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A system of partial di�erential equations 
orresponding to two-dimensional intradi�usion

(Wi
ke) model for a weakly nonlinear isotherm of sorption is solved by redu
ing it to the Burgers'

equation. Some limiting 
ases interesing from the physi
al point of view are 
onsidered in details.
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I. INTRODUCTION

The mi
ros
opi
 physi
al des
ription of the sorp-

tion/desorption phenomenon is a rather 
ompli
ated

problem. It is espe
ially the 
ase, when this phenomenon

is 
onne
ted with di�usion into a sorption medium. In

this 
ase one 
onsiders a 
ow of ina
tive liquid or gas

(a mobile phase) through a bed homogeneously pa
ked

by small solid spheres 
overed by sorbing �lm (a sorp-

tion medium) with a pa
king 
hara
teristi
 porosity " =

void volume

total volume

. The aim of this note is to study dynami
s

of sorption of an a
tive marker introdu
ed into a mo-

bile phase. The pro
ess of permeability of this marker

through a sorption medium is based essentially on a

physi
al pi
ture of multiply repeated sorption and des-

orption a
ts.

The mathemati
al des
ription of dynami
s of sorption

has to take into a

ount the following basi
 pe
uliari-

ties of this 
ompli
ated phenomenon: balan
e of an a
-

tive marker in pro
ess of displa
ement into a sorption

medium, kineti
 and stati
 properties of this marker, hy-

drodynami
s of this pro
ess, dependen
e between ther-

modynami
 
ondition parameters of a sorption medium,

balan
e of heat and heat transfer in the pro
ess of dy-

nami
s of sorption in a mobile phase, et
. Be
ause of


omplexity of this physi
al pi
ture the theory develops

via formulation of di�erent simpli�
ations and approxi-

mations. Usually they are the following (see, e. g., [1{4℄

and referen
es therein):

� dynami
s of sorption is isothermal;

� a mobile phase is in
ompressible and a 
on
entra-

tion of an a
tive marker is so small that variation

of a density of sorbing marker 
an be negle
ted;

� a 
ow of a mobile phase is either one dimensional,

or one 
onsiders an axial-symmetri
 problem;

� one 
an negle
t the non-homogeneity of a sorption

medium.

The main problem of the theory of dynami
s of sorption

now 
an be formulated as follows: to �nd the time (or

spa
e) distribution of 
on
entration of sorbing marker

for ea
h length x (or for ea
h moment of time t), if the

initial 
on
entration of the marker into mobile phase and


hara
ter of intera
tion between marker and a sorption

medium are known.

Usually a 
on
entration of the sorbing marker into the

mobile phase and a 
on
entration of the sorbed marker

into the sorption medium are averaged over the 
ross-

se
tion, thus they are fun
tions of one variable x ([2{

4℄). But more pre
ise 
onsideration should take into a
-


ount a variation of 
on
entration of sorbed marker into

a sorption medium along the radius of pa
king parti-


les. Wi
ke [5℄ proposed a two-dimension intradi�usion

model (the mathemati
al formulation is due to Tunitskij

et al. [6℄) where 
on
entration of the sorbed marker re-

sults from di�usion of the sorbing marker into a layer of

a sorption medium (see Fig. 1).

Fig. 1. Di�usion of a sorbing marker 
(x; t) into a layer of

a sorption medium with thi
kness l.

In the present paper it is shown that the two-

dimension intradi�usion Wi
ke model 
an be redu
ed

to a partial di�erential equation for the 
on
entration

of the sorbing marker into the mobile phase. Moreover,

this equation is solved expli
itly for a weakly nonlinear

isotherm of sorption.

II. THE MATHEMATICAL SET UP

The system of the partial di�erential equations 
orre-

sponding to Wi
ke model has the form [6℄ (see Fig. 1):

�a

�t

= D

f

�

2

a

�y

2

; (1)
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sD

f

"

�a

�y

�

�

�

�

y=0

=

�


�t

+ u

�


�x

; (2)

�a

�y

�

�

�

�

y=l

= 0 ; (3)


(x; t)

�

�

�

�

t=0

= f(x) =

�




0

; 0 � x � x

0

;

0; x > x

0

;

(4)

a(x; y; t)

�

�

�

�

t=0

=

8

<

:

F (
(x; t))

�

�

�

�

t=0

=  (x); y = 0 ;

0; y > 0 :

(5)

Here a = a(x; y; t) is the 
on
entration of the sorbed

marker into the sorption medium, and a(x; y = 0; t) =

F (
(x; t)) is the equation of the isotherm of sorption;


 = 
(x; t) is the 
on
entration of the sorbing marker

into the mobile phase; y is the 
oordinate inside the �lm

of the sorption medium of thi
kness l; D

f

is the di�u-

sion 
oeÆ
ient into the sorption medium; u is the linear


ow velo
ity whi
h is a 
onstant in the 
ross-se
tion and

along the 
olumn length; s is the spe
i�
 area of the sur-

fa
e boundary between a mobile phase and a sorption

medium (per unit bend length and per unit bend 
ross-

se
tion); " is the porosity.

Noti
e that the Wi
ke model des
ribes in fa
t a two-

dimensional di�usion (into dire
tions y and x) 
orre-

sponding to the sorbed a and the sorbing 
 markers re-

lated by some isotherm equation.

III. EVOLUTION EQUATION

FOR THE MODEL (1){(5)

Taking into a

ount (5) we 
an represent the solution

a(x; y; t) in the form:

a(x; y; t) = �(x; y; t) + F (
(x; t)) : (6)

Then by (1) the new fun
tion � = �(x; y; t) satis�es the

di�erential equation

��

�t

= D

f

�

2

�

�y

2

�

�F

�t

; (7)

with homogeneous boundary 
onditions (
f. (3),(5)):

��

�y

�

�

�

�

y=l

= 0 ;

�(x; y; t)

�

�

�

�

y=0

= 0 : (8)

By virtue of (5) the initial 
ondition for �(x; y; t) gets

the form:

�(x; y; t)

�

�

�

�

t=0

=

�

0 y = 0 ;

� (x) y > 0 :

(9)

The solution of the 
orresponding homogeneous system

(7){(9) we represent as

�(x; y; t) = Y (y)T (x; t) : (10)

Then the 
orresponding eigenvalues and normalized

eigenfun
tions for this problem are:

�

n

=

�

�(2n+ 1)

2l

�

2

; n = 0; 1; 2; : : : ; (11)

Y

n

(y) =

�

2

l

�

1=2

sin

�(2n+ 1)

2l

y : (12)

Representing the solution of nonhomogeneous di�eren-

tial equation (7) in the form

�(x; y; t) =

1

X

n=0

U

n

(x; t)Y

n

(y) (13)

and expanding the nonhomogeneous term with the help

of the 
omplete set of the eigenfun
tions (12), we get the

equation for U

n

(x; t):

�U

n

�t

= �D

f

�

n

U

n

�

�

2

l

�

1=2

2l

�(2n+ 1)

�F

�t

; (14)

with the initial 
ondition:

U

n

(x; 0) = �

�

2

l

�

1=2

2l

�(2n + 1)

 (x) ; n = 0; 1; : : : :

(15)

Solution of the equation (14) with (15) has the form:

U

n

(x; t) = �

�

2

l

�

1=2

2l

�(2n+ 1)

 (x) exp(�D

f

�

n

t)�

Z

t

0

�

2

l

�

1=2

2l

�(2n+ 1)

�F (
(x; � ))

��

exp(�D

f

�

n

(t� � ))d� : (16)

Substituting the expression (16) into (13) and taking into a

ount (3) and (6) we get:
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�a

�y

�

�

�

�

y=0

=

�

�

2

l

�

 (x)

1

X

n=0

exp(�D

f

�

n

t) �

�

2

l

�

1

X

n=0

Z

t

0

�F (
(�; x))

��

exp(�D

f

�

n

(t � � ))d� ; (17)

where (due to (4),(5)):

 (x) =

�

F (f(x)) = F (


0

); 0 � x � x

0

;

0; x > x

0

:

Let us 
onsider the limit x� x

0

. Then by the above 
on-

ditions the �rst term in the right-hand side is negligible.

Let D

f

t � l

2

(where l is the �lm thi
kness of the sorp-

tion medium) and let x � x

0

: Then for the next term

in (17) we get:

�

Z

t

0

�F (
(�; x))

��

�(t� � )d�

= �

Z

t

0

�F (
(t� �; x))

�t

�(�)d� ; (18)

where � = t� �; �(�) =

2

l

1

X

n=0

exp(�D

f

�

n

�). Using the

fast de
ay of the fun
tion of �(�) for � > 0, the expres-

sion (18) 
an be represented in the form of expansion:

�

Z

t

0

dF

d


�
(x; t)

�t

�(�)d�

+

Z

t

0

dF

d


�

2


(x; t)

�t

2

��(�)d� + O

 

l

5

D

3

f

!

: (19)

Consequently the �rst and the se
ond terms in (19) for

D

f

t� l

2

are given by:

�

dF

d


�
(x; t)

�t

Z

t

0

2

l

1

X

n=0

exp(�D

f

�

n

�)d�

' �

dF

d


�
(x; t)

�t

2

l

1

X

n=0

(D

f

�

n

)

�1

= �

l

D

f

dF

d


�
(x; t)

�t

; (20)

and

dF

d


�

2


(x; t)

�t

2

Z

t

0

�

2

l

1

X

n=0

exp(�D

f

�

n

�)d� '

dF

d


�

2


(x; t)

�t

2

2

l

1

X

n=0

(D

f

�

n

)

�2

=

l

3

3D

2

f

dF

d


�

2


(x; t)

�t

2

: (21)

Then the derivation (17) takes the form:

�a

�y

�

�

�

�

y=0

= �

l

D

f

dF

d


�


�t

+

l

3

3D

2

f

dF

d


�

2




�t

2

: (22)

Hen
e, for D

f

t� l

2

and x� x

0

the boundary 
ondition

(2) for the model (1){(5) redu
es to the equation:

u"

sD

f

�


�x

+

�

"

sD

f

+

l

D

f

dF

d


�

�


�t

=

l

3

3D

2

f

dF

d


�

2




�t

2

; (23)

whi
h is nothing but the evolution equation for the 
on-


entration of sorbing marker.

IV. DISCUSSION: LIMITING CASES

We showed that the system of partial di�erential equa-

tions (1){(5) for the sorbing marker 
(x; t) and sorbed

marker a(x; y; t) 
an be redu
ed (in the long-time limit

D

f

t� l

2

and x� x

0

) to unique partial di�erential equa-

tion 
orresponding the evolution of sorbing marker (23).

It is the 
on
entration whi
h experimenter measures at

the end x = L � x

0

of pa
ked bed. This equation 
an

be solved expli
itly for the 
ase of a weakly nonlinear

isotherm of sorption known in the gas-liquid dynami
s

of sorption [1℄. To this end we use approximation for the

isotherm of sorption (
f. Eq. (5)):

a(x; y = 0; t) = F (
(x; t)) = k

1


(x; t) + k

2




2

(x; t) ; (24)

up to quadrati
 term, where j k

2

j 
(x; t)� k

1

.

Then the equation (23) gets the form:

v

�


�x

+ (1 + �
)

�


�t

= �

�

2




�t

2

; (25)

where

v =

u"

"+ �k

1

; � =

2k

2

�

"+ �k

1

; � =

�k

1

l

2

3D

f

(" + �k

1

)

; � = sl:

Using the 
hange of variables � = t � x=v, � = x=v

and 


�

= �
(x; t) we get the Burgers' equation for




�

= �
(x; t):

�


�

��

+ 


�

�


�

��

= �

�

2




�

��

2

: (26)
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Its solution is well-investigated (see, e.g. [7℄).

Therefore, we redu
ed the two-dimensional intradi�u-

sion Wi
ke model (1{5) to the Burgers' equation (26).

Below we 
onsider the Cau
hy problem for the equa-

tion (25) with initial 
ondition with respe
t to variable

x:


(x = 0; t) =

�

f(t) � 0; if t � 0;

R

+1

�1

f(t)dt = M < +1 :

f(t) = 0; if t < 0 ;

(27)

Then the solution of the equation (25) has the form:


(x; t) =

v

�x

�

R

+1

�1

d!(t�

x

v

� !) exp

h

�

(t�

x

v

�!)

2

4�x=v

i

� exp

�

�

1

2�

R

!

0

dy�f(y)

�

R

+1

�1

d! exp

h

�

(t�

x

v

�!)

2

4�x=v

i

exp

�

�

1

2�

R

!

0

dy�f(y)

�

: (28)

For the simplest 
ase

f(t) = 
(x = 0; t) =

�




0

; 0 � t � t

0

;

0; t < 0; t > t

0

;

one gets from (28):


(x; t) =




0

�

�

[�(a+ d)� �(b+ d)℄ exp 


[�(a+ d)� �(b+ d)℄ exp 
+ [2+ �(b)℄ exph � �(a)

; (29)

where �(z) =

2

p

�

Z

z

0

e

��

2

d� and

a =

vt� x

p

4�x

; 
 =

��


0

(2x(vt � x)� �


0

x

2

+ vt

0

x)

4�x

; (30)

b =

vt� x� vt

0

p

4�x

; d = �

�


0

x

p

4�x

; h = �

�


0

vt

0

2�

: (31)

If we 
onsider the 
ase t

0

! 0 (


0

t

0

= M = 
onst) we get


(x; t) =

1

�

r

�

x=v

(e

R

� 1) exp

�

�

(t�

x

v

)

2

4�x=v

�

p

� +

p

�

2

(e

R

� 1)

�

1� �

�

t�

x

v

p

4�x

v

��

; (32)

where R =

�


0

t

0

2�

is the parameter of the non-linearity.

It is positive for 
on
ave isotherm of sorption (the 
ase

of k

2

> 0 in (24)) and negative for 
onvex isotherm of

sorption (the 
ase of k

2

< 0).

To investigate the form of the time distribution of the

sorbing marker (32) for t� l

2

=D

f

and for a �xed length

x = L � x

0

one should to 
onsider the following two

limiting 
ases.

Case of small parameter of non-linearity jRj � 1

In this 
ase we would expe
t the di�usion in time to

dominate over the non-linearity. For jRj � 1 the denom-

inator in (32) is

p

� +O(jRj), uniformly in x,t,� . Hen
e


(x; t) may be approximated by


(x; t) =

1

�

r

�

�x=v

R exp

�

�

(t� x=v)

2

4�x=v

�

=




0

t

0

p

4��x=v

exp

�

�

(t � x=v)

2

4�x=v

�

: (33)

This is the sour
e solution of the \heat" equation, 
lose

4
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to the Gaussian shape. So the expe
tation is veri�ed.

Case of large parameter of non-linearity jRj � 1

To dis
uss the behaviour of the solution (32) for large

jRj (i. e., when the non-linearity dominates over the dif-

fusion) it is 
onvenient to introdu
e the similarity vari-

able T =

t�x=v

p

2j�j


0

t

0

x=v

. Then we analyze the behaviour of


(T; x), when jRj � 1 for di�erent ranges of T .

1). Let us 
onsider the 
ase when the isotherm of sorp-

tion is 
on
ave, R > 0.

Writing (32) as


(T; x) =

r

2


0

t

0

v

�x

� g(T;R); g(T;R) =

e

R

� 1

2

p

R

�

e

�T

2

R

p

� + (e

R

� 1)

1

R

T

p

R

e

��

2

d�

; (34)

we dis
uss the behaviour of g as R!1 (i. e. � ! 0) for

di�erent ranges of T . In all 
ases, e

R

� 1 � e

R

and we

may use

g(T;R) =

1

2

p

R

�

e

R

(

1�T

2

)

p

� + e

R

1

R

T

p

R

e

��

2

d�

; (35)

If T < 0, the integral in (35) tends to

p

�; therefore,


 ! 0 at least like 1=

p

R. If T > 0, the integral in (35)

be
omes small and we use for the asymptoti
 expansion

Z

1

�

e

��

2

d� �

e

��

2

2�

as � !1 : (36)

Consequently the solution of the equation (25) forR� 1

is


(T; x)j

R�1

=

8

<

:

O(R

�1=2

) ; T < 0 ;

r

2


0

t

0

v

�x

�

T

1 + 2T

p

�R exp(R(T

2

� 1))

; T � 0 :

(37)

If 0 < T < 1, we have from (35)

g � T ; 0 < T < 1 ; R!1 ; (38)

whereas if T > 1, g ! 0 as R ! 1. Thus g ! 0 ex
ept in 0 < T < 1, and in that range g � T . In the original

variables the result reads:


(x; t)j

R!1

=

(

v

�x

(t� x=v) ; 0 <

t�x=v

p

(2�


0

t

0

x)=v

< 1 ;

0 ; for the other x; t :

(39)

This is the appropriate solution of (25) with a sho
k (i. e., with a jump) at the point t = x=v +

p

(2�


0

t

0

x)=v. The


on
entration 
 jumps from zero to

p

(2


0

t

0

v)=(�x). The sho
k is lo
ated at T = 1 and for large but �nite R (37)

shows a rapid transition from exponentially small values in T > 1 to (1=�)

p

(4R�v)=x in T < 1. The transition layer

is of thi
kness O(R

�1

) around T = 1 (see Fig. 2)

2). In the 
ase when the isotherm of sorption is a 
onvex the solution of (25) is (see Fig. 3):


(T; x)j

jRj�1

=

8

<

:

O(jRj

�1=2

) ; T > 0 ;

r

2


0

t

0

v

j�jx

�

jT j

1 + 2jT j

p

�jRj exp(jRj(T

2

� 1))

; T � 0 :

(40)
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Fig. 2. Sho
k-wave type solution of Burgers' equation for 
on
ave isotherm of sorption.

Fig. 3. Sho
k-wave type solution of Burgers' equation for 
onvex isotherm of sorption.

If jRj ! 1 (x is �xed) we get again a solution of the sho
k-wave type:


(x; t)j

jRj!1

=

(

v

j�jx

jt� x=vj ; �1 <

t�x=v

p

(2j�j


0

t

0

x)=v

< 0

0 ; for the other x; t :

(41)

V. CONCLUSION

� A system of partial di�erential equations 
or-

responding to two-dimensional intradi�usion

(Wi
ke) model for a weakly nonlinear isotherm

of sorption is solved by redu
ing it to the Burg-

ers' equation. Therefore, in the present paper we

solve a model for two-dimensional di�usion. Some

limiting 
ases interested from the physi
al point of

view are 
onsidered in details.

� The expression for the 
on
entration (37){(39) of

the sorbing marker for ea
h �xed x has a slanting

left slope and a steep right slope in the vi
inity

of the point t = x=v +

p

(4R�x)=v in the 
ase of

6
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on
ave sorption isotherm (see Fig. 2).

� In this 
ase of (40){(41) the 
on
entration of the

sorbing marker for a �xed x � x

0

has a slanting

right slope and the a steep left slope in the vi
inity

of the point t = x=v �

p

(4jRj�x)=v in the 
ase of


onvex sorption isoterm (see Fig. 3).

� The solutions of (37){(39) and (40){(41) have a


lear physi
al interpretation.

{ From equation (25) we 
on
lude that the sorb-

ing 
on
entration 
(x; t) moves with the ve-

lo
ity v

0

� v=(1 + �
). The latter means that

higher 
on
entrations move slower than the

small ones for � > 0, i. e., k

2

> 0. Therefore,

the small 
on
entrations arrive to the pa
ked-

bed output earlier than the high 
on
entra-

tions (see Fig. 2).

{ For the 
ase � < 0 (i. e., k

2

< 0) higher 
on-


entrations arrive to the pa
ked-bed output

earlier than small 
on
entrations (see Fig. 3).

� We negle
ted the non-homogeneity of a sorption

medium. In most 
ases, however, the stationary

phase �lm 
overing the support surfa
e is non-

uniform and �lls mainly randomly narrow pores of

the support. Latter means that the thi
kness l of

sorption �lm (see Fig. 1) is sto
hasti
. We return

to this problem elsewhere.
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ROZV'�ZOK DL� MODEL� DVOVIM�RNOÕ �NTRADIFUZ�Õ

G. �roxenkova

Centr teoretiqnoÝ f�ziki,

L�m�n�{Kaz 907, Marsel~, F{13288, Sedeks 9, Fran
��

galina�
pt.univ-mrs.fr

Sistemu diferen
��l~nih r�vn�n~ u qastinnih poh�dnih, wo v�dpov�da
 dvovim�rn�� model� �ntradifuz�Ý

(model� V�ke) dl� slabo nel�n��nih �zoterm sorb
�Ý, rozv'�zano sposobom zvedenn� ÝÝ do r�vn�nn� Bur�ersa.

U detal�h rozgl�nuto de�k� graniqn� vipadki, 
�kav� z toqki zoru zastosuvann� u f�zi
�.
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