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The non-stationary solution method for a problem of tunneling of nonrelativisti partiles and

photons through a barrier on the basis of multiple internal reetions of wave pakets in relation of

barrier boundaries is submitted. The method is desribed and proved in solving an one-dimentional

problem of tunneling of the partile through a retangular barrier. For problems of tunneling of

the partile through a spherially symmetri barrier and the photon through an one-dimensional

barrier the amplitudes of transmitted and reeted wave pakets in relation to the barrier, times of

the tunneling and the reetion are found using of the method. Hartman's and Flether's e�et is

analysed.
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I. INTRODUCTION

The approah for desription of a propagation of a

nonrelativisti partile above a barrier using the aount

of multiple internal reetions of stationary plane waves

between barrier boundaries whih desribe a motion of

this partile in the region of the barrier, was onsidered

in a series of artiles and has been known for a long time

[1{3℄. Thus, stationary solutions were studied only in the

previous artiles.

To apply this approah for a solution of a problem,

one an need in expressions for a wave funtion (w. f.)

in the region of the barrier to separate omponents hav-

ing uxes direted in opposite sides. For a problem of the

partile propagating above the barrier it appears primely

enough. So, onsidering an one-dimensional (1D) retan-

gular barrier, plane waves e

�ikx

an be taken as suh

solutions, where k is a wave vetor. To reeive solutions

using this approah for a problem of the tunneling of

the partile under suh a barrier appears more ompli-

ated, beause in the onsideration of the tunneling as

a stationary proess the dereasing and inreasing om-

ponents of the stationary w. f. in dependene on x (be-

ing analyti ontinuations of relevant expressions of the

waves for the ase of above-barrier energies) in a sub-

barrier region orrespond to zero uxes separately and it

is not orret to use them as the propagating waves from

a physial point of view. If we de�ne expressions for suh

waves in another way (for example, having required the

existene of the nonzero uxes in the barrier region at

eah step of this approah), we reeive a divergene of

the expressions for the waves for the above-barrier and

the sub-barrier ases. However, the ux alulated on the

basis of a omplete stationary w. f. is not equal to zero

and, therefore, the tunneling of the partile under the

barrier exists.

As a further development of a time analysis of tunnel-

ing proesses submitted in artiles [4{6℄, here we repre-

sent the non-stationary solution method of a problem

of tunneling of a nonrelativisti partile or a photon

through a barrier using multiple internal reetions of

uxes in a sub-barrier region in relation to barrier bound-

aries (we name this approah as the method of multiple

internal reetions). In the given artile we study an one-

dimensional and a spherially symmetri problems.

At analysing the tunneling (or the propagation) of the

nonrelativisti partile, an important spei� feature of

this method is a desription of a partile motion using

non-stationary wave pakets (w. p.). Due to this one an

determine orretly the pakets propagating in di�erent

diretions in a barrier region, ful�l a time analysis of the

partile tunneling (propagation) and study in details this

proess in an interesting time moment or in relation to

a onrete point of spae. For obtaining time parameters

of the tunneling, this method has shown itself onvenient

and simply enough.

For the problem with a spherially symmetri barrier

the reeted and transmitted w. p. in relation to this

barrier are propagating in one diretion. Stationary so-

lution methods do not allow to separate the w. p. trans-

mitted through the barrier from the w. p. reeted from

the barrier. Using the method of multiple internal ree-

tions, one an �nd amplitudes and expressions for these

w. p. As a result, it appears possible to present S-matrix

in a form of a sum of two omponents orresponding to

stationary parts for the reeted and transmitted w. p.

in relation to the barrier. The sum of the stationary parts

for these w. p. obtained by this method onverges with

the expression for a sattered wave obtained by an usual

stationary method. The spherially symmetri problem

with use of given approarh is onsidered for the �rst

time.

At �rst we onsider the problem of the tunneling of

the nonrelativisti partile through the one-dimensional
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retangular barrier. This problem is a test one and allows

to analyse spei� features of this method.

Further the problem of the tunneling of the partile

through the spherially symmetri barrier, whose radial

part has a retangular form, is solved. For it amplitudes

of the transmitted and reeted w. p., total times of the

tunneling and reetion in relation to the barrier are

found. Hartman's and Flether's e�et is analysed. An

expression for S-matrix is presented in the form of a sum

of two omponents orresponding to amplitudes of sta-

tionary parts for the transmitted and reeted w. p. The

time parameters using of the method of multiple internal

reetions are found for the �rst time.

One an apply the method to the problem of the tun-

neling of the partile through a spherially symmetri

barrier, whih radial part has an arbitrary form, if a

general stationary solution for a w. f. is known for this

potential. Some problems with various barrier forms are

onsidered. The problems are seleted so that to show

better features of the method at their solution.

At a �nishing of the artile a possibility to use the

method in a problem of a tunneling of photons through

an one-dimensional retangular barrier is studied. On

the basis of a given analysis the method is proved for

the problem with the photons. Using the found trans-

formation the results and solutions of the problem with

the nonrelativisti partile transform into orresponding

expressions for the problem with the photons. Hartman

and Flether's e�et is analysed.

II. TUNNELING OF A PARTICLE THROUGH

AN ONE-DIMENSIONAL RECTANGULAR

BARRIER

Let us onsider the problem of tunneling a nonrela-

tivisti partile in a positive x-diretion through an one-

dimensional retangular potential barrier (see Fig. 1).

Let us label region I for x < 0, region II for 0 < x < a

and region III for x > a, aordingly. Let us study an

evolution of its tunneling through the barrier.

Fig. 1. One-dimensional retangular barrier.

In the beginning we onsider a standard approah to

the solution of this problem [7,8℄. Let us onsider a ase

when levels of energy lay under the height of the barrier:

E < V

1

.

The tunneling evolution of the partile an be de-

sribed using a non-stationary onsideration of a propa-

gating w. p.

 (x; t) =

+1

Z

0

g(E �

�

E)'(k; x)e

�iEt=~

dE; (1)

where the stationary w. f. has a form:

'(x) =

8

<

:

e

ikx

+ A

R

e

�ikx

; for x < 0;

�e

�x

+ �e

��x

; for 0 < x < a;

A

T

e

ikx

; for x > a;

(2)

and k =

1

~

p

2mE, � =

1

~

p

2m(V

1

�E), E and m are the

total energy and mass of the partile, aordingly. The

weight amplitude g(E�

�

E) an be written in the form of

gaussian [4℄ and satis�es the requirement of normaliza-

tion

R

jg(E �

�

E)j

2

dE = 1, value

�

E is an average energy

of the partile. One an alulate oeÆients A

T

, A

R

, �

and � analytially, using the requirements of a ontinu-

ity of w. f. '(x) and its derivative on eah boundary of

the barrier.

Substituting in Eq. (1) instead of '(k; x) the inident

'

in

(k; x), transmitted '

tr

(k; x) or reeted part of w. f.

'

ref

(k; x), de�ned by Eq. (2), we reeive the inident,

transmitted or reeted w. p., aordingly.

We assume that a time, for whih the w. p. tunnels

through the barrier, is enough small. So, the time ne-

essary for tunneling an �-partile through a barrier of

deay in �-deay of a nuleus, is about 10

�21

seonds

[9℄. We onsider, that one an neglet a spreading of the

w. p. for this time. And a breadth of the w. p. appears

essentially more narrow on a omparison with a barrier

breadth [4{6℄. Considering only sub-barrier proesses, we

exlude a omponent of waves for above-barrier energies,

having inluded the additional transformation

g(E �

�

E)! g(E �

�

E)�(V

1

�E); (3)

where �-funtion satis�es to the requirement

�(�) =

�

0; for � < 0;

1; for � > 0:

The method of multiple internal reetions onsiders

the propagation proess of the w. p. desribing the mo-

tion of the partile, sequentially on steps of its penetra-

tion in relation to eah boundary of the barrier [1{3℄.

Using this method, we �nd expressions for the transmit-

ted and reeted w. p. in relation to the barrier.

At the �rst step we onsider the w. p. in region I, whih

is inident upon the �rst (initial) boundary of the bar-

rier. Let us assume that this pakage transforms into the
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w. p. transmitted through this boundary and tunneling

further in the region II, and into the w. p. reeted from

the boundary and propagating bak in region I. Thus we

onsider that the w. p. tunneling in region II has not

reahed the seond (�nal) boundary of the barrier be-

ause of a terminating veloity of its propagation, and

onsequently at this step we onsider only two regions I

and II. Beause of physial reasons to onstrut an ex-

pression for this paket, we onsider that its amplitude

should derease in a positive x-diretion. We use only

one item � exp(��x) in Eq. (2), throwing the seond in-

reasing item � exp(�x) (in an opposite ase we break a

requirement of a �niteness of the w. f. for an inde�nitely

wide barrier). As a result, in region II we obtain:

 

1

tr

(x; t) =

+1

Z

0

g(E �

�

E)�(V

1

� E)�

0

e

��x�iEt=~

dE;

for 0 < x < a: (4)

Thus, the w. f. in the barrier region onstruted in a suh

way, is an analyti ontinuation of a relevant expression

for the w. f., orresponding to a similar problem with

above-barrier energies, where as a stationary expression

we selet the wave exp(ik

2

x), propagated to the right.

Let us onsider the �rst step further. One an write

expressions for the inident and the reeted w. p. in

relation to the �rst boundary as follows

 

in

(x; t) =

+1

Z

0

g(E �

�

E)�(V

1

� E)e

ikx�iEt=~

dE; for x < 0;

 

1

ref

(x; t) =

+1

Z

0

g(E �

�

E)�(V

1

� E)A

0

R

e

�ikx�iEt=~

dE; for x < 0: (5)

A sum of these expressions represents the omplete

w. f. in region I, whih is dependent on time. Let us

require that this w. f. and its derivative ontinuously

transform into the w. f. (4) and its derivative at point

x = 0 (we assume that the weight amplitude g(E �

�

E)

di�ers weakly at transmitting and reeting of the w. p.

in relation to the barrier boundaries). Consequently, we

obtain two equations, in whih one an pass from the

time-dependent w. p. to the orresponding stationary

w. f. and obtain the unknown oeÆients �

0

and A

0

R

.

At the seond step we onsider the w. p. tunneling in

region II and inident upon the seond boundary of the

barrier at the point x = a. It transforms into the w. p.

transmitted through this boundary and propagated in

region III, and into the w. p. reeted from the bound-

ary and tunneled bak in region II. For a determination

of these pakets one an use Eq. (1) with aount (3),

where as the stationary w. f. we use:

'

2

in

(k; x) = '

1

tr

(k; x) = �

0

e

��x

; for 0 < x < a;

'

2

tr

(k; x) = A

0

T

e

ikx

; for x > a;

'

2

ref

(k; x) = �

0

e

�x

; for 0 < x < a: (6)

Here, for forming an expression for the w. p. reeted

from the boundary, we selet an inreasing part of the

stationary solution �

0

exp(�x) only. Imposing a ondi-

tion of ontinuity on the time-dependent w. f. and its

derivative at the point x = a, we obtain 2 new equa-

tions, from whih we �nd the unknowns oeÆients A

0

T

and �

0

.

At the third step the w. p., tunneling in region II is

inident upon the �rst boundary of the barrier. Then

it transforms into the w. p. transmitted through this

boundary and propagated further in region I, and into

the w. p. reeted from boundary and tunneled bak in

region II. For a determination of these pakets one an

use Eq. (1) with aount Eq. (3), where as the stationary

w. f. we use:

'

3

in

(k; x) = '

2

ref

(k; x); for 0 < x < a;

'

3

tr

(k; x) = A

1

R

e

�ikx

; for x < 0;

'

3

ref

(k; x) = �

1

e

��x

; for 0 < x < a: (7)

Using onditions of ontinuity for the time-dependent

w. f. and its derivative at the point x = 0, we obtain the

unknowns oeÆients A

1

R

and �

1

.

Analysing further possible proesses of the transmis-

sion (and the reetion) of the w. p. through the bound-

aries of the barrier, we ome to a dedution that any of

the following steps an be redued to one of 2 onsidered

above. For the unknown oeÆients �

n

, �

n

,A

n

T

and A

n

R

used in expressions for the w. p. formed as a result of

some internal reetions from the boundaries, one an

obtain the reurrene relations:
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�

0

=

2k

k + i�

; �

n

= �

n

i� � k

i� + k

e

�2�a

;

�

n+1

= �

n

i� � k

i� + k

; A

0

R

=

k � i�

k + i�

;

A

n

T

= �

n

2i�

i� + k

e

��a�ika

; A

n+1

R

= �

n

2i�

i� + k

: (8)

Considering the propagation of the w. p. in suh a

way, we obtain expressions for the w. f. on eah region

whih an be written through a series of multiple w. p.

Using Eq. (1) with the aount of Eq. (3), we determine

resultant expressions for the inident, transmitted and

reeted w. p. in relation to the barrier, where one an

need to use the following expressions for the stationary

w. f.:

'

in

(k; x) = e

ikx

; for x < 0;

'

tr

(k; x) =

+1

X

n=0

A

n

T

e

ikx

; for x > a;

'

ref

(k; x) =

+1

X

n=0

A

n

R

e

�ikx

; for x < 0: (9)

Now we onsider the w. p. formed as a result of sequen-

tial n reetions from the boundaries of the barrier and

inident upon one of these boundaries at the point x = 0

(i = 1) or at point x = a (i = 2). As a result, this w. p.

transforms into the w. p.  

i

tr

(x; t), transmitted through

boundary with number i, and into the w. p.  

i

ref

(x; t),

reeted from this boundary. For the independent of x

parts of the stationary w. f. one an write:

'

1

tr

exp(��x)

= T

+

1

'

1

in

exp(ikx)

;

'

1

ref

exp(�ikx)

= R

+

1

'

1

in

exp(ikx)

;

'

2

tr

exp(ikx)

= T

+

2

'

2

in

exp(��x)

;

'

2

ref

exp(�x)

= R

+

2

'

2

in

exp(��x)

;

'

1

tr

exp(�ikx)

= T

�

1

'

1

in

exp(�x)

;

'

1

ref

exp(��x)

= R

�

1

'

1

in

exp(�x)

;

(10)

where the sign \+" (or \�") orresponds to the w. p.

tunneling (or propagating) in a positive (or negative) x-

diretion and inident upon the boundary with number

i. Using T

�

i

and R

�

i

, one an preisely desribe an ar-

bitrary w. p. whih has formed in result of n-multiple

reetions, if to know a \path" of its propagation along

the barrier. Using the reurrene relations Eq. (8), the

oeÆients T

�

i

and R

�

i

an be obtained:

T

+

1

= �

0

; T

+

2

=

A

n

T

�

n

; T

�

1

=

A

n+1

R

�

n

;

R

+

1

= A

0

R

; R

+

2

=

�

n

�

n

; R

�

1

=

�

n+1

�

n

: (11)

Using the reurrene relations, one an �nd series of

oeÆients �

n

, �

n

, A

n

T

and A

n

R

. However, these series

an be alulated easier, using oeÆients T

�

i

and R

�

i

.

Analysing all possible \paths" of the w. p. propagations

along the barrier, we reeive:

+1

X

n=0

A

n

T

= T

+

2

T

�

1

�

1 +

+1

X

n=1

(R

+

2

R

�

1

)

n

�

=

i4k�e

��a�ika

F

sub

;

+1

X

n=0

A

n

R

= R

+

1

+ T

+

1

R

+

2

T

�

1

�

1 +

+1

X

n=1

(R

+

2

R

�

1

)

n

�

=

k

2

0

D

�

F

sub

;

+1

X

n=0

�

n

= �

0

�

1 +

+1

X

n=1

(R

+

2

R

�

1

)

n

�

=

2k(i� � k)e

�2�a

F

sub

;

+1

X

n=0

�

n

= �

0

�

1 +

+1

X

i=1

(R

+

2

R

�

1

)

n

�

=

2k(i� + k)

F

sub

; (12)

where

F

sub

= (k

2

� �

2

)D

�

+ 2ik�D

+

; D

�

= 1� e

�2�a

; k

2

0

= k

2

+ �

2

=

2mV

1

~

2

: (13)

27



S. P. MAIDANYUK, V. S. OLKHOVSKY, A. K. ZAICHENKO

All series

P

�

n

,

P

�

n

,

P

A

n

T

and

P

A

n

R

, obtained us-

ing the method of multiple internal reetions, oinide

with the orresponding oeÆients �, �, A

T

and A

R

of

the Eq. (2), alulated by a stationary methods [4,7,15℄.

Using the following substitution

i� ! k

2

; (14)

where k

2

=

1

~

p

2m(E � V

1

) is a wave number for a ase

of above-barrier energies, expression for the oeÆients

�

n

, �

n

,A

n

T

and A

n

R

for eah step, expressions for the w. f.

for eah step, the total Eqs. (12) and (13) transform into

the orresponding expressions for a problem of the parti-

le propagation above this barrier. At the transformation

of the w. p. and the time-dependent w. f. one an need

to hange a sign of argument at �-funtion. Besides, the

following property is ful�lled:

�

�

�

�

+1

X

n=0

A

n

T

�

�

�

�

2

+

�

�

�

�

+1

X

n=0

A

n

R

�

�

�

�

2

= 1: (15)

III. TUNNELING OF THE PARTICLE

THROUGH A SPHERICALLY SYMMETRIC

RECTANGULAR BARRIER

A. Transmitted and reeted wave pakets

The problem of the motion of two interating partiles

an be redued to the problem of one partile sattering

in a spherially symmetri �eld. Let us assume that the

partile under the ation of a entral fore

V (r) =

8

<

:

�V

0

; for r < R

1

; (region I);

V

1

; for R

1

< r < R

2

; (region II);

0; for r > R

2

; (region III):

(16)

is inident outside upon an external boundary of the bar-

rier at point r = R

2

(see Fig. 2).

Fig. 2. Spherially symmetri retangular barrier.

Let us study an evolution of tunneling of the parti-

le through the barrier. We onsider a ase when the

moment l = 0 and levels of energy lay below a barrier

height. The tunneling evolution of the partile in time

dependene an be desribed using a w. p. onstruted

on a basis of a stationary solution of the following form

[7℄:

 (r; �; ') =

�(r)

r

Y

lm

(�; '); (17)

�(r) =

8

<

:

A(e

�ik

1

r

� e

ik

1

r

); for r < R

1

; (region I);

�e

�r

+ �e

��r

; for R

1

< r < R

2

; (region II);

e

�ikr

+ Se

ikr

; for r > R

2

; (region III);

(18)

where Y

lm

(�; ') is a spherial funtion, k

1

=

1

~

p

2m(E + V

0

), � =

1

~

p

2m(V

1

�E), k =

1

~

p

2mE.

For the spherially symmetri problem in a ase of sub-

barrier energies we obtain:

�(r; t) =

+1

Z

0

g(E �

�

E)�(V

l

� E)�(k; r)e

�iEt=~

dE; (19)

V

l

(r) = V (r) +

~

2

2m

l(l + 1)

r

2

; (20)

where the seond item in Eq. (20) is a entrifugal en-

ergy, whih is equal to zero at l = 0, weight amplitude

g(E�

�

E) and average energy of the partile

�

E are de�ned

similarly to the one-dimensional problem (see Se. II).

At a stationary onsideration of solutions (18) we de-

sribe the partile inident upon the external boundary

of the barrier by a spherial wave exp(�ikr) onver-

gent to the entre. And we desribe the partile sat-

tered on the barrier in the region III by a spherial wave

S exp(ikr) divergent outside. The sattered wave takes

into aount both a possibility of a reetion of the par-

tile from the barrier, whih is written by the divergent

wave, and a possibility of a penetration of the partile

through the barrier, when in the beginning the partile

tunnels from region III to region I, and then after some
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period of time it tunnels bak from region I to region III

and also is written by the divergent wave. Only one item

S exp(ikr) ontains the transmitted and reeted diver-

gent waves, and it is impossible to separate them at the

stationary onsideration.

As non-stationary, the method of multiple internal re-

etions allows to �nd a solution of this problem. Let

us apply it to this problem. We study a propagation of a

w. p. desribing tunneling of the partile, sequentially on

steps of its transmission in relation to eah of boundaries

of the barrier (similarly to the one-dimensional problem).

As a result of an analysis we ome to a dedution that

any step in suh viewing of the propagation of the w. p.

along the barrier will be similar to one of 4 steps in-

dependent among themselves. Analysing these 4 steps

further, one an obtain reurrene relations for �nding

oeÆients A

n

, S

n

, �

n

and �

n

for an arbitrary step n.

As a result of multiple internal reetions (and transi-

tions) in relation to the boundaries of the barrier a total

time-dependent w. f. in eah region an be written in

the form of series omposed from onvergent and diver-

gent w. p.. Analysing possible \paths" of propagations of

these pakets, one an alulate expressions for the series

of oeÆients S

n

, A

n

, �

n

and �

n

:

+1

X

n=1

S

n

=

1

F

sub

T

�

2

T

+

2

(R

�

1

(1� R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

) =

4ik�

�

i� � k

1

i� + k

1

� e

2ik

1

R

1

�

e

2�(R

1

�R

2

)�2ikR

2

F

sub

(k + i�)

2

;

+1

X

n=0

A

n

=

T

�

1

T

�

2

F

sub

=

4ik�e

�ikR

2

+ik

1

R

1

��(R

2

�R

1

)

F

sub

(k + i�)(k

1

+ i�)

;

+1

X

n=0

�

n

= �

0

1� R

+

1

R

�

0

F

sub

=

2k

�

1 +

k

1

� i�

k

1

+ i�

e

2ik

1

R

1

�

e

�(�+ik)R

2

F

sub

(k + i�)

;

+1

X

n=0

�

n

=

+1

P

n=0

�

n

� T

�

2

R

+

2

= �

0

R

�

1

(1� R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

F

sub

=

2k

�

i� � k

1

i� + k

1

� e

2ik

1

R

1

�

e

�(2R

1

�R

2

)�ikR

2

F

sub

(k + i�)

; (21)

where

F

sub

= (1� R

+

1

R

�

0

)(1� R

+

2

R

�

1

)� R

+

2

T

�

1

R

�

0

T

+

1

= 1 +

k

1

� i�

k

1

+ i�

e

2ik

1

R

1

�

(k � i�)(k

1

� i�)

(k + i�)(k

1

+ i�)

e

�2�(R

2

�R

1

)

�

k � i�

k + i�

e

�2�(R

2

�R

1

)+2ik

1

R

1

; (22)

T

�

2

= �

0

=

2k

k + i�

e

�(�+ik)R

2

; R

�

2

= S

0

=

�i� + k

i� + k

e

�2ikR

2

;

T

�

1

=

A

n

�

n

=

2i�

i� + k

1

e

(�+ik

1

)R

1

; R

�

1

=

�

n

�

n

=

i� � k

1

i� + k

1

e

2�R

1

;

T

�

0

= 0; R

�

0

= 1;

T

+

1

=

�

n+1

A

n

= �

2k

1

i� + k

1

e

(�+ik

1

)R

1

; R

+

1

=

A

n+1

A

n

=

i� � k

1

i� + k

1

e

2ik

1

R

1

;

T

+

2

=

S

n+1

�

n

=

2i�

i� + k

e

�(�+ik)R

2

; R

+

2

=

�

n+1

�

n

=

i� � k

i� + k

e

�2�R

2

; (23)
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where the oeÆients T

�

i

and R

�

i

are de�ned in relation

to the boundary with the number i (i = 0 for r = 0,

i = 1 for r = R

1

and i = 2 for r = R

2

). They an be

alulated using of the reurrene relations between the

oeÆients S

n

, A

n

, �

n

and �

n

.

Now we onsider the inident, transmitted and re-

eted w. p. in relation to the barrier as a whole. De�ning

them for the region III, one an write:

�

in

(r; t) =

+1

Z

0

g(E �

�

E)�(V

1

�E)e

�ikr�iEt=~

dE;

�

tr

(r; t) =

+1

Z

0

g(E �

�

E)�(V

1

�E)S

tr

e

ikr�iEt=~

dE;

�

ref

(r; t) =

+1

Z

0

g(E �

�

E)�(V

1

�E)S

ref

e

ikr�iEt=~

dE;

(24)

where

S

tr

=

+1

X

n=1

S

n

; S

ref

= S

0

; S = S

tr

+ S

ref

: (25)

The expression S represents a diagonal element of sat-

tering matrix orresponding to the orbital moment l = 0.

Thus, using the method of multiple internal reetions

it appears possible to divide the S-matrix into two om-

ponents orresponding to amplitudes of stationary parts

of the transmitted and reeted w. p. in relation to the

barrier as a whole. This property having physial sense,

is obtained for the �rst time.

The expressions for oeÆients S

n

, A

n

, �

n

and �

n

for

eah step, the expression for the w. f. for eah step, the

oeÆients T

�

i

and R

�

i

, the series of the oeÆients S

n

,

A

n

, �

n

and �

n

under the substitution (14) (and also

at replaement of a sign before argument for �-funtion

at a onsideration of the non-stationary w. p.) transform

into the orresponding expressions for the solution of the

problem of a w. p. propagation above the barrier. Series

(21) of the oeÆients S

n

, A

n

, �

n

and �

n

oinide with

the orresponding oeÆients S, A, � and � for Eq. (18),

alulated by stationary methods.

B. Tunneling and reeting times in relation to the

barrier

One an determine an equation for a propagation of a

maximumof the inident, transmitted and reeted w. p.

in relation to the barrier for the spherially symmetri

problem. For radial parts of non-stationary w. f. one an

write:

�

�E

arg �

in

(r; t) =

�

�E

arg �

tr

(r; t)

=

�

�E

arg �

ref

(r; t) = onst: (26)

Let us onsider the �rst step of the propagation of the

w. p. Let the w. p. is inident in region III upon the ex-

ternal boundary of the barrier at point r = R

2

in a time

moment t

in

. Using Eq. (26), we �nd the time moment

t

1

ref

of leaving outside from this boundary the reeted

w. p. in region III:

t

1

ref

= t

in

+

2mR

2

~k

+ ~

� arg S

0

�E

: (27)

Similarly, for a time moment t

n

tr

of leaving outside the

external boundary of the barrier the n-multiple trans-

mitted w. p. one an write:

t

n

tr

= t

in

+

2mR

2

~k

+ ~

� arg S

n

�E

: (28)

Using Eq. (26) at point r = R

2

, we �nd times nees-

sary for the penetration of the total w. p. through the

barrier (desribing the tunneling of the partile through

the barrier) and for the reetion of the w. p. from the

barrier (desribing the reetion of the partile from the

barrier):

�

Ph

tun

= t

tr

� t

in

=

2mR

2

~k

+ ~

� arg S

tr

�E

;

�

Ph

ref

= t

ref

� t

in

=

2mR

2

~k

+ ~

� arg S

ref

�E

: (29)

For the problem of the w. p. tunneling under the bar-

rier we reeive:

�

Ph

tun

= ~

�

�E

arg

i� � k

1

� (i� + k

1

)e

2ik

1

R

1

(i� + k)

2

(i� + k

1

)F

sub

;

�

Ph

ref

=

2m

~�k

: (30)

For the problem of the w. p. propagating above the

barrier we write:

�

Ph

tun

=

2m(R

2

� R

1

)

~k

2

+ ~

�

�E

arg

k

2

� k

1

� (k

2

+ k

1

)e

2ik

1

R

1

(k + k

2

)(k

1

+ k

2

)F

above

;

�

Ph

ref

= 0; (31)

where F

above

an be obtained from F

sub

using the sub-

stitution (14).
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Let us onsider a partile, whih tunnels under a high

enough and wide barrier. Then for the time of the tunnel-

ing we obtain the following expression (sequene of ap-

proahes: �(R

2

�R

1

)! +1, � ! +1, R

2

�R

1

! +1):

�

Ph

tun

=

2m

~k�

+

4mR

1

sin 2k

1

R

1

(1� 2 os 2k

1

R

1

)

~�(1 � os 2k

1

R

1

)

: (32)

The tunneling time does not depend on the width of the

barrier (Hartman's and Flether's e�et), but depends

on k

1

and R

1

.

IV. TUNNELING OF THE PARTICLE

THROUGH THE SPHERICALLY SYMMETRIC

BARRIER OF A GENERAL VIEW

A. The partile propagates above the barrier

In study of nulear proesses when a tunneling of par-

tiles through a barrier is investigated, in most ases the

barriers of more ompliated form than retangular are

used. So, the spherially symmetri two-humb potential

of Strutinski has a suÆiently important role in the prob-

lems of fusion and deay of nulei. A degree of an exa-

titude of the desription of the nulear proess depends

on the hoie of a form of the potential. Therefore, we

shall onsider, as far as it is possible to use the method

of multiple internal reetions for solving the spherially

symmetrial problems with the barrier of a general view.

Let us onsider a partile propagating in a spherially

symmetri potential �eld, whih radial part has a bar-

rier. Taking into aount the behaviour of a radial part

V (r) of the potential funtion in dependene on r, we

divide the area of its de�nition r 2 [0; +1[ on the n

regions. In eah region let us replae the potential fun-

tion V (r) by a funtion most losely desribing V (r) and

for whih an exat solution of the stationary Shr�odinger

equation exists (see Fig. 3). Passing to the problem of the

partile propagation in the �eld of these approximated

potential funtions, we write the general solution for sta-

tionary w. f. in the form (17), where its radial part an

be written as

Fig. 3. Spherially symmetri barrier of a general form.

�(r) =

8

<

:

A

1

a

1

(k; r) + B

1

b

1

(k; r); for 0 < r < R

1

; (region I);

A

i

a

i

(k; r) +B

i

b

i

(k; r); for R

i�1

< r < R

i

; (region i);

A

n

a

n

(k; r) + B

n

b

n

(k; r); for r > R

n�1

; (region N );

(33)

where k =

1

~

p

2mE, a

i

(k; r) and b

i

(k; r) are the partial solutions of the radial part of w. f. in region i, A

i

and B

i

are

the normalization onstants.

Let us �nd the transmission and reetion oeÆients of partile in relation to the barrier, and also the times

neessary for transmission and for reetion of the partile in relation to the barrier, using the method of multiple

internal reetions. To apply the method to this problem, one an need to present the general stationary solution of

w. f. in eah region in the sum of divergent and onvergent vawes.

Using the Fourier transformation, one an write:

a

i

(k; r) = a

�

i

(k; r) + a

+

i

(k; r); b

i

(k; r) = b

�

i

(k; r) + b

+

i

(k; r); (34)

where

a

�

i

(k; r) =

1

p

2�

0

Z

�1

dq

R

i

Z

R

i�1

a

i

(k; r

0

)e

iq(r�r

0

)

dr

0

;

a

+

i

(k; r) =

1

p

2�

+1

Z

0

dq

R

i

Z

R

i�1

a(k; r

0

)e

iq(r�r

0

)

dr

0

;
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b

�

i

(k; r) =

1

p

2�

0

Z

�1

dq

R

i

Z

R

i�1

b

i

(k; r

0

)e

iq(r�r

0

)

dr

0

;

b

+

i

(k; r) =

1

p

2�

+1

Z

0

dq

R

i

Z

R

i�1

b

i

(k; r

0

)e

iq(r�r

0

)

dr

0

: (35)

Taking into aount the transformation



�

i

(k; r) = a

�

i

(k; r) +

B

i

A

i

b

�

i

(k; r); 

+

i

(k; r) =

A

i

B

i

a

+

i

(k; r) + b

+

i

(k; r) (36)

one an write the general solution (33) as

�(r) =

8

<

:

A

1



�

1

(k; r) + B

1



+

1

(k; r); for 0 < r < R

1

; (region I);

A

i



�

i

(k; r) + B

i



+

i

(k; r); for R

i�1

< r < R

i

; (region i);

A

n



�

n

(k; r) + B

n



+

n

(k; r); for r > R

n�1

; (region N ):

(37)

Hene, the general solution in every region i is rep-

resented as the sum of onvergent waves 

�

i

(r) and di-

vergent waves 

+

i

(r) (so, in ase of a retangular bar-

rier in the region i suh expressions equal to e

�ik

i

r

and

e

ik

i

r

, aordingly). On the basis of these expressions us-

ing Eq. (19) one an onstrut the non-stationary on-

vergent and divergent w. p.. Writing the general solution

for w. f. in every region in the form of linear ombina-

tion of onvergent and divergent w. p., one an apply

the method of multiple internal reetions for solving

the problem.

At �rst we study the ase, when the general stationary

solution for w. f. in every region an be written uniquely

as sum of onvergent and divergent waves 

�

i

(r). Then

using of the method of multiple internal reetions for

solving the problem, one an �nd the inident, trans-

mitted and reeted w. p. in relation to the barrier as

a whole, and total w. p. in every region. It is enough

onvenient to use the oeÆients T

�

i

and R

�

i

(as in the

spherially symmetri problem with retangular barrier).

We de�ne these oeÆients in relation to the boundary

with the number i in suh a way (for the step j):

A

j

i

= T

�

i

A

j

i+1

; B

j+1

i+1

= R

�

i

A

j

i+1

;

B

j

i+1

= T

+

i

B

j

i

; A

j+1

i

= R

+

i

B

j

i

: (38)

One an alulate these oeÆients at the onsidera-

tion of �rst 2n+ 1 steps:

T

�

0

= 0; R

�

0

= �



�

1

(0)



+

1

(0)

=

B

1

A

1

; (39)

T

�

i

=

�

�

i+1

(r)

�r



+

i+1

(r)� 

�

i+1

(r)

�

+

i+1

(r)

�r

�

�

i

(r)

�r



+

i+1

(r)� 

�

i

(r)

�

+

i+1

(r)

�r

�

�

�

�

�

r=R

i

;

R

�

i

=

�

�

i+1

(r)

�r



�

i

(r)� 

�

i+1

(r)

�

�

i

(r)

�r

�

�

i

(r)

�r



+

i+1

(r)� 

�

i

(r)

�

+

i+1

(r)

�r

�

�

�

�

�

r=R

i

;

T

+

i

=

�

+

i

(r)

�r



�

i

(r)� 

+

i

(r)

�

�

i+1

(r)

�r

�

+

i+1

(r)

�r



�

i

(r)� 

+

i+1

(r)

�

�

i

(r)

�r

�

�

�

�

�

r=R

i

;

R

+

i

=

�

+

i

(r)

�r



+

i+1

(r)� 

+

i

(r)

�

�

i+1

(r)

�r

�

+

i+1

(r)

�r



+

i+1

(r)� 

+

i+1

(r)

�

�

i

(r)

�r

�

�

�

�

�

r=R

i

: (40)

Further using the method of multiple internal ree-

tions, one an alulate the inident, transmitted and

reeted w. p. in relation to the barrier. On the basis

of these w. p. one an �nd the transmission and ree-

tion oeÆients and also the transmission and reetion

times in relation to the barrier. Thus, the transmitted

and reeted w. p. an be written through S

tr

and S

ref

,

the sum of whih is the diagonal element of the sattering

matrix S at the orbital moment l.

The value A

n

an be obtained from the normalization

ondition:
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A

n

=

 

+1

Z

R

n�1

j

n

(k; r)j

2

dr

!

�1=2

: (41)

Now we study the ase, when the partial solutions of

w. f. in some regions are not the onvergent and divergent

waves. In representations (36) and (37) one an need to

know the values B

i

=A

i

. In this ase at solving the prob-

lemwe onsider �rst 2n+1 steps. Let the general solution

for w. f. in the �rst region be expressed through a

1

and

b

1

. Analyzing the reetion of w. p. from the point r = 0,

one an obtain:

T

�

0

= 0; R

�

0

= �

a

1

(0)

b

1

(0)

=

B

1

A

1

: (42)

If the w. f. in the �rst region is determined through



�

1

uniquely, then it is neessary to use Eq. (39) instead

of Eq. (42). Calulating the value B

1

=A

1

, one an �nd

the funtions 

�

1

. Using the ontinuity ondition for w. f.

and its derivative in all boundaries between regions, one

an �nd the reurrent relation for values B

i

=A

i

:

B

i+1

A

i+1

=

f

i

(r)

�a

i+1

(r)

�r

�

�f

i

(r)

�r

a

i+1

(r)

�f

i

(r)

�r

b

i+1

(r)� f

i

(r)

�b

i+1

(r)

�r

�

�

�

�

�

r=R

i

;

f

i

(r) = a

i

(r) + b

i

(r)

B

i

A

i

�

�

�

�

�

r=R

i

= 

�

i

(r) + 

+

i

B

i

A

i

�

�

�

�

�

r=R

i

: (43)

Having the valuesB

i

=A

i

, we obtain the onvergent and

divergent waves 

�

i

(r) in every region. Then the solution

of the problem is ful�lled as in the previous ase.

Applying the approah onsidered above for the so-

lution of the problem of partile propagation, when the

potential V (r) is de�ned only in two regions (n = 2), one

an �nd the inident, transmitted and reeted w. p. in

relation to the barrier using Eq. (19) for above-barrier

region, where the radial parts from the orresponding

stationary w. f. have the form (at r > R

1

)

�

in

(r) = A

2



�

2

(k; r);

�

tr

(r) = S

tr



+

2

(k; r) = A

2

T

�

1

T

+

1

R

�

0

1� R

+

1

R

�

0



+

2

(k; r);

�

ref

(r) = S

ref



+

2

(k; r) = A

2

R

�

1



+

2

(k; r): (44)

We �nd the oeÆients T

�

i

and R

�

i

from Eq. (40).

Using Eq. (26) for external boundary, one an obtain

the times neessary for transmission and for reetion of

partile in relation to the barrier. As a result, we reeive:

�

tun

= ~

�

�E

 

arg

�

+1

X

n=1

B

i

2



+

2

(k;R

1

)

�

� arg A

2



�

2

(k;R

1

)

!

= ~

�

�E

arg

T

�

1

T

+

1

R

�

0

1�R

+

1

R

�

0

+�� ;

�

ref

= ~

�

�E

 

arg

�

B

0

2



+

2

(k;R

1

)

�

� arg A

2



�

2

(k;R

1

)

!

= ~

�

�E

arg R

�

1

+�� ;

�� = ~

�

�E

arg



+

2

(R

1

)



�

2

(R

1

)

: (45)

For the problem solution when potential V (r) is de�ned on three regions (n = 3), the expressions for radial parts

of stationary w. f., desribing the inident, transmitted and reeted w. p. in relation to the barrier, look like (at

r > R

2

)

�

in

(r) = A

3



�

3

(k; r);

�

tr

(r) = S

tr



+

3

(k; r) = A

3

T

�

2

T

+

2

(R

�

1

(1�R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

)

(1�R

+

1

R

�

0

)(1�R

+

2

R

�

1

)� R

+

2

T

�

1

R

�

0

T

+

1



+

3

(k; r);

�

ref

(r) = S

ref



+

3

(k; r) = A

3

R

�

2



+

3

(k; r): (46)

The transmission and reetion times of partile in relation to the barrier has the form (they are alulated at

r = R

2

)

�

tun

= ~

�

�E

arg

T

�

2

T

+

2

(R

�

1

(1� R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

)

(1� R

+

1

R

�

0

)(1� R

+

2

R

�

1

)� R

+

2

T

�

1

R

�

0

T

+

1

+�� ;
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�

ref

= ~

�

�E

arg R

�

2

+�� ; �� = ~

�

�E

arg



+

3

(R

2

)



�

3

(R

2

)

: (47)

As an example of the method appliation we onsider

two problems.

The partile propagates above the barrier of the form

(see Fig. 4)

V (r) =

(

�V

0

; for 0 < r < R

1

; (region I);



r

; for r > R

1

; (region II):

(48)

We onsider the ase l 6= 0. One an obtain the inident,

transmitted and reeted w. p. in relation to the barrier

from Eqs. (44) and (19), taking into aount the sign

before argument of �-funtion for above-barrier energies,

and transmission and reetion times from Eq. (45). At

onsideration the �rst three steps of w. p. propagation

along the barrier we �nd the oeÆients T

�

i

and R

�

i

us-

ing Eqs. (40) for n = 2. In the solutions one an need to

ful�l the substitution



�

1

(k; r) = �

�

k

1

l

(r); 

�

2

(k; r) = G

l

(�; �) � iF

l

(�; �);



+

1

(k; r) = �

+

k

1

l

(r); 

+

2

(k; r) = G

l

(�; �) + iF

l

(�; �); (49)

where

k

1

=

1

~

p

2m(E + V

0

);

� =

��k

~

2

;

� = k(r);

�

�

k

1

l

(r) = �i

r

�k

1

r

2

H

(1;2)

l+1=2

(k

1

r); (50)

H

(1;2)

l

(r) is the funtion of Hankel of the 1st and 2nd

sort, G

l

(�; �) and F

l

(�; �) are the irregular and regular

Coulomb funtions [19℄. The normalization onstant A

2

an be obtained from Eq. (41).

Now we onsider another problem when the partile

propagates above the barrier of the following form:

V (r) =

(

�r

2

� V

0

; for 0 < r < R

1

; (region I);



r

; for r > R

1

; (region II):

(51)

Let us study the ase l = 0. In the beginning we on-

sider region I. The partial solutions for the radial part of

stationary w. f. are the paraboli ylinder funtions [19℄:

D

�

(�gr) and D

�

(�igr), where g = (8��=~

2

)

1=4

. For the

desription of above-barrier motion of partile we hoose

the �rst two solutions D

�

(�gr), whih are independent

if � is non-integer. (Note that one an use the Whit-

teker's funtions as suh two independent solutions [19℄.

But these two funtions an be presented in the form

of linear ombination of the paraboli ylinder funtions

D

�

(�gr).) Eah of partial solutions an be presented in

the form of the sum of onvergent and divergent waves:

Fig. 4. Spherially symmetri Coulomb barrier.

D

�

(�gr) = D

�

�

(�gr) +D

+

�

(�gr);

D

�

(�gr)

�

=

1

p

2�

0

Z

�1

dq

R

1

Z

0

D

�

(�gr

0

)e

iq(r�r

0

)

dr

0

;

D

+

�

(�gr) =

1

p

2�

+1

Z

0

dq

R

1

Z

0

D

�

(�gr

0

)e

iq(r�r

0

)

dr

0

: (52)

Using suh w. f., one an apply the method of mul-

tiple internal reetions to the solution of the problem.

As a result, we �nd the inident, transmitted and re-

eted w. p. in relation to the barrier from Eqs. (44) and

(19), taking into aount the sign before argument of �-

funtion for above-barrier energies, and transmission and

reetion times from Eq. (45). The oeÆients T

�

i

and

R

�

i

an be obtained from Eqs. (40) and (42) for n = 2

at substitution

a

1

(k; r) = D

�

(k; r);



�

2

(k; r) = G

0

(�; �) � iF

0

(�; �);

b

1

(k; r) = D

�

(�k; r);



+

2

(k; r) = G

0

(�; �) + iF

0

(�; �); (53)
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where � and � are de�ned in Eq. (50), G

0

(�; �) and

F

0

(�; �) are the irregular and regular Coulomb funtions

at l = 0.

B. The partile tunnels under the barrier

Now we onsider the problem of tunneling of parti-

le under the barrier of spherially symmetri potential

�eld. And the radial part of this barrier has a general

view (see Fig. 3).

Dividing the range of de�nition r 2 [0; +1[ for poten-

tial V (r) on n regions, on eah of them we approximate

V (r) by funtion most lose to it, for whih there are the

general solutions of w. f. for stationary Shr�odinger equa-

tion. We divide the whole range so that the proesses of

sub-barrier tunneling and above-barrier propagation laid

in the di�erent regions.

For regions, in whih the energy levels onsidered by

us lay above the potential funtion V (r) (the partile

propagates above the potential), the stationary solution

for w. f. is represented as Eq. (37) (if neessary using the

transformations (34), (35) and (36)).

For regions, in whih the viewed energy levels lay un-

der the potential funtion V (r) (the partile tunnels un-

der the potential), in the beginning we �nd the general

solution for stationary w. f., assuming that the energy

levels lay above the potential funtion. One an need to

present the general solution for w. f. as Eq. (37), sepa-

rate the omponents orresponding to uxes, direted to

the opposite sides. Everywhere in expressions for w. f.,

where the property

jE � V

l

(r)j = E � V

l

(r); at E > V

l

(r); (54)

is used, one an need to rede�ne this expression for

E < V

l

(r), having hanged the sign. So, in ase of

onstant potential in dependene on r we obtain the

Eq. (14). Suh substitution gives the following property:

the resultant expressions for w. p. and also for stationary

and non-stationary w. f. for the problem of tunneling of

a partile under the barrier are the analyti ontinuation

of the relevant expressions for a similar problem, when

the partile propagates above the barrier.

Having de�ned the expressions for stationary w. f. in

suh a way, one an onstrut the relevant for them w. p.

on eah region and apply the method of multiple inter-

nal reetions to solution of the problem. A further ap-

proah for obtaining the resultant expressions for ini-

dent, transmitted and reeted w. p. in relation to the

barrier and also the times of tunneling and reetion

di�ers by nothing from the approah for the problem so-

lution in the above-barrier ase.

As an example, we onsider the problem of tunneling

of partile under the barrier (48) (see Fig. 4). We on-

sider the ase l 6= 0. We divide the region II on two at

point r = R

2

, whih de�nes by requirement E = V

l

(R

2

).

One an �nd the inident, transmitted and reeted

w. p. in relation to the barrier from Eqs. (19) and (46),

and the times of tunneling and reetion from Eq. (47).

Analysing the �rst 5 steps of w. p. propagation along

the barrier, we �nd the oeÆients T

�

i

and R

�

i

using the

Eqs. (40) for n = 3. In these expressions on an need to

ful�l the substitution



�

1

(k; r) = �

�

k

1

l

(r);



+

1

(k; r) = �

+

k

1

l

(r);



�

2

(k; r) = G

l

(�; �) � iF

l

(�; �)



+

2

(k; r) = G

l

(�; �) + iF

l

(�; �)

�

for E <



r

;



�

3

(k; r) = G

l

(�; �) � iF

l

(�; �)



+

3

(k; r) = G

l

(�; �) + iF

l

(�; �)

�

for E >



r

;

(55)

where k, k

1

, �, �, and also �

�

k

1

l

(r), G

l

(�; �) and F

l

(�; �)

are de�ned earlier.

V. EVOLUTION OF PHOTON TUNNELING

THROUGH ONE-DIMENSIONAL UNDERSIZED

RECTANGULAR WAVEGUIDE

We use the analogy between photon and partile 1D

propagation and tunneling whih onsists not only in

the formal mathematial analogy between the solutions

of the time-dependent Shr�odinger equation for nonrel-

ativisti partiles and of the time-dependent Helmholtz

equation for eletromagneti waves but also in the simi-

larity of the probabilisti interpretation of the wave fun-

tion for a partile and of a an eletromagneti wave

paket being the wave funtion for a single photon [5℄

for a hollow retangular waveguide with variable se-

tion (like that used in the Cologne experiment [20℄, see

Fig. 5). The time-dependent wave equation for A, E, H

(A is the vetor potential with the subsidiary gauge on-

dition div A = 0, E = �(1=)�A=�t is the eletri �eld

strength, H = rot A is the magneti �eld strength) is

�A�

1



2

�

2

A

�t

2

= 0: (56)

For boundary onditions (see, for instane, [5℄)

E

y

= 0 for z = 0 and z = a;

E

z

= 0 for y = 0 and y = b (57)

the solution of Eq. (57) an be represented as a super-

position of the following monohromati waves:

E

x

= 0;

E

�

y

= E

0

sin (k

z

z) os (k

y

y) exp [i(wt � x)℄;

E

�

z

= �E

0

(k

y

=k

z

) os (k

z

z)

� sin (k

y

y) exp [i(wt� x)℄; (58)

where k

2

z

+ k

2

y

+ 

2

= w

2

=

2

= (2�=�)

2

, k

z

= m�=a,
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k

y

= n�=b, m and n are the integer numbers (for de�-

niteness we have hosen the TE-waves). Thus,

 = 2�[(1=�)

2

� (1=�



)

2

℄

1=2

;

(1=�



)

2

= (m=2a)

2

+ (n=2b)

2

; (59)

where  is real ( = Re) if � < �



and  is imagi-

nary ( = i�

em

) if � > �



. Similar expressions for  were

obtained for TH-waves [5℄.

Fig. 5. The retangular waveguide with narrow-part se-

tion (II) of dimension b and length L.

Generally the non-stationary solution of Eq. (56) an

be written as a wave paket onstruted on the basis of

monohromati solutions (58), similarly to the solution

of the time-dependent Shr�odinger equation for nonrela-

tivisti partiles in the form of a wave paket onstruted

from monohromati terms (for the problem of partile

propagating above the 1D retangular barrier). More-

over, in the representation of primary quantization the

probabilisti single-photon wave funtion is usually de-

sribed by a wave paket (for instane, see [5,6℄ and the

relevant referenes therein) like

A(r; t) =

Z

k

0

>0

d

3

k

k

0

K(k)A(k; r)e

�ik

0

t

; (60)

where A(k; r) = exp (ikr) for propagation in vauum and

A(k; r) = '(x) exp(ik

y

y +ik

z

z) with

'(x) =

8

<

:

e

ik

x

x

+ a

R

e

�ik

x

x

; region I;

�e

��

em

x

+ �e

�

em

x

; region II;

a

T

e

ik

x

x

; region III

(61)

for propagation in the waveguide (Fig. 5). Here, r =

(x; y; z), K(k) =

2

P

i=1

K

i

(k)e

i

(k), e

i

e

j

= Æ

ij

, e

i

(k)k = 0,

i; j = 1; 2 (or y, z if kr = k

x

x), k

0

= w= = "=~,

jkj = k

0

, K

i

(k) is the amplitude for the photon with

momentum k and polarization i, and jK

i

(k)j

2

dk is then

proportional to the probability that the photon has the

momentum between k and k + dk in the polarization

state e

i

.

Though it is not possible to loalize photon in the

diretion of its polarization, nevertheless, in a ertain

sense, for the one-dimensional propagation it is possi-

ble to use the spae-time probabilisti interpretation of

Eq. (60) along axis x (the propagation diretion) [5℄. It

an be realized from the following. Usually one uses not

the probability density and probability ux density with

the orresponding ontinuity equation diretly but the

energy density s

0

and the energy ux density s

x

(al-

though in general they represent omponents of not a

4-dimensional vetor but the energy-momentum tensor)

with the orresponding ontinuity equation [5℄ whih we

write in the two-dimensional (spatially one-dimensional)

form:

�s

0

�t

+

�s

x

�x

= 0; (62)

where

s

0

=

EE +HH

8�

; s

x

=

Re[EH℄

x

2�

(63)

and axis x is direted along the motion diretion (the

mean momentum) of the wave paket (60). Note, that

for the spatially one-dimensional propagation the energy-

momentum tensor of the eletromagneti �eld redues to

the two-omponent quantity | to the salar term s

0

and

1-dimensional vetor term s

x

for whih ontinuity equa-

tion (62) is Lorentz-invariant. Then, as a normalization

ondition one hooses the equality of the spatial integrals

of s

0

and s

x

to the mean photon energy and the mean

photon momentumrespetively or simply the unit energy

ux density s

x

. With this, we an de�ne onventionally

the probability density

�

em

dx =

S

0

dx

R

S

0

dx

; S

0

=

Z

s

0

dydz; (64)

for the photon to be found (loalized) in the spatial in-

terval (x, x+ dx) along axis x at the moment t, and the

ux probability

J

em;x

dt =

S

x

dt

R

S

x

dt

; S

x

=

Z

s

x

dydz; (65)

for the photon to propagate through point (plane) x in

the time interval (t, t+ dt), quite similarly to the proba-

bilisti quantities for partiles. Hene, in a ertain sense,

for time analysis along the motion diretion, the wave

paket (60) is quite similar to a wave paket for nonrel-

ativisti partiles and similarly to the onventional non-

relativisti quantum mehanis, one an de�ne the same

form of time operator as for partiles in nonrelativisti

quantum mehanis and hene the mean time and the

distribution variane of times of photon (eletromagneti
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wave paket) passing through point x in both time and

energy representations) [5℄. Then, the same interpreta-

tion one an use for the propagation of eletromagneti

wave pakets (photons) in media and waveguides when

reetions and tunneling an take plae | in partiular,

for waveguides like depited in Fig. 5 with spatially de-

reasing and inreasing waves in Eq. (61). The only dif-

ferene is in the momentum-energy relation (quadrati

for partiles and linear for photons).

So, from rather simple alulations of J

em;x

using

Eqs. (60){(65), and using the given above de�nitions of

E and H (see also [6℄), one an obtain the following re-

lation:

J

em;x

= ReF (y; z)

�

'(x)

�iw

4�

�'(x)

�x

�

; (66)

where the funtion F (y; z) depends on the boundary on-

ditions of the waveguide (see Fig. 5) and alulated in [6℄.

Therefore under boundary onditions the ux density for

photons an be obtained from the ux density for parti-

les by simple replaing (�i~=2m) by F (y; z)[�iw=4�℄.

At this substitution all results and relevant expressions

(approah to the solution of a problem on the basis of

onsideration of multiple internal reetions of uxes in

the region of the barrier, phase tunneling and reetion

times and other results), obtained above for the desrip-

tion of tunneling evolution of the partile through the

barrier, also take plae at the desription of photon prop-

agation.

In the partiular ase of quasimonohromati wave

pakets, under the same boundary onditions as onsid-

ered for the problem of tunneling of a partile through

1D retangular barrier, we obtain the idential expres-

sion for the phase tunneling time:

�

Ph

tun;em

=

2

�

em

for �

em

L� 1: (67)

From Eq. (67) one an see that when �

em

L > 2 the

e�etive tunneling veloity

v

e�

tun

=

L

�

Ph

tun;em

(68)

is more than , i. e., superluminal. This result agrees

with the results of the mirowave-tunneling measure-

ments presented in [20℄.

Note, that for sub-barrier energies the nonloality of a

barrier as a whole takes plae not only for nonrelativisti

partiles but also for photons. This property is the phys-

ial ause of the superluminality during the tunneling.

VI. CONCLUSIONS

In this work the method of multiple internal reetions

desribing the proess of tunneling of nonrelativisti par-

tiles and photons through barriers of the various forms

is presented. This method is a further development of a

series of artiles [4{6℄ devoted to the time desription of

tunneling through a barrier. It uses the essentially non-

stationary approah onstruted on the basis of multiple

reetions (and transmissions) of w. p. in relation to the

boundaries of barrier. Thus one an desribe in depen-

dene on time the proess of tunneling of total w. p. de-

sribing the onsidered nonrelativisti partile or photon

through barrier and to study spei� features of proess

in any interesting moment of time or in any point of

spae in details.

The possibility of time desription of tunneling

through a barrier is one of the priniple perspetives of

this method in omparison with stationary approahes.

The stationary one-dimensional problem of tunneling

(and propagation) of a nonrelativisti partile through a

retangular barrier with aounting of the multiple in-

ternal reetions was earlier solved for sub-barrier ener-

gies the plane waves in the barrier region (on the basis

of whih the omplete expressions for w. f. were found)

had zero uxes. Aording to the physial understanding

there is a problem of appliability of suh an approah

to the problem solution. In the given artile the substan-

tiation of this approah is given on the basis of using the

non-stationary w. p.. For this problem (being the test

one) the phase time of tunneling and reetion in rela-

tion to the barrier at whole under solving the problem on

the basis of the method of multiple internal reetions

are introdued.

Using the method of multiple internal reetions the

problem of tunneling of a nonrelativisti partile through

a spherially symmetri barrier is solved for the �rst

time. Here, using this method it is possible (as against

the known stationary approahes) to separate the wave

paket, transmitted through the barrier and desribing

a partile after its leaving outside in the wake of dou-

ble tunneling through barrier, from the wave paket, re-

eted from the barrier desribing a reeted partile

(both pakets are spherially divergent). For the diago-

nal element of sattering matrix with orbital moment l

the following property

S

l

= S

l

tr

+ S

l

ref

;

is ful�lled, i. e., the S-matrix onsists of two ompo-

nents orresponding to the transmitted and reeted

wave pakets in relation to barrier. This property has

physial sense and is proved mathematially.

We suppose that the method will allow to desribe

suh properties of nulear proesses, whih are not ex-

plained by stationary methods. So, some experiments

performed reently, have aused an inreased interest in

a bremsstrahlung in an �-deay of heavy nulei [9℄. This

phenomenon is interesting in the sene that inludes both

a radiation of photons in a propagation of an �-partile

in an eletromagneti �eld of a daughter nuleus, and

a tunneling of the �-partile through the deay barrier.

Now the e�et of the photon radiation in the tunneling of

the �-partile under the barrier is investigated in an un-
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satisfatory way. For the desription of this proess some

stationary methods allowing to alulate a spetrum of

the bremsstrahlung are reated. But in omparison with

the experimental data one an see that eah stationary

approah desribes the phenomenon with a small degree

of preision. Besides, the minima and maxima are reg-

istered in the spetrum for some nulei, while the sta-

tionary methods give a monotonially dereasing urve

for the spetrum. We assume that based on a spae-time

approah the method of multiple internal reetions will

allow to explain the peaks in this spetrum. A prelimi-

nary analysis shows that these peaks orrespond to reso-

nane levels of the �-deay of the researhed nuleus and

they an be evaluated using the method.

In this artile the possibility of applying the method

for 1D problem of photon tunneling through a retangu-

lar barrier is explored. On the basis of the given analysis

the analogy (having a mathematial substantiation and

physial sense) between wave pakets (and also between

problem setting, boundary onditions) desribing both

propagation and tunneling of a nonrelativisti partile

and photon, is shown. Consequently, it is possible to ap-

ply the method of multiple internal reetions for the

problem with photons for the �rst time. At the found

transformation the obtained results for the problem of

partile tunneling through a barrier transform into the

relevant expressions for the problem of tunneling of pho-

tons. The tunneling durations are found. For a suÆ-

iently wide (and high) barrier there is an e�et of prop-

agation of wave paket with the veloity higher than that

of light (Hartman's and Flether's e�et).

The superluminal phenomena, observed in the exper-

iments presented in [20℄ and later in other papers (for

example, see the relevant referenes in [5,6,21℄), gener-

ated a lot of disussions on relativisti ausality. And in

onnetion with this, also an interest in similar phenom-

ena, observed for the eletromagneti pulse propagation

in a dispersive medium [22℄, was revived. The known way

of usual understanding onsists in explaining the super-

luminal phenomena during tunneling on the basis of a

pulse attenuated reshaping (or reonstruting) disussed

at the lassial limit earlier by [22{24℄: the later parts

of an input pulse are preferentially attenuated in suh a

way that the output peak appears shifted toward earlier

times, arising from the forward tail of the inident pulse

in a stritly ausal manner [25℄.

In has been asertained for quite some time that the

wavefront veloity of the eletromagneti pulse propa-

gation, when pulses have a step-funtion envelope, an-

not exeed the veloity of light  in vauum [23,24℄.

Namely in this the prinipal demand of the relativisti

(Einstein) ausality onsists. This onlusion was on-

�rmed by various methods and in various proesses, in-

luding tunneling [26{31℄. Note, that it is known from

the momentum-energy Fourier-analysis of an eletromag-

neti wave paket with the step-funtion form of the for-

ward edge, that suh a wave paket ontains omponents

with large (up to the in�nite) energies, i. e., above-barrier

energies, for whih the superluminality is absent.

One of the problems whih are now under disussion

onsists in the absene of a step-funtion form of forward

edges for realisti wave pakets [26,31℄. In suh ases the

onlusions of [23,24℄ seem to be inappliable. An in-

teresting approah to analyse the form of ausality in

partiular in suh ases was proposed in [32℄.

Finally, from the analysis of �rst step in solving the

problem by the method of multiple internal reetions

one an see that the tunneling proess at sub-barrier en-

ergies is a non-loal phenomenon beause during tunnel-

ing the entering w. p. �lls up the whole barrier at one

and w. p. feels immediately both barrier walls (bound-

aries).
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METOD BAGATOKRATNIH VNUTR�XN�H V�DBITT�V PRI OPIS�

EVOL�C�Õ TUNEL�VANN� NEREL�TIV�STS^KIH QASTINOK TA FOTON�V

S. P. Ma�dan�k, V. S. Ol~hovs~ki�, A. K. Za�qenko

�nstitut �dernih dosl�d�en~ NAN UkraÝni,

prosp. Nauki, 47, KiÝv, 03680, UkraÝna

Navedeno nesta�onarni� metod rozv'�zku zadaq� tunel�vann� nerel�tiv�sts~kih qastinok ta foton�v

qerez bar'r, �ki� vikoristovu bagatokratn� vnutr�xn� v�dbitt� hvil~ovih paket�v, wodo me� bar'ra.Me-

tod opisano ta dovedeno pri rozv'�zuvann� odnovim�rnoÝ zadaq� tunel�vann� qastinki qerez pr�mokutni�

bar'r. Dl� zadaq tunel�vann� qastinki qerez sferiqno-simetriqni� bar'r ta fotona qerez odnovim�r-

ni� bar'r z vikoristann�m metodu zna�deno virazi dl� ampl�tud v�dbitogo hvil~ovogo paketa ta paketa,

wo pro�xov qerez bar'r, a tako� qasi tunel�vann� ta v�dbitt� wodo bar'ra. Proanal�zovano efekt

Gartmana{Fletqera.
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