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The non-stationary solution method for a problem of tunneling of nonrelativistic particles and
photons through a barrier on the basis of multiple internal reflections of wave packets in relation of
barrier boundaries is submitted. The method is described and proved in solving an one-dimentional
problem of tunneling of the particle through a rectangular barrier. For problems of tunneling of
the particle through a spherically symmetric barrier and the photon through an one-dimensional
barrier the amplitudes of transmitted and reflected wave packets in relation to the barrier, times of
the tunneling and the reflection are found using of the method. Hartman’s and Fletcher’s effect is

analysed.
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I. INTRODUCTION

The approach for description of a propagation of a
nonrelativistic particle above a barrier using the account
of multiple internal reflections of stationary plane waves
between barrier boundaries which describe a motion of
this particle in the region of the barrier, was considered
in a series of articles and has been known for a long time
[1-3]. Thus, stationary solutions were studied only in the
previous articles.

To apply this approach for a solution of a problem,
one can need in expressions for a wave function (w. f.)
in the region of the barrier to separate components hav-
ing fluxes directed in opposite sides. For a problem of the
particle propagating above the barrier it appears primely
enough. So, considering an one-dimensional (1D) rectan-
gular barrier, plane waves e**** can be taken as such
solutions, where k i1s a wave vector. To receive solutions
using this approach for a problem of the tunneling of
the particle under such a barrier appears more compli-
cated, because in the consideration of the tunneling as
a stationary process the decreasing and increasing com-
ponents of the stationary w. f. in dependence on x (be-
ing analytic continuations of relevant expressions of the
waves for the case of above-barrier energies) in a sub-
barrier region correspond to zero fluxes separately and it
is not correct to use them as the propagating waves from
a physical point of view. If we define expressions for such
waves in another way (for example, having required the
existence of the nonzero fluxes in the barrier region at
each step of this approach), we receive a divergence of
the expressions for the waves for the above-barrier and
the sub-barrier cases. However, the flux calculated on the
basis of a complete stationary w. f. is not equal to zero
and, therefore, the tunneling of the particle under the
barrier exists.

As a further development of a time analysis of tunnel-

24

ing processes submitted in articles [4-6], here we repre-
sent the non-stationary solution method of a problem
of tunneling of a nonrelativistic particle or a photon
through a barrier using multiple internal reflections of
fluxes in a sub-barrier region in relation to barrier bound-
aries (we name this approach as the method of multiple
internal reflections). In the given article we study an one-
dimensional and a spherically symmetric problems.

At analysing the tunneling (or the propagation) of the
nonrelativistic particle, an important specific feature of
this method is a description of a particle motion using
non-stationary wave packets (w. p.). Due to this one can
determine correctly the packets propagating in different
directions in a barrier region, fulfil a time analysis of the
particle tunneling (propagation) and study in details this
process in an interesting time moment or in relation to
a concrete point of space. For obtaining time parameters
of the tunneling, this method has shown itself convenient
and simply enough.

For the problem with a spherically symmetric barrier
the reflected and transmitted w. p. in relation to this
barrier are propagating in one direction. Stationary so-
lution methods do not allow to separate the w. p. trans-
mitted through the barrier from the w. p. reflected from
the barrier. Using the method of multiple internal reflec-
tions, one can find amplitudes and expressions for these
w. p. As a result, it appears possible to present S-matrix
in a form of a sum of two components corresponding to
stationary parts for the reflected and transmitted w. p.
in relation to the barrier. The sum of the stationary parts
for these w. p. obtained by this method converges with
the expression for a scattered wave obtained by an usual
stationary method. The spherically symmetric problem
with use of given approarch is considered for the first
time.

At first we consider the problem of the tunneling of
the nonrelativistic particle through the one-dimensional
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rectangular barrier. This problem is a test one and allows
to analyse specific features of this method.

Further the problem of the tunneling of the particle
through the spherically symmetric barrier, whose radial
part has a rectangular form, is solved. For it amplitudes
of the transmitted and reflected w. p., total times of the
tunneling and reflection in relation to the barrier are
found. Hartman’s and Fletcher’s effect is analysed. An
expression for S-matrix is presented in the form of a sum
of two components corresponding to amplitudes of sta-
tionary parts for the transmitted and reflected w. p. The
time parameters using of the method of multiple internal
reflections are found for the first time.

One can apply the method to the problem of the tun-
neling of the particle through a spherically symmetric
barrier, which radial part has an arbitrary form, if a
general stationary solution for a w. f. is known for this
potential. Some problems with various barrier forms are
considered. The problems are selected so that to show
better features of the method at their solution.

At a finishing of the article a possibility to use the
method in a problem of a tunneling of photons through
an one-dimensional rectangular barrier is studied. On
the basis of a given analysis the method is proved for
the problem with the photons. Using the found trans-
formation the results and solutions of the problem with
the nonrelativistic particle transform into corresponding
expressions for the problem with the photons. Hartman
and Fletcher’s effect is analysed.

II. TUNNELING OF A PARTICLE THROUGH
AN ONE-DIMENSIONAL RECTANGULAR
BARRIER

Let us consider the problem of tunneling a nonrela-
tivistic particle in a positive z-direction through an one-
dimensional rectangular potential barrier (see Fig. 1).
Let us label region I for # < 0, region II for 0 < = < a
and region III for # > a, accordingly. Let us study an
evolution of its tunneling through the barrier.
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Fig. 1. One-dimensional rectangular barrier.

In the beginning we consider a standard approach to

the solution of this problem [7,8]. Let us consider a case
when levels of energy lay under the height of the barrier:
B < V.

The tunneling evolution of the particle can be de-
scribed using a non-stationary consideration of a propa-
gating w. p.

+oo

e, t) = /g(E—E)gp(k,x)e‘iEt/ﬁdE, (1)

where the stationary w. f. has a form:

e 4 Age” T for x < 0;
aet® 4+ Be=" . for 0 < z < a; (2)
Arpetke for z > a;

pla) =

and k = %\/QmE, &= %\/Qm(vl — F), E and m are the
total energy and mass of the particle, accordingly. The
weight amplitude g(E — E) can be written in the form of
gaussian [4] and satisfies the requirement of normaliza-
tion [|g(E — E)|?dE =1, value E is an average energy
of the particle. One can calculate coefficients Ar, Ar, a
and [ analytically, using the requirements of a continu-
ity of w. f. ¢(z) and its derivative on each boundary of
the barrier.

Substituting in Eq. (1) instead of ¢(k, z) the incident
@inc (k, ), transmitted @i, (k, ) or reflected part of w. f.
oret (k, 2), defined by Eq. (2), we receive the incident,
transmitted or reflected w. p., accordingly.

We assume that a time, for which the w. p. tunnels
through the barrier, is enough small. So, the time nec-
essary for tunneling an a-particle through a barrier of
decay in a-decay of a nucleus, is about 10~?! seconds
[9]. We consider, that one can neglect a spreading of the
w. p. for this time. And a breadth of the w. p. appears
essentially more narrow on a comparison with a barrier
breadth [4-6]. Considering only sub-barrier processes, we
exclude a component of waves for above-barrier energies,
having included the additional transformation

9(E — E) = g(E — E)o(V1 — ), (3)

where #-function satisfies to the requirement

|0, for n <0
9(77)_{1, for n > 0.

The method of multiple internal reflections considers
the propagation process of the w. p. describing the mo-
tion of the particle, sequentially on steps of its penetra-
tion in relation to each boundary of the barrier [1-3].
Using this method, we find expressions for the transmit-
ted and reflected w. p. in relation to the barrier.

At the first step we consider the w. p. in region I, which
is incident upon the first (initial) boundary of the bar-
rier. Let us assume that this package transforms into the
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w. p. transmitted through this boundary and tunneling
further in the region II, and into the w. p. reflected from
the boundary and propagating back in region I. Thus we
consider that the w. p. tunneling in region II has not
reached the second (final) boundary of the barrier be-
cause of a terminating velocity of its propagation, and
consequently at this step we consider only two regions |
and II. Because of physical reasons to construct an ex-
pression for this packet, we consider that its amplitude
should decrease in a positive z-direction. We use only
one item Gexp(—€x) in Eq. (2), throwing the second in-
creasing item aexp(éz) (in an opposite case we break a
requirement of a finiteness of the w. f. for an indefinitely
wide barrier). As a result, in region IT we obtain:

+oo
Yinc (2,1) = /g(E—E)H(Vl

0

+ oo

Vo (2,1) = / g(E — E)O(Vy — E)AYe-ike—iBt/hgp

0

A sum of these expressions represents the complete
w. f. in region I, which is dependent on time. Let us
require that this w. f. and its derivative continuously
transform into the w. f. (4) and its derivative at point
z = 0 (we assume that the weight amplitude g(E — E)
differs weakly at transmitting and reflecting of the w. p.
in relation to the barrier boundaries). Consequently, we
obtain two equations, in which one can pass from the
time-dependent w. p. to the corresponding stationary
w. . and obtain the unknown coefficients 3° and AY,.

At the second step we consider the w. p. tunneling in
region II and incident upon the second boundary of the
barrier at the point x = a. It transforms into the w. p.
transmitted through this boundary and propagated in
region III, and into the w. p. reflected from the bound-
ary and tunneled back in region II. For a determination
of these packets one can use Eq. (1) with account (3),
where as the stationary w. f. we use:

gpiznc(ka l‘) = @%r(k’, l’) = 606—51"

ek, x) = Ape'™,

for 0 < x < a,

for z > a,

gp?ef(ka l‘) = aOeEx’ for0 <z < a. (6)

Here, for forming an expression for the w. p. reflected
from the boundary, we select an increasing part of the
stationary solution a®exp(éx) only. Imposing a condi-
tion of continuity on the time-dependent w. f. and its
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1/)1;1r(l‘,t) = g(E — E)g(vl _ E)ﬁoe—ﬁx—iEt/ﬁdE’

+oo
0
for 0 <z < a. (4)

Thus, the w. f. in the barrier region constructed in a such
way, 1s an analytic continuation of a relevant expression
for the w. f., corresponding to a similar problem with
above-barrier energies, where as a stationary expression
we select the wave exp(ikox), propagated to the right.

Let us consider the first step further. One can write
expressions for the incident and the reflected w. p. in
relation to the first boundary as follows

- E)eikx_iEt/ﬁdE, for # < 0,
for x < 0. (5)
I
derivative at the point # = a, we obtain 2 new equa-

tions, from which we find the unknowns coefficients A%,
and o,

At the third step the w. p., tunneling in region II is
incident upon the first boundary of the barrier. Then
it transforms into the w. p. transmitted through this
boundary and propagated further in region I, and into
the w. p. reflected from boundary and tunneled back in
region II. For a determination of these packets one can
use Eq. (1) with account Eq. (3), where as the stationary
w. f. we use:

Sp?nc(kax):SD?ef(k,l‘), for 0 <z < a,
QDtBr(ka l‘) = A}%e—ikx’ for z < 0,
gp?ef(k’x):ﬁle_gx’ for0 <z <a. (7)

Using conditions of continuity for the time-dependent
w. f. and 1ts derivative at the point & = 0, we obtain the
unknowns coefficients AL and 3'.

Analysing further possible processes of the transmis-
sion (and the reflection) of the w. p. through the bound-
aries of the barrier, we come to a deduction that any of
the following steps can be reduced to one of 2 considered
above. For the unknown coefficients o”, 37, A% and A%
used in expressions for the w. p. formed as a result of
some internal reflections from the boundaries, one can
obtain the recurrence relations:
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2% i€~k
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An_ n Ea—ika An+1: n ) 8

Considering the propagation of the w. p. in such a
way, we obtain expressions for the w. f. on each region
which can be written through a series of multiple w. p.
Using Eq. (1) with the account of Eq. (3), we determine
resultant expressions for the incident, transmitted and
reflected w. p. in relation to the barrier, where one can
need to use the following expressions for the stationary
w. f.:

ke

Pinc(k,z) =€ for z < 0,
+oo )
ok, ) = ZA%@””, for > a,
n=0
ret (k, ) ZA” “HE o for < 0. (9)

Now we consider the w. p. formed as a result of sequen-
tial n reflections from the boundaries of the barrier and
incident upon one of these boundaries at the point x = 0
(i = 1) or at point « = a (i = 2). As a result, this w. p.
transforms into the w. p. ¥¢ (z,t), transmitted through
boundary with number i, and into the w. p. ¢ _;(z,1),
reflected from this boundary. For the independent of z

+ oo

n=0 n=1

> AR =R + T RITT (

+ oo
Soar=
n=0

n=1
+ oo

>
n=0 i=1

where

Fapp = (kz _gZ)D_ + QZng-I-a Dy

a’ (1 + Jf(R;R;)") =
+o0
=5 (1 + > (RfRY)"

parts of the stationary w. f. one can write:

301}1‘ — T+ Spilnc Spgef — + SDilnc
exp(—€x) Uexp(ikx)’  exp(—ikz) Lexp(ikx)’
301:21‘ — + Splznc Spgef — + S0121‘1C
exp (k) exp( Ex)’  exp(éx) exp( Ex)’
QD%I, I gpilnc gp%ef — R- gpilnc
exp(—ikz) Uexp(éx)’  exp(—E€x) Lexp(éx)’
(10)
where the sign “+” (or “=”) corresponds to the w. p.

tunneling (or propagating) in a positive (or negative) -
direction and incident upon the boundary with number
¢. Using TZ»i and R;t, one can precisely describe an ar-
bitrary w. p. which has formed in result of n-multiple
reflections, if to know a “path” of its propagation along
the barrier. Using the recurrence relations Eq. (8), the
coefficients TZ»i and R;t can be obtained:

An B An+1
T1+ = 60a T2+ = 6_2’ Tl = 017” )
a” _ Bn+1
Ril— = A%’ R;— = 6_n’ Ry = on (11)

Using the recurrence relations, one can find series of
coefficients ™, G7, A% and A%. However, these series
can be calculated easier, using coefﬁc1ents TZi and Ri

Analysing all possible ¢ paths of the w. p. propagatlons
along the barrier, we receive:

+ oo . -
" 3 - Z4k’€6 Ea—ika
> g =1 (1 iRy ) =

+00 9
L\ kED_
1+Z(R;R1) ) = ;—b,
n=1 su

2k (i¢ — k)e2Ea

Fsub ’
2k (i€ + k)
) = Tb’ (12)
2
=14 e %4 ké:k2+£2:72—2‘/1. (13)
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All series > a™, > 3", >~ A% and > A%, obtained us-
ing the method of multiple internal reflections, coincide
with the corresponding coefficients «, 3, Ar and Agr of
the Eq. (2), calculated by a stationary methods [4,7,15].
Using the following substitution

1€ — ko, (14)

where ko = %\/Qm(E — 11) is a wave number for a case

of above-barrier energies; expression for the coefficients
a”, 8", A%} and A%, for each step, expressions for the w. f.
for each step, the total Egs. (12) and (13) transform into
the corresponding expressions for a problem of the parti-
cle propagation above this barrier. At the transformation
of the w. p. and the time-dependent w. f. one can need
to change a sign of argument at #-function. Besides, the
following property is fulfilled:

2
4+

’ =1. (15)

+oo +oo
D AR+ AR
n=0 n=0

III. TUNNELING OF THE PARTICLE
THROUGH A SPHERICALLY SYMMETRIC
RECTANGULAR BARRIER

A. Transmitted and reflected wave packets

The problem of the motion of two interacting particles
can be reduced to the problem of one particle scattering
in a spherically symmetric field. Let us assume that the

—Vp, forr < Ry; (region I);
Vi(r) = V1, for Ry < r < Ra, (region II); (16)
0, for r > Ra, (region TIT).

is incident outside upon an external boundary of the bar-
rier at point » = Ry (see Fig. 2).

V() .
I I | III
‘{1 I | | (Pi.nc
——
[prefr q’u
—_—
0. >
. R, R, r

Fig. 2. Spherically symmetric rectangular barrier.

Let us study an evolution of tunneling of the parti-
cle through the barrier. We consider a case when the
moment [ = 0 and levels of energy lay below a barrier
height. The tunneling evolution of the particle in time
dependence can be described using a w. p. constructed
on a basis of a stationary solution of the following form

[7]:
x(r)

particle under the action of a central force Y(r,0,0) = , Yim (0, ¢), (17)
A(emthar — ki) for r < Ry, (region T),
X(r) = e + pe ¢, for R1 < r < Ry, (region II), (18)
e~k 4 Setkr for r > R, (region TIT),
[
where Y, (0,¢) is a spherical function, k5 = ergy, which is equal to zero at [ = 0, weight amplitude

%\/Qm(E—l—Vo), & = %\/Qm(vl —FE), k = %\/QmE.
For the spherically symmetric problem in a case of sub-
barrier energies we obtain:

g(E — E)o(Vi — E)x(k, r)e ' B/h B, (19)

>
=
Nt
Il
o‘\—é—

R2 (141
RLRIES

2m  r?

, (20)

where the second item in Eq. (20) is a centrifugal en-
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g(E —FE) and average energy of the particle F are defined
similarly to the one-dimensional problem (see Sec. II).
At a stationary consideration of solutions (18) we de-
scribe the particle incident upon the external boundary
of the barrier by a spherical wave exp(—ikr) conver-
gent to the centre. And we describe the particle scat-
tered on the barrier in the region III by a spherical wave
Sexp(ikr) divergent outside. The scattered wave takes
into account both a possibility of a reflection of the par-
ticle from the barrier, which is written by the divergent
wave, and a possibility of a penetration of the particle
through the barrier, when in the beginning the particle
tunnels from region III to region I, and then after some
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period of time 1t tunnels back from region I to region 111
and also is written by the divergent wave. Only one item
Sexp(ikr) contains the transmitted and reflected diver-
gent waves, and it is impossible to separate them at the
stationary consideration.

As non-stationary, the method of multiple internal re-
flections allows to find a solution of this problem. Let
us apply it to this problem. We study a propagation of a
w. p. describing tunneling of the particle, sequentially on
steps of its transmission in relation to each of boundaries
of the barrier (similarly to the one-dimensional problem).
As a result of an analysis we come to a deduction that

+co 1
> St = ——Ty T (Ry (1
n=1 sub
Tl_T2_ _
Fsub

4ik€e—ik32+ik131—5(32—31)
Fsub(k‘i‘lg)(kl‘i‘lg) ’

+oo
2 A
n=0

— R{Ry)+ Ty RyTY) =

any step in such viewing of the propagation of the w. p.
along the barrier will be similar to one of 4 steps in-
dependent among themselves. Analysing these 4 steps
further, one can obtain recurrence relations for finding
coefficients A”, S™, a™ and g" for an arbitrary step n.

As a result of multiple internal reflections (and transi-
tions) in relation to the boundaries of the barrier a total
time-dependent w. f. in each region can be written in
the form of series composed from convergent and diver-
gent w. p.. Analysing possible “paths” of propagations of
these packets, one can calculate expressions for the series
of coefficients S™, A", a” and §":

Zg k’l
£+ ky

411{7{(

_ eziklRl) o 26(R1—R3)—2ik Ry

sub(k‘i‘ig)z ’

— i€ .
o 2k 1+ g2tk | —(E+ik) Rz
+Z o _ ol=R{Rg ( ET )
a =« = . ,
n=0 Fsub sub(k + Zg)
b , i€ — k1 2'kR) —Ry)—i
oo o T. _ _ o 2% | - _ (2ikiRy | (E(2R1—R2)—ikR:
iﬁn _ nz::O ’ :aORl (1 - RfRy) + 17 Ry T} _ <l§+k1 (21)
n=0 R;— Fsub Fsub(k’ =+ Zg) 3
where
Fsub = (1 — RTRE)(l — R;Rl ) R+T RO T1+ — 1_|_ Zg ZZk 1Ry
k’l —|— Zg
M —2¢(R2—R1) _ 15 e~ 26(Ra—Rq)+2iks R1 (22)
(kt i) (ky +16) k’—l—z€
_ % e _ i+,
T =o' = (§+ik) Rz — g0 _ 2ik Ry
N T
_ A" 2i¢ . P ik
T = — 25 (E+ik) i -7 _ 2531
Par itk ‘ - T hi
TO_ =0, Ra =1,
T+ = g =_ 2k ik )R pt At - 1§ — I e2ik1R
oA i€+ ky e T
gk = S 28 erimp oy @ €=k o, (23)
2T Ttk LR T T Tk ’
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where the coefficients TZ»i and R;t are defined in relation
to the boundary with the number i (¢ = 0 for r = 0,
i =1forr = Ry and ¢ = 2 for » = Rs). They can be
calculated using of the recurrence relations between the
coefficients S, A”, o™ and 7.

Now we consider the incident, transmitted and re-
flected w. p. in relation to the barrier as a whole. Defining
them for the region 111, one can write:

+ oo

Xlncrt:/g Vi —
0

+oo
Xtr(r,t) = / g(E — E)H(Vl _ E)Streikr—iEt/ﬁdE’
0

B)e —ikr=iBt/h g

+ oo
Xret(r,1) = / 9(E = E)0(Vi = E)Spere =1 F MR,
0

(24)

where

Sref = SO; S = Sir + Srer- (25)

+oo
S = Z Sna
n=1

The expression S represents a diagonal element of scat-
tering matrix corresponding to the orbital moment! = 0.
Thus, using the method of multiple internal reflections
it appears possible to divide the S-matrix into two com-
ponents corresponding to amplitudes of stationary parts
of the transmitted and reflected w. p. in relation to the
barrier as a whole. This property having physical sense,
is obtained for the first time.

The expressions for coefficients S, A", o™ and 3" for
each step, the expression for the w. f. for each step, the
coefficients TZ»i and RZ:»E, the series of the coefficients S,
A" o™ and §" under the substitution (14) (and also
at replacement of a sign before argument for #-function
at a consideration of the non-stationary w. p.) transform
into the corresponding expressions for the solution of the
problem of a w. p. propagation above the barrier. Series
(21) of the coefficients S™, A", o™ and " coincide with
the corresponding coefficients S, A, o and S for Eq. (18),
calculated by stationary methods.

B. Tunneling and reflecting times in relation to the
barrier

One can determine an equation for a propagation of a
maximum of the incident, transmitted and reflected w. p.
in relation to the barrier for the spherically symmetric
problem. For radial parts of non-stationary w. f. one can
write:

30

——arg Xinc (7 1) = ==arg xu:(r, 1)

OF OF

=3 ——arg Yref(7, t) = const. (26)

Let us consider the first step of the propagation of the
w. p. Let the w. p. is incident in region IIT upon the ex-
ternal boundary of the barrier at point r = Rs in a time
moment tin.. Using Eq. (26), we find the time moment
tl . of leaving outside from this boundary the reflected
w. p. in region III:

2m Ry N h@ arg S° .

hk OF

trl‘ef = tinc (27)

Similarly, for a time moment ¢}, of leaving outside the
external boundary of the barrier the n-multiple trans-
mitted w. p. one can write:
2mR 0 S

mRy ih arg 5"
hk oF

t?r = tine + (28)

Using Eq. (26) at point » = Ra, we find times neces-
sary for the penetration of the total w. p. through the
barrier (describing the tunneling of the particle through
the barrier) and for the reflection of the w. p. from the
barrier (describing the reflection of the particle from the
barrier):

2mR 0 arg S,
Tglg:ttr_tinc: hk2+h agE, ! 3

2mR 8 arg Spe
7—1“1:;}{1 = dpref — tine = Tk 2 +h 8gE ! . (29)

For the problem of the w. p. tunneling under the bar-
rier we receive:

rPh hiar i€ — ky — (i€ + ky)e?imin
tun = " op@ (i€ + k)2(i€ + k1) Foup
2m
Ph _ ="
el = ek (30)

For the problem of the w. p. propagating above the
barrier we write:

+Ph 2m(R; — Ry)
tun hkz

_ _ 2ik1R1
1 g R = (et b |
OF (k + kZ)(kl + kZ) above

ref - 0 (31)

where Fypove can be obtained from Fgy, using the sub-
stitution (14).
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Let us consider a particle, which tunnels under a high
enough and wide barrier. Then for the time of the tunnel-
ing we obtain the following expression (sequence of ap-
proaches: £(Ra— R1) = 400, & = 400, Ra— Ry — +00):

Ph _ 2m | 4mBy sin 2k Ry (1 — 2COSQ]<71R1). (32)
tun ™ pke hE(1 — cos 2k Ry)

The tunneling time does not depend on the width of the
barrier (Hartman’s and Fletcher’s effect), but depends
on ki and Ry.

IV. TUNNELING OF THE PARTICLE
THROUGH THE SPHERICALLY SYMMETRIC
BARRIER OF A GENERAL VIEW

A. The particle propagates above the barrier

In study of nuclear processes when a tunneling of par-
ticles through a barrier 1s investigated, in most cases the
barriers of more complicated form than rectangular are
used. So, the spherically symmetric two-humb potential
of Strutinski has a sufficiently important role in the prob-
lems of fusion and decay of nuclei. A degree of an exac-
titude of the description of the nuclear process depends
on the choice of a form of the potential. Therefore, we
shall consider, as far as it 13 possible to use the method
of multiple internal reflections for solving the spherically
symmetrical problems with the barrier of a general view.

Avay(k,r) + Bibi(k,r),

X(r) = Aiai(k’,r)‘FBibi(kar)a

for 0 < r < Ry,
for Ri_1 < r < Ry, (region ),
Apan(k,7) + Bpbn(k,r), for r > R,_1,

Let us consider a particle propagating in a spherically
symmetric potential field, which radial part has a bar-
rier. Taking into account the behaviour of a radial part
V(r) of the potential function in dependence on r, we
divide the area of its definition » € [0;4oc0[ on the n
regions. In each region let us replace the potential func-
tion V' (r) by a function most closely describing V'(r) and
for which an exact solution of the stationary Schrodinger
equation exists (see Fig. 3). Passing to the problem of the
particle propagation in the field of these approximated
potential functions, we write the general solution for sta-
tionary w. f. in the form (17), where its radial part can
be written as

L
v _
Oty N N
‘v'l 1 i (ijlC
[
\ i i [me, an-
o
0. ’. — >
-V, R, .. RN-: RN] T

Fig. 3. Spherically symmetric barrier of a general form.

(region T),
(33)
(region N),

where k = %\/QmE, a;(k,r) and b;(k,r) are the partial solutions of the radial part of w. f. in region i, A; and B; are

the normalization constants.

Let us find the transmission and reflection coefficients of particle in relation to the barrier, and also the times
necessary for transmission and for reflection of the particle in relation to the barrier, using the method of multiple
internal reflections. To apply the method to this problem, one can need to present the general stationary solution of
w. f. in each region in the sum of divergent and convergent vawes.

Using the Fourier transformation, one can write:
ai(k,r) = a7 (k,r)+af (k,7),

where

bi(k,r) = b7 (k,r) 4+ bF (k,r),

(34)

a; (k, r’)eiq(r_rl)dr/

bl

Ri—1
1 400 R;
af(k,r) = — / d / alk,r’ eiq(r_rl)dr/,
fer == [ [ ater)
0 Ri_1
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0 R
1 : /
b (kyr)=—— [ d b (k, 7)1 =) !
Pk == [ [ b
— 00 R;
+o0 R
1 : /
bk, r) = — / d / bi(k, ") =" dy. 35
Fer)= o= [an [ nies) (59
0 Ri_y
Taking into account the transformation
Bi
c; (kyr)y=a; (k,r)+ Ib;(k’ ), c;»"(k’, r) = faj'(k, r) + b;»"(k’, 7) (36)
one can write the general solution (33) as
Alc1 (k,r) + Blc1 (k,r), for 0 <r< Ry, (region T),
x(r) = c; (k,7)+ Bic] (k r), for R;_1 <r < R;, (region i), (37)
A ey (k,7) + Buct(k,r), for r > R,_1, (region N).
Hence, the general solution in every region ¢ is rep- 362'_4_1(7”) + 36;:_1(7“)
resented as the sum of convergent waves ¢; () and di- T — or cipa (1) = ci (7) or
vergent waves ¢} (r) (so, in case of a rectangular bar- v de7 (r) gt (r) ’
rier in the region ¢ such expressions equal to e~ and or Cz-|—1(r) — ¢ () or r=FR
¢ accordingly). On the basis of these expressions us-
ing Eq. (19) one can construct the non-stationary con- &:Z__H(r) B B de; (r)
vergent and divergent w. p.. Writing the general solution _ or ¢ (1) = ¢4y (7) or
for w. f. in every region in the form of linear combina- Ry =—— et '
: : dey (r) 4 NG
tion of convergent and divergent w. p., one can apply 3—Ci+1( ) —¢; (T)T r=R;
the method of multiple internal reflections for solving "
the problem. . 36;»"(7“) ~ N 3cl—+1(r)
At first we study the case, when the general stationary + or ci (r) — ¢ (r) ar
solution for w. f. in every region can be Written uniquely = a9t ) de (r) )
as sum of convergent and divergent waves c; ( ). Then i+l (r) Cz-'l—+1(r) i r=R;
using of the method of multiple internal reﬂectlons for ar ar
solving the problem, one can find the incident, trans- et (r) der ()
mitted and reflected w. p. in relation to the barrier as L z++1( ) — e (r) i+l
a whole, and total w. p. in every region. It is enough R;I' = 3 +37° 37“_ (40)
convenient to use the coefficients TZ»i and R;t (as in the Ci+1(r) et (r) (r) dey (r) r=R;
spherically symmetric problem with rectangular barrier). or s s or

We define these coefficients in relation to the boundary
with the number 7 in such a way (for the step j):

J J . J+l _ p— Al .
A T Az+1’ Bz+1 Rz Ai+1’

B‘z’j+1 = 7}+B‘Zj; A‘ZH = R?—B‘ij' (38)

One can calculate these coefficients at the considera-
tion of first 2n + 1 steps:
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Further using the method of multiple internal reflec-
tions, one can calculate the incident, transmitted and
reflected w. p. in relation to the barrier. On the basis
of these w. p. one can find the transmission and reflec-
tion coefficients and also the transmission and reflection
times in relation to the barrier. Thus, the transmitted
and reflected w. p. can be written through Sy, and Sper,
the sum of which is the diagonal element of the scattering
matrix S at the orbital moment /.

The value A,, can be obtained from the normalization
condition:
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+oo —-1/2
An:( / |cn(k,r)|2dr) . (41)

n—1

Now we study the case, when the partial solutions of
w. f. in some regions are not the convergent and divergent
waves. In representations (36) and (37) one can need to
know the values B;/A;. In this case at solving the prob-
lem we consider first 2n+1 steps. Let the general solution
for w. f. in the first region be expressed through a; and
b1. Analyzing the reflection of w. p. from the point r = 0,
one can obtain:

Ty =0; Ry =-— =1 (42)

If the w. f. in the first region is determined through
cli uniquely, then it is necessary to use Eq. (39) instead
of Eq. (42). Calculatmg the value By/Aj, one can find
the functions c1 Using the continuity condition for w. f.
and 1ts derivative in all boundaries between regions, one
can find the recurrent relation for values B;/A;:

da; Ofi
By 0 el - )
z-I—l afl( )bi-l—l(r) _ fz(r)M r:R,’

or

Ttun = (arg (
Tref = (arg (

Ar = L arg U,
OF 62_ (Rl)

Z:Bzc2 (k, Ry ) — arg Azcz_(k’,Rl)) ha—Ea

Bgc k, Ry ) — arg Azcz_(k’,Rl)) =

f)=a)+ b =G @ed T @)

Having the values B; /A;, we obtain the convergent and
divergent waves c;t(r) in every region. Then the solution
of the problem is fulfilled as in the previous case.

Applying the approach considered above for the so-
lution of the problem of particle propagation, when the
potential V'(r) is defined only in two regions (n = 2), one
can find the incident, transmitted and reflected w. p. in
relation to the barrier using Eq. (19) for above-barrier
region, where the radial parts from the corresponding
stationary w. f. have the form (at r > Ry)

Xine(r) = Aacy (k,7),
1T T Ry
_ + _ 0 +
Xtr(r) = Strcz (]{7,7”) = A ﬂ 9 (k’ 7”)
Xref (1) = Srefcs T(k,r) = AsRT c;(k’, 7). (44)

We find the coefficients TZ»i and R;t from Eq. (40).
Using Eq. (26) for external boundary, one can obtain
the times necessary for transmission and for reflection of
particle in relation to the barrier. As a result, we receive:

T T Ry
a 1 1+R0_ 4 AT;
1 — R R;

0 -
ha—Earg RT + AT,

(45)

For the problem solution when potential V' (r) is defined on three regions (n = 3), the expressions for radial parts
of stationary w. f., describing the incident, transmitted and reflected w. p. in relation to the barrier, look like (at

r> Rz)
Xinc(r) — ASCg (ka 7“),

Strcg'(k’, r)= As

T (R (1

— RFRy) +T7 RyTT)

Xtr(r) =

Xref(r) = Srefcg (k 7“)

(1- R Ry)(1 - R{Ry) -

Ang_cg(k’, 7).

RIT Ry T 5 (k7))

(46)

The transmission and reflection times of particle in relation to the barrier has the form (they are calculated at

TIRQ)

Ttun = h

9 Ty TF(Ry (- RYRy) + Ty Ry T7)

9E™® 1 RYR;)(I— RTR;) —

+ AT
RYTT Ry T7F
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0
Tref = ha—Earg Ry + A,

As an example of the method application we consider
two problems.

The particle propagates above the barrier of the form
(see Fig. 4)

—Vo, for 0 < r < Ry, (region I);
Vi(r) = (48)

1, for r > Ry, (region II).
”

We consider the case [ # 0. One can obtain the incident,
transmitted and reflected w. p. in relation to the barrier
from Eqs. (44) and (19), taking into account the sign
before argument of #-function for above-barrier energies,
and transmission and reflection times from Eq. (45). At
consideration the first three steps of w. p. propagation
along the barrier we find the coefficients TZ»i and R;t us-
ing Egs. (40) for n = 2. In the solutions one can need to
fulfil the substitution

C;(k’r) = Gl(U’P) —iFl(U’P),

cf (k,r) = Gi(n, p) + iFi(n, p), (49)

Cl_ (k’ 7“) = Xl;l (7“),

Cil—(k’ 7“) = Xl-cl—ll (7“),

where

1
]{71 = ﬁ\/Qm(E—I— VO),

_ pvk
n= W
p=k(r),
+ . 7T]{717° (172)
Xjey (1) = i TH1+1/2(]‘717°)a (50)

Hl(l’z)(r) is the function of Hankel of the Ist and 2nd
sort, Gy(n, p) and Fi(n, p) are the irregular and regular
Coulomb functions [19]. The normalization constant A,
can be obtained from Eq. (41).

Now we consider another problem when the particle
propagates above the barrier of the following form:

ar? — Vy, for 0 < r < Ry, (region I);
Vi) = 1, for r > Ry, (region II). (51)

r

Let us study the case [ = 0. In the beginning we con-
sider region I. The partial solutions for the radial part of
stationary w. f. are the parabolic cylinder functions [19]:
D, (xgr) and D, (%igr), where g = (8apu/h*)'/*. For the
description of above-barrier motion of particle we choose
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AT = h—arg

8 C;(Rz)

0™ & (Ry)

the first two solutions D, (+gr), which are independent
if v is non-integer. (Note that one can use the Whit-
teker’s functions as such two independent solutions [19].
But these two functions can be presented in the form
of linear combination of the parabolic cylinder functions
D, (£gr).) Each of partial solutions can be presented in
the form of the sum of convergent and divergent waves:

4 V() ! !
I 11 A | | |
4 °
nec
P, P
\ —
0 it
' R R, r
-_\ro 1 2

Fig. 4. Spherically symmetric Coulomb barrier.

D, (+gr) = D} (£gr) + D} (£gr),

0 Ry
1 ; /
Dy(xgr)” = E / dq/Dy(igr/)ezq(r—r )dr/’
—00 0
+oo Ry

1 . ]
D;l' (gr) = E / dq/Dy(igr/)ezq(r—r dr (52)
0 0

Using such w. f., one can apply the method of mul-
tiple internal reflections to the solution of the problem.
As a result, we find the incident, transmitted and re-
flected w. p. in relation to the barrier from Eqgs. (44) and
(19), taking into account the sign before argument of 6-
function for above-barrier energies, and transmission and
reflection times from Eq. (45). The coefficients TZ»i and
R;t can be obtained from Eqs. (40) and (42) for n = 2
at substitution

ay(k,r) = D, (k,r),

C;(k’r) = GO(nap) - ZFO(%P),

bi(k,r) = Dy(—k,r),

cf (k,r) = Go(n, p) + iFo(n, p), (53)
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where n and p are defined in Eq. (50), Go(n,p) and
Fy(n, p) are the irregular and regular Coulomb functions
at [ = 0.

B. The particle tunnels under the barrier

Now we consider the problem of tunneling of parti-
cle under the barrier of spherically symmetric potential
field. And the radial part of this barrier has a general
view (see Fig. 3).

Dividing the range of definition r € [0; +oo[ for poten-
tial V(r) on n regions, on each of them we approximate
V (r) by function most close to it, for which there are the
general solutions of w. f. for stationary Schrodinger equa-
tion. We divide the whole range so that the processes of
sub-barrier tunneling and above-barrier propagation laid
in the different regions.

For regions, in which the energy levels considered by
us lay above the potential function V(r) (the particle
propagates above the potential), the stationary solution
for w. f. is represented as Eq. (37) (if necessary using the
transformations (34), (35) and (36)).

For regions, in which the viewed energy levels lay un-
der the potential function V'(r) (the particle tunnels un-
der the potential), in the beginning we find the general
solution for stationary w. f., assuming that the energy
levels lay above the potential function. One can need to
present the general solution for w. f. as Eq. (37), sepa-
rate the components corresponding to fluxes, directed to
the opposite sides. Everywhere in expressions for w. f.,
where the property

|[E—Vi(r)| = E—=Vi(r), at E>WV(r), (54)

1s used, one can need to redefine this expression for
E < Vi(r), having changed the sign. So, in case of
constant potential in dependence on r we obtain the
Eq. (14). Such substitution gives the following property:
the resultant expressions for w. p. and also for stationary
and non-stationary w. f. for the problem of tunneling of
a particle under the barrier are the analytic continuation
of the relevant expressions for a similar problem, when
the particle propagates above the barrier.

Having defined the expressions for stationary w. f. in
such a way, one can construct the relevant for them w. p.
on each region and apply the method of multiple inter-
nal reflections to solution of the problem. A further ap-
proach for obtaining the resultant expressions for inci-
dent, transmitted and reflected w. p. in relation to the
barrier and also the times of tunneling and reflection
differs by nothing from the approach for the problem so-
lution in the above-barrier case.

As an example, we consider the problem of tunneling
of particle under the barrier (48) (see Fig. 4). We con-
sider the case [ # 0. We divide the region 1I on two at
point » = Rz, which defines by requirement £ = Vj(Ra2).
One can find the incident, transmitted and reflected
w. p. in relation to the barrier from Eqgs. (19) and (46),
and the times of tunneling and reflection from Eq. (47).

Analysing the first 5 steps of w. p. propagation along
the barrier, we find the coefficients TZ»i and R;t using the
Egs. (40) for n = 3. In these expressions on can need to
fulfil the substitution

C};(k’r) = X’_T__ll(r)’
C (k’ 7“) = Xkll(r)’
c5 (k,r) = Gi(n, p) — iFi(n, p) }f g

. < =, 59
cH(k,r) = Giln, p) +iFi(n,p) [ r (55)
¢z (k,r) = Giln, p) — iF1(n, p) }f g7

: > L
(k) = Giln, p) +iFi(n,p) [ r

where k, k1, 1, p, and also X!il(r)’ Gi(n, p) and Fi(n, p)
are defined earlier.

V. EVOLUTION OF PHOTON TUNNELING
THROUGH ONE-DIMENSIONAL UNDERSIZED
RECTANGULAR WAVEGUIDE

We use the analogy between photon and particle 1D
propagation and tunneling which consists not only in
the formal mathematical analogy between the solutions
of the time-dependent Schrodinger equation for nonrel-
ativistic particles and of the time-dependent Helmholtz
equation for electromagnetic waves but also in the simi-
larity of the probabilistic interpretation of the wave func-
tion for a particle and of a an electromagnetic wave
packet being the wave function for a single photon [5]
for a hollow rectangular waveguide with variable sec-
tion (like that used in the Cologne experiment [20], see
Fig. 5). The time-dependent wave equation for A, E, H
(A is the vector potential with the subsidiary gauge con-
dition div A = 0, E = —(1/¢)0A /0t is the electric field
strength, H = rot A is the magnetic field strength) is

1 9?A

For boundary conditions (see, for instance, [5])

Ey =0 for z =0 and 7z = «q,

E,=0for y=0 and y=25 (57)

the solution of Eq. (57) can be represented as a super-
position of the following monochromatic waves:

Eyi = Epsin (k,z) cos (kyy) exp [i(wt + yz)],
EZi = —FEqy(ky/k;) cos (k.z)

x sin (kyy) exp [i(wt £ ya)], (58)
where k2 + k2 + 97 = w?/¢® = (21/0)?, k. = mn/a,
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ky = nm/b, m and n are the integer numbers (for defi-
niteness we have chosen the TE-waves). Thus,

y = 2a[(1/A)° = (1/2e)*1H2,
(1/Xe)* = (m/2a)* + (n/2b)?, (59)

where v is real (y = Rey) if A < A and « is imagi-
nary (y = #€em) if A > Ac. Similar expressions for v were
obtained for TH-waves [5].

1

I
k

Fig. 5. The rectangular waveguide with narrow-part sec-
tion (II) of dimension b and length L.

Generally the non-stationary solution of Eq. (56) can
be written as a wave packet constructed on the basis of
monochromatic solutions (58), similarly to the solution
of the time-dependent Schrodinger equation for nonrela-
tivistic particles in the form of a wave packet constructed
from monochromatic terms (for the problem of particle
propagating above the 1D rectangular barrier). More-
over, in the representation of primary quantization the
probabilistic single-photon wave function is usually de-
scribed by a wave packet (for instance, see [5,6] and the
relevant references therein) like

/ CP—kK(k)A(k, r)e Rt (60)

where A(k,r) = exp (¢kr) for propagation in vacuum and

Alk,r) = p(z) exp(ikyy +ik,z) with

ek L qpe~=T  region I,
ae‘?emx + Bebem®  region 11, (61)
apetke® region IIT

pla) =

for propagation in the waveguide (Fig. 5). Here, v =
2

(l‘, Y, Z), K(k) = Z Kz(k)el(k), €;e; = (Sij, el(k)k = 0,
i=1

i,j = 1,2 (or y, z if ke = k), ko = w/c = &/he,
|k| = ko, K;(k) is the amplitude for the photon with
momentum k and polarization i, and |K;(k)|?dk is then
proportional to the probability that the photon has the
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momentum between k and k + dk in the polarization
state e;.

Though it is not possible to localize photon in the
direction of its polarization, nevertheless, in a certain
sense, for the one-dimensional propagation it i1s possi-
ble to use the space-time probabilistic interpretation of
Eq. (60) along axis  (the propagation direction) [5]. Tt
can be realized from the following. Usually one uses not
the probability density and probability flux density with
the corresponding continuity equation directly but the
energy density sp and the energy flux density s, (al-
though in general they represent components of not a
4-dimensional vector but the energy-momentum tensor)
with the corresponding continuity equation [5] which we
write in the two-dimensional (spatially one-dimensional)
form:

880 381;
—_— =0 62
ot + Oz ’ (62)
where
_ EE+ HH _ cRe[EH],
sq = o . Sy = 5 (63)

and axis z is directed along the motion direction (the
mean momentum) of the wave packet (60). Note, that
for the spatially one-dimensional propagation the energy-
momentum tensor of the electromagnetic field reduces to
the two-component quantity — to the scalar term so and
1-dimensional vector term s, for which continuity equa-
tion (62) is Lorentz-invariant. Then, as a normalization
condition one chooses the equality of the spatial integrals
of sy and s, to the mean photon energy and the mean
photon momentum respectively or simply the unit energy
flux density s,. With this, we can define conventionally
the probability density

So dl‘
fSo dx

Pem dT = , So= /50 dydz, (64)

for the photon to be found (localized) in the spatial in-
terval (z,  + dx) along axis # at the moment ¢, and the
flux probability

Sy = /sx dydz, (65)

for the photon to propagate through point (plane) z in
the time interval (¢, t + dt), quite similarly to the proba-
bilistic quantities for particles. Hence, in a certain sense,
for time analysis along the motion direction, the wave
packet (60) is quite similar to a wave packet for nonrel-
ativistic particles and similarly to the conventional non-
relativistic quantum mechanics, one can define the same
form of time operator as for particles in nonrelativistic
quantum mechanics and hence the mean time and the
distribution variance of times of photon (electromagnetic
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wave packet) passing through point z in both time and
energy representations) [5]. Then, the same interpreta-
tion one can use for the propagation of electromagnetic
wave packets (photons) in media and waveguides when
reflections and tunneling can take place — in particular,
for waveguides like depicted in Fig. 5 with spatially de-
creasing and increasing waves in Eq. (61). The only dif-
ference is in the momentum-energy relation (quadratic
for particles and linear for photons).

So, from rather simple calculations of Jem . using
Egs. (60)-(65), and using the given above definitions of
E and H (see also [6]), one can obtain the following re-
lation:

Jem = = ReF(y, 7) (gp(l‘)% 325:‘)) , (66)

where the function F(y, z) depends on the boundary con-
ditions of the waveguide (see Fig. 5) and calculated in [6].
Therefore under boundary conditions the flux density for
photons can be obtained from the flux density for parti-
cles by simple replacing (—éfi/2m) by F(y, z)[—iw/4~].
At this substitution all results and relevant expressions
(approach to the solution of a problem on the basis of
consideration of multiple internal reflections of fluxes in
the region of the barrier, phase tunneling and reflection
times and other results), obtained above for the descrip-
tion of tunneling evolution of the particle through the
barrier, also take place at the description of photon prop-
agation.

In the particular case of quasimonochromatic wave
packets, under the same boundary conditions as consid-
ered for the problem of tunneling of a particle through
1D rectangular barrier, we obtain the identical expres-
sion for the phase tunneling time:

Ph
tun,em

" cem for

EemL > 1. (67)

From Eq. (67) one can see that when &L > 2 the
effective tunneling velocity

o L
vtfn = “Pn (68)
tun,em

is more than ¢, i. e., superluminal. This result agrees
with the results of the microwave-tunneling measure-
ments presented in [20].

Note, that for sub-barrier energies the nonlocality of a
barrier as a whole takes place not only for nonrelativistic
particles but also for photons. This property is the phys-
ical cause of the superluminality during the tunneling.

VI. CONCLUSIONS

In this work the method of multiple internal reflections
describing the process of tunneling of nonrelativistic par-

ticles and photons through barriers of the various forms
is presented. This method is a further development of a
series of articles [4-6] devoted to the time description of
tunneling through a barrier. It uses the essentially non-
stationary approach constructed on the basis of multiple
reflections (and transmissions) of w. p. in relation to the
boundaries of barrier. Thus one can describe in depen-
dence on time the process of tunneling of total w. p. de-
scribing the considered nonrelativistic particle or photon
through barrier and to study specific features of process
in any interesting moment of time or in any point of
space 1n details.

The possibility of time description of tunneling
through a barrier is one of the principle perspectives of
this method in comparison with stationary approaches.

The stationary one-dimensional problem of tunneling
(and propagation) of a nonrelativistic particle through a
rectangular barrier with accounting of the multiple in-
ternal reflections was earlier solved for sub-barrier ener-
gies the plane waves in the barrier region (on the basis
of which the complete expressions for w. f. were found)
had zero fluxes. According to the physical understanding
there is a problem of applicability of such an approach
to the problem solution. In the given article the substan-
tiation of this approach is given on the basis of using the
non-stationary w. p.. For this problem (being the test
one) the phase time of tunneling and reflection in rela-
tion to the barrier at whole under solving the problem on
the basis of the method of multiple internal reflections
are introduced.

Using the method of multiple internal reflections the
problem of tunneling of a nonrelativistic particle through
a spherically symmetric barrier 1s solved for the first
time. Here, using this method it is possible (as against
the known stationary approaches) to separate the wave
packet, transmitted through the barrier and describing
a particle after its leaving outside in the wake of dou-
ble tunneling through barrier, from the wave packet, re-
flected from the barrier describing a reflected particle
(both packets are spherically divergent). For the diago-
nal element of scattering matrix with orbital moment [
the following property

Sl = S1l:r + Sll“efa

is fulfilled, 1. e., the S-matrix consists of two compo-
nents corresponding to the transmitted and reflected
wave packets in relation to barrier. This property has
physical sense and is proved mathematically.

We suppose that the method will allow to describe
such properties of nuclear processes, which are not ex-
plained by stationary methods. So, some experiments
performed recently, have caused an increased interest in
a bremsstrahlung in an a-decay of heavy nuclei [9]. This
phenomenon is interesting in the sence that includes both
a radiation of photons in a propagation of an a-particle
in an electromagnetic field of a daughter nucleus, and
a tunneling of the a-particle through the decay barrier.
Now the effect of the photon radiation in the tunneling of
the a-particle under the barrier is investigated in an un-
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satisfactory way. For the description of this process some
stationary methods allowing to calculate a spectrum of
the bremsstrahlung are created. But in comparison with
the experimental data one can see that each stationary
approach describes the phenomenon with a small degree
of precision. Besides, the minima and maxima are reg-
istered in the spectrum for some nuclei, while the sta-
tionary methods give a monotonically decreasing curve
for the spectrum. We assume that based on a space-time
approach the method of multiple internal reflections will
allow to explain the peaks in this spectrum. A prelimi-
nary analysis shows that these peaks correspond to reso-
nance levels of the a-decay of the researched nucleus and
they can be evaluated using the method.

In this article the possibility of applying the method
for 1D problem of photon tunneling through a rectangu-
lar barrier is explored. On the basis of the given analysis
the analogy (having a mathematical substantiation and
physical sense) between wave packets (and also between
problem setting, boundary conditions) describing both
propagation and tunneling of a nonrelativistic particle
and photon, is shown. Consequently, it 1s possible to ap-
ply the method of multiple internal reflections for the
problem with photons for the first time. At the found
transformation the obtained results for the problem of
particle tunneling through a barrier transform into the
relevant expressions for the problem of tunneling of pho-
tons. The tunneling durations are found. For a suffi-
ciently wide (and high) barrier there is an effect of prop-
agation of wave packet with the velocity higher than that
of light (Hartman’s and Fletcher’s effect).

The superluminal phenomena, observed in the exper-
iments presented in [20] and later in other papers (for
example, see the relevant references in [5,6,21]), gener-
ated a lot of discussions on relativistic causality. And in
connection with this, also an interest in similar phenom-

ena, observed for the electromagnetic pulse propagation
in a dispersive medium [22], was revived. The known way
of usual understanding consists in explaining the super-
luminal phenomena during tunneling on the basis of a
pulse attenuated reshaping (or reconstructing) discussed
at the classical limit earlier by [22-24]: the later parts
of an input pulse are preferentially attenuated in such a
way that the output peak appears shifted toward earlier
times, arising from the forward tail of the incident pulse
in a strictly causal manner [25].

In has been ascertained for quite some time that the
wavefront velocity of the electromagnetic pulse propa-
gation, when pulses have a step-function envelope, can-
not exceed the velocity of light ¢ in vacuum [23,24].
Namely in this the principal demand of the relativistic
(Einstein) causality consists. This conclusion was con-
firmed by various methods and in various processes, in-
cluding tunneling [26-31]. Note, that it is known from
the momentum-energy Fourier-analysis of an electromag-
netic wave packet with the step-function form of the for-
ward edge, that such a wave packet contains components
with large (up to the infinite) energies, i. e., above-barrier
energies, for which the superluminality is absent.

One of the problems which are now under discussion
consists in the absence of a step-function form of forward
edges for realistic wave packets [26,31]. In such cases the
conclusions of [23,24] seem to be inapplicable. An in-
teresting approach to analyse the form of causality in
particular in such cases was proposed in [32].

Finally, from the analysis of first step in solving the
problem by the method of multiple internal reflections
one can see that the tunneling process at sub-barrier en-
ergies is a non-local phenomenon because during tunnel-
ing the entering w. p. fills up the whole barrier at once
and w. p. feels immediately both barrier walls (bound-
aries).
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METOH BATATOKPATHUX BHYTPINIHIX BINIBUTTIB IIPU OIINCI
EBOJIIONII TYHEJIIOBAHHZ HEPEJIZITUBICTCHBKINX YACTHNHOK TA ®OTOHIB

C. Il. Maiigamior, B. C. Ounbxoscbkuii, A. K. ailiuenko
Inemumym adeprux docaidcens HAH Vipainu,
npocn. Hayxu, 47, Kuis, 03680, Yxpaina

Hasenmerno Hecrammonapauii MeTom poss 43Ky 3afiadl TyHEIOBAHHsS HEPEJIATUBICTCHKAX YaCTHUHOK Ta (pPOTOHIB

gepes bap’ep, AKUiI BUKOPUCTOBY€E HaraToKpaTHl BHY TPINIHI BIIONTTA XBUIBOBHUX ITaKeTIB, M0I0 Mex bap’epa. Me-

TOM OIIMCAHO Ta IOBENEHO TPH PO3B’sA3yBaHHI OHOBUMIPHOI 3aHavl TYHETOBAHHA YACTUHKW depes3 TMPAMOKY THUH

bap’ep. g 3amad TyHeII0OBaHHA YaCTHUHKN depe3 cpepuaHo-cuMeTpudHnii 6ap’ep rta ¢poToHa depes oIHOBUMIP-

HU Gap’ep 3 BUKOPUCTAHHAM METOIY 3HAWIEHO BMPA3W [/ aMIUTITY/I BIIOMTOTO XBHITBOBOTO TTaKeTa Ta MaKeTa,

o mpoiinioB dYepes Hap’ep, a TaKOX YaCH TYHeJFOBaHHA Ta BIIOMTTA miomo bap’epa. IlpoamasiizoBano edekT

laprmana—®ieryepa.
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