., topologi
al de-

fe
ts.

� Tensor perturbations of the metri
 have 
onstant

amplitude on super-horizon s
ales and perform

damped os
illations / a

�1

on
e they enter the

horizon.

� S
alar perturbations of the metri
 are roughly 
on-

stant if they enter the horizon only after the time

of matter and radiation equality. On s
ales whi
h

enter the horizon before equality they are damped

by a fa
tor (z

eq

=z

in

)

2

, where z

eq

and z

in

are the

redshift of equality and of horizon 
rossing, respe
-

tively.

� Perturbations on small s
ales, k & k

T

'

(


b

h=20)(z

de


+ 1)

2

H

0

are exponentially damped

by 
ollisional damping during re
ombination (Silk

damping).

2. S
ale dependen
e

� On large s
ales (larger than the horizon s
ale at

re
ombination, ` . `

H

' �=#

H

, with #

H

=

�

de


=�(�

0

� �

de


), perturbations are dominated

by gravitational e�e
ts: In
ationary models typ-

i
ally lead to k

3




j	��j

2

(k; �

de


)

�

' 
onst and

k

3




H

2

�

' 
onst on these s
ales. This implies a


at \Harrison{Zel'dovi
h" spe
trum,

�

�T

T

�

2

(#

`

) ' `(` + 1)C

`

' 
onst; #

`

=

�

`

:

(4.94)

� On intermediate s
ales, `

H

< ` < `

damp

� 800,

CMB anisotropies mainly re
e
t the a
ousti
 os-


illations of the photon/baryon plasma prior to

re
ombination. The position of the �rst peak is

severely a�e
ted by initial 
onditions (adiabati


or iso
urvature). For � = 0, the �rst 
ontra
tion

peak is at about `

(a)

1

� 200 if the initial 
onditions

are adiabati
, while the �rst 
ontra
tion peak is at

`

(i)

1

� 350 for iso
urvature initial 
onditions. The

amplitude of and the distan
e between the peaks

depend strongly on 
osmologi
al parameters.

� On small s
ales, `

damp

< `, 
u
tuations are


ollisionally damped during re
ombination (\Silk

damping"). The damping s
ale depends mainly on




b

h and 
.

3. The main in
uen
e of 
osmologi
al parameters

� Curvature, h

2




�

:

{ Mainly a�e
ts the inter-peak distan
e, �`,

and, for given initial 
onditions, the position

of the �rst peak. Positive 
urvature lowers �`

while negative 
urvature enhan
es it.

{ Curvature also leads to an integrated Sa
hs{

Wolfe 
ontribution whi
h is espe
ially impor-

tant for � > 0 at very low `. Overall, this leads

to some enhan
ement of the Sa
hs{Wolfe 
on-

tribution and therefore (after normalization

to the COBE measurements) to somewhat

lower a
ousti
 peaks.

� Baryon density, �

b

= 


b

h

2

� 10

�29

g=
m

3

:

{ A high baryoni
 density enhan
es the 
om-

pression peaks and de
reases the expansion

peaks via the self{gravity of the baryons.

{ It also redu
es the damping s
ale, �

T

=

1=(a

de


�

T

n

e

(�

de


)), leading to an in
rease in

`

damp

.

{ Baryons de
rease the plasma sound velo
ity,




s

=

1

=

3

(1+ _�

b

= _�




)

�1

, and hen
e prolongs the

os
illation period. This in
reases the spa
ing

between a
ousti
 peaks.
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� Cosmologi
al Constant, � =




�

h

2

8�G

10

�29

g=
m

3

:

The presen
e of a 
osmologi
al 
onstant at �xed




tot

= 


m

+ 


�

delays the epo
h of equal matter

and radiation. During the radiation dominated era,

the gravitational potential is not 
onstant, but de-


ays as soon as a given s
ale enters the horizon. If

�

eq

� �

de


this indu
es an integrated Sa
hs{Wolfe

(ISW) 
ontribution whi
h boosts mainly the �rst

a
ousti
 peak. 


�

also boosts the late integrated

Sa
hs{Wolfe 
ontribution.

� Hubble Parameter, H

0

= 100h km=(s �Mp
):

The in
uen
e of the Hubble parameter is 
om-

pli
ated and depends sensitively on the variables

whi
h are kept �xed during its variation (


�

or

!

�

= h

2




�

). As one example of its in
uen
e: for

�xed 
urvature and 
osmologi
al 
onstant, lower-

ing the Hubble parameter also delays the epo
h of

equal matter and radiation, �

eq

! �

de


, sin
e

z

eq

+ 1 =




m




rad

' 2:4 � 10

4




m

h

2

: (4.95)

Therefore the same type of ISW 
ontribution as for

�-models boosts the �rst a
ousti
 peak.

� Initial 
onditions:

{ A tensor 
ontribution enhan
es the large

s
ales 
u
tuations but not the a
ousti
 peaks,

thereby lowering their relative amplitude.

{ A \blue" 
u
tuation spe
trum, n > 1, en-

han
es 
u
tuations on smaller s
ales and

raises thereby the a
ousti
 peaks.

4. Degenera
y

One important issue in determining 
osmologi
al pa-

rameters from CMB anisotropy measurements is the


hoise of good variables, whi
h requires physi
al insight

in how anisotropies are in
uen
ed. As we have argued

before, the Hubble parameter, h is not a good variable

sin
e its in
uen
e is very 
ompli
ated. It enters the 
os-

mi
 densities �

�

/ 


�

h

2

and the length s
ales like �

eq

or

�

de


. Another limitation for parameter estimation from

CMB anisotropies is degenera
y. We illustrate here just

one example. As we have dis
ussed in Se
tion 3, the posi-

tion of the �rst a
ousti
 peak only depends on the sound

horizon, �

s

=

R

�

de





s

d� and the angular diameter dis-

tan
e to the last s
attering surfa
e, �(�

0

� �

de


). The

distan
e between subsequent peaks in the CMB power

spe
trum is proportional to

�` =

�(�

0

� �

de


)

�

s

:

1 10 100 1000
0

20

40

60

80

100

Fig. 8. Left: The lines of 
onstant R are shown in the 


�

{


m

plane. The values 


�

;


m

for whi
h the CMB anisotropy

spe
tra are shown right are indi
ated as bla
k dots. Right: Three CMB anisotropy spe
tra with di�erent values of 


�

and




m

but �xed R are shown. For ` & 50 these spe
tra are 
learly degenerate.The solid line represents a 
at model, while the

dotted line 
orresponds to a 
losed and the dashed line to an open universe.
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In Fig. 8 (left panel) we show lines of 
onstant R =

�`=�`

0

in the 


m

{


�

plane. Here �`

0

= �`

0

(


�

=




�

= 0) is the value of �` in a spatially 
at universe

with vanishing 
osmologi
al 
onstant. To the right the

CMB anisotropy spe
tra for s
alar perturbations with

�xed index n = 1 and �xed values of the matter den-

sity !

m

and the baryon density !

b

. But the 
osmolog-

i
al 
onstant and h vary, so that 


�

and 


m


orre-

spond to the values indi
ated by bullets on the left panel.

Clearly, for ` > 50 these spe
tra are perfe
tly degener-

ate. On the other hand, due to 
osmi
 varian
e, the low

` CMB anisotropies will never be known to very good

a

ura
y so that this degenera
y 
annot be lifted by

CMB anisotropy observations alone. Additional data like

the supernova type Ia measurements, observations of the

galaxy distribution (large s
ale stru
ture) or CMB polar-

ization are needed.

There are also other degenera
ies like the opti
al depth

to reionization and the tensor 
ontribution or the s
alar

spe
tral index and the tensor 
ontribution. The impor-

tant lesson to learn is that even if the very stringent

model assumptions are 
orre
t, we still need other data

to measure 
osmologi
al parameters and espe
ially we

will only feel 
omfortable with a suÆ
ient amount of re-

dundan
y.

V. OBSERVATIONS AND RESULTS

In this short, �nal se
tion we want to dis
uss brie
y

the experimental situation whi
h is very mu
h in 
ow and

may have 
hanged 
onsiderably already at the moment

when this review appears. It has been 
lear for a long

time that, if initial 
u
tuations have led to the forma-

tion of large s
ale stru
ture by gravitational instability,

they should have indu
ed 
u
tuations in the 
osmi
 mi-


rowave ba
kground [27,28℄.Before spring 1992, however,

only the dipole anisotropy had been dete
ted [16,17℄. Its

value is [7℄

*

�

�T

T

�

2

+

dipole

= (1:528� 0:004)� 10

�6

:

After many upper limits, the DMR experiment aboard

the COBE satellite measured for the �rst time 
onvin
-

ingly positive anisotropies [8℄. It found

D

(�T )

2

E

(�) � (30�K)

2

(5.1)

on all angular s
ales � � 7

Æ

. Many more positive mea-

surements have been performed sin
e then. In Fig. 9 we

just show the COBE DMR results [39℄ together with

the three most re
ent experiments, BOOMERANG [40℄,

MAXIMA-1 [41℄ and DASI [42℄

Fig. 9. The measured temperature anisotropies, `(`+1)C

`

are shown in a lin-lin plot (left) and in a log-lin plot (right) with

the theoreti
al 
urve from a standard, adiabati
 
old dark matter model. The data points shown are those from COBE DMR

(solid, low `), BOOMERANG (solid), DASI (dashed) and MAXIMA-1 (dotted).
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As one sees in this �gure, present data agrees very well

with a simple 
at model of purely s
alar, s
ale invariant,

n

s

= 1, adiabati
 
u
tuations with 
osmologi
al param-

eter !

b

= 0:02, 


�

= 0, 


�

= 0:7, h = 0:65 whi
h are

also preferred from other 
osmologi
al data. However,

the error-bars are still 
onsiderable.

The experiments 
an be split into three 
lasses: Satel-

lite experiments, balloon-borne experiments and ground

based experiments. The te
hni
al and e
onomi
al advan-

tages of ground based experiments are obvious. Their

main problem is atmospheri
 
u
tuation. This 
an be

redu
ed by two methods:

� Choose a very high altitude and very 
old site,

e.g., the south pole. Several experiments like SP,

Python and White Dish have 
hosen this site.

� Measure anisotropies on small s
ales, preferably by

interferometry (DASI, CAT, VSA, Jodrell Bank).

Balloon-borne experiments 
ying at about 40 km alti-

tude have less problems with the Earth atmosphere but

they fa
e the following diÆ
ulties:

� They are limited in weight.

� They 
annot be manipulated at will in 
ight.

� They have a rather short duration.

� To se
ure all the data taken on the balloon, they

have to be re
overed inta
t.

Yet the advantages of over
oming the atmosphere

are so signi�
ant that many groups have 
hosen this

approa
h, like, e.g., MAXIMA-1, TopHat, et
. The

BOOMERANG experiment 
ombines the two advan-

tages of a 
old site and balloon altitude. It has performed

a long-duration 
ight (10 days) on the south pole in De-


ember 1998.

The third possibility are satellite experiments. They

avoid atmospheri
 problems altogether, but this solution

is very expensive. So far two satellite experiments have

been laun
hed: COBE in 1989 (NASA mission) and MAP

in June 2001 (Mi
rowave Anisotropy Probe, a NASA

MIDEX mission), one more is planned: PLANCK, an

ESA medium size mission of the \Horizon 2000" pro-

gram, to be laun
hed in 2007.

As I am writing this lines, MAP has safely arrived at

its destination, the Lagrange point L2 of the sun-earth

system. It will perform measurements at �ve frequen-


ies in the range from 22 to 90 GHz. The instruments

of PLANCK will operate at nine frequen
ies, 
overing

20 to 800 GHz. At low frequen
ies (below 100 GHz) ra-

dio re
eivers are used (so 
alled \HEMTs", high ele
-

tron mobility transistors) while the high frequen
y in-

struments are bolometers. Re
ent progress in dete
tor

te
hnologies should enable the two new satellites to per-

form signi�
antly better than COBE | the radio re-


eivers of PLANCK, e.g., are supposed to be 1000 times

more sensitive than the ones used for COBE, and the an-

gular resolution has improved from seven degrees to four

ar
 minutes. For more details also on other experiments

see:

� http://astro.este
.esa.nl/PLANCK

� http://map.gsf
.nasa.gov

� http://www.gsf
.nasa.gov/astro/
obe/
obe home.html

� http://spe
trum.lbl.gov/www/max.html

� http://oberon.roma1.infn.it/boomerang/

I �nish this short se
tion with Table 1 whi
h shows

the ranges for the 
osmologi
al parameters 


tot

= 1 �




�

, h

2




b

and n

s

as determined purely by CMB

anisotropies. Ex
ept for the last referen
e, a purely

s
alar spe
trum of adiabati
 
u
tuations is assumed. The

parameter estimation pro
ess also assumes `weak priors'

on the values of other 
osmologi
al observables, like, e.g.,

that the age of the Universe be larger than 10 Gyrs. or

0:4 < h < 0:9. I do not 
omment this table mu
h fur-

ther but refer the reader to the original literature and

many improved papers on this subje
t whi
h will appear

shortly.

Ref. Data 


tot




b

h

2

n

s

errors

[43℄ BOOM and DMR data 1:02

+0:06

�0:05

0:022

+0:004

�0:003

0:96

+0:1

�0:09

1-� errors

[44℄ DASI and DMR data 1:05

+0:06

�0:06

0:022

+0:004

�0:004

1:01

+0:09

�0:07

1-� errors

[45℄ MAX and DMR data 0:90

+0:18

�0:16

0:0325

+0:0125

�0:0125

0:99

+0:14

�0:14

2-� errors

[46℄ all data, no priors 1:06

+0:59

�0:13

0:02

+0:06

�0:01

0:93

+0:75

�0:16

2-� errors

allows also tensor mode

Table 1. Some results from parameter estimations from re
ent CMB data alone. The errors given are formal 1 or 2-� errors

whi
h assume the underlying model to be 
orre
t and no systemati
 problems in the data. They are obtained by marginalization

or maximization over all other model parameters.
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Clearly, the results shown in Table 1 are very 
onsis-

tent. It is interesting to note, how the upper limit on

the s
alar spe
tral index deteriorates if one allows for a

tensor 
omponent. This is one of the degenera
ies in the

CMB data whi
h 
an be broken by in
luding large s
ale

stru
ture data in the analysis (see [46℄). Other 
osmolog-

i
al parameters are not well 
onstrained by CMB data

alone. However, if CMB data is 
ombined with SN1a and

large s
ale stru
ture data, the error bars are signi�
antly

redu
ed and eviden
e for a non-vanishing 
osmologi
al


onstant 


�

� 0:7 be
omes very strong (see [43,44,46℄).
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APPENDIX A: THE C

`

'S FROM

GRAVITATIONAL WAVES

We 
onsider metri
 perturbations whi
h are produ
ed

by some isotropi
 random pro
ess (for example dur-

ing in
ation). After produ
tion, they evolve a

ording

to a deterministi
 equation of motion. By reasons of

isotropy and due to symmetry, the 
orrelation fun
tions

of h

ij

(k; �) have to be of the form

hh

ij

(k; �)h

�

lm

(k; �

0

)i = [k

i

k

j

k

l

k

m

H

1

(k; �; �

0

) + (k

i

k

l

Æ

jm

+ k

i

k

m

Æ

jl

+ k

j

k

l

Æ

im

+ k

j

k

m

Æ

il

)H

2

(k; �; �

0

)

+k

i

k

j

Æ

lm

H

3

(k; �; �

0

) + k

l

k

m

Æ

ij

H

�

3

(k; �

0

; �) + Æ

ij

Æ

lm

H

4

(k; �; �

0

) + (Æ

il

Æ

jm

+ Æ

im

Æ

jl

)H

5

(k; �; �

0

)℄ : (A.1)

Here the fun
tions H

a

are fun
tions of the modulus k = jkj only. Furthermore, all of them ex
ept H

3

are hermitian

in � and �

0

. This is the most general ansatz for an isotropi
 
orrelation tensor satisfying the required symmetries. To

proje
t out the tensorial part of this 
orrelation tensor we a
t on h

ij

it with the tensor proje
tion operator,

T

mn

ij

= P

m

i

P

n

j

� (1=2)P

ij

P

mn

with P

ij

= Æ

ij

�

^

k

i

^

k

j

: (A.2)

This yields

hh

(T )

ij

(k; �)h

(T )�

lm

(k; �

0

)i = H

5

(k; �; �

0

)[Æ

il

Æ

jm

+ Æ

im

Æ

jl

� Æ

ij

Æ

lm

+ k

�2

(Æ

ij

k

l

k

m

+ Æ

lm

k

i

k

j

� Æ

il

k

j

k

m

� Æ

im

k

l

k

j

� Æ

jl

k

i

k

m

� Æ

jm

k

l

k

i

) + k

�4

k

i

k

j

k

l

k

m

℄: (A.3)

From Eq. (4.17), we then obtain

�

�T

T

(n)

�T

T

(n

0

)

�

�

1

V

Z

d

3

x

�

�T

T

(n;x)

�T

T

(n

0

;x)

�

=

�

1

2�

�

3

Z

k

2

dk d


^

k

Z

�

0

�

de


d�

Z

�

0

�

de


d�

0

exp(ik � n(�

0

� �)) exp(�ik � n(�

0

� �

0

))

�

h

h

_

h

(T )

ij

(�;k)

_

h

(T )�

lm

(�

0

;k)in

i

n

j

n

0

l

n

0

m

i

: (A.4)

Here d


^

k

denotes the integral over dire
tions in k spa
e. We use the normalization of the Fourier transform

^

f (k) =

1

p

V

Z

d

3

x exp(ix � k)f(x) ; f(x) =

1

(2�)

3

Z

d

3

k exp(�ix � k)

^

f (k) ;

where V is an (arbitrary) normalization volume.

We now introdu
e the form (A.3) of hh

(T )

h

(T )

i. We further make use of the assumption that the perturbations

have been 
reated at some early epo
h, e.g., during an in
ationary phase, after whi
h they evolved deterministi
ally.

The fun
tion H

5

(k; �; �

0

) is thus a produ
t of the form

H

5

(k; �; �

0

) = H(k; �) �H

�

(k; �

0

) : (A.5)

Introdu
ing this in Eq. (A.4) yields
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�
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=
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+ �
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�
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d�
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_

H(k; �)

_

H

�

(k; �
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) exp(ik�(�

0

� �)) exp(�ik�

0

(�

0

� �

0

))

i

; (A.6)

where � = (n �

^

k) and �

0

= (n

0

�

^

k). To pro
eed, we use the identity [47℄

exp((ik�(�

0

� �)) =

1

X

r=0

(2r + 1)i

r

j

r

(k(�

0

� �))P

r

(�) : (A.7)

Here j

r

denotes the spheri
al Bessel fun
tion of order r and P

r

is the Legendre polynomial of degree r.

Furthermore, we repla
e ea
h fa
tor of � in Eq. (A.6) by a derivative of the exponential exp(ik�(�

0

� �)) with

respe
t to k(�

0

� �) and 
orrespondingly with �

0

. We then obtain
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0

))

_

H(k; �)

_

H

�

(k; �

0

)

�

Z

d� d�

0

[j

r

(k(�

0

� �))j

r

0

(k(�

0

� �

0

)) + j

00

r

(k(�

0

� �))j

r

0

(k(�

0

� �

0

))

+ j

r

(k(�

0

� �))j

00

r

0

(k(�

0

� �

0

)) � j

00

r

(k(�

0

� �))j

00

r

0

(k(�

0

� �

0

))℄

_

H(k; �)

_

H

�

(k; �

0

)

� 4(n � n

0

)

Z

d� d�

0

j

0

r

(k(�

0

� �))j

0

r

0

(k(�

0

� �

0

))

_

H(k; �)

_

H

�

(k; �

0

)

i

: (A.8)

Here only the Legendre polynomials, P

r

(�) and P

r

0

(�

0

) depend on the dire
tion

^

k. To perform the integration d


^

k

,

we use the addition theorem for the spheri
al harmoni
s Y

rs

,

P

r

(�) =

4�

(2r + 1)

r

X

s=�r

Y

rs

(n)Y

�

rs

(

^

k) : (A.9)

The orthogonality of the spheri
al harmoni
s then yields

(2r + 1)(2r

0

+ 1)

Z

d


^

k

P

r

(�)P

r

0

(�

0

) = 16�

2

Æ

rr

0

r

X

s=�r

Y

rs

(n)Y

�

rs

(n

0

) = 4�Æ

rr

0

P

r

(n � n

0

): (A.10)

In Eq. (A.8) the integration over d


^

k

then leads to terms of the form (n � n

0

)P

r

(n � n

0

) and (n � n

0

)

2

P

r

(n � n

0

). To

redu
e them, we use

xP

r

(x) =

r + 1

2r + 1

P

r+1

+

r

2r + 1

P

r�1

: (A.11)

Applying this and its iteration for x

2

P

r

(x), we obtain

�

�T

T

(n)

�T

T

�

(n

0

)

�

=

1

2�

2

X

r

(2r + 1)

Z

k

2

dk

Z

d� d�

0

_

H(k; �)

_

H

�

(k; �

0

)

�

n

�

2(r + 1)(r + 2)

(2r + 1)(2r+ 3)

P

r+2

+

1

(2r � 1)(2r + 3)

P

r

+

2r(r � 1)

(2r � 1)(2r + 1)

P

r�2

�

�j

r

(k(�

0

� �))j

r

(k(�

0

� �

0

))� P

r

[j

r

(k(�

0

� �)j

00

r

(k(�

0

� �

0

))

+j

r

(k(�

0

� �

0

))j

00

r

(k(�

0

� �)) � j

00

r

(k(�

0

� �))j

00

r

0

(k(�

0

� �

0

))℄

�4

�

r + 1

2r + 1

P

r+1

+

r

2r + 1

P

r�1

�

j

0

r

(k(�

0

� �))j

0

r

(k(�

0

� �

0

))

o

; (A.12)

where the argument of the Legendre polynomials, n � n

0

, has been suppressed. Using the relations

j

0

r

= �

r + 1

2r + 1

j

r+1

+

r

2r + 1

j

r�1

(A.13)
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for Bessel fun
tions, and its iteration for j

00

, we 
an rewrite Eq. (A.12) in terms of the Bessel fun
tions j

r�2

to j

r+2

.

We now insert the de�nition of C

`

:

�

�T

T

(n) �

�T

T

(n

0

)

�

(n�n

0

)=
os �

=

1

4�

�

`

(2` + 1)C

`

P

`

(
os �) ; (A.14)

and 
ompare the 
oeÆ
ients in Eqs. (A.12) and (A.14). We obtain the somewhat lengthy expression

C

`

=

2

�

Z

dk k

2

Z

d� d�

0

_

H(k; �)

_

H

�

(k; �

0

)

n

j

l

(k(�

0

� �))j

l

(k(�

0

� �

0

))

�

�

1

(2`� 1)(2` + 3)

+

2(2`

2

+ 2`� 1)

(2`� 1)(2`+ 3)

+

(2`

2

+ 2` � 1)

2

(2` � 1)

2

(2`+ 3)

2

�

4`

3

(2` � 1)

2

(2`+ 1)

�

4(` + 1)

3

(2` + 1)(2` + 3)

2

�

� [j

`

(k(�

0

� �))j

`+2

(k(�

0

� �

0

)) + j

`+2

(k(�

0

� �))j

`

(k(�

0

� �

0

))℄

�

1

2l + 1

�

2(`+ 2)(`+ 1)(2`

2

+ 2` � 1)

(2`� 1)(2`+ 3)

2

+

2(`+ 1)(`+ 2)

(2` + 3)

�

8(` + 1)

2

(`+ 2)

(2`+ 3)

2

�

� [j

`

(k(�

0

� �))j

`�2

(k(�

0

� �

0

)) + j

`�2

(k(�

0

� �))j

`

(k(�

0

� �

0

))℄

�

1

2l + 1

�

2`(` � 1)(2`

2

+ 2`� 1)

(2`� 1)

2

(2` + 3)

+

2`(`� 1)

(2`� 1)(2

�

8`

2

(` � 1)

(2`� 1)

2

�

+ j

`+2

(k(�

0

� �))j

`+2

(k(�

0

� �

0

))

�

2(`+ 2)(`+ 1)

(2` + 1)(2` + 3)

�

4(` + 1)(` + 2)

2

(2`+ 1)(2`+ 3)

2

+

(`+ 1)

2

(` + 2)

2

(2`+ 1)

2

(2` + 3)

2

�

+ j

`�2

(k(�

0

� �))j

`�2

(k(�

0

� �

0

))

�

2`(`� 1)

(2` � 1)(2` + 1)

�

4`(` � 1)

2

(2`� 1)

2

(2` + 1)

+

`

2

(` � 1)

2

(2`� 1)

2

(2` + 1)

2

��

: (A.15)

An analysis of the 
oeÆ
ient of ea
h term reveals that

the 
urly bra
ket in this expression is just

f� � �g = `(` � 1)(`+ 1)(`+ 2)

�

j

`

(k(�

0

� �))

(k(�

0

� �))

2

�

2

and the result is equivalent to

C

`

=

2

�

Z

dk k

2

jI(`; k)j

2

`(` � 1)(`+ 1)(`+ 2) ; (A.16)

with

I(`; k) =

Z

�

0

�

de


d�

_

H(�; k)

j

`

((k(�

0

� �))

(k(�

0

� �))

2

: (A.17)

APPENDIX B: BOLTZMANN EQUATION AND

POLARIZATION

In this appendix we derive the Boltzmann equation

taking into a

ount polarization, and we write it as a hi-

erar
hy of equations using an orthonormal expansion in

the spa
e of photon dire
tions. Up to the 
ollision term,

the Eqs. (4.64), (4.66) and (4.67) are still valid. We �rst

re-derive the 
ollision term taking into a

ount the po-

larization dependen
e of Thomson s
attering.

Just before the pro
ess of re
ombination during whi
h

the 
uid des
ription of radiation breaks down, the tem-

perature is � 0:4 eV. The ele
trons and nu
lei are non-

relativisti
 and the dominant 
ollision pro
ess is non-

relativisti
 Thomson s
attering.

Thomson s
attering depends on the polarization of

the in
oming radiation �eld. We des
ribe the polariza-

tion state of the radiation �eld by the Stokes parame-

ters [22,24,25,23℄:

For a harmoni
 ele
tro-magneti
 wave with ele
tri


�eld

E(x; t) = (�

1

E

1

+ �

2

E

2

) e

ipn�x�i!t

; (B.1)

where n, �

1

and �

2

form an orthonormal basis and the


omplex �eld amplitudes are parameterized as E

j

=

a

j

e

iÆ

j

, the Stokes parameters are given by

I = a

2

1

+ a

2

2

; (B.2)

Q = a

2

1

� a

2

2

; (B.3)

U = 2a

1

a

2


os(Æ

2

� Æ

1

); (B.4)

V = 2a

1

a

2

sin(Æ

2

� Æ

1

): (B.5)

I is the intensity of the wave (whose perturbation M

has interested us so far), while Q is a measure of the

strength of linear polarization (the ratio of the prin
i-

pal axis of the polarization ellipse). U and V give phase

information (the orientation of the ellipse). For non-

relativisti
 Thomson s
attering V is 
ompletely de
ou-

pled and (sin
e it vanishes at early times) is therefore

never generated.

As Q and U vanish in the ba
kground, perturbations


annot 
ouple to them (sin
e su
h terms are 2nd order),

and the Liouville equations for Q and U be
ome (ne-

gle
ting s
attering and spatial 
urvature)

�

�

(Q;U ) + in

`

k

`

(Q;U ) = 0: (B.6)
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The di�erential 
ross se
tion of Thomson s
attering for

a photon with in
ident polarization �

(i)

s
attering into

the outgoing polarization �

(s)

� �

0

is [22℄

d�

d


=

3

8�

�

T

�

�

�

�

�

(s)

�

(i)

�

�

�

2

: (B.7)

Fig. 10. De�nition of the angles and ve
tors for Thomson

s
attering in the (n;�

2

) plane.

Fig. 11. De�nition of the angles and ve
tors for Thomson

s
attering in the general 
ase. The polarization ve
tors are

oriented like in �gure 10.

It is often 
onvenient to introdu
e the two `partial' in-

tensities I

1

� a

2

1

= (I + Q)=2 and I

2

� a

2

2

= (I � Q)=2.

A wave s
attered in the (n; �

2

) plane (see �gure 10) by

an angle � has the intensities

I

(s)

1

=

3�

T

8�

I

(i)

1

;

I

(s)

2

=

3�

T

8�

I

(i)

2


os

2

�; (B.8)

or, expressed in terms of the Stokes parameters,

 

I

(s)

Q

(s)

!

=

3�

T

16�

 

1 + 
os

2

� sin

2

�

sin

2

� 1 + 
os

2

�

! 

I

(i)

Q

(i)

!

:

(B.9)

A rotation in the (�

1

; �

2

) plane doesn't 
hange the in-

tensity of the wave, but it 
hanges Q and U to

Q

0

= Q 
os(2�) + U sin(2�); (B.10)

U

0

= �U sin(2�) + Q 
os(2�): (B.11)

To determine the 
ross se
tion that a given `initial' wave

(I

(i)

; Q

(i)

; U

(i)

) propagating in dire
tion n be s
attered

into a wave (I

(s)

; Q

(s)

; U

(s)

) with dire
tion n

0

, we need

to go through the following steps (we will use the plane

(y; z) as referen
e plane, see �gure (11) for de�nitions of

the angles and ve
tors):

1. Rotate around n su
h that the plane (n;n

0

) turns

into the plane (nz). One needs to apply the rota-

tion (B.10,B.11) for � = � to the Stokes parame-

ters.

2. Rotate the new plane (n;n

0

) around z into the ref-

eren
e plane (y; z). This operation does not in
u-

en
e the in
oming Stokes parameters.

3. Now we are in the known 
ase of (B.8) and (B.9).

Hen
e we 
an apply the s
attering matrix.

4. We then rotate the s
attering plane ba
k around z

into the old (z;n

0

) plane. This does not 
hange the

s
attered Stokes parameters.

5. Finally we rotate around n

0

by the angle �

0

to rea
h

the original state. To do this, we have to apply

the rotation matrix (B.10,B.11) again, but now for

� = �

0

.

Following the steps outlined above, we re
over the

s
attering matrix in the basis (I

1

; I

2

; U ) given in equa-

tions (B.13){(B.16) (see also [23℄). V is 
ompletely de-


oupled from the other parameters and follows an evolu-

tion whi
h is independent of the rest. Hen
e by starting

with V (t � t

de


) = 0 it will stay zero and 
an be ne-

gle
ted. The s
attering matrix P , whi
h determines the

(non vanishing) s
attered Stokes parameters from the

initial ones,

0

B

�

I

(s)

1

I

(s)

2

U

(s)

1

C

A

=

�

T

4�

P

0

B

�

I

(i)

1

I

(i)

2

U

(i)

1

C

A

(B.12)

is then given by

P =

h

P

(0)

+

p

1� �

2

p

1� �

02

P

(1)

+ P

(2)

i

; (B.13)

where

P

(0)

=

3

4

0

B

�

2(1� �

2

)(1� �

02

) + �

2

�

02

�

2

0

�

02

1 0

0 0 0

1

C

A

; (B.14)
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P

(1)

=

3

4

0

B

�

4��

0


os(�

0

� �) 0 2� sin(�

0

� �)

0 0 0

�4�

0

sin(�

0

� �) 0 2 
os(�

0

� �)

1

C

A

; (B.15)

P

(2)

=

3

4

0

B

�

�

2

�

02


os[2(�

0

� �)℄ ��

2


os[2(�

0

� �)℄ �

2

�

0

sin[2(�

0

� �)℄

��

02


os[2(�

0

� �)℄ 
os[2(�

0

� �)℄ ��

0

sin[2(�

0

� �)℄

�2��

02

sin[2(�

0

� �)℄ 2� sin[2(�

0

� �)℄ 2��

0


os[2(�

0

� �)℄

1

C

A

: (B.16)

As we are in an isotropi
 situation, we will perform all the 
al
ulations in a spe
ial 
oordinate system with k k ẑ

and n;n

0

as in Fig. 11. Clearly the results are independent of this 
oordinate 
hoi
e.

The matrix R 
onne
ting (I

1

; I

2

; U ) with (I;Q; U ) is given by

0

B

�

I

1

I

2

U

1

C

A

=

0

B

�

1=2(I +Q)

1=2(I �Q)

U

1

C

A

=

1

2

0

B

�

1 1 0

1 �1 0

0 0 2

1

C

A

0

B

�

I

Q

U

1

C

A

� R

0

B

�

I

Q

U

1

C

A

: (B.17)

To 
al
ulate the 
ollision term in
luding polarization, we 
hange into the (I

1

; I

2

) basis. For ea
h of the two intensities

� 2 f1; 2g we then have the 
ollision term given by

C[f

(�)

℄ =

df

(�)

+

d�

�

df

(�)

�

d�

; (B.18)

where f

(�)

+

and f

(�)

�

denote the distribution of photons in the polarization state � s
attered into respe
tively out of

the beam due to Compton s
attering.

In the matter (baryon/ele
tron) rest frame, whi
h we indi
ate by a prime, we know that

df

(�)0

+

dt

0

(p;n) =

�

T

n

e

4�

Z

f

(Æ)0

(p

0

;n

0

)P

�

Æ

(n;n

0

)d


0

;

where n

e

denotes the ele
tron number density and P

�

Æ

is the 2 � 2 upper left 
orner of the normalized Thomson

s
attering matrix (B.13). In the baryon rest frame whi
h moves with four velo
ity u, the photon energy is given by

p

0

= p

�

u

�

:

We denote the photon energy with respe
t to a tetrad adapted to the sli
ing of spa
e-time into f� = 
onstantg

hyper-surfa
es by p :

p = p

�

n

�

; with n = a

�1

[(1� A)�

�

+ B

i

�

i

℄;

The lapse fun
tion and the shift ve
tor of the sli
ing are given by � = a(1 + A) and � = �B

i

�

i

. In �rst order,

p

0

= ap(1 + A) � apn

i

B

i

;

and to zeroth order p

i

= apn

i

. Furthermore, the baryon four-velo
ity has the form u

0

= a

�1

(1 � A); u

i

= u

0

v

i

up

to �rst order. This yields

p

0

= p

�

u

�

= p(1 + n

i

(v

i

� B

i

)):

Using this identity and performing the integration over photon energies, we obtain

�




d�

(�)

+

(n)

d�

0

= a�




�

T

n

e

�

1 + 4n

i

(v

i

� B

i

)+

1

4�

Z

�

(Æ)

(n

0

)P

�

Æ

(n;n

0

) d


0

�

:

Photons whi
h are s
attered leave the beam, with the probability given by the Thomson 
ross se
tion (see, e.g., [26℄)

df

(�)

�

dt

0

= �

T

n

e

f

(�)0

(p

0

;n);

so that we �nally have
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C

(�)0

=

4�

�




a

4

Z

dp

 

df

(�)

+

dt

0

�

df

(�)

�

dt

0

!

p

3

=

1

2

�

T

n

e

�

4n

i

(v

i

� B

i

) � �

(�)

+

1

4�

Z

�

(Æ)

(n

0

)P

�

Æ

(n;n

0

)d


0

�

: (B.19)

By setting C

(M)

= C

(1)

+ C

(2)

and C

(Q)

= C

(1)

� C

(2)

we transform the 
ollision integral ba
k to the normal

Stokes parameters. The term for U has the same form as the one for Q, just with the 
orresponding matrix elements

in the integral. The Boltzmann equation then �nally be
omes (setting E � (M; Q; U ) and for the 
at 
ase, � = 0):

_

M+ i�kM = 4i�k(�� 	+ n

m

�

(V )

m

) + 4n

`

n

m

_

H

m`

+ a�

T

n

e

�

�M� 4i�V

b

+ 4n

`

!

b;`

+

Z

d


0

P

�

1

E

0

�

�

; (B.20)

_

Q+ i�kQ = a�

T

n

e

�

�Q+

Z

d


0

P

�

2

E

0

�

�

; (B.21)

_

U + i�kU = a�

T

n

e

�

�U +

Z

d


0

P

�

3

E

0

�

�

; (B.22)

where we have to use the s
attering matrix transformed into the (M; Q; U ) basis,

P = P

S

+ P

V

+ P

T

(B.23)

P

S

= R

�1

P

(0)

R =

3

8

0

B

�

3� �

2

� �
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with C = 
os(� � �

0

), S = sin(� � �

0

) and C

T

= 
os(2(� � �

0

)), S

T

= sin(2(� � �

0

)). The parts P

S

; P

V

; P

T

of P

des
ribe the s
attering of the s
alar, ve
tor and tensor 
ontribution to E respe
tively.

The fun
tions M, Q and U depend on the wave ve
tor k, the photon dire
tion n and 
onformal time �. We


hoose for ea
h k-mode a referen
e system with z-axis parallel to k. For s
alar perturbations we a
hieve in this

way azimuthal symmetry | the right-hand side of the Boltzmann equation and therefore also the brightness M

(S)

depend only on � = (

^

k � n) and 
an be expanded in Legendre polynomials. The right-hand side of the Boltzmann

equation also determines the azimuthal dependen
e of ve
tor and tensor perturbations. One 
an 
ontinue with this

approa
h, but the resulting equations for Q and U and espe
ially also their power spe
tra depend expli
itly on the


oordinate system. Therefore, we prefer an approa
h whi
h is inherently 
ovariant under rotation.

A. Ele
tri
 and magneti
 polarization

The Stokes parameters expli
itly depend on the 
oordinate system, and Eqs. (B.21) and (B.22) transform rather


ompli
ated under rotations of the 
oordinate system. A method to 
hara
terize CMB polarization due to non-

relativisti
 Thomson s
attering whi
h is more 
onvenient than the Stokes parameters sin
e its transformation prop-

erties are very simple has been developed some years ago [51{53,55,56℄. A detailed derivation of this method goes

beyond the s
ope of this report. Here we just repeat the de�nitions and the main results. We set

T = (M; Q+ iU;Q� iU ): (B.26)

In terms of this ve
tor the 
ollision integral above 
an we written (in ve
tor form) as

C[T ℄ = a�

T

n

e

�

� T +

�

1

4�

Z

d


0

M

0

+ (n � v

b

); 0; 0

�

+

1

10

2

X

m=�2

Z

d


0

P

(m)

(n;n

0

)T

0

�

: (B.27)

From Eqs. (B.13) to (B.17) one 
an determine the s
attering matrix for the ve
tor T

211



R. DURRER
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where

s

Y

m0

l

=

s

Y

m�

l

(n

0

) and

s

Y

m

l

are the spin-weighted spheri
al harmoni
s [54,55℄.

We now de
ompose the Fourier 
omponents of the temperature anisotropy M and the polarization variables E

and B as

M =

X

`

2

X

m=�2

M

(m)

`

0

G

m

`

; (B.29)

Q� iU =

X
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X
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(E
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� iB

(m)
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)

2

G

m

`

(n): (B.30)

Here m = 0 is the s
alar mode, m = �1 are the ve
tor and m = �2 are the tensor modes. The fun
tions

s

G

m

`

are


losely related to the spin weighted harmoni
s

s

Y

m

`

:

s

G

m

`

(n) = (�i)

`

r

4�

2`+ 1

s

Y

m

`

(n):

The evolution equations in term of these variables 
an be given in the following 
ompa
t form [56℄
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where we have set
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and C

(m)

=

1

10

[M

(m)

2

�

p

6E

(m)

2

℄. The 
oupling 
oeÆ
ients are

s

�

m
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=

r

(`
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�m
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)(`

2

� s

2

)

`
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:

Note that for s
alar perturbations, m = 0, B-polarization is not sour
ed and we have B

(0)

`

� 0.

Finally we want to 
onne
t the intensities M

(m)

`

with the more familiar expansion of the s
alar (S), ve
tor (V )

and tensor (T ) 
ontributions to the brightness fun
tion in terms of Legendre polynomials. Usually one sets

M = M

(S)

+M

(V )

+M

(T )

:

Here M

(S)

only depends on � = (n � k)=k and the n-dependen
e of M

(V )

and M

(T )


an be written as
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where � is the azimuthal angle in the plane normal to k. Ea
h of the fun
tions M

(S;V;T )

�

(�) is now expanded in

Legendre polynomials

M

(S;V;T )

�

=

X

`

(�i)

`

(2`+ 1)�

(S;V;T )

�;`

P

`

(�) : (B.37)

The 
oeÆ
ients �

(S;V;T )

�;`

are then related toM

(m)

`

via the identities
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where

�

"#;`

= �

+`

� i�

�`

:

We do not repeat this 
orresponden
e for the Stokes parameters Q and U sin
e it is rather 
ompli
ated and not

very useful as it depends on the 
oordinate system 
hosen.

B. Power spe
tra

In the previous appendix and in Se
tion 4 we have derived the expression for the CMB anisotropy power spe
trum

for s
alar and tensor perturbations. Here we give the general expression for s
alar, ve
tor and tensor 
u
tuations,

polarizations and 
ross 
orrelations. To make 
onta
t with the results derived before, one has to use Eqs. (B.37,B.38)

and (B.40) and negle
t the 
ollision term in the Boltzmann equation.

We expand the present CMB anisotropies and polarization in spheri
al harmoni
s: �T (n; �

0

)=T

0

=

P

`m
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`m

Y

m

`

(n). The 
oeÆ
ients a

`m

are random variables with zero mean and rotationally invariant varian
es,

C

`

� hj a

`m

j

2

i. The 
orrelation fun
tion of the anisotropy pattern then has the standard expression:
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where 
os � = n

1

� n

2

and h� � �i denotes ensemble average. We use the Fourier transform normalization

^
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x ; (B.42)

with some normalization volume V . Using statisti
al homogeneity we have
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Inserting our ansatz (B.37) for

ÆT

T

0

=

1

4

M, and using the addition theorem for spheri
al harmoni
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from whi
h we 
on
lude

C

MM;(S)
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=

1

8�

Z

k

2

dk hj�

(S)

`

(t

0

; k)j

2
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where the supers
ript

(S)

indi
ates that Eq. (B.45) gives

the 
ontribution from s
alar perturbations and

MM

means that it is the 
ontribution to the intensity per-

turbation.

The QQ, UU , MQ, MU and QU 
orrelators depend

with the Stokes parameters on the parti
ular 
oordinate

system 
hosen. It is mu
h more 
onvenient to express

the polarization power spe
tra in terms of the variables

E and B whi
h are independent of the 
oordinate sys-

tem. Furthermore, sin
e B is parity odd, its 
orrelators

with M and E vanishes. One �nds the simple general

expression [56℄
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8�
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dkX
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`

Y

(m)�
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; (B.46)

where n

m

= 1 for m = 0 and n

m

= 2 for m = 1; 2,

a

ounting for the number of modes. Here X and Y run

over M; E and B.
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TEOR�� AN�ZOTROP�Õ KOSM�QNOGO M�KROHVIL^OVOGO FONU

R. D�rer

�nstitut teoretiqnoÝ f�ziki �enevs~kogo un�veritetu

vul. E. Ansermet, 24, 1211 �eneva 4, Xve�
ar��;

Fakul~tet prirodniqih nauk �nstitutu perspektivnih dosl�d�en~

Ale� A�nxta�na, Pr�nston, NJ 08540, SXA

Zrobleno ogl�d teor�Ý an�zotrop�Ý kosm�qnogo m�krohvil~ovogo fonu, �ki� 
 onovleno� vers�
� kursu

lek
��, proqitanih navesn� 1999 r. v \troisieme 
y
le de la Suisse Romande". Podano vstup do kal�bruval~no-

�nvar�antnoÝ teor�Ý kosmolog�qnih zburen~ � v 
~omu kontekst� rozgl�nuto an�zotrop�� m�krohvil~ovogo

fonu. Otrimano prost� anal�tiqn� aproksima
�Ý polo�en~ akustiqnih p�k�v ad��batiqnih � �zoterm�qnih

zburen~. Obgovoreno zagasann� S�lka v anal�tiqnomu p�dhod�. Zaverxu�t~ ogl�d korotki� opis suqas-

nogo stanu spostere�en~, o
�nki kosmolog�qnih parametr�v ta zakl�qne obgovorenn�. U Dodatkah vivedeno

povnu sistemu diferen
��nih r�vn�n~ dl� an�zotrop�Ý kosm�qnogo m�krohvil~ovogo fonu ta �ogo pol�riza-


�Ý, �ka neobh�dna v qislovomu p�dhod�.
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