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The non-stationary solution method for a problem of tunneling of nonrelativisti
 parti
les and

photons through a barrier on the basis of multiple internal re
e
tions of wave pa
kets in relation of

barrier boundaries is submitted. The method is des
ribed and proved in solving an one-dimentional

problem of tunneling of the parti
le through a re
tangular barrier. For problems of tunneling of

the parti
le through a spheri
ally symmetri
 barrier and the photon through an one-dimensional

barrier the amplitudes of transmitted and re
e
ted wave pa
kets in relation to the barrier, times of

the tunneling and the re
e
tion are found using of the method. Hartman's and Flet
her's e�e
t is

analysed.
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I. INTRODUCTION

The approa
h for des
ription of a propagation of a

nonrelativisti
 parti
le above a barrier using the a

ount

of multiple internal re
e
tions of stationary plane waves

between barrier boundaries whi
h des
ribe a motion of

this parti
le in the region of the barrier, was 
onsidered

in a series of arti
les and has been known for a long time

[1{3℄. Thus, stationary solutions were studied only in the

previous arti
les.

To apply this approa
h for a solution of a problem,

one 
an need in expressions for a wave fun
tion (w. f.)

in the region of the barrier to separate 
omponents hav-

ing 
uxes dire
ted in opposite sides. For a problem of the

parti
le propagating above the barrier it appears primely

enough. So, 
onsidering an one-dimensional (1D) re
tan-

gular barrier, plane waves e

�ikx


an be taken as su
h

solutions, where k is a wave ve
tor. To re
eive solutions

using this approa
h for a problem of the tunneling of

the parti
le under su
h a barrier appears more 
ompli-


ated, be
ause in the 
onsideration of the tunneling as

a stationary pro
ess the de
reasing and in
reasing 
om-

ponents of the stationary w. f. in dependen
e on x (be-

ing analyti
 
ontinuations of relevant expressions of the

waves for the 
ase of above-barrier energies) in a sub-

barrier region 
orrespond to zero 
uxes separately and it

is not 
orre
t to use them as the propagating waves from

a physi
al point of view. If we de�ne expressions for su
h

waves in another way (for example, having required the

existen
e of the nonzero 
uxes in the barrier region at

ea
h step of this approa
h), we re
eive a divergen
e of

the expressions for the waves for the above-barrier and

the sub-barrier 
ases. However, the 
ux 
al
ulated on the

basis of a 
omplete stationary w. f. is not equal to zero

and, therefore, the tunneling of the parti
le under the

barrier exists.

As a further development of a time analysis of tunnel-

ing pro
esses submitted in arti
les [4{6℄, here we repre-

sent the non-stationary solution method of a problem

of tunneling of a nonrelativisti
 parti
le or a photon

through a barrier using multiple internal re
e
tions of


uxes in a sub-barrier region in relation to barrier bound-

aries (we name this approa
h as the method of multiple

internal re
e
tions). In the given arti
le we study an one-

dimensional and a spheri
ally symmetri
 problems.

At analysing the tunneling (or the propagation) of the

nonrelativisti
 parti
le, an important spe
i�
 feature of

this method is a des
ription of a parti
le motion using

non-stationary wave pa
kets (w. p.). Due to this one 
an

determine 
orre
tly the pa
kets propagating in di�erent

dire
tions in a barrier region, ful�l a time analysis of the

parti
le tunneling (propagation) and study in details this

pro
ess in an interesting time moment or in relation to

a 
on
rete point of spa
e. For obtaining time parameters

of the tunneling, this method has shown itself 
onvenient

and simply enough.

For the problem with a spheri
ally symmetri
 barrier

the re
e
ted and transmitted w. p. in relation to this

barrier are propagating in one dire
tion. Stationary so-

lution methods do not allow to separate the w. p. trans-

mitted through the barrier from the w. p. re
e
ted from

the barrier. Using the method of multiple internal re
e
-

tions, one 
an �nd amplitudes and expressions for these

w. p. As a result, it appears possible to present S-matrix

in a form of a sum of two 
omponents 
orresponding to

stationary parts for the re
e
ted and transmitted w. p.

in relation to the barrier. The sum of the stationary parts

for these w. p. obtained by this method 
onverges with

the expression for a s
attered wave obtained by an usual

stationary method. The spheri
ally symmetri
 problem

with use of given approar
h is 
onsidered for the �rst

time.

At �rst we 
onsider the problem of the tunneling of

the nonrelativisti
 parti
le through the one-dimensional
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re
tangular barrier. This problem is a test one and allows

to analyse spe
i�
 features of this method.

Further the problem of the tunneling of the parti
le

through the spheri
ally symmetri
 barrier, whose radial

part has a re
tangular form, is solved. For it amplitudes

of the transmitted and re
e
ted w. p., total times of the

tunneling and re
e
tion in relation to the barrier are

found. Hartman's and Flet
her's e�e
t is analysed. An

expression for S-matrix is presented in the form of a sum

of two 
omponents 
orresponding to amplitudes of sta-

tionary parts for the transmitted and re
e
ted w. p. The

time parameters using of the method of multiple internal

re
e
tions are found for the �rst time.

One 
an apply the method to the problem of the tun-

neling of the parti
le through a spheri
ally symmetri


barrier, whi
h radial part has an arbitrary form, if a

general stationary solution for a w. f. is known for this

potential. Some problems with various barrier forms are


onsidered. The problems are sele
ted so that to show

better features of the method at their solution.

At a �nishing of the arti
le a possibility to use the

method in a problem of a tunneling of photons through

an one-dimensional re
tangular barrier is studied. On

the basis of a given analysis the method is proved for

the problem with the photons. Using the found trans-

formation the results and solutions of the problem with

the nonrelativisti
 parti
le transform into 
orresponding

expressions for the problem with the photons. Hartman

and Flet
her's e�e
t is analysed.

II. TUNNELING OF A PARTICLE THROUGH

AN ONE-DIMENSIONAL RECTANGULAR

BARRIER

Let us 
onsider the problem of tunneling a nonrela-

tivisti
 parti
le in a positive x-dire
tion through an one-

dimensional re
tangular potential barrier (see Fig. 1).

Let us label region I for x < 0, region II for 0 < x < a

and region III for x > a, a

ordingly. Let us study an

evolution of its tunneling through the barrier.

Fig. 1. One-dimensional re
tangular barrier.

In the beginning we 
onsider a standard approa
h to

the solution of this problem [7,8℄. Let us 
onsider a 
ase

when levels of energy lay under the height of the barrier:

E < V

1

.

The tunneling evolution of the parti
le 
an be de-

s
ribed using a non-stationary 
onsideration of a propa-

gating w. p.

 (x; t) =

+1

Z

0

g(E �

�

E)'(k; x)e

�iEt=~

dE; (1)

where the stationary w. f. has a form:

'(x) =

8

<

:

e

ikx

+ A

R

e

�ikx

; for x < 0;

�e

�x

+ �e

��x

; for 0 < x < a;

A

T

e

ikx

; for x > a;

(2)

and k =

1

~

p

2mE, � =

1

~

p

2m(V

1

�E), E and m are the

total energy and mass of the parti
le, a

ordingly. The

weight amplitude g(E�

�

E) 
an be written in the form of

gaussian [4℄ and satis�es the requirement of normaliza-

tion

R

jg(E �

�

E)j

2

dE = 1, value

�

E is an average energy

of the parti
le. One 
an 
al
ulate 
oeÆ
ients A

T

, A

R

, �

and � analyti
ally, using the requirements of a 
ontinu-

ity of w. f. '(x) and its derivative on ea
h boundary of

the barrier.

Substituting in Eq. (1) instead of '(k; x) the in
ident

'

in


(k; x), transmitted '

tr

(k; x) or re
e
ted part of w. f.

'

ref

(k; x), de�ned by Eq. (2), we re
eive the in
ident,

transmitted or re
e
ted w. p., a

ordingly.

We assume that a time, for whi
h the w. p. tunnels

through the barrier, is enough small. So, the time ne
-

essary for tunneling an �-parti
le through a barrier of

de
ay in �-de
ay of a nu
leus, is about 10

�21

se
onds

[9℄. We 
onsider, that one 
an negle
t a spreading of the

w. p. for this time. And a breadth of the w. p. appears

essentially more narrow on a 
omparison with a barrier

breadth [4{6℄. Considering only sub-barrier pro
esses, we

ex
lude a 
omponent of waves for above-barrier energies,

having in
luded the additional transformation

g(E �

�

E)! g(E �

�

E)�(V

1

�E); (3)

where �-fun
tion satis�es to the requirement

�(�) =

�

0; for � < 0;

1; for � > 0:

The method of multiple internal re
e
tions 
onsiders

the propagation pro
ess of the w. p. des
ribing the mo-

tion of the parti
le, sequentially on steps of its penetra-

tion in relation to ea
h boundary of the barrier [1{3℄.

Using this method, we �nd expressions for the transmit-

ted and re
e
ted w. p. in relation to the barrier.

At the �rst step we 
onsider the w. p. in region I, whi
h

is in
ident upon the �rst (initial) boundary of the bar-

rier. Let us assume that this pa
kage transforms into the
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w. p. transmitted through this boundary and tunneling

further in the region II, and into the w. p. re
e
ted from

the boundary and propagating ba
k in region I. Thus we


onsider that the w. p. tunneling in region II has not

rea
hed the se
ond (�nal) boundary of the barrier be-


ause of a terminating velo
ity of its propagation, and


onsequently at this step we 
onsider only two regions I

and II. Be
ause of physi
al reasons to 
onstru
t an ex-

pression for this pa
ket, we 
onsider that its amplitude

should de
rease in a positive x-dire
tion. We use only

one item � exp(��x) in Eq. (2), throwing the se
ond in-


reasing item � exp(�x) (in an opposite 
ase we break a

requirement of a �niteness of the w. f. for an inde�nitely

wide barrier). As a result, in region II we obtain:

 

1

tr

(x; t) =

+1

Z

0

g(E �

�

E)�(V

1

� E)�

0

e

��x�iEt=~

dE;

for 0 < x < a: (4)

Thus, the w. f. in the barrier region 
onstru
ted in a su
h

way, is an analyti
 
ontinuation of a relevant expression

for the w. f., 
orresponding to a similar problem with

above-barrier energies, where as a stationary expression

we sele
t the wave exp(ik

2

x), propagated to the right.

Let us 
onsider the �rst step further. One 
an write

expressions for the in
ident and the re
e
ted w. p. in

relation to the �rst boundary as follows

 

in


(x; t) =

+1

Z

0

g(E �

�

E)�(V

1

� E)e

ikx�iEt=~

dE; for x < 0;

 

1

ref

(x; t) =

+1

Z

0

g(E �

�

E)�(V

1

� E)A

0

R

e

�ikx�iEt=~

dE; for x < 0: (5)

A sum of these expressions represents the 
omplete

w. f. in region I, whi
h is dependent on time. Let us

require that this w. f. and its derivative 
ontinuously

transform into the w. f. (4) and its derivative at point

x = 0 (we assume that the weight amplitude g(E �

�

E)

di�ers weakly at transmitting and re
e
ting of the w. p.

in relation to the barrier boundaries). Consequently, we

obtain two equations, in whi
h one 
an pass from the

time-dependent w. p. to the 
orresponding stationary

w. f. and obtain the unknown 
oeÆ
ients �

0

and A

0

R

.

At the se
ond step we 
onsider the w. p. tunneling in

region II and in
ident upon the se
ond boundary of the

barrier at the point x = a. It transforms into the w. p.

transmitted through this boundary and propagated in

region III, and into the w. p. re
e
ted from the bound-

ary and tunneled ba
k in region II. For a determination

of these pa
kets one 
an use Eq. (1) with a

ount (3),

where as the stationary w. f. we use:

'

2

in


(k; x) = '

1

tr

(k; x) = �

0

e

��x

; for 0 < x < a;

'

2

tr

(k; x) = A

0

T

e

ikx

; for x > a;

'

2

ref

(k; x) = �

0

e

�x

; for 0 < x < a: (6)

Here, for forming an expression for the w. p. re
e
ted

from the boundary, we sele
t an in
reasing part of the

stationary solution �

0

exp(�x) only. Imposing a 
ondi-

tion of 
ontinuity on the time-dependent w. f. and its

derivative at the point x = a, we obtain 2 new equa-

tions, from whi
h we �nd the unknowns 
oeÆ
ients A

0

T

and �

0

.

At the third step the w. p., tunneling in region II is

in
ident upon the �rst boundary of the barrier. Then

it transforms into the w. p. transmitted through this

boundary and propagated further in region I, and into

the w. p. re
e
ted from boundary and tunneled ba
k in

region II. For a determination of these pa
kets one 
an

use Eq. (1) with a

ount Eq. (3), where as the stationary

w. f. we use:

'

3

in


(k; x) = '

2

ref

(k; x); for 0 < x < a;

'

3

tr

(k; x) = A

1

R

e

�ikx

; for x < 0;

'

3

ref

(k; x) = �

1

e

��x

; for 0 < x < a: (7)

Using 
onditions of 
ontinuity for the time-dependent

w. f. and its derivative at the point x = 0, we obtain the

unknowns 
oeÆ
ients A

1

R

and �

1

.

Analysing further possible pro
esses of the transmis-

sion (and the re
e
tion) of the w. p. through the bound-

aries of the barrier, we 
ome to a dedu
tion that any of

the following steps 
an be redu
ed to one of 2 
onsidered

above. For the unknown 
oeÆ
ients �

n

, �

n

,A

n

T

and A

n

R

used in expressions for the w. p. formed as a result of

some internal re
e
tions from the boundaries, one 
an

obtain the re
urren
e relations:
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�

0

=

2k

k + i�

; �

n

= �

n

i� � k

i� + k

e

�2�a

;

�

n+1

= �

n

i� � k

i� + k

; A

0

R

=

k � i�

k + i�

;

A

n

T

= �

n

2i�

i� + k

e

��a�ika

; A

n+1

R

= �

n

2i�

i� + k

: (8)

Considering the propagation of the w. p. in su
h a

way, we obtain expressions for the w. f. on ea
h region

whi
h 
an be written through a series of multiple w. p.

Using Eq. (1) with the a

ount of Eq. (3), we determine

resultant expressions for the in
ident, transmitted and

re
e
ted w. p. in relation to the barrier, where one 
an

need to use the following expressions for the stationary

w. f.:

'

in


(k; x) = e

ikx

; for x < 0;

'

tr

(k; x) =

+1

X

n=0

A

n

T

e

ikx

; for x > a;

'

ref

(k; x) =

+1

X

n=0

A

n

R

e

�ikx

; for x < 0: (9)

Now we 
onsider the w. p. formed as a result of sequen-

tial n re
e
tions from the boundaries of the barrier and

in
ident upon one of these boundaries at the point x = 0

(i = 1) or at point x = a (i = 2). As a result, this w. p.

transforms into the w. p.  

i

tr

(x; t), transmitted through

boundary with number i, and into the w. p.  

i

ref

(x; t),

re
e
ted from this boundary. For the independent of x

parts of the stationary w. f. one 
an write:

'

1

tr

exp(��x)

= T

+

1

'

1

in


exp(ikx)

;

'

1

ref

exp(�ikx)

= R

+

1

'

1

in


exp(ikx)

;

'

2

tr

exp(ikx)

= T

+

2

'

2

in


exp(��x)

;

'

2

ref

exp(�x)

= R

+

2

'

2

in


exp(��x)

;

'

1

tr

exp(�ikx)

= T

�

1

'

1

in


exp(�x)

;

'

1

ref

exp(��x)

= R

�

1

'

1

in


exp(�x)

;

(10)

where the sign \+" (or \�") 
orresponds to the w. p.

tunneling (or propagating) in a positive (or negative) x-

dire
tion and in
ident upon the boundary with number

i. Using T

�

i

and R

�

i

, one 
an pre
isely des
ribe an ar-

bitrary w. p. whi
h has formed in result of n-multiple

re
e
tions, if to know a \path" of its propagation along

the barrier. Using the re
urren
e relations Eq. (8), the


oeÆ
ients T

�

i

and R

�

i


an be obtained:

T

+

1

= �

0

; T

+

2

=

A

n

T

�

n

; T

�

1

=

A

n+1

R

�

n

;

R

+

1

= A

0

R

; R

+

2

=

�

n

�

n

; R

�

1

=

�

n+1

�

n

: (11)

Using the re
urren
e relations, one 
an �nd series of


oeÆ
ients �

n

, �

n

, A

n

T

and A

n

R

. However, these series


an be 
al
ulated easier, using 
oeÆ
ients T

�

i

and R

�

i

.

Analysing all possible \paths" of the w. p. propagations

along the barrier, we re
eive:

+1

X

n=0

A

n

T

= T

+

2

T

�

1

�

1 +

+1

X

n=1

(R

+

2

R

�

1

)

n

�

=

i4k�e

��a�ika

F

sub

;

+1

X

n=0

A

n

R

= R

+

1

+ T

+

1

R

+

2

T

�

1

�

1 +

+1

X

n=1

(R

+

2

R

�

1

)

n

�

=

k

2

0

D

�

F

sub

;

+1

X

n=0

�

n

= �

0

�

1 +

+1

X

n=1

(R

+

2

R

�

1

)

n

�

=

2k(i� � k)e

�2�a

F

sub

;

+1

X

n=0

�

n

= �

0

�

1 +

+1

X

i=1

(R

+

2

R

�

1

)

n

�

=

2k(i� + k)

F

sub

; (12)

where

F

sub

= (k

2

� �

2

)D

�

+ 2ik�D

+

; D

�

= 1� e

�2�a

; k

2

0

= k

2

+ �

2

=

2mV

1

~

2

: (13)
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All series

P

�

n

,

P

�

n

,

P

A

n

T

and

P

A

n

R

, obtained us-

ing the method of multiple internal re
e
tions, 
oin
ide

with the 
orresponding 
oeÆ
ients �, �, A

T

and A

R

of

the Eq. (2), 
al
ulated by a stationary methods [4,7,15℄.

Using the following substitution

i� ! k

2

; (14)

where k

2

=

1

~

p

2m(E � V

1

) is a wave number for a 
ase

of above-barrier energies, expression for the 
oeÆ
ients

�

n

, �

n

,A

n

T

and A

n

R

for ea
h step, expressions for the w. f.

for ea
h step, the total Eqs. (12) and (13) transform into

the 
orresponding expressions for a problem of the parti-


le propagation above this barrier. At the transformation

of the w. p. and the time-dependent w. f. one 
an need

to 
hange a sign of argument at �-fun
tion. Besides, the

following property is ful�lled:

�

�

�

�

+1

X

n=0

A

n

T

�

�

�

�

2

+

�

�

�

�

+1

X

n=0

A

n

R

�

�

�

�

2

= 1: (15)

III. TUNNELING OF THE PARTICLE

THROUGH A SPHERICALLY SYMMETRIC

RECTANGULAR BARRIER

A. Transmitted and re
e
ted wave pa
kets

The problem of the motion of two intera
ting parti
les


an be redu
ed to the problem of one parti
le s
attering

in a spheri
ally symmetri
 �eld. Let us assume that the

parti
le under the a
tion of a 
entral for
e

V (r) =

8

<

:

�V

0

; for r < R

1

; (region I);

V

1

; for R

1

< r < R

2

; (region II);

0; for r > R

2

; (region III):

(16)

is in
ident outside upon an external boundary of the bar-

rier at point r = R

2

(see Fig. 2).

Fig. 2. Spheri
ally symmetri
 re
tangular barrier.

Let us study an evolution of tunneling of the parti-


le through the barrier. We 
onsider a 
ase when the

moment l = 0 and levels of energy lay below a barrier

height. The tunneling evolution of the parti
le in time

dependen
e 
an be des
ribed using a w. p. 
onstru
ted

on a basis of a stationary solution of the following form

[7℄:

 (r; �; ') =

�(r)

r

Y

lm

(�; '); (17)

�(r) =

8

<

:

A(e

�ik

1

r

� e

ik

1

r

); for r < R

1

; (region I);

�e

�r

+ �e

��r

; for R

1

< r < R

2

; (region II);

e

�ikr

+ Se

ikr

; for r > R

2

; (region III);

(18)

where Y

lm

(�; ') is a spheri
al fun
tion, k

1

=

1

~

p

2m(E + V

0

), � =

1

~

p

2m(V

1

�E), k =

1

~

p

2mE.

For the spheri
ally symmetri
 problem in a 
ase of sub-

barrier energies we obtain:

�(r; t) =

+1

Z

0

g(E �

�

E)�(V

l

� E)�(k; r)e

�iEt=~

dE; (19)

V

l

(r) = V (r) +

~

2

2m

l(l + 1)

r

2

; (20)

where the se
ond item in Eq. (20) is a 
entrifugal en-

ergy, whi
h is equal to zero at l = 0, weight amplitude

g(E�

�

E) and average energy of the parti
le

�

E are de�ned

similarly to the one-dimensional problem (see Se
. II).

At a stationary 
onsideration of solutions (18) we de-

s
ribe the parti
le in
ident upon the external boundary

of the barrier by a spheri
al wave exp(�ikr) 
onver-

gent to the 
entre. And we des
ribe the parti
le s
at-

tered on the barrier in the region III by a spheri
al wave

S exp(ikr) divergent outside. The s
attered wave takes

into a

ount both a possibility of a re
e
tion of the par-

ti
le from the barrier, whi
h is written by the divergent

wave, and a possibility of a penetration of the parti
le

through the barrier, when in the beginning the parti
le

tunnels from region III to region I, and then after some
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period of time it tunnels ba
k from region I to region III

and also is written by the divergent wave. Only one item

S exp(ikr) 
ontains the transmitted and re
e
ted diver-

gent waves, and it is impossible to separate them at the

stationary 
onsideration.

As non-stationary, the method of multiple internal re-


e
tions allows to �nd a solution of this problem. Let

us apply it to this problem. We study a propagation of a

w. p. des
ribing tunneling of the parti
le, sequentially on

steps of its transmission in relation to ea
h of boundaries

of the barrier (similarly to the one-dimensional problem).

As a result of an analysis we 
ome to a dedu
tion that

any step in su
h viewing of the propagation of the w. p.

along the barrier will be similar to one of 4 steps in-

dependent among themselves. Analysing these 4 steps

further, one 
an obtain re
urren
e relations for �nding


oeÆ
ients A

n

, S

n

, �

n

and �

n

for an arbitrary step n.

As a result of multiple internal re
e
tions (and transi-

tions) in relation to the boundaries of the barrier a total

time-dependent w. f. in ea
h region 
an be written in

the form of series 
omposed from 
onvergent and diver-

gent w. p.. Analysing possible \paths" of propagations of

these pa
kets, one 
an 
al
ulate expressions for the series

of 
oeÆ
ients S

n

, A

n

, �

n

and �

n

:

+1

X

n=1

S

n

=

1

F

sub

T

�

2

T

+

2

(R

�

1

(1� R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

) =

4ik�

�

i� � k

1

i� + k

1

� e

2ik

1

R

1

�

e

2�(R

1

�R

2

)�2ikR

2

F

sub

(k + i�)

2

;

+1

X

n=0

A

n

=

T

�

1

T

�

2

F

sub

=

4ik�e

�ikR

2

+ik

1

R

1

��(R

2

�R

1

)

F

sub

(k + i�)(k

1

+ i�)

;

+1

X

n=0

�

n

= �

0

1� R

+

1

R

�

0

F

sub

=

2k

�

1 +

k

1

� i�

k

1

+ i�

e

2ik

1

R

1

�

e

�(�+ik)R

2

F

sub

(k + i�)

;

+1

X

n=0

�

n

=

+1

P

n=0

�

n

� T

�

2

R

+

2

= �

0

R

�

1

(1� R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

F

sub

=

2k

�

i� � k

1

i� + k

1

� e

2ik

1

R

1

�

e

�(2R

1

�R

2

)�ikR

2

F

sub

(k + i�)

; (21)

where

F

sub

= (1� R

+

1

R

�

0

)(1� R

+

2

R

�

1

)� R

+

2

T

�

1

R

�

0

T

+

1

= 1 +

k

1

� i�

k

1

+ i�

e

2ik

1

R

1

�

(k � i�)(k

1

� i�)

(k + i�)(k

1

+ i�)

e

�2�(R

2

�R

1

)

�

k � i�

k + i�

e

�2�(R

2

�R

1

)+2ik

1

R

1

; (22)

T

�

2

= �

0

=

2k

k + i�

e

�(�+ik)R

2

; R

�

2

= S

0

=

�i� + k

i� + k

e

�2ikR

2

;

T

�

1

=

A

n

�

n

=

2i�

i� + k

1

e

(�+ik

1

)R

1

; R

�

1

=

�

n

�

n

=

i� � k

1

i� + k

1

e

2�R

1

;

T

�

0

= 0; R

�

0

= 1;

T

+

1

=

�

n+1

A

n

= �

2k

1

i� + k

1

e

(�+ik

1

)R

1

; R

+

1

=

A

n+1

A

n

=

i� � k

1

i� + k

1

e

2ik

1

R

1

;

T

+

2

=

S

n+1

�

n

=

2i�

i� + k

e

�(�+ik)R

2

; R

+

2

=

�

n+1

�

n

=

i� � k

i� + k

e

�2�R

2

; (23)
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where the 
oeÆ
ients T

�

i

and R

�

i

are de�ned in relation

to the boundary with the number i (i = 0 for r = 0,

i = 1 for r = R

1

and i = 2 for r = R

2

). They 
an be


al
ulated using of the re
urren
e relations between the


oeÆ
ients S

n

, A

n

, �

n

and �

n

.

Now we 
onsider the in
ident, transmitted and re-


e
ted w. p. in relation to the barrier as a whole. De�ning

them for the region III, one 
an write:

�

in


(r; t) =

+1

Z

0

g(E �

�

E)�(V

1

�E)e

�ikr�iEt=~

dE;

�

tr

(r; t) =

+1

Z

0

g(E �

�

E)�(V

1

�E)S

tr

e

ikr�iEt=~

dE;

�

ref

(r; t) =

+1

Z

0

g(E �

�

E)�(V

1

�E)S

ref

e

ikr�iEt=~

dE;

(24)

where

S

tr

=

+1

X

n=1

S

n

; S

ref

= S

0

; S = S

tr

+ S

ref

: (25)

The expression S represents a diagonal element of s
at-

tering matrix 
orresponding to the orbital moment l = 0.

Thus, using the method of multiple internal re
e
tions

it appears possible to divide the S-matrix into two 
om-

ponents 
orresponding to amplitudes of stationary parts

of the transmitted and re
e
ted w. p. in relation to the

barrier as a whole. This property having physi
al sense,

is obtained for the �rst time.

The expressions for 
oeÆ
ients S

n

, A

n

, �

n

and �

n

for

ea
h step, the expression for the w. f. for ea
h step, the


oeÆ
ients T

�

i

and R

�

i

, the series of the 
oeÆ
ients S

n

,

A

n

, �

n

and �

n

under the substitution (14) (and also

at repla
ement of a sign before argument for �-fun
tion

at a 
onsideration of the non-stationary w. p.) transform

into the 
orresponding expressions for the solution of the

problem of a w. p. propagation above the barrier. Series

(21) of the 
oeÆ
ients S

n

, A

n

, �

n

and �

n


oin
ide with

the 
orresponding 
oeÆ
ients S, A, � and � for Eq. (18),


al
ulated by stationary methods.

B. Tunneling and re
e
ting times in relation to the

barrier

One 
an determine an equation for a propagation of a

maximumof the in
ident, transmitted and re
e
ted w. p.

in relation to the barrier for the spheri
ally symmetri


problem. For radial parts of non-stationary w. f. one 
an

write:

�

�E

arg �

in


(r; t) =

�

�E

arg �

tr

(r; t)

=

�

�E

arg �

ref

(r; t) = 
onst: (26)

Let us 
onsider the �rst step of the propagation of the

w. p. Let the w. p. is in
ident in region III upon the ex-

ternal boundary of the barrier at point r = R

2

in a time

moment t

in


. Using Eq. (26), we �nd the time moment

t

1

ref

of leaving outside from this boundary the re
e
ted

w. p. in region III:

t

1

ref

= t

in


+

2mR

2

~k

+ ~

� arg S

0

�E

: (27)

Similarly, for a time moment t

n

tr

of leaving outside the

external boundary of the barrier the n-multiple trans-

mitted w. p. one 
an write:

t

n

tr

= t

in


+

2mR

2

~k

+ ~

� arg S

n

�E

: (28)

Using Eq. (26) at point r = R

2

, we �nd times ne
es-

sary for the penetration of the total w. p. through the

barrier (des
ribing the tunneling of the parti
le through

the barrier) and for the re
e
tion of the w. p. from the

barrier (des
ribing the re
e
tion of the parti
le from the

barrier):

�

Ph

tun

= t

tr

� t

in


=

2mR

2

~k

+ ~

� arg S

tr

�E

;

�

Ph

ref

= t

ref

� t

in


=

2mR

2

~k

+ ~

� arg S

ref

�E

: (29)

For the problem of the w. p. tunneling under the bar-

rier we re
eive:

�

Ph

tun

= ~

�

�E

arg

i� � k

1

� (i� + k

1

)e

2ik

1

R

1

(i� + k)

2

(i� + k

1

)F

sub

;

�

Ph

ref

=

2m

~�k

: (30)

For the problem of the w. p. propagating above the

barrier we write:

�

Ph

tun

=

2m(R

2

� R

1

)

~k

2

+ ~

�

�E

arg

k

2

� k

1

� (k

2

+ k

1

)e

2ik

1

R

1

(k + k

2

)(k

1

+ k

2

)F

above

;

�

Ph

ref

= 0; (31)

where F

above


an be obtained from F

sub

using the sub-

stitution (14).
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Let us 
onsider a parti
le, whi
h tunnels under a high

enough and wide barrier. Then for the time of the tunnel-

ing we obtain the following expression (sequen
e of ap-

proa
hes: �(R

2

�R

1

)! +1, � ! +1, R

2

�R

1

! +1):

�

Ph

tun

=

2m

~k�

+

4mR

1

sin 2k

1

R

1

(1� 2 
os 2k

1

R

1

)

~�(1 � 
os 2k

1

R

1

)

: (32)

The tunneling time does not depend on the width of the

barrier (Hartman's and Flet
her's e�e
t), but depends

on k

1

and R

1

.

IV. TUNNELING OF THE PARTICLE

THROUGH THE SPHERICALLY SYMMETRIC

BARRIER OF A GENERAL VIEW

A. The parti
le propagates above the barrier

In study of nu
lear pro
esses when a tunneling of par-

ti
les through a barrier is investigated, in most 
ases the

barriers of more 
ompli
ated form than re
tangular are

used. So, the spheri
ally symmetri
 two-humb potential

of Strutinski has a suÆ
iently important role in the prob-

lems of fusion and de
ay of nu
lei. A degree of an exa
-

titude of the des
ription of the nu
lear pro
ess depends

on the 
hoi
e of a form of the potential. Therefore, we

shall 
onsider, as far as it is possible to use the method

of multiple internal re
e
tions for solving the spheri
ally

symmetri
al problems with the barrier of a general view.

Let us 
onsider a parti
le propagating in a spheri
ally

symmetri
 potential �eld, whi
h radial part has a bar-

rier. Taking into a

ount the behaviour of a radial part

V (r) of the potential fun
tion in dependen
e on r, we

divide the area of its de�nition r 2 [0; +1[ on the n

regions. In ea
h region let us repla
e the potential fun
-

tion V (r) by a fun
tion most 
losely des
ribing V (r) and

for whi
h an exa
t solution of the stationary S
hr�odinger

equation exists (see Fig. 3). Passing to the problem of the

parti
le propagation in the �eld of these approximated

potential fun
tions, we write the general solution for sta-

tionary w. f. in the form (17), where its radial part 
an

be written as

Fig. 3. Spheri
ally symmetri
 barrier of a general form.

�(r) =

8

<

:

A

1

a

1

(k; r) + B

1

b

1

(k; r); for 0 < r < R

1

; (region I);

A

i

a

i

(k; r) +B

i

b

i

(k; r); for R

i�1

< r < R

i

; (region i);

A

n

a

n

(k; r) + B

n

b

n

(k; r); for r > R

n�1

; (region N );

(33)

where k =

1

~

p

2mE, a

i

(k; r) and b

i

(k; r) are the partial solutions of the radial part of w. f. in region i, A

i

and B

i

are

the normalization 
onstants.

Let us �nd the transmission and re
e
tion 
oeÆ
ients of parti
le in relation to the barrier, and also the times

ne
essary for transmission and for re
e
tion of the parti
le in relation to the barrier, using the method of multiple

internal re
e
tions. To apply the method to this problem, one 
an need to present the general stationary solution of

w. f. in ea
h region in the sum of divergent and 
onvergent vawes.

Using the Fourier transformation, one 
an write:

a

i

(k; r) = a

�

i

(k; r) + a

+

i

(k; r); b

i

(k; r) = b

�

i

(k; r) + b

+

i

(k; r); (34)

where

a

�

i

(k; r) =

1

p

2�

0

Z

�1

dq

R

i

Z

R

i�1

a

i

(k; r

0

)e

iq(r�r

0

)

dr

0

;

a

+

i

(k; r) =

1

p

2�

+1

Z

0

dq

R

i

Z

R

i�1

a(k; r

0

)e

iq(r�r

0

)

dr

0

;
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b

�

i

(k; r) =

1

p

2�

0

Z

�1

dq

R

i

Z

R

i�1

b

i

(k; r

0

)e

iq(r�r

0

)

dr

0

;

b

+

i

(k; r) =

1

p

2�

+1

Z

0

dq

R

i

Z

R

i�1

b

i

(k; r

0

)e

iq(r�r

0

)

dr

0

: (35)

Taking into a

ount the transformation




�

i

(k; r) = a

�

i

(k; r) +

B

i

A

i

b

�

i

(k; r); 


+

i

(k; r) =

A

i

B

i

a

+

i

(k; r) + b

+

i

(k; r) (36)

one 
an write the general solution (33) as

�(r) =

8

<

:

A

1




�

1

(k; r) + B

1




+

1

(k; r); for 0 < r < R

1

; (region I);

A

i




�

i

(k; r) + B

i




+

i

(k; r); for R

i�1

< r < R

i

; (region i);

A

n




�

n

(k; r) + B

n




+

n

(k; r); for r > R

n�1

; (region N ):

(37)

Hen
e, the general solution in every region i is rep-

resented as the sum of 
onvergent waves 


�

i

(r) and di-

vergent waves 


+

i

(r) (so, in 
ase of a re
tangular bar-

rier in the region i su
h expressions equal to e

�ik

i

r

and

e

ik

i

r

, a

ordingly). On the basis of these expressions us-

ing Eq. (19) one 
an 
onstru
t the non-stationary 
on-

vergent and divergent w. p.. Writing the general solution

for w. f. in every region in the form of linear 
ombina-

tion of 
onvergent and divergent w. p., one 
an apply

the method of multiple internal re
e
tions for solving

the problem.

At �rst we study the 
ase, when the general stationary

solution for w. f. in every region 
an be written uniquely

as sum of 
onvergent and divergent waves 


�

i

(r). Then

using of the method of multiple internal re
e
tions for

solving the problem, one 
an �nd the in
ident, trans-

mitted and re
e
ted w. p. in relation to the barrier as

a whole, and total w. p. in every region. It is enough


onvenient to use the 
oeÆ
ients T

�

i

and R

�

i

(as in the

spheri
ally symmetri
 problem with re
tangular barrier).

We de�ne these 
oeÆ
ients in relation to the boundary

with the number i in su
h a way (for the step j):

A

j

i

= T

�

i

A

j

i+1

; B

j+1

i+1

= R

�

i

A

j

i+1

;

B

j

i+1

= T

+

i

B

j

i

; A

j+1

i

= R

+

i

B

j

i

: (38)

One 
an 
al
ulate these 
oeÆ
ients at the 
onsidera-

tion of �rst 2n+ 1 steps:

T

�

0

= 0; R

�

0

= �




�

1

(0)




+

1

(0)

=

B

1

A

1

; (39)

T

�

i

=

�


�

i+1

(r)

�r




+

i+1

(r)� 


�

i+1

(r)

�


+

i+1

(r)

�r

�


�

i

(r)

�r




+

i+1

(r)� 


�

i

(r)

�


+

i+1

(r)

�r

�

�

�

�

�

r=R

i

;

R

�

i

=

�


�

i+1

(r)

�r




�

i

(r)� 


�

i+1

(r)

�


�

i

(r)

�r

�


�

i

(r)

�r




+

i+1

(r)� 


�

i

(r)

�


+

i+1

(r)

�r

�

�

�

�

�

r=R

i

;

T

+

i

=

�


+

i

(r)

�r




�

i

(r)� 


+

i

(r)

�


�

i+1

(r)

�r

�


+

i+1

(r)

�r




�

i

(r)� 


+

i+1

(r)

�


�

i

(r)

�r

�

�

�

�

�

r=R

i

;

R

+

i

=

�


+

i

(r)

�r




+

i+1

(r)� 


+

i

(r)

�


�

i+1

(r)

�r

�


+

i+1

(r)

�r




+

i+1

(r)� 


+

i+1

(r)

�


�

i

(r)

�r

�

�

�

�

�

r=R

i

: (40)

Further using the method of multiple internal re
e
-

tions, one 
an 
al
ulate the in
ident, transmitted and

re
e
ted w. p. in relation to the barrier. On the basis

of these w. p. one 
an �nd the transmission and re
e
-

tion 
oeÆ
ients and also the transmission and re
e
tion

times in relation to the barrier. Thus, the transmitted

and re
e
ted w. p. 
an be written through S

tr

and S

ref

,

the sum of whi
h is the diagonal element of the s
attering

matrix S at the orbital moment l.

The value A

n


an be obtained from the normalization


ondition:
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A

n

=

 

+1

Z

R

n�1

j


n

(k; r)j

2

dr

!

�1=2

: (41)

Now we study the 
ase, when the partial solutions of

w. f. in some regions are not the 
onvergent and divergent

waves. In representations (36) and (37) one 
an need to

know the values B

i

=A

i

. In this 
ase at solving the prob-

lemwe 
onsider �rst 2n+1 steps. Let the general solution

for w. f. in the �rst region be expressed through a

1

and

b

1

. Analyzing the re
e
tion of w. p. from the point r = 0,

one 
an obtain:

T

�

0

= 0; R

�

0

= �

a

1

(0)

b

1

(0)

=

B

1

A

1

: (42)

If the w. f. in the �rst region is determined through




�

1

uniquely, then it is ne
essary to use Eq. (39) instead

of Eq. (42). Cal
ulating the value B

1

=A

1

, one 
an �nd

the fun
tions 


�

1

. Using the 
ontinuity 
ondition for w. f.

and its derivative in all boundaries between regions, one


an �nd the re
urrent relation for values B

i

=A

i

:

B

i+1

A

i+1

=

f

i

(r)

�a

i+1

(r)

�r

�

�f

i

(r)

�r

a

i+1

(r)

�f

i

(r)

�r

b

i+1

(r)� f

i

(r)

�b

i+1

(r)

�r

�

�

�

�

�

r=R

i

;

f

i

(r) = a

i

(r) + b

i

(r)

B

i

A

i

�

�

�

�

�

r=R

i

= 


�

i

(r) + 


+

i

B

i

A

i

�

�

�

�

�

r=R

i

: (43)

Having the valuesB

i

=A

i

, we obtain the 
onvergent and

divergent waves 


�

i

(r) in every region. Then the solution

of the problem is ful�lled as in the previous 
ase.

Applying the approa
h 
onsidered above for the so-

lution of the problem of parti
le propagation, when the

potential V (r) is de�ned only in two regions (n = 2), one


an �nd the in
ident, transmitted and re
e
ted w. p. in

relation to the barrier using Eq. (19) for above-barrier

region, where the radial parts from the 
orresponding

stationary w. f. have the form (at r > R

1

)

�

in


(r) = A

2




�

2

(k; r);

�

tr

(r) = S

tr




+

2

(k; r) = A

2

T

�

1

T

+

1

R

�

0

1� R

+

1

R

�

0




+

2

(k; r);

�

ref

(r) = S

ref




+

2

(k; r) = A

2

R

�

1




+

2

(k; r): (44)

We �nd the 
oeÆ
ients T

�

i

and R

�

i

from Eq. (40).

Using Eq. (26) for external boundary, one 
an obtain

the times ne
essary for transmission and for re
e
tion of

parti
le in relation to the barrier. As a result, we re
eive:

�

tun

= ~

�

�E

 

arg

�

+1

X

n=1

B

i

2




+

2

(k;R

1

)

�

� arg A

2




�

2

(k;R

1

)

!

= ~

�

�E

arg

T

�

1

T

+

1

R

�

0

1�R

+

1

R

�

0

+�� ;

�

ref

= ~

�

�E

 

arg

�

B

0

2




+

2

(k;R

1

)

�

� arg A

2




�

2

(k;R

1

)

!

= ~

�

�E

arg R

�

1

+�� ;

�� = ~

�

�E

arg




+

2

(R

1

)




�

2

(R

1

)

: (45)

For the problem solution when potential V (r) is de�ned on three regions (n = 3), the expressions for radial parts

of stationary w. f., des
ribing the in
ident, transmitted and re
e
ted w. p. in relation to the barrier, look like (at

r > R

2

)

�

in


(r) = A

3




�

3

(k; r);

�

tr

(r) = S

tr




+

3

(k; r) = A

3

T

�

2

T

+

2

(R

�

1

(1�R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

)

(1�R

+

1

R

�

0

)(1�R

+

2

R

�

1

)� R

+

2

T

�

1

R

�

0

T

+

1




+

3

(k; r);

�

ref

(r) = S

ref




+

3

(k; r) = A

3

R

�

2




+

3

(k; r): (46)

The transmission and re
e
tion times of parti
le in relation to the barrier has the form (they are 
al
ulated at

r = R

2

)

�

tun

= ~

�

�E

arg

T

�

2

T

+

2

(R

�

1

(1� R

+

1

R

�

0

) + T

�

1

R

�

0

T

+

1

)

(1� R

+

1

R

�

0

)(1� R

+

2

R

�

1

)� R

+

2

T

�

1

R

�

0

T

+

1

+�� ;
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�

ref

= ~

�

�E

arg R

�

2

+�� ; �� = ~

�

�E

arg




+

3

(R

2

)




�

3

(R

2

)

: (47)

As an example of the method appli
ation we 
onsider

two problems.

The parti
le propagates above the barrier of the form

(see Fig. 4)

V (r) =

(

�V

0

; for 0 < r < R

1

; (region I);




r

; for r > R

1

; (region II):

(48)

We 
onsider the 
ase l 6= 0. One 
an obtain the in
ident,

transmitted and re
e
ted w. p. in relation to the barrier

from Eqs. (44) and (19), taking into a

ount the sign

before argument of �-fun
tion for above-barrier energies,

and transmission and re
e
tion times from Eq. (45). At


onsideration the �rst three steps of w. p. propagation

along the barrier we �nd the 
oeÆ
ients T

�

i

and R

�

i

us-

ing Eqs. (40) for n = 2. In the solutions one 
an need to

ful�l the substitution




�

1

(k; r) = �

�

k

1

l

(r); 


�

2

(k; r) = G

l

(�; �) � iF

l

(�; �);




+

1

(k; r) = �

+

k

1

l

(r); 


+

2

(k; r) = G

l

(�; �) + iF

l

(�; �); (49)

where

k

1

=

1

~

p

2m(E + V

0

);

� =

��k

~

2

;

� = k(r);

�

�

k

1

l

(r) = �i

r

�k

1

r

2

H

(1;2)

l+1=2

(k

1

r); (50)

H

(1;2)

l

(r) is the fun
tion of Hankel of the 1st and 2nd

sort, G

l

(�; �) and F

l

(�; �) are the irregular and regular

Coulomb fun
tions [19℄. The normalization 
onstant A

2


an be obtained from Eq. (41).

Now we 
onsider another problem when the parti
le

propagates above the barrier of the following form:

V (r) =

(

�r

2

� V

0

; for 0 < r < R

1

; (region I);




r

; for r > R

1

; (region II):

(51)

Let us study the 
ase l = 0. In the beginning we 
on-

sider region I. The partial solutions for the radial part of

stationary w. f. are the paraboli
 
ylinder fun
tions [19℄:

D

�

(�gr) and D

�

(�igr), where g = (8��=~

2

)

1=4

. For the

des
ription of above-barrier motion of parti
le we 
hoose

the �rst two solutions D

�

(�gr), whi
h are independent

if � is non-integer. (Note that one 
an use the Whit-

teker's fun
tions as su
h two independent solutions [19℄.

But these two fun
tions 
an be presented in the form

of linear 
ombination of the paraboli
 
ylinder fun
tions

D

�

(�gr).) Ea
h of partial solutions 
an be presented in

the form of the sum of 
onvergent and divergent waves:

Fig. 4. Spheri
ally symmetri
 Coulomb barrier.

D

�

(�gr) = D

�

�

(�gr) +D

+

�

(�gr);

D

�

(�gr)

�

=

1

p

2�

0

Z

�1

dq

R

1

Z

0

D

�

(�gr

0

)e

iq(r�r

0

)

dr

0

;

D

+

�

(�gr) =

1

p

2�

+1

Z

0

dq

R

1

Z

0

D

�

(�gr

0

)e

iq(r�r

0

)

dr

0

: (52)

Using su
h w. f., one 
an apply the method of mul-

tiple internal re
e
tions to the solution of the problem.

As a result, we �nd the in
ident, transmitted and re-


e
ted w. p. in relation to the barrier from Eqs. (44) and

(19), taking into a

ount the sign before argument of �-

fun
tion for above-barrier energies, and transmission and

re
e
tion times from Eq. (45). The 
oeÆ
ients T

�

i

and

R

�

i


an be obtained from Eqs. (40) and (42) for n = 2

at substitution

a

1

(k; r) = D

�

(k; r);




�

2

(k; r) = G

0

(�; �) � iF

0

(�; �);

b

1

(k; r) = D

�

(�k; r);




+

2

(k; r) = G

0

(�; �) + iF

0

(�; �); (53)
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where � and � are de�ned in Eq. (50), G

0

(�; �) and

F

0

(�; �) are the irregular and regular Coulomb fun
tions

at l = 0.

B. The parti
le tunnels under the barrier

Now we 
onsider the problem of tunneling of parti-


le under the barrier of spheri
ally symmetri
 potential

�eld. And the radial part of this barrier has a general

view (see Fig. 3).

Dividing the range of de�nition r 2 [0; +1[ for poten-

tial V (r) on n regions, on ea
h of them we approximate

V (r) by fun
tion most 
lose to it, for whi
h there are the

general solutions of w. f. for stationary S
hr�odinger equa-

tion. We divide the whole range so that the pro
esses of

sub-barrier tunneling and above-barrier propagation laid

in the di�erent regions.

For regions, in whi
h the energy levels 
onsidered by

us lay above the potential fun
tion V (r) (the parti
le

propagates above the potential), the stationary solution

for w. f. is represented as Eq. (37) (if ne
essary using the

transformations (34), (35) and (36)).

For regions, in whi
h the viewed energy levels lay un-

der the potential fun
tion V (r) (the parti
le tunnels un-

der the potential), in the beginning we �nd the general

solution for stationary w. f., assuming that the energy

levels lay above the potential fun
tion. One 
an need to

present the general solution for w. f. as Eq. (37), sepa-

rate the 
omponents 
orresponding to 
uxes, dire
ted to

the opposite sides. Everywhere in expressions for w. f.,

where the property

jE � V

l

(r)j = E � V

l

(r); at E > V

l

(r); (54)

is used, one 
an need to rede�ne this expression for

E < V

l

(r), having 
hanged the sign. So, in 
ase of


onstant potential in dependen
e on r we obtain the

Eq. (14). Su
h substitution gives the following property:

the resultant expressions for w. p. and also for stationary

and non-stationary w. f. for the problem of tunneling of

a parti
le under the barrier are the analyti
 
ontinuation

of the relevant expressions for a similar problem, when

the parti
le propagates above the barrier.

Having de�ned the expressions for stationary w. f. in

su
h a way, one 
an 
onstru
t the relevant for them w. p.

on ea
h region and apply the method of multiple inter-

nal re
e
tions to solution of the problem. A further ap-

proa
h for obtaining the resultant expressions for in
i-

dent, transmitted and re
e
ted w. p. in relation to the

barrier and also the times of tunneling and re
e
tion

di�ers by nothing from the approa
h for the problem so-

lution in the above-barrier 
ase.

As an example, we 
onsider the problem of tunneling

of parti
le under the barrier (48) (see Fig. 4). We 
on-

sider the 
ase l 6= 0. We divide the region II on two at

point r = R

2

, whi
h de�nes by requirement E = V

l

(R

2

).

One 
an �nd the in
ident, transmitted and re
e
ted

w. p. in relation to the barrier from Eqs. (19) and (46),

and the times of tunneling and re
e
tion from Eq. (47).

Analysing the �rst 5 steps of w. p. propagation along

the barrier, we �nd the 
oeÆ
ients T

�

i

and R

�

i

using the

Eqs. (40) for n = 3. In these expressions on 
an need to

ful�l the substitution




�

1

(k; r) = �

�

k

1

l

(r);




+

1

(k; r) = �

+

k

1

l

(r);




�

2

(k; r) = G

l

(�; �) � iF

l

(�; �)




+

2

(k; r) = G

l

(�; �) + iF

l

(�; �)

�

for E <




r

;




�

3

(k; r) = G

l

(�; �) � iF

l

(�; �)




+

3

(k; r) = G

l

(�; �) + iF

l

(�; �)

�

for E >




r

;

(55)

where k, k

1

, �, �, and also �

�

k

1

l

(r), G

l

(�; �) and F

l

(�; �)

are de�ned earlier.

V. EVOLUTION OF PHOTON TUNNELING

THROUGH ONE-DIMENSIONAL UNDERSIZED

RECTANGULAR WAVEGUIDE

We use the analogy between photon and parti
le 1D

propagation and tunneling whi
h 
onsists not only in

the formal mathemati
al analogy between the solutions

of the time-dependent S
hr�odinger equation for nonrel-

ativisti
 parti
les and of the time-dependent Helmholtz

equation for ele
tromagneti
 waves but also in the simi-

larity of the probabilisti
 interpretation of the wave fun
-

tion for a parti
le and of a an ele
tromagneti
 wave

pa
ket being the wave fun
tion for a single photon [5℄

for a hollow re
tangular waveguide with variable se
-

tion (like that used in the Cologne experiment [20℄, see

Fig. 5). The time-dependent wave equation for A, E, H

(A is the ve
tor potential with the subsidiary gauge 
on-

dition div A = 0, E = �(1=
)�A=�t is the ele
tri
 �eld

strength, H = rot A is the magneti
 �eld strength) is

�A�

1




2

�

2

A

�t

2

= 0: (56)

For boundary 
onditions (see, for instan
e, [5℄)

E

y

= 0 for z = 0 and z = a;

E

z

= 0 for y = 0 and y = b (57)

the solution of Eq. (57) 
an be represented as a super-

position of the following mono
hromati
 waves:

E

x

= 0;

E

�

y

= E

0

sin (k

z

z) 
os (k

y

y) exp [i(wt � 
x)℄;

E

�

z

= �E

0

(k

y

=k

z

) 
os (k

z

z)

� sin (k

y

y) exp [i(wt� 
x)℄; (58)

where k

2

z

+ k

2

y

+ 


2

= w

2

=


2

= (2�=�)

2

, k

z

= m�=a,
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k

y

= n�=b, m and n are the integer numbers (for de�-

niteness we have 
hosen the TE-waves). Thus,


 = 2�[(1=�)

2

� (1=�




)

2

℄

1=2

;

(1=�




)

2

= (m=2a)

2

+ (n=2b)

2

; (59)

where 
 is real (
 = Re
) if � < �




and 
 is imagi-

nary (
 = i�

em

) if � > �




. Similar expressions for 
 were

obtained for TH-waves [5℄.

Fig. 5. The re
tangular waveguide with narrow-part se
-

tion (II) of dimension b and length L.

Generally the non-stationary solution of Eq. (56) 
an

be written as a wave pa
ket 
onstru
ted on the basis of

mono
hromati
 solutions (58), similarly to the solution

of the time-dependent S
hr�odinger equation for nonrela-

tivisti
 parti
les in the form of a wave pa
ket 
onstru
ted

from mono
hromati
 terms (for the problem of parti
le

propagating above the 1D re
tangular barrier). More-

over, in the representation of primary quantization the

probabilisti
 single-photon wave fun
tion is usually de-

s
ribed by a wave pa
ket (for instan
e, see [5,6℄ and the

relevant referen
es therein) like

A(r; t) =

Z

k

0

>0

d

3

k

k

0

K(k)A(k; r)e

�ik

0

t

; (60)

where A(k; r) = exp (ikr) for propagation in va
uum and

A(k; r) = '(x) exp(ik

y

y +ik

z

z) with

'(x) =

8

<

:

e

ik

x

x

+ a

R

e

�ik

x

x

; region I;

�e

��

em

x

+ �e

�

em

x

; region II;

a

T

e

ik

x

x

; region III

(61)

for propagation in the waveguide (Fig. 5). Here, r =

(x; y; z), K(k) =

2

P

i=1

K

i

(k)e

i

(k), e

i

e

j

= Æ

ij

, e

i

(k)k = 0,

i; j = 1; 2 (or y, z if kr = k

x

x), k

0

= w=
 = "=~
,

jkj = k

0

, K

i

(k) is the amplitude for the photon with

momentum k and polarization i, and jK

i

(k)j

2

dk is then

proportional to the probability that the photon has the

momentum between k and k + dk in the polarization

state e

i

.

Though it is not possible to lo
alize photon in the

dire
tion of its polarization, nevertheless, in a 
ertain

sense, for the one-dimensional propagation it is possi-

ble to use the spa
e-time probabilisti
 interpretation of

Eq. (60) along axis x (the propagation dire
tion) [5℄. It


an be realized from the following. Usually one uses not

the probability density and probability 
ux density with

the 
orresponding 
ontinuity equation dire
tly but the

energy density s

0

and the energy 
ux density s

x

(al-

though in general they represent 
omponents of not a

4-dimensional ve
tor but the energy-momentum tensor)

with the 
orresponding 
ontinuity equation [5℄ whi
h we

write in the two-dimensional (spatially one-dimensional)

form:

�s

0

�t

+

�s

x

�x

= 0; (62)

where

s

0

=

EE +HH

8�

; s

x

=


Re[EH℄

x

2�

(63)

and axis x is dire
ted along the motion dire
tion (the

mean momentum) of the wave pa
ket (60). Note, that

for the spatially one-dimensional propagation the energy-

momentum tensor of the ele
tromagneti
 �eld redu
es to

the two-
omponent quantity | to the s
alar term s

0

and

1-dimensional ve
tor term s

x

for whi
h 
ontinuity equa-

tion (62) is Lorentz-invariant. Then, as a normalization


ondition one 
hooses the equality of the spatial integrals

of s

0

and s

x

to the mean photon energy and the mean

photon momentumrespe
tively or simply the unit energy


ux density s

x

. With this, we 
an de�ne 
onventionally

the probability density

�

em

dx =

S

0

dx

R

S

0

dx

; S

0

=

Z

s

0

dydz; (64)

for the photon to be found (lo
alized) in the spatial in-

terval (x, x+ dx) along axis x at the moment t, and the


ux probability

J

em;x

dt =

S

x

dt

R

S

x

dt

; S

x

=

Z

s

x

dydz; (65)

for the photon to propagate through point (plane) x in

the time interval (t, t+ dt), quite similarly to the proba-

bilisti
 quantities for parti
les. Hen
e, in a 
ertain sense,

for time analysis along the motion dire
tion, the wave

pa
ket (60) is quite similar to a wave pa
ket for nonrel-

ativisti
 parti
les and similarly to the 
onventional non-

relativisti
 quantum me
hani
s, one 
an de�ne the same

form of time operator as for parti
les in nonrelativisti


quantum me
hani
s and hen
e the mean time and the

distribution varian
e of times of photon (ele
tromagneti
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wave pa
ket) passing through point x in both time and

energy representations) [5℄. Then, the same interpreta-

tion one 
an use for the propagation of ele
tromagneti


wave pa
kets (photons) in media and waveguides when

re
e
tions and tunneling 
an take pla
e | in parti
ular,

for waveguides like depi
ted in Fig. 5 with spatially de-


reasing and in
reasing waves in Eq. (61). The only dif-

feren
e is in the momentum-energy relation (quadrati


for parti
les and linear for photons).

So, from rather simple 
al
ulations of J

em;x

using

Eqs. (60){(65), and using the given above de�nitions of

E and H (see also [6℄), one 
an obtain the following re-

lation:

J

em;x

= ReF (y; z)

�

'(x)

�iw

4�

�'(x)

�x

�

; (66)

where the fun
tion F (y; z) depends on the boundary 
on-

ditions of the waveguide (see Fig. 5) and 
al
ulated in [6℄.

Therefore under boundary 
onditions the 
ux density for

photons 
an be obtained from the 
ux density for parti-


les by simple repla
ing (�i~=2m) by F (y; z)[�iw=4�℄.

At this substitution all results and relevant expressions

(approa
h to the solution of a problem on the basis of


onsideration of multiple internal re
e
tions of 
uxes in

the region of the barrier, phase tunneling and re
e
tion

times and other results), obtained above for the des
rip-

tion of tunneling evolution of the parti
le through the

barrier, also take pla
e at the des
ription of photon prop-

agation.

In the parti
ular 
ase of quasimono
hromati
 wave

pa
kets, under the same boundary 
onditions as 
onsid-

ered for the problem of tunneling of a parti
le through

1D re
tangular barrier, we obtain the identi
al expres-

sion for the phase tunneling time:

�

Ph

tun;em

=

2


�

em

for �

em

L� 1: (67)

From Eq. (67) one 
an see that when �

em

L > 2 the

e�e
tive tunneling velo
ity

v

e�

tun

=

L

�

Ph

tun;em

(68)

is more than 
, i. e., superluminal. This result agrees

with the results of the mi
rowave-tunneling measure-

ments presented in [20℄.

Note, that for sub-barrier energies the nonlo
ality of a

barrier as a whole takes pla
e not only for nonrelativisti


parti
les but also for photons. This property is the phys-

i
al 
ause of the superluminality during the tunneling.

VI. CONCLUSIONS

In this work the method of multiple internal re
e
tions

des
ribing the pro
ess of tunneling of nonrelativisti
 par-

ti
les and photons through barriers of the various forms

is presented. This method is a further development of a

series of arti
les [4{6℄ devoted to the time des
ription of

tunneling through a barrier. It uses the essentially non-

stationary approa
h 
onstru
ted on the basis of multiple

re
e
tions (and transmissions) of w. p. in relation to the

boundaries of barrier. Thus one 
an des
ribe in depen-

den
e on time the pro
ess of tunneling of total w. p. de-

s
ribing the 
onsidered nonrelativisti
 parti
le or photon

through barrier and to study spe
i�
 features of pro
ess

in any interesting moment of time or in any point of

spa
e in details.

The possibility of time des
ription of tunneling

through a barrier is one of the prin
iple perspe
tives of

this method in 
omparison with stationary approa
hes.

The stationary one-dimensional problem of tunneling

(and propagation) of a nonrelativisti
 parti
le through a

re
tangular barrier with a

ounting of the multiple in-

ternal re
e
tions was earlier solved for sub-barrier ener-

gies the plane waves in the barrier region (on the basis

of whi
h the 
omplete expressions for w. f. were found)

had zero 
uxes. A

ording to the physi
al understanding

there is a problem of appli
ability of su
h an approa
h

to the problem solution. In the given arti
le the substan-

tiation of this approa
h is given on the basis of using the

non-stationary w. p.. For this problem (being the test

one) the phase time of tunneling and re
e
tion in rela-

tion to the barrier at whole under solving the problem on

the basis of the method of multiple internal re
e
tions

are introdu
ed.

Using the method of multiple internal re
e
tions the

problem of tunneling of a nonrelativisti
 parti
le through

a spheri
ally symmetri
 barrier is solved for the �rst

time. Here, using this method it is possible (as against

the known stationary approa
hes) to separate the wave

pa
ket, transmitted through the barrier and des
ribing

a parti
le after its leaving outside in the wake of dou-

ble tunneling through barrier, from the wave pa
ket, re-


e
ted from the barrier des
ribing a re
e
ted parti
le

(both pa
kets are spheri
ally divergent). For the diago-

nal element of s
attering matrix with orbital moment l

the following property

S

l

= S

l

tr

+ S

l

ref

;

is ful�lled, i. e., the S-matrix 
onsists of two 
ompo-

nents 
orresponding to the transmitted and re
e
ted

wave pa
kets in relation to barrier. This property has

physi
al sense and is proved mathemati
ally.

We suppose that the method will allow to des
ribe

su
h properties of nu
lear pro
esses, whi
h are not ex-

plained by stationary methods. So, some experiments

performed re
ently, have 
aused an in
reased interest in

a bremsstrahlung in an �-de
ay of heavy nu
lei [9℄. This

phenomenon is interesting in the sen
e that in
ludes both

a radiation of photons in a propagation of an �-parti
le

in an ele
tromagneti
 �eld of a daughter nu
leus, and

a tunneling of the �-parti
le through the de
ay barrier.

Now the e�e
t of the photon radiation in the tunneling of

the �-parti
le under the barrier is investigated in an un-
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satisfa
tory way. For the des
ription of this pro
ess some

stationary methods allowing to 
al
ulate a spe
trum of

the bremsstrahlung are 
reated. But in 
omparison with

the experimental data one 
an see that ea
h stationary

approa
h des
ribes the phenomenon with a small degree

of pre
ision. Besides, the minima and maxima are reg-

istered in the spe
trum for some nu
lei, while the sta-

tionary methods give a monotoni
ally de
reasing 
urve

for the spe
trum. We assume that based on a spa
e-time

approa
h the method of multiple internal re
e
tions will

allow to explain the peaks in this spe
trum. A prelimi-

nary analysis shows that these peaks 
orrespond to reso-

nan
e levels of the �-de
ay of the resear
hed nu
leus and

they 
an be evaluated using the method.

In this arti
le the possibility of applying the method

for 1D problem of photon tunneling through a re
tangu-

lar barrier is explored. On the basis of the given analysis

the analogy (having a mathemati
al substantiation and

physi
al sense) between wave pa
kets (and also between

problem setting, boundary 
onditions) des
ribing both

propagation and tunneling of a nonrelativisti
 parti
le

and photon, is shown. Consequently, it is possible to ap-

ply the method of multiple internal re
e
tions for the

problem with photons for the �rst time. At the found

transformation the obtained results for the problem of

parti
le tunneling through a barrier transform into the

relevant expressions for the problem of tunneling of pho-

tons. The tunneling durations are found. For a suÆ-


iently wide (and high) barrier there is an e�e
t of prop-

agation of wave pa
ket with the velo
ity higher than that

of light (Hartman's and Flet
her's e�e
t).

The superluminal phenomena, observed in the exper-

iments presented in [20℄ and later in other papers (for

example, see the relevant referen
es in [5,6,21℄), gener-

ated a lot of dis
ussions on relativisti
 
ausality. And in


onne
tion with this, also an interest in similar phenom-

ena, observed for the ele
tromagneti
 pulse propagation

in a dispersive medium [22℄, was revived. The known way

of usual understanding 
onsists in explaining the super-

luminal phenomena during tunneling on the basis of a

pulse attenuated reshaping (or re
onstru
ting) dis
ussed

at the 
lassi
al limit earlier by [22{24℄: the later parts

of an input pulse are preferentially attenuated in su
h a

way that the output peak appears shifted toward earlier

times, arising from the forward tail of the in
ident pulse

in a stri
tly 
ausal manner [25℄.

In has been as
ertained for quite some time that the

wavefront velo
ity of the ele
tromagneti
 pulse propa-

gation, when pulses have a step-fun
tion envelope, 
an-

not ex
eed the velo
ity of light 
 in va
uum [23,24℄.

Namely in this the prin
ipal demand of the relativisti


(Einstein) 
ausality 
onsists. This 
on
lusion was 
on-

�rmed by various methods and in various pro
esses, in-


luding tunneling [26{31℄. Note, that it is known from

the momentum-energy Fourier-analysis of an ele
tromag-

neti
 wave pa
ket with the step-fun
tion form of the for-

ward edge, that su
h a wave pa
ket 
ontains 
omponents

with large (up to the in�nite) energies, i. e., above-barrier

energies, for whi
h the superluminality is absent.

One of the problems whi
h are now under dis
ussion


onsists in the absen
e of a step-fun
tion form of forward

edges for realisti
 wave pa
kets [26,31℄. In su
h 
ases the


on
lusions of [23,24℄ seem to be inappli
able. An in-

teresting approa
h to analyse the form of 
ausality in

parti
ular in su
h 
ases was proposed in [32℄.

Finally, from the analysis of �rst step in solving the

problem by the method of multiple internal re
e
tions

one 
an see that the tunneling pro
ess at sub-barrier en-

ergies is a non-lo
al phenomenon be
ause during tunnel-

ing the entering w. p. �lls up the whole barrier at on
e

and w. p. feels immediately both barrier walls (bound-

aries).
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METOD BAGATOKRATNIH VNUTR�XN�H V�DBITT�V PRI OPIS�

EVOL�C�Õ TUNEL�VANN� NEREL�TIV�STS^KIH QASTINOK TA FOTON�V

S. P. Ma�dan�k, V. S. Ol~hovs~ki�, A. K. Za�qenko

�nstitut �dernih dosl�d�en~ NAN UkraÝni,

prosp. Nauki, 47, KiÝv, 03680, UkraÝna

Navedeno nesta
�onarni� metod rozv'�zku zadaq� tunel�vann� nerel�tiv�sts~kih qastinok ta foton�v

qerez bar'
r, �ki� vikoristovu
 bagatokratn� vnutr�xn� v�dbitt� hvil~ovih paket�v, wodo me� bar'
ra.Me-

tod opisano ta dovedeno pri rozv'�zuvann� odnovim�rnoÝ zadaq� tunel�vann� qastinki qerez pr�mokutni�

bar'
r. Dl� zadaq tunel�vann� qastinki qerez sferiqno-simetriqni� bar'
r ta fotona qerez odnovim�r-

ni� bar'
r z vikoristann�m metodu zna�deno virazi dl� ampl�tud v�dbitogo hvil~ovogo paketa ta paketa,

wo pro�xov qerez bar'
r, a tako� qasi tunel�vann� ta v�dbitt� wodo bar'
ra. Proanal�zovano efekt

Gartmana{Fletqera.
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