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A system of partial di�erential equations orresponding to two-dimensional intradi�usion

(Wike) model for a weakly nonlinear isotherm of sorption is solved by reduing it to the Burgers'

equation. Some limiting ases interesing from the physial point of view are onsidered in details.
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I. INTRODUCTION

The mirosopi physial desription of the sorp-

tion/desorption phenomenon is a rather ompliated

problem. It is espeially the ase, when this phenomenon

is onneted with di�usion into a sorption medium. In

this ase one onsiders a ow of inative liquid or gas

(a mobile phase) through a bed homogeneously paked

by small solid spheres overed by sorbing �lm (a sorp-

tion medium) with a paking harateristi porosity " =

void volume

total volume

. The aim of this note is to study dynamis

of sorption of an ative marker introdued into a mo-

bile phase. The proess of permeability of this marker

through a sorption medium is based essentially on a

physial piture of multiply repeated sorption and des-

orption ats.

The mathematial desription of dynamis of sorption

has to take into aount the following basi peuliari-

ties of this ompliated phenomenon: balane of an a-

tive marker in proess of displaement into a sorption

medium, kineti and stati properties of this marker, hy-

drodynamis of this proess, dependene between ther-

modynami ondition parameters of a sorption medium,

balane of heat and heat transfer in the proess of dy-

namis of sorption in a mobile phase, et. Beause of

omplexity of this physial piture the theory develops

via formulation of di�erent simpli�ations and approxi-

mations. Usually they are the following (see, e. g., [1{4℄

and referenes therein):

� dynamis of sorption is isothermal;

� a mobile phase is inompressible and a onentra-

tion of an ative marker is so small that variation

of a density of sorbing marker an be negleted;

� a ow of a mobile phase is either one dimensional,

or one onsiders an axial-symmetri problem;

� one an neglet the non-homogeneity of a sorption

medium.

The main problem of the theory of dynamis of sorption

now an be formulated as follows: to �nd the time (or

spae) distribution of onentration of sorbing marker

for eah length x (or for eah moment of time t), if the

initial onentration of the marker into mobile phase and

harater of interation between marker and a sorption

medium are known.

Usually a onentration of the sorbing marker into the

mobile phase and a onentration of the sorbed marker

into the sorption medium are averaged over the ross-

setion, thus they are funtions of one variable x ([2{

4℄). But more preise onsideration should take into a-

ount a variation of onentration of sorbed marker into

a sorption medium along the radius of paking parti-

les. Wike [5℄ proposed a two-dimension intradi�usion

model (the mathematial formulation is due to Tunitskij

et al. [6℄) where onentration of the sorbed marker re-

sults from di�usion of the sorbing marker into a layer of

a sorption medium (see Fig. 1).

Fig. 1. Di�usion of a sorbing marker (x; t) into a layer of

a sorption medium with thikness l.

In the present paper it is shown that the two-

dimension intradi�usion Wike model an be redued

to a partial di�erential equation for the onentration

of the sorbing marker into the mobile phase. Moreover,

this equation is solved expliitly for a weakly nonlinear

isotherm of sorption.

II. THE MATHEMATICAL SET UP

The system of the partial di�erential equations orre-

sponding to Wike model has the form [6℄ (see Fig. 1):
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Here a = a(x; y; t) is the onentration of the sorbed

marker into the sorption medium, and a(x; y = 0; t) =

F ((x; t)) is the equation of the isotherm of sorption;

 = (x; t) is the onentration of the sorbing marker

into the mobile phase; y is the oordinate inside the �lm

of the sorption medium of thikness l; D

f

is the di�u-

sion oeÆient into the sorption medium; u is the linear

ow veloity whih is a onstant in the ross-setion and

along the olumn length; s is the spei� area of the sur-

fae boundary between a mobile phase and a sorption

medium (per unit bend length and per unit bend ross-

setion); " is the porosity.

Notie that the Wike model desribes in fat a two-

dimensional di�usion (into diretions y and x) orre-

sponding to the sorbed a and the sorbing  markers re-

lated by some isotherm equation.

III. EVOLUTION EQUATION

FOR THE MODEL (1){(5)

Taking into aount (5) we an represent the solution

a(x; y; t) in the form:

a(x; y; t) = �(x; y; t) + F ((x; t)) : (6)

Then by (1) the new funtion � = �(x; y; t) satis�es the

di�erential equation
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; (7)

with homogeneous boundary onditions (f. (3),(5)):
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By virtue of (5) the initial ondition for �(x; y; t) gets

the form:

�(x; y; t)

�

�

�

�

t=0

=

�

0 y = 0 ;

� (x) y > 0 :

(9)

The solution of the orresponding homogeneous system

(7){(9) we represent as

�(x; y; t) = Y (y)T (x; t) : (10)

Then the orresponding eigenvalues and normalized

eigenfuntions for this problem are:

�

n
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�

�(2n+ 1)

2l

�

2

; n = 0; 1; 2; : : : ; (11)

Y

n

(y) =

�

2

l

�

1=2

sin

�(2n+ 1)

2l

y : (12)

Representing the solution of nonhomogeneous di�eren-

tial equation (7) in the form

�(x; y; t) =

1

X

n=0

U

n

(x; t)Y

n

(y) (13)

and expanding the nonhomogeneous term with the help

of the omplete set of the eigenfuntions (12), we get the

equation for U

n

(x; t):
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with the initial ondition:

U

n

(x; 0) = �

�

2

l

�

1=2

2l

�(2n + 1)

 (x) ; n = 0; 1; : : : :

(15)

Solution of the equation (14) with (15) has the form:

U
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�
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n

(t� � ))d� : (16)

Substituting the expression (16) into (13) and taking into aount (3) and (6) we get:
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where (due to (4),(5)):

 (x) =

�

F (f(x)) = F (

0

); 0 � x � x

0

;

0; x > x

0

:

Let us onsider the limit x� x

0

. Then by the above on-

ditions the �rst term in the right-hand side is negligible.

Let D

f

t � l

2

(where l is the �lm thikness of the sorp-

tion medium) and let x � x

0

: Then for the next term

in (17) we get:

�
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�). Using the

fast deay of the funtion of �(�) for � > 0, the expres-

sion (18) an be represented in the form of expansion:
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Consequently the �rst and the seond terms in (19) for

D
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Then the derivation (17) takes the form:
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Hene, for D

f

t� l

2

and x� x

0

the boundary ondition

(2) for the model (1){(5) redues to the equation:
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; (23)

whih is nothing but the evolution equation for the on-

entration of sorbing marker.

IV. DISCUSSION: LIMITING CASES

We showed that the system of partial di�erential equa-

tions (1){(5) for the sorbing marker (x; t) and sorbed

marker a(x; y; t) an be redued (in the long-time limit

D

f

t� l

2

and x� x

0

) to unique partial di�erential equa-

tion orresponding the evolution of sorbing marker (23).

It is the onentration whih experimenter measures at

the end x = L � x

0

of paked bed. This equation an

be solved expliitly for the ase of a weakly nonlinear

isotherm of sorption known in the gas-liquid dynamis

of sorption [1℄. To this end we use approximation for the

isotherm of sorption (f. Eq. (5)):

a(x; y = 0; t) = F ((x; t)) = k

1

(x; t) + k

2



2

(x; t) ; (24)

up to quadrati term, where j k

2

j (x; t)� k

1

.

Then the equation (23) gets the form:
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; � =
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2
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Using the hange of variables � = t � x=v, � = x=v

and 

�

= �(x; t) we get the Burgers' equation for



�

= �(x; t):
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: (26)
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Its solution is well-investigated (see, e.g. [7℄).

Therefore, we redued the two-dimensional intradi�u-

sion Wike model (1{5) to the Burgers' equation (26).

Below we onsider the Cauhy problem for the equa-

tion (25) with initial ondition with respet to variable

x:

(x = 0; t) =

�

f(t) � 0; if t � 0;

R

+1

�1

f(t)dt = M < +1 :

f(t) = 0; if t < 0 ;

(27)

Then the solution of the equation (25) has the form:
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v
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�
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�
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x

v
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2
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i
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�

�

1
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R

!

0

dy�f(y)

�
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d! exp

h

�
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v

�!)

2
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i
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�

�

1

2�

R

!

0

dy�f(y)

�

: (28)

For the simplest ase

f(t) = (x = 0; t) =

�



0

; 0 � t � t

0

;

0; t < 0; t > t

0

;

one gets from (28):

(x; t) =



0

�

�

[�(a+ d)� �(b+ d)℄ exp 

[�(a+ d)� �(b+ d)℄ exp + [2+ �(b)℄ exph � �(a)

; (29)

where �(z) =

2

p

�

Z

z

0

e

��

2

d� and
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vt� x

p

4�x

;  =

��

0

(2x(vt � x)� �

0

x

2

+ vt

0

x)

4�x

; (30)

b =

vt� x� vt

0

p

4�x

; d = �

�

0

x

p

4�x

; h = �

�

0

vt

0

2�

: (31)

If we onsider the ase t

0

! 0 (

0

t

0

= M = onst) we get

(x; t) =

1

�

r

�

x=v

(e

R

� 1) exp

�

�

(t�

x

v

)

2

4�x=v

�

p

� +

p

�

2

(e

R

� 1)

�

1� �

�

t�

x

v

p

4�x

v

��

; (32)

where R =

�

0

t

0

2�

is the parameter of the non-linearity.

It is positive for onave isotherm of sorption (the ase

of k

2

> 0 in (24)) and negative for onvex isotherm of

sorption (the ase of k

2

< 0).

To investigate the form of the time distribution of the

sorbing marker (32) for t� l

2

=D

f

and for a �xed length

x = L � x

0

one should to onsider the following two

limiting ases.

Case of small parameter of non-linearity jRj � 1

In this ase we would expet the di�usion in time to

dominate over the non-linearity. For jRj � 1 the denom-

inator in (32) is

p

� +O(jRj), uniformly in x,t,� . Hene

(x; t) may be approximated by

(x; t) =

1

�

r

�

�x=v

R exp

�

�

(t� x=v)

2

4�x=v

�

=



0

t

0

p

4��x=v

exp

�

�

(t � x=v)

2

4�x=v

�

: (33)

This is the soure solution of the \heat" equation, lose
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to the Gaussian shape. So the expetation is veri�ed.

Case of large parameter of non-linearity jRj � 1

To disuss the behaviour of the solution (32) for large

jRj (i. e., when the non-linearity dominates over the dif-

fusion) it is onvenient to introdue the similarity vari-

able T =

t�x=v

p

2j�j

0

t

0

x=v

. Then we analyze the behaviour of

(T; x), when jRj � 1 for di�erent ranges of T .

1). Let us onsider the ase when the isotherm of sorp-

tion is onave, R > 0.

Writing (32) as

(T; x) =

r

2

0

t

0

v

�x

� g(T;R); g(T;R) =

e

R

� 1

2

p

R

�

e

�T

2

R

p

� + (e

R

� 1)

1

R

T

p

R

e

��

2

d�

; (34)

we disuss the behaviour of g as R!1 (i. e. � ! 0) for

di�erent ranges of T . In all ases, e

R

� 1 � e

R

and we

may use

g(T;R) =

1

2

p

R

�

e

R

(

1�T

2

)

p

� + e

R

1

R

T

p

R

e

��

2

d�

; (35)

If T < 0, the integral in (35) tends to

p

�; therefore,

 ! 0 at least like 1=

p

R. If T > 0, the integral in (35)

beomes small and we use for the asymptoti expansion

Z

1

�

e

��

2

d� �

e

��

2

2�

as � !1 : (36)

Consequently the solution of the equation (25) forR� 1

is

(T; x)j

R�1

=

8

<

:

O(R

�1=2

) ; T < 0 ;

r

2

0

t

0

v

�x

�

T

1 + 2T

p

�R exp(R(T

2

� 1))

; T � 0 :

(37)

If 0 < T < 1, we have from (35)

g � T ; 0 < T < 1 ; R!1 ; (38)

whereas if T > 1, g ! 0 as R ! 1. Thus g ! 0 exept in 0 < T < 1, and in that range g � T . In the original

variables the result reads:

(x; t)j

R!1

=

(

v

�x

(t� x=v) ; 0 <

t�x=v

p

(2�

0

t

0

x)=v

< 1 ;

0 ; for the other x; t :

(39)

This is the appropriate solution of (25) with a shok (i. e., with a jump) at the point t = x=v +

p

(2�

0

t

0

x)=v. The

onentration  jumps from zero to

p

(2

0

t

0

v)=(�x). The shok is loated at T = 1 and for large but �nite R (37)

shows a rapid transition from exponentially small values in T > 1 to (1=�)

p

(4R�v)=x in T < 1. The transition layer

is of thikness O(R

�1

) around T = 1 (see Fig. 2)

2). In the ase when the isotherm of sorption is a onvex the solution of (25) is (see Fig. 3):

(T; x)j

jRj�1

=

8

<

:

O(jRj

�1=2

) ; T > 0 ;

r

2

0

t

0

v

j�jx

�

jT j

1 + 2jT j

p

�jRj exp(jRj(T

2

� 1))

; T � 0 :

(40)
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Fig. 2. Shok-wave type solution of Burgers' equation for onave isotherm of sorption.

Fig. 3. Shok-wave type solution of Burgers' equation for onvex isotherm of sorption.

If jRj ! 1 (x is �xed) we get again a solution of the shok-wave type:

(x; t)j

jRj!1

=

(

v

j�jx

jt� x=vj ; �1 <

t�x=v

p

(2j�j

0

t

0

x)=v

< 0

0 ; for the other x; t :

(41)

V. CONCLUSION

� A system of partial di�erential equations or-

responding to two-dimensional intradi�usion

(Wike) model for a weakly nonlinear isotherm

of sorption is solved by reduing it to the Burg-

ers' equation. Therefore, in the present paper we

solve a model for two-dimensional di�usion. Some

limiting ases interested from the physial point of

view are onsidered in details.

� The expression for the onentration (37){(39) of

the sorbing marker for eah �xed x has a slanting

left slope and a steep right slope in the viinity

of the point t = x=v +

p

(4R�x)=v in the ase of

6
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onave sorption isotherm (see Fig. 2).

� In this ase of (40){(41) the onentration of the

sorbing marker for a �xed x � x

0

has a slanting

right slope and the a steep left slope in the viinity

of the point t = x=v �

p

(4jRj�x)=v in the ase of

onvex sorption isoterm (see Fig. 3).

� The solutions of (37){(39) and (40){(41) have a

lear physial interpretation.

{ From equation (25) we onlude that the sorb-

ing onentration (x; t) moves with the ve-

loity v

0

� v=(1 + �). The latter means that

higher onentrations move slower than the

small ones for � > 0, i. e., k

2

> 0. Therefore,

the small onentrations arrive to the paked-

bed output earlier than the high onentra-

tions (see Fig. 2).

{ For the ase � < 0 (i. e., k

2

< 0) higher on-

entrations arrive to the paked-bed output

earlier than small onentrations (see Fig. 3).

� We negleted the non-homogeneity of a sorption

medium. In most ases, however, the stationary

phase �lm overing the support surfae is non-

uniform and �lls mainly randomly narrow pores of

the support. Latter means that the thikness l of

sorption �lm (see Fig. 1) is stohasti. We return

to this problem elsewhere.

ACKNOWLEDGEMENTS

I would like to thank the referee for useful suggestions.

[1℄ G. Houghton, J. Phys. Chem. 1, 84 (1963).

[2℄ P. P. Zolotorev, Zh. Fis. Khim. 48, 1, 113 (1974) (in Rus-

sian).

[3℄ G. V. Yeroshenkova (Erohenkova), S. A. Volkov,

K. I. Sakodynsky J. Chromatogr., 198, 4, 377 (1980).

[4℄ B. Lin, Z. Ma, G. Guiohon, J. Chromatogr. 542, 1, 1

(1991).

[5℄ V. Wike, Kolloid Z. 86, 2, 167 (1939).

[6℄ N. N. Tunitskij, V. A. Kaminskij, S. F. Timashov, The

metods of physial hemistry kinetis (Khimiya, Mosow,

1972).

[7℄ V. Whitham Linear and non-linear waves (New York,

1974).

ROZV'�ZOK DL� MODEL� DVOVIM�RNOÕ �NTRADIFUZ�Õ

G. �roxenkova

Centr teoretiqnoÝ f�ziki,

L�m�n�{Kaz 907, Marsel~, F{13288, Sedeks 9, Fran��

galina�pt.univ-mrs.fr

Sistemu diferen��l~nih r�vn�n~ u qastinnih poh�dnih, wo v�dpov�da dvovim�rn�� model� �ntradifuz�Ý

(model� V�ke) dl� slabo nel�n��nih �zoterm sorb�Ý, rozv'�zano sposobom zvedenn� ÝÝ do r�vn�nn� Bur�ersa.

U detal�h rozgl�nuto de�k� graniqn� vipadki, �kav� z toqki zoru zastosuvann� u f�zi�.
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