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A system of partial differential equations corresponding to two-dimensional intradiffusion
(Wicke) model for a weakly nonlinear isotherm of sorption is solved by reducing it to the Burgers’
equation. Some limiting cases interesing from the physical point of view are considered in details.
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I. INTRODUCTION

The microscopic physical description of the sorp-
tion/desorption phenomenon is a rather complicated
problem. It is especially the case, when this phenomenon
is connected with diffusion into a sorption medium. In
this case one considers a flow of inactive liquid or gas
(a mobile phase) through a bed homogeneously packed
by small solid spheres covered by sorbing film (a sorp-

tion medium) with a packing characteristic porosity € =

void volume "o aipy of this note is to study dynamics
tgtal volume

of sorption of an active marker introduced into a mo-
bile phase. The process of permeability of this marker
through a sorption medium is based essentially on a
physical picture of multiply repeated sorption and des-
orption acts.

The mathematical description of dynamics of sorption
has to take into account the following basic peculiari-
ties of this complicated phenomenon: balance of an ac-
tive marker in process of displacement into a sorption
medium, kinetic and static properties of this marker, hy-
drodynamics of this process, dependence between ther-
modynamic condition parameters of a sorption medium,
balance of heat and heat transfer in the process of dy-
namics of sorption in a mobile phase, etc. Because of
complexity of this physical picture the theory develops
via formulation of different simplifications and approxi-
mations. Usually they are the following (see, e. g., [1-4]
and references therein):

e dynamics of sorption is isothermal;

e a mobile phase is incompressible and a concentra-
tion of an active marker is so small that variation
of a density of sorbing marker can be neglected;

e a flow of a mobile phase is either one dimensional,
or one considers an axial-symmetric problem,;

e one can neglect the non-homogeneity of a sorption
medium.

The main problem of the theory of dynamics of sorption
now can be formulated as follows: to find the time (or
space) distribution of concentration of sorbing marker
for each length @ (or for each moment of time t), if the
initial concentration of the marker into mobile phase and

character of interaction between marker and a sorption
medium are known.

Usually a concentration of the sorbing marker into the
mobile phase and a concentration of the sorbed marker
into the sorption medium are averaged over the cross-
section, thus they are functions of one variable z ([2-
4]). But more precise consideration should take into ac-
count a variation of concentration of sorbed marker into
a sorption medium along the radius of packing parti-
cles. Wicke [5] proposed a two-dimension intradiffusion
model (the mathematical formulation is due to Tunitskij
et al. [6]) where concentration of the sorbed marker re-
sults from diffusion of the sorbing marker into a layer of
a sorption medium (see Fig. 1).
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Fig. 1. Diffusion of a sorbing marker c(z,t) into a layer of
a sorption medium with thickness [.

In the present paper it is shown that the two-
dimension intradiffusion Wicke model can be reduced
to a partial differential equation for the concentration
of the sorbing marker into the mobile phase. Moreover,
this equation is solved explicitly for a weakly nonlinear
isotherm of sorption.

I1I. THE MATHEMATICAL SET UP

The system of the partial differential equations corre-
sponding to Wicke model has the form [6] (see Fig. 1):

da 8%a
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5Dy Qal  _ Oc + u@’ (2)
e Oyl,., Ot dx
da
- =0, 3
il 3)
co, 0 < <uaq,
o) =so={ i 05TEn (1)
t=0 ’ ’
Fle(x,t =Y(z), y=0;
eyt =4 TS| =R w=0
t=0 0, y>0.
Here a = a(x,y,t) is the concentration of the sorbed

marker into the sorption medium, and a(z,y = 0,¢) =
F(c(x,t)) is the equation of the isotherm of sorption;
¢ = e(z,t) is the concentration of the sorbing marker
into the mobile phase; y is the coordinate inside the film
of the sorption medium of thickness {; D; is the diffu-
sion coefficient into the sorption medium; u is the linear
flow velocity which is a constant in the cross-section and
along the column length; s is the specific area of the sur-
face boundary between a mobile phase and a sorption
medium (per unit bend length and per unit bend cross-
section); ¢ is the porosity.

Notice that the Wicke model describes in fact a two-
dimensional diffusion (into directions y and #) corre-
sponding to the sorbed a and the sorbing ¢ markers re-
lated by some isotherm equation.

III. EVOLUTION EQUATION
FOR THE MODEL (1)—(5)

Taking into account (5) we can represent the solution
a(z,y,t) in the form:

a(z,y,t) = O(x,y,t) + F(e(z,1)) . (6)

Then by (1) the new function © = O(z, y,) satisfies the
differential equation

00 _ . 0’6 _or (7)
ot~ Toyr T o

with homogeneous boundary conditions (cf. (3),(5)):

Solution of the equation (14) with (15) has the form:

2 21

Uty = - (%) - b ep(-D ) - [

1/2 91
) m(2n+1) ar

20

=0
Ay ’

y:l

O(x,y,1) =0. (8)

y=0

By virtue of (5) the initial condition for ©(z,y,t) gets
the form:

v=19, (9)

0
Oyt = { —d(z) y>0.

The solution of the corresponding homogeneous system
(7)—(9) we represent as

Ox,y,t) =Y (y)T(z,1) . (10)

Then the corresponding eigenvalues and normalized
eigenfunctions for this problem are:

2+ 1))\ °

Xn:<%) , n=01,2.., (11)
N2 r2n+1

Yaly) = (7) o %y' .

Representing the solution of nonhomogeneous differen-
tial equation (7) in the form

O(z,y,1) = ZUn(x’t)Yn(y) (13)

and expanding the nonhomogeneous term with the help
of the complete set of the eigenfunctions (12), we get the
equation for Uy (z,1):

ou,, NY? a 9F
ot ~Prxnln = (7) m(2n+1) at (14)

with the initial condition:

2\'* o

IF (c(z,T))

exp(—DPsxn(t — 7))dr . (16)

Substituting the expression (16) into (13) and taking into account (3) and (6) we get:
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da 2 = 2\ o= [P OF(c(r,x

— = —=]¢() Zexp(—Dant) - = Z/ Mexp(—i)fxn(t —7))dr (17)

33/ y=0 l 0 l 0 0 87—
where (due to (4),(5)):

_JF(f(®)) =F(co), 0< <,
@ =1{]

Let us consider the limit > xy. Then by the above con- 3_0 _ _Ld_Fﬁ n ? d_F& (22)
ditions the first term in the right-hand side is negligible. dy y=0 Dy de Ot 37)? de 912

Let Dst > [? (where [ is the film thickness of the sorp-
tion medium) and let @ 3 #g. Then for the next term
in (17) we get:

¢ IF (c(r, z))
—/0 TA(t—T)dT

B POF(c(t —€, 1))
O (13)
where £ =t — 71, A(§) = %Zexp(—i)fxné’). Using the
n=0

fast decay of the function of A(£) for & > 0, the expres-
sion (18) can be represented in the form of expansion:

B /t d_F@c(x,t)
0 dC 3t
/ dF 9%c(x,
_|_
0 dC 3t2

Consequently the first and the second terms in (19) for
Dyt > 1?7 are given by:

A(g)d¢

)5A(£)d£ +0 (;) . (19)

dF@C / Zexp (=D xn)dé

dF de(x d %i’: D) _Y)Lfil_fac(;,t); (20)
and
£ i

Then the derivation (17) takes the form:

Hence, for Dyt > 1? and x > o the boundary condition
(2) for the model (1)—(5) reduces to the equation:

ue e ( €
- _|_ -
sDy Ox sD;

which is nothing but the evolution equation for the con-
centration of sorbing marker.

{ dF) Je 1 dF 9%

Laryge  F arove 9
Dy de ) Ot 37)? de 02 (23)

IV. DISCUSSION: LIMITING CASES

We showed that the system of partial differential equa-
tions (1)-(5) for the sorbing marker ¢(x,t) and sorbed
marker a(z,y,t) can be reduced (in the long-time limit
Dyt > 1% and  >> xp) to unique partial differential equa-
tion corresponding the evolution of sorbing marker (23).
It 1s the concentration which experimenter measures at
the end # = L > xy of packed bed. This equation can
be solved explicitly for the case of a weakly nonlinear
isotherm of sorption known in the gas-liquid dynamics
of sorption [1]. To this end we use approximation for the
isotherm of sorption (cf. Eq. (5)):

a(z,y=0,1t) = F(c(x,t)) = kic(x, ) + kaoc? (2, 1), (24)
up to quadratic term, where | ko | e(z,t) < kq.
Then the equation (23) gets the form:
de de e
— 14+ Xe)— =7— 2
”ax+( * C)at "oz (25)
where
ue 2kap ke l?
= A= , T=———— pu=sl
€+ pky €+ pky 3'Df(6—|—/,tk’1)

Using the change of variables £ = ¢ — /v, n = a/v

and ¢ = Ac(z,t) we get the Burgers’ equation for
¢ = Ae(x,t):
dc* dc* o
* =T 26
oy T T Tae (26)
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Tts solution is well-investigated (see, e.g. [7]).
Therefore, we reduced the two-dimensional intradiffu-
sion Wicke model (1-5) to the Burgers’ equation (26).

Below we consider the Cauchy problem for the equa-
tion (25) with initial condition with respect to variable
x:

fA)>0,ift>0, [T ft)dt = M < +oo.
=0,t) = =00 27
cle=01) {f(t):O,ift<0, (27)
Then the solution of the equation (25) has the form:
+00 z t—g-w)? w
v Sl dwlt = —w)exp {—%} cexp [—5- fo dyAf(v)]
C(l‘,t) = /\_ oo (t—=—w)? 1w (28)
x J77 dwexp {_W} exp [—5 [, dyrf(y)]
For the simplest case
_ _ Co, 0 S t S tO ;
A =ee=00={ " 2050
one gets from (28):
d)—é(b+d
e(z,t) = Co [p(a+d) —¢(b+d)]expe ’ (29)
A [ola+d) —¢(b+ d)]expe+ [24 ¢(b)] exph — ¢(a)
here 6() = —= [ 7€"dg and
where ¢(2) = — e an
VT o
_ _ o 2
‘— vt x’ . Acg (22 (vt — &) — Acpa® + vigx) ’ (30)
Vare dre
vl — x — vl Acox Acguiy
b = ; d = — 5 = — 31
Atz Vit 2T (81)
If we consider the case tg — 0 (cgtp = M = const) we get
t—z)2
oo L e () 62)
ele,t) = —, | —
’ AV /v = t—=

Acoty . . .
0%0 s the parameter of the non-linearity.

where R =

It is positive for concave isotherm of sorption (the case
of k2 > 0 in (24)) and negative for convex isotherm of
sorption (the case of ky < 0).

To investigate the form of the time distribution of the
sorbing marker (32) for ¢ 3> {*/D; and for a fixed length
z = L > =z one should to consider the following two
limiting cases.

Case of small parameter of non-linearity |R| < 1

In this case we would expect the diffusion in time to

VT (e -

dominate over the non-linearity. For |R| < 1 the denom-
inator in (32) is /7 + O(|R|), uniformly in z,¢,7. Hence
¢(x,t) may be approximated by

cx,1) = %mmxp (‘%)

This is the source solution of the “heat” equation, close
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to the Gaussian shape. So the expectation is verified.
Case of large parameter of non-linearity |R| > 1

To discuss the behaviour of the solution (32) for large
|R| (i. ., when the non-linearity dominates over the dif-
fusion) it is convenient to introduce the similarity vari-

QCOtOU
Az

~g(T, R),

we discuss the behaviour of g as R — oo (i. e. 7 = 0) for

t—xz/v

able T' = \/m Then we analyze the behaviour of
e(T,z), when |R| 3> 1 for different ranges of 7'

1). Let us consider the case when the isotherm of sorp-
tion is concave, R > 0.

Writing  (32) as

g(T\R) =

el e~ T°R (34)
WR S raerno1) | e
VR

If T < 0, the integral in (35) tends to /7; therefore,

different ranges of 7. In all cases, et —1 ~ ¢ and we ¢ — 0 at least like 1/v/R. If T' > 0, the integral in (35)
may use becomes small and we use for the asymptotic expansion
1 R (1-T7) e e
g(T,R) = Vi . = , (35) / e~ dE ~ 5 as n— 00 . (36)
VR Vel [ oemede n "
VR
Consequently the solution of the equation (25) for R > 1
is
O(R~/?) , T<0,
(T, 2)|gs1 = 2eqtgv T (37)
: L T>0.
Az 14 2TVrRexp(R(T? — 1))
If 0 < T < 1, we have from (35)
g~T, 0<T<1, R—o0, (38)

whereas if 7' > 1, g — 0 as R — oo. Thus ¢ — 0 except in 0 < T < 1, and in that range ¢ ~ 7". In the original

variables the result reads:

v t—xz/v
— (- , 0 < ————= <« 1,

C($;t)|R—>oo = Ax( x/v) (2Xcotox) /v (39)
0 , for the other x,t.

This is the appropriate solution of (25) with a shock (i. e., with a jump) at the point ¢t = /v + \/(2Acotox)/v. The
concentration ¢ jumps from zero to +/(2cotov)/(Az). The shock is located at T = 1 and for large but finite R (37)
shows a rapid transition from exponentially small values in 7" > 1 to (1/A)\/(4Rrv)/x in T < 1. The transition layer
is of thickness (’)(R_l) around T =1 (see Fig. 2)

2). In the case when the isotherm of sorption is a convex the solution of (25) is (see Fig. 3):

O(|R|~/?) , T>0,

o(T,z)||rps1 = [2cotov 17| T<o. (40)
Az 14 2|7|\/7[R]exp(|R|(T? 1)) =~ ~
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Fig. 2. Shock-wave type solution of Burgers’ equation for concave isotherm of sorption.
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Fig. 3. Shock-wave type solution of Burgers’ equation for convex isotherm of sorption.

If |[R| — oo (» is fixed) we get again a solution of the shock-wave type:

[ t—xz/v
—|t—z/v] , -1 < —————= <0
c(x,t)||R|500 = |/\|x| /vl (2[Aleotow)/v (41)
0 , for the other z,t.
V. CONCLUSION solve a model for two-dimensional diffusion. Some

limiting cases interested from the physical point of

view are considered in details.
e A system of partial differential equations cor-

responding to two-dimensional intradiffusion e The expression for the concentration (37)-(39) of
(Wicke) model for a weakly nonlinear isotherm the sorbing marker for each fixed  has a slanting
of sorption is solved by reducing it to the Burg- left slope and a steep right slope in the vicinity
ers’ equation. Therefore, in the present paper we of the point ¢t = z/v + \/(4R7x)/v in the case of
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concave sorption isotherm (see Fig. 2).

e In this case of (40)—(41) the concentration of the
sorbing marker for a fixed > zy has a slanting
right slope and the a steep left slope in the vicinity

of the point t = #/v — \/(4|R|r2)/v in the case of

convex sorption isoterm (see Fig. 3).

e The solutions of (37)-(39) and (40)—(41) have a

clear physical interpretation.

— From equation (25) we conclude that the sorb-
ing concentration ¢(x,t) moves with the ve-
locity v ~ v/(1 4+ Ae). The latter means that
higher concentrations move slower than the
small ones for A > 0, 1. e., ks > 0. Therefore,
the small concentrations arrive to the packed-
bed output earlier than the high concentra-
tions (see Fig. 2).

— For the case A < 0 (i. e., k2 < 0) higher con-
centrations arrive to the packed-bed output
earlier than small concentrations (see Fig. 3).

e We neglected the non-homogeneity of a sorption

medium. In most cases, however, the stationary
phase film covering the support surface is non-
uniform and fills mainly randomly narrow pores of
the support. Latter means that the thickness [ of
sorption film (see Fig. 1) is stochastic. We return
to this problem elsewhere.
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