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Theory of nonlinear resonance, including stochastic one, is developed on the basis of the statistical
field theory and using variables action-angle. Explicit expressions of action, proper frequency and
nonlinearity parameter as functions of the system energy and the external signal frequency are
found for the cases of nonlinear pendulum and double well potential.
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I. INTRODUCTION

Since the late 1980s, a variety of theoretical and exper-
imental papers appears devoted to the study of stochastic
resonance and discovering its new applications in differ-
ent fields of science and engineering [1]. Nowadays, the
stochastic resonance is a well established phenomenon
displayed in a bistabile system simultaneously driven by
noise and a periodic signal. There appears to be an op-
timal noise level at which the system exhibits almost
periodic transitions from one state to other with the
frequency of the coherent signal. The enhancement of
a weak input signal has been suggested to characterize
by the signal-to-noise ratio (SNR) that takes a maximum
value at an optimal noise level, i. e., a behaviour which
1s reminiscent of a usual resonance phenomenon.

The observed enhancement is not due to the match-
ing of two frequencies, but rather to a cooperative effect
of the coherent signal and the noise. This peculiarity is
reflected formally as follows. The kinematic condition

mrr = £ (1)

relates the frequency of the coherent signal €2 to the
Kramers rate rg, which is the function of the noise level
type of temperature 7"

8 (2F), = YIEITEN
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Here, the prime denotes the derivation with respect to
a generalized coordinate z, F(z) is a related depen-
dence of the effective energy, which has a minimum at
the point xp, a maximum at z, and a barrier of the
height AF = F(xp) — F(xo); m is a particle mass, v is
a kinetic coefficient. Physically, the kinematic condition
means that for every frequency €2, the stochastic system
could pick out suitable noise level T'. However, the value

SNR [1]

SNR o< T™%rg (T), (3)

being found on the basis of the statistical theory, displays
the stochastic resonance maximum at the temperature

1
T = 5AF, (4)

whose value is fixed by the energy barrier AF', but not
the external signal frequency €.

It is easy to see that the reason of this contradiction is
using the linear approach for the SNR, determination. In
this paper, we develop the theory of nonlinear resonance,
including the stochastic one. The main ingredients of our
approach are: (i) the noise accounting by means of intro-
duction of a generalized momentum and (ii) passage to
the variables action-angle, being usual at studying non-
linear phenomena [2]. Section II is devoted to the first of
these approaches on the basis of the statistical field the-
ory [3]. Section IIT contains details of examination of non-
linear resonance in terms of variables action—angle. The
latter are tested on the example of the simplest model
of a harmonic oscillator. Then, explicit expressions of
action, proper frequency and nonlinearity parameter as
functions of the system energy are found for the cases
of nonlinear pendulum, double well potential and non-
linear pendulum under constant external field. Assum-
ing the proper frequency be identical to the frequency of
external signal, we examine resonance conditions of the
nonlinear pendulum in Section IV and the case of the
stochastic resonance in Section V. Conclusion in Section
VI shows that the above mentioned contradiction is re-
solved because the nonlinear resonance condition fixes
the proper frequency as function of the external one, but
not the noise level, as in the linear case.

I1I. BASIC EQUATIONS

Let us study a hydrodynamic mode amplitude z(r, )
which space-time dependence is determined by the
Langevin equation
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(v, 1) =7 f(x,1) + ((x, 1), (5)

which can be interpreted in the Ito sense. Here the dot
indicates the differentiation with respect to time ¢, r is
coordinate, ¥ is a kinetic coefficient, f(x,t) is a force
conjugated to the stochastic variable z, and ((r,?) is a
stochastic term having the form of white noise:

(€lr, 1)) =0, (((r,)¢(0,0)) = To(r)a(2), (6)

where the angle brackets denote averaging and 7T is a
noise intensity of temperature type [4]. For the system
under consideration, the total force

flaet) = fo(@) + fexe (1) (7)

consists of the usual internal term

0F

fola(r, 1)) = _593(1‘,15)’

]-"{a:(r,t)}:/ [F(x)+§|Vx|2] dr, (8)

where F'(z) is a system potential per unit volume, 8 > 0
is a constant, V = 9/0r, and external harmonic term

Jext (1) = Acos(Q + ) (9)

being determined by an amplitude A, frequency €2, and

Z{x(r,t)} = <H § {i(r,t) — Via(r, 1) — f(r,t) — (r,t)} det

(r,t)

Here, the argument of the dé-function reduces to the
Langevin equation (10), and the determinant, providing
the passage from the continual integration over {(r,t) to
z(r,%), is equal to the unity within the Tto calculus.

In the framework of the standard approach [3], the
n-fold variation of the functional (11) with respect to
the auxiliary field u(r,?) allows one to find the n-th
order correlator for the hydrodynamic mode amplitude
z(r,?) and to construct the perturbation theory. How-
ever, we shall proceed from expression (12) for the con-
jugated functional Z{x(r,t)}, variation of which leads
to the most probable realization of the stochastic field
z(r, ). Obviously, in the framework of the mean-field ap-
proximation functional (12) reduces to the dependence
Z{{x(r,1))}, which corresponds to the Landau free en-
ergy F{(r(r,t))} = —T1n Z{(w(r,0))} [6].

Passing to the consideration of functional (12), we rep-

an initial phase ¢. It is now convenient to go over to di-
mensionless quantities by referring the coordinate r to a
characteristic spacing a, the time ¢ and the inverse fre-
quency Q7! to the scale a®/T, the amplitude A, the
internal force fy, and the quantity F' to T/a®, and the
fluctuation ¢ to Ty/a®. In this case, Eq. (5) can be writ-
ten as follows:

&= [V + fz, )] +¢(1),
f(l‘,t) = fO(x) + fext(t);
fo = —8F/8x,

Jext (t) = Acos(S2 + ). (10)

The range of applicability of the Ginzburg-Landau ap-
proximation (8) is determined by the condition according
to which the scale a is much smaller than the correlation
length & = ﬁ1/2|32F/3x2|;:162 [6]. Averaging Eq. (5)
and disregarding correlations, we obtain the Landau-
Khalatnikov equation for the order parameter {(z(r,?)).

The standard field scheme [3] is based on the investi-
gation of the generating functional corresponding to the
stochastic equation (10). It is a functional Laplace trans-
form

Z {u(r,)} = /Z{x(r,t)}exp (/ uxdrdt) Da(x, 1)
(11)

for the generalized partition function

3¢ (r, 1)
5x(r,t)‘>c' (12)

[
resent the d-function in the integral form

100

§{z(r, 1)} = / exp (—/pxdrdt) Dp.  (13)

—i00

Then, averaging over the noise ¢ with using the Gauss
distribution

Po{(} exp{—%/(z(r,t) drdt}, (14)

which corresponds to condition (6), and taking into ac-
count Eq. (13), we reduce functional (12) to the standard
form
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ZA{x(r,t)} = /P{J:(I‘,t),p(r,t)}Dp, P=e". (15)

Here, probability distribution P{z, p} is given by action
S = [ L drdt, where Lagrangian is

C=pli-Vi-f)-p/2 (16)

Further, we use Euler equations

oL _doL oL _, 9L _OR

ox atox vovx Y avex 0%

x = {z,p}, (17)

where dissipative function is R = %J}Z. As aresult, equa-
tions for the most probable realizations of the stochastic
fields #(r,t), p(r,t) take the form:

&= (Vie+f) +p, (18)

p=-Vp—fp—i, (19)

where prime stands for derivation with respect to vari-
able z. A comparison of (18) with the stochastic equation
(10), having the same form, shows that the field p(r, ) is
the most probable value of the fluctuations ((r,?) of the
conjugate force. Differentiating Eq. (18) with respect to
the time and inserting result into Eq. (19), we obtain the
equation of motion as follows:

P (14 f)d =2/ Vi + f+ fF, (20)

where only terms of the lowest order of spatiotemporal
derivations are kept.

Using the described field theory allows us to pass from
the differentiation stochastic equation of motion (5) of
the first order to the equivalent system of two differen-
tiation equations (18), (19) of the same order, or to the
single differentiation equation (20) of the second order.
Further, we need in using Hamiltonian ‘H = pz — £ that
depends on the field variable & and the conjugate mo-
mentum p. According to Eq. (16), Hamiltonian can be
written in the form

H(z,p;t) = Hol(z,p) + Hi(p, t);

1
—VaVp+ =p* + pfo,

Ho 7

Hi = Apcos(2t + ). (21)

It is easy to see that these expressions, being inserted
into dissipative Hamilton equations

oM OH

l‘—a—p— 8—Vp’ (22)

10

s (9 G OH IR
P=""\ox " Vove) Bz’

lead to the equations of motion (18), (19).

It is very important to take into account further that
the most probable amplitude p of fluctuations varies near
the magnitude — fy, so that we ought to pass to oscillat-
ing momentum: p+ f; — p. Moreover, as it is seen from
the Fourier transformation (13), the momentum p takes
imaginary magnitudes, so that the power f; has to be
considered as the imaginary one, as well, and the sign in
front of the last term of Hg in Eqgs. (21) must be reversed

[5):

H(z,p;t) = Hol(z,p) + Hi(p, t);

12 12
7{0—517 +§fo,

Hi = —Afocos(2t + ), (23)

where gradient terms are suppressed for brevity.

III. NONLINEAR RESONANCE IN TERMS
OF VARIABLES ACTION-ANGLE

To analyze the set of equations (18), (19), it is conve-
nient to use the phase portrait method. However, in our
case such a portrait flows in the course of the time due to
the appearance of the time-dependent external force (9).
To avoid this time-variation in phase portrait we need to
pass from the above used variables #, p to the new ones:
action I and angle ¥ defined as follows [2]:

100 = 5 fote ) d
_9S(x, 1)
b=

S(x, 1) = / pla’ (1)) e, (24)

0

where the shorted action S(z,I) plays a role of the gen-
eralized function. The convenience of the so-introduced
variables is that the zero Hamiltonian Hy in Egs. (23)
does not depend on the angle ¥, so that the correspond-
ing phase portrait is stable in the course of the time. The
equations of motion for the generalized coordinate ¥ and
the conjugate momentum I read (cf. Egs. (23))

oM . oM
V= 1= (25)

where non-homogeneity and dissipation effects are sup-
pressed. According to the second of these equations the
action [ is a constant if an external perturbation is ab-
sent.
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A. Harmonic oscillator

To recall a physical meaning of the variables ¥, [
introduced, let us consider firstly the simplest case of
harmonic oscillator. In this case, the internal power in

Eq. (23)
Jo = —wox (26)

is linear and fixed by a proper frequency wy. Then, the
Hamilton equations (23) lead to the equation of damping
oscillation under external power:

P4 wir = —Awgcos(Q + ). (27)

This equation differs crucially from Eq. (20) because
the former corresponds to the momentum origin p = 0,
whereas the latter — to p = —fy. According to Eq.(27),
dissipation shifts resonance frequency from proper mag-
nitude wg to value

w2 —272, (28)

whereas a maximum real part of characteristic relation
z /A relates to frequency

w2 —2-L (29)

Wmax =

Such a character of the dissipation influence keeps at ac-
counting for anharmonicity effects if under parameter wq
one means a proper frequency w(#) of nonlinear oscilla-
tions depending on the system energy.

To demonstrate advantages of using variables action-
angle, let us calculate now their magnitudes at the condi-

tion that external power in Hamiltonian (23) is switched
off. Then, the first Eqs. (24), (25) give immediately

I=2Z 9=uw. (30)

)
wo

Respectively, the shorted action and angle takes the
form:

S = I |arcsin (i) + z
o o

21
¥ = arcsin (i) , TE=—. (31)
Lo

The last of Egs. (30) gives the usual relation between the
angle and the time

79:(.0015—1—790, (32)

the using of which arrives at the harmonic laws of motion

z = (2H /wd) %sin(wot + Vo),

p= (27—[)1/2cos(wot + dg). (33)

B. Nonlinear pendulum

The simplest model of the system with the possibility
of the barrier overcoming is known to be the nonlinear
pendulum (in this Subsection, we consider the pendulum
without a friction and an external perturbation). Here,
Hamiltonian takes the form

1
Ho = 5pz + 2w sin?(x/2), (34)

corresponding to the power f; = —2wgsin(z/2) in
Egs. (23). Hamilton equations (23) arrive at the system

i=p, p=-—wisinz. (35)

Combination of these equations gives the nonlinear one:
i+wisine =0. (36)

This equation is non-solvable in analytical form and we
ought to use the phase portrait method. The form of this
portrait follows from Eqs. (35) to be shown in Fig. la. Tt
is seen that the system behaviour is governed by energy
H with respect to the critical value H. = 2w2. At con-
dition H < H., the system moves finitely, whereas with
overcoming the critical energy H. it passes to infinite
motion. Let us describe such a behaviour quantitatively.

In this line, the simplest topic is the solution corre-
sponding to separatrix, for which the energy is critical
one: H = H.. In such a case, the definition (34) gives the
separatrix form as follows:

p = F2wq cos(z/2). (37)

Then, the first of Egs. (35) arrives at the separatrix law
of motion

x = 4 arctan exp(fwgt) — 7, (38)

where the different signs correspond to upper and lower
branches of the separatrix. This dependence can be
written in much more elegant form of cos(z/2) =
[cosh(dwot)] ™1, the insertion of which into Eq. (37) ar-
rives at the famous soliton dependence

2(.«)0

cosh(wgt)’ (39)

p==

11
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where choice of signs corresponds to solitons moving to
right or left sides. In accordance with the motion laws
(38), (39), the system behaviour on the separatrix (37)
is as follows: at time t = —oo the system 1is located in
the saddles S, where the coordinate x = F7 and the
momentum p = 0. In the course of the time within the
domain —oco < t < oo, the former arises monotonously
from —7 to m, whereas the latter increases at ¢ < 0 and
decreases at ¢t > 0. It is characteristical that coordinate
variation and finite magnitudes of the momentum take
place within the domain At ~ wo_l located near the time
t = 0. The forms of the corresponding kink x(¢) and
soliton p(t) are depicted in Fig. 2.

Fig. 1. Phase portraits for nonlinear pendulum (a) and
double well potential (b).

E(, k) —(1—-rDF(& &
S($’I):4WQ{[ (€ )KE((f,l//Q; (€ )]

Differentiation of these equalities with respect to [ ar-
rives at expressions for the angle ¢ that generalyzes the
last equality (31) (we supress these expressions because
of their very complicated form).

12
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Fig. 2. (a) Motion laws for nonlinear pendulum (curve 1)
and double well potential (curve 2); (b) Corresponding time
dependencies of the conjugate momentum.

General solution of Eqgs. (35) can be obtained with us-
ing the variables action-angle defined by Eqs. (24). Tt is
convenient to introduce a parameter

H

T He = 202, (40)

=
Il

H
2
“p

N | —

taking the magnitude k = 1 at critical energy H = H.,
and a new variable £ defined by equalities

.. _ [ k7lsin(z/2) at k<1,
sing = { sin(x/2) at k> 1. (41)

Then, the generating function is expressed in terms of the
incomplete Jacobian elliptic integrals F'(¢, &), F (&, k) of
the first and second orders [7] as follows:

atk <1,

atk > 1. (42)

Fortunately, formulas for action I = 45§ = n/2)/2n
follow from Egs. (42) immediately and are expressed
by means of the complete Jacobian elliptic integrals

K(k) = F(€ = n/2,k), E(k) = E(& = n/2, k). Taking
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into account corresponding dependences shown in Fig. 3,

we shall need further in using asymptotics of these inte- E(k) ~ . 4 ) (44)
grals [7] 1+ lnm at 1 — k"< 1.
Resulting dependence I(H) depicted in Fig. 4 shows
T (1 i ﬁ) at k< 1 monotonic increase from I = 0 at # = 0 to infinity with
K(k) =~ E 4 ’ (43)  the logarithmical inflection at the critical energy ..
In 11@2 at 1-r”<1; This behaviour is characterized by the following asymp-
totics:
H/H. at H < He,
21—l ) At 0<Ho—H <,
I 2w %(H”/Zfllnﬂ/;ﬁc_l) at 0 <M —H. < He, (45)
2/ (1- %) at H > M.
k=0.0001
¥=0.9999
am | dn
2 — / !
0 T | / i
W /
. . | I
0 40
1 —
sn
0 —
-1 —
10 — E
- 1.5 —
K
1
I | ! X 1.0 T | T X I
0.0 0.5 1.0 0.0 0.5 1.0

Fig. 3. Form of Jacobian elliptic functions and integrals.

13
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Accounting the properties of the elliptic integrals [7], ~ On the other hand, definitions (34), (41) arrive at time-
we obtain for the proper frequency w = ¥ determined by ~ dependencies of the momentum:
the first equality (25) in the following form:

T w
— T 07 1 at k<1, (46) ® : I
2K(R) |« at k> 1, @ @, ‘ @ I
@, ? =
i 02 254 | @
where 8 00 ———F———F 282 | s
. 0.909 1.000 1.001
_ K at k<1, : -
k= {/@‘1 at k> 1. (47) 2
. 4
1
08 — . N
As it is seen in Fig. 4, the proper frequency falls down //?
from the bare magnitude wy at the minimal energy # = 0 i L,
to zero at H = H. and then, after an infinitely sharp 04 |
cusp, the value w increases monotonously. According to N
Egs. (44), such a behaviour is presented by asymptotics: 7
0.0 T T T T T T T 0
1— 7“ atH < H ¢ 0.0 05 1.0 15 20
-1 H/H,
Fig. 4. Energy dependencies of the action and the proper
A / atH > He.. frequency for nonlinear pendulum.

cos& = cn(t, k) at H <H,

R e S Iy "

where k? = H/H.; en(t, k), dn(t, k~1) are the Jacobian K'=K(/1-k&?), K=K(R),

elliptic functions shown in Fig. 3. With accounting for

Egs. (41), these expressions pass to Eqs. (37), (39) at

H="H.. parameter £ is determined by Eq. (47). According to
To elucidate the system behaviour with energy in- Egs. (44), one has asymptotics

crease, let us expand the dependences (49) into Fourier

series [2] b~y K2 /32 at k < 1, (52)
T\ kxexp(—n/N) atl-r<1,
S apcos[(2n — Nwt]  atH < He,
p= 48w ”Tl o (50) where number N = wq/w is asymptotically as follows:
=+ a, cos(nwt at H > He,
= e 1 atH < H
Nz{lln% at |H — Heo| < He. (53)
where one denotes
pn—1/2 Thus, at low energies a single harmonics prevails to cor-
@ = { Tfkan—1 atH <M., (51) respond to the coefficient of the Fourier series (50)
"= _k" tH > H.
ENED ab7t 2 7ie;
-y n—1/2
k = exp (—WK?I) , ap R <32%c) ; H << He. (54)

14
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Respectively, near the critical energy, where the Fourier
series gets the harmonics number N > 1, one obtaines

1 at

~ 8 1<n<N,
n 7~ 0w exp[—m(n/N)] at

n > N. (55)

As is known [2], the above described behaviour is char-
acterized by nonlinearity parameter

dl
= ‘ et (56)

diIn’

According to (42), (46), this parameter is determined by
the following equation:

_ g2 K E
- 1=y jl_”;%_;i _21} at k<1, -
] (K(n_l)) at k> 1.

As it is shown in Fig. ba, the non-linearity parameter
takes on the value @« = 0 at H = 0 and then goes to
infinity at the critical energy #., tending to magnitude
a =1 at H — oo. Such a behaviour is characterized by
the following asymptotics:

T (H/He)

a
10*
40 — 10°
| 10? ‘
10
0.999 1.000 1.001
20 —
0 T \ T T : T T T T 1
00 04 08 12 18 20
H/H,
A

0999 1.000 1.001

Fig. 5. Energy dependencies of the nonlinearity parameter
(a) and curvature of the dependence H(I) (b) for nonlinear
pendulum.

at H < H,,

1(1- ;‘C)_l (1n ﬁ)_z [1— =8 e

16 _
| at 0 < Ho —H < He, -

at0<%_%c<<%c,

1—H/H

As a result, the observed picture of nonlinear oscilla-
tion is as follows. At low energy, when H < H., only
single harmonic with the frequency w =~ wq keeps in the
Fourier series (50), so that the low-energy limit reduces
to above considered case of harmonic oscillation (see Sub-
section IT1.A). With the energy increase, the harmonics
number N arises in a manner of the dependence K (k)
shown in Fig. 3, taking logarithmically large magnitudes
(53) near the critical value H. = 2w?2. On the other hand,
the oscillation frequency (48) and the harmonic ampli-
tudes (55) decrease monotonously to zero. Thus, one can
mean in a coarse manner that, with energy increase in
the domain 0 < H < H., the single harmonic oscillation
transforms to a harmonics superposition, whose number
N increases monotonously to infinity, whereas frequency
w and amplitude a, ~ 8w decrease to zero. Just under

(- 1)_1 (1n %)_2 14+ 22ty

16
H/HC—J
at H > H..

the critical energy (0 < H. — H <« H.) the system be-
haviour 1s characterized by a set of solitons of different
signs, whereas just above #, the signs of these solitons
coincide (see Egs. (49)). Remarkable peculiarity of such
soliton set is that the width of a single soliton is re-
duced to At ~ wo_l, whereas the distance between them
is NAt ~w™! > wo_l. Just for critical energy H., the
system behaviour is caracterized by the separatrix solu-
tion (39) that reduces to the single soliton.

C. Double well potential

Taking into account the use in the stochastic resonance
problem [1], let us consider now the oscillation in a dou-
ble well potential. We will show that, in terms of the vari-

15
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ables action—angle, the difference with the above studied
case of the nonlinear pendulum is quite quantitative, but
not qualititative.

The basic model is presented by the potential

wZ
P=S oy, (59)

counting off the energy at the equilibrium positions
z = =1, wg is bare frequency. In this case, Hamilton
equations (23) take the forms type of Egs. (35):

i=p, p=wiz(l-—=z?). (60)
Near the saddle point = 0, p = 0, corresponding phase
portrait (see Fig. 1b) has the form differing from the one
depicted in Fig. 1a for a nonlinear pendulum. This form
is characterized by the separatrix (cf. Eq. (37))

p = twoz/1 — 2?/2, (61)

corresponding to the condition H = (wo/2)?. Similarly
to the case of nonlinear pendulum, the first of Eqs. (60)
arrives at the separatrix law of motion:

e = +22/1 — [sinh(wet)]2. (62)

For the time-dependence of the momentum, one has
double-soliton solution (cf. Eq. (39))

p= :F21/2wosinh(w0t)\/ 1 — [sinh(wgt)]?, (63)

where the choice of signs corresponds to solitons moving
to the right or left sides. According to the motion laws
(62), (63) — on the one hand, and Egs. (38), (39) —
on the other, the difference between the separatrix solu-
tions for double well potential and nonlinear pendulum
is that, in the course of the time near the point ¢ = 0,
the momentum gains two peaks of different signs in the
former case and the single peak in the latter.

To introduce the variables action—angle, it is conve-
nient to use parameter & of the type given by Eq. (40)
and a new variable ¢ determined by the equality type of
(41):

7‘[ Wo 2
W=, He= (7) : (64)
9 _ ksingé  at k<1,
* :1_{sin§ at k> 1. (65)

Moreover, we shall need in using integrals

(a4

To(a, k) E/%d{, a <1,

16

00 04 08
Jn b
8 —
n=2

4 —]

k

0
° | ' | '
K
10 12 14 16 18

Fig. 6. Form of the integrals (66).

The form of dependencies Z,, (k) = Zp(ov = 1, &), Tn (k) =
Jn(a = 1,k) is depicted in Fig. 6, the corresponding
asymptotics read:

——2n -1k, rK<KI;

N =

1
2
8

Tn(8) =24+ —(2n — 1)x™2,

= K> 1 (67)

The integrals are subjected to simple derivation rules

dz, 1
=ln—5)@n—1n-1),
"k (n 2) ( )

dJ,
dk

K

= 2n=1)(Jn = Tn-1), (68)

where the arguments a, k are supressed for brevity.
As a result, the last of definitions (24) arrives at the
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expression (cf. Eq. (42)) The action I = (2/7)S follows from this at o = 1. Re-
spectively, for the proper frequency one obtains instead

wo { —(1=k)Ty+27, — T, at of Eq. (46)

Kk <
S= &Jo at k>

2V/2

—(1 = g2 2 _ . -1
w = V2mwok? { [—(1 = k")Z-1 + (3r7 = 1)Zo + 5Z1 — 3T2] at & <1, (70)

(2/fj1)_1 at k> 1.

Energy dependences I(#), w(#H), following from Eqs. (69), (70), are depicted in Fig. 7. It is seen that these take
the form type of the corresponding dependences for a nonlinear pendulum (see Fig. 4). Fourier spectrum of the time
dependence p(t) of the momentum behaves in analogous manner as in Egs. (50): with the energy increase in the
domain 0 < H < H., single harmonic oscillation transforms to a harmonic superposition, whose number increases
monotonously to infinity, whereas frequencies and amplitudes decrease to zero. Such a behaviour is characterized by
the nonlinearity parameter (56), taking the following form (cf. Eq. (57)):

6 [(1—K*)T_2—2T_1+5°To+2L1 —Io][— (1-5°)To+22, —12]

o= (=) 21+ (3R2= 1) Zo+521-3L]° sl (71)
j}—% at k> 1.
i
o, a
04 —
0.0 ' I | ' I '
0.0 05 1.0 1.5 H/Hc

0.0 T I T I T I T

0.0 0.5 1.0 1.5 H/I{c

Fig. 7. Energy dependencies of the action (a) and the proper frequency (b) for double well potential.

Resgectively, double curvature A = 23—‘}’ of the dependence H(T) is connected with the parameter « as A = 2(w /I«
to rea

17
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62 (1=6T_5—2Z_14£°To+27: I,
A = 972 [—(1—k2)T_1+(352—1)Io+5Z; —375]°

LS
Ty

D. Nonlinear pendulum under constant external
field

Before studying the effect of periodical external field,
let us anounce main peculiatities of the constant pertur-
bation following supersymmetry theory [8]. In this case,
the potential energy

F = 2wisin(z/2) — Ex (73)

i1s characterized, besides the proper frequency wg, by a
field strength £. Switching such bias field arrives at the
expression for the flux j = (x)/t as follows:

. 2T . 7@€
j= 'yzz—(g)sth, (74)

where one introduces the integral
re+27T F
(€)= / exp{%}dx, (75)

sinz, =

oﬁjl o

T is the temperature. In ergodic systems, the diffusion
coefficient determined by equality

(@ - jt)?) = Dt (76)

takes the form

_ .0 27T w&
D:T%_'yzz(g)c T (77)

However, non-ergodicity effects arrive at a much more
complicated form of the diffusion coefficient [8]

1 T
D=j FCOth% + —arcsini2 + 5 d (78)

2 w (wag =& ]’

where 7 is characteristic magnitude of the integral (76).
Dependences j (&), D(E) related to Eqs.(74), (78) are de-
picted in Fig. 8.
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Fig. 8. Dependence of the flux j and the diffusion coeffi-
cient ) on the force E of external field for nonlinear pendu-
lum.

IV. NONLINEAR RESONANCE CONDITIONS

With accounting dissipation effects shifting the bare
frequency wg according to Eq. (28), the resonance con-
dition reads

my,w =, w©w= . (79)

where € is the frequency of external signal, w(#) is
the energy-dependent proper frequency determined by
Egs. (48), (46), my, is a resonance multiplicity being a ra-
tional number related to the natural one n. Formally, this
condition means that we have to consider the phase por-
trait plane, which is revolved with angle velocity m, w.

Then, the external addition of the Hamiltonian (23) is
written in the form

Hi=—Afoocosd, 9=(Q—m,w)t, (80)

where the internal power fyo corresponds to resonance
conditions (79). Respectively, the zero term of the Hamil-
tonian (23) can be expanded near the resonant action Iy
as follows:

A
Ho ~ Hoo +woo 61 + 70(51)2, SI=1—1,. (81)
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Here, the resonant action [y, as well as other resonant values

Hoo = Ho(I = Io),

“oo

I=I, Iy

= 2—0[0, g = Oé([ = Io)

dHo

Woo = — )

dI I=I,

(82)

are given by resonance condition (79). It is worthwhile noting that curvature A/2 is determined by the nonlinear-
ity parameter (56) taken at resonance condition I = Iy (see Figs. 5). The energy-dependence of the curvature is

characterized by the following asymptotics:

at H < H,,

A o2 (1 - H"rtc)—l (1n 1_;[%0)—3 {1 - 1—"1/% In 1_421%0} at He — H < He,
[

+H/?ic—1 In H/?l-ti—l} at H —H. < He,

As a result, Hamilton equations (25) arrive at the
equation type of Eq. (36) for nonliniar pendulum:

0+ w2, sind = 0. (84)

Here, instead of the proper frequency wq, the value w,,
stands for modulation frequency being determined as fol-
lows:

o (AAfoo)l/z. (85)

2

Respectively, the maximum value of the resonant energy
variation and corresponding magnitude for the action

4Afoo)1/2 (86)

My = AfOOa 0m = ( A

are determined by Eqs. (80), (81) to characterize a reso-
nance window.

Thus, we obtain the following picture of nonlinear res-
onance. At given magnitudes of the frequency 2 of ex-
ternal signal, the condition (79) fixes the system energy
H as follows:

T = K(x) { 1 at Kk <1,

= -1
\/WO_Q + (29 mpwn)? K at k> 1.
(87)

According to Fig. 9, the corresponding dependence
Hoo(R2) has two branches, the lower of which relates to
the finite motion, the upper — to the infinite one. Energy
Hoo related to the former falls down monotonously from

at H > H..

the upper magnitude fixed by condition K (k) = mwy to
zero within interval 0 < < Q,,, where maximum fre-
quency 1s

Q= mpwoy/1 — (2wy) 2.

(88)

Respectively, energy of the infinite motion arises
monotonously from minimal magnitude fixed at £ = 0
by condition k71K (k71) = mwq to Hoo — 00 at © — oo.

Hy,
H, |
1.6 —
1.2 —
0.8 —

04 —

0.0 0.4 0.8 1.2 Q

m, @,

Fig. 9. Dependence of the nonlinear pendulum energy on
the external signal frequency: curve 1 relates to finite motion,
curve 2 — to infinite one.
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Using abbreviated notation

Q* =1+ (2/mn)*Q%, (89)
one obtains the following asymptotics:
1-16 -2 Q t Q< Q.
Hoo ~ He exp [ ~2(/ Q) ab s (90)
411 — (2wp) 2] da=2 at 0 < Qp — Q< Qp

for the finite motion and

1+ 16exp [—271'((.00/(2)} at Q< Q,,

(“)2 at Q> Q

2wq

Hoo ~ H. (91)

for the infinite one. Frequency-dependencies of the resonant magnitudes Iy(€2), woo($2), a(£2), Ag(S2) of the action,
the proper frequency, the nonlinearity parameter and the double curvature of curve Hy(I) are depicted in Figs. 10,
11. In the case of the finite motion, these dependencies are characterized by the following asymptotics:

I a ®
=3 @
4 — 2 3 —
i N 2
2— 1 J
1
T 1
0 T I T | T o [J T T . 7 T
0.0 04 08 [o)
0.0 04 08 m. ®, s,
A, b
12 —
b 2
0.8 —
04 — 1
0 ‘ T T T | .
0.0 04 08 Q oo ' | ' T o
mn 0)0 0.0 04 08 m" (l)”

Fig. 10. Frequency dependencies of the action (a) and the Fig. 11. Frequency dependencies of the nonlinearity pa-
proper frequency (b) for nonlinear pendulum: curve 1 relates rameter (a) and curvature of the dependence H(I) (b) for
to finite motion, curve 2 — to infinite one. nonlinear pendulum: curve 1 relates to finite motion, curve 2

— to infinite one.
—1 A A
T 1 —8m(wp /) ex {—271'(.00 Q}} at Q& Q
Jo s { 7 {1~ B/ Q) exp |2m(n /) - o)
[1—(2w0)_2] o= at 0 < Q) — Q<€ Qs
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wop N W Z% at < O, (93)
O = [1 = (2wp) 2] Gu=0 at 0< Qo — Q<K D
~ 2 ~
1 0 Q O | —
JNURY 2 I S I S o
4 1—[1 - (2w0)~?] 2u=2 at 0< Qy— Q<K Q.
Respectively, for the infinite motion one has:
4 - B -
o~ 2wy d {1 + 87T(w0/§2~) exp [ 271'((.00/(2)}} at Q< Q,, (95)
Q/wo at Q> Qy;
woo & Q)2 at Q< Q, and Q> Qp; (96)
N2 - -
Agw L { §() (st rleo/@] 41} a0 <o, (97)
2 1 — (2wo/Q)? at Q> Q.

At wo > 1/2, when Q,, & m,wo, effective frequency Q
may be replaced by the short-cut term (2/m,)Q > 1.

If the oscillations were linear in character, the reso-
nance might realize within window located between en-
ergies Hog — 6Hm and Hoo + 0Hrp, . In this window, the
oscillations would have single frequency w determined
by Eq. (79) and would be modulated with the frequency
wm given by Eq. (85). However, nonlinearity effects de-
scribed in Subsection III.B arrive at expanding the har-
monics number to magnitude Ny = wg/wpe > 1 and nar-
rowing the energy window to the width H,, = 2w2,. So,
nonlinear resonance 1s realized for a share of nonlinear
oscillations determined by the ratio

Hm Ag = 5 W00

o To (98)

ap,

where Eqs.(82), (85), (86) are taken into account. As it is
seen from Fig. 11, the double curvature A(2) decreases
monotonously with the external frequency growth within
the interval 0 < Q < p£,. This means that preference
of the nonlinear resonance decreases with this frequency
growth.

V. STOCHASTIC RESONANCE CONDITIONS

The stochastic resonance 1s known to be observed at
condition (79), where m,, = (2n)~%, n = 1,2,.... This
condition means that during a period T = 27/ of the
external oscillation the stochastic system has a time to

overcome an energy barrier AF even times 2n [1]. The
proper frequency of stochastic resonance w = 27rg 1s
reduced to the Kramers’ rate rg given by Eq. (2). This
case differs from the above considered case of nonlinear
pendulum by only inserting temperature 7' instead of
the system energy K. In the case of the double well po-
tential considered in Subsection II1.C, the energy barrier
AF = (wp/2)? is related to the temperature by charac-
teristic parameter k? = 47 /w?2. Then, the frequency of
the barier overcoming is defined by equation
k? = 4T/ (99)

w = wg exp(—k~7),

instead of the corresponding equation (46) for nonlinear
pendulum. Taking into consideration dissipation effects,
we obtaine the following condition of the stochastic res-
onance:

(2(.01()2

n m] . (100)

As is shown in Fig. 12, the resonant temperature Tp(£2)
arises monotonously, taking indefinite values at charac-
teristic frequency

WK
Q=

= K T = (2wr)-2.
o (2wk)

(101)

Basing on the dependence Tp(Q2) replacing the above
used relation H(£2), we are in position to consider the
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stochastic resonance conditions in analogy with the non-
linear pendulum.

Here, instead of Eqgs. (40), (42), (46), the equalities
(65), (69), (70) determine the resonant magnitudes Iy,
woo, a, A of the action, the proper frequency, the non-
linearity parameter and the double curvature of the res-
onant dependence Hoo(I). Corresponding dependencies
on the temperature are depicted in Figs. 13, 14 to show
the indefinite increase of the proper frequency and the ac-
tion with tending to the characteristic magnitude (101).
Related values of the nonlinearity parameter and the cur-
vature decrease thereby.

0 ' | ' |
0.0 0.2 04 NQ

Fig. 12. Dependence of the stochastic resonance tempera-
ture on the external signal frequency.

I

@ a

3 —

0 T | T | I T
0.0 0.2 0.4 nQ

Fig. 13. Frequency dependencies of the action (a) and the
proper frequency (b) of the stochastic resonance.
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Fig. 14. Frequency dependencies of the nonlinearity pa-
rameter ao and curvature Agy of the dependence 7-[([ ) at
stochastic resonance.

VI. CONCLUSION

The observed picture of nonlinear oscillations shows
that with the energy increase the single harmonic oscil-
lation transforms to a harmonics superposition, whose
number increases monotonously to infinity, whereas fre-
quency and amplitude decrease to zero. In other words,
with tending to a threshold energy, transition of the har-
monic oscillations into a set of solitons is observed. We
have shown that such a behaviour, being typical for both
the nonlinear pendulum and the double well potential, is
characterized by the nonlinearity parameter (56).

Our choice of the action S and angle ¥ as principle
variables is caused by the fact that Hamiltonian of free
nonlinear oscillations does not depend on the angle ¥.
In accordance with Eq. (84), switching on external har-
monic signal arrives at a modulation of nonlinear oscilla-
tions with the characteristic frequency (85) and nonlin-
earity parameter (82). It appears that the nonlinearity
effect narrows the resonance window to the width fixed
by ratio (98) that is reduced to the curvature A of the
dependence H(I). According to the dependence Ag(2)
depicted in Fig. 14, this window is shrunk with the ex-
ternal frequency growth. As a result, preference of the
stochastic resonance decreases with the growth of fre-
quency £ of the external signal.
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HEJIIHINHA TEOPIS CTOXACTHUYHOI'O PE3BOHAHCY

O. 1. Onemckoii

Cymcevruli deporcasruti ynicepcumem
ey.n. Pumcoroeo-Kopcaxosa, 2, 40007, Cymu, Yxpaina

Teopist HeIIHIITHOTO CTOXACTUYHOTO pe3oHaHCy 30yIoBaHa Ha OCHOBI CTATHCTUYHOI Teopil MoJid, dKa BUKOPHC-

TOoBy€E 3MIHHI “mig—kKyT”. asa HealHIHOrO MasiTHMKa Ta OBOAMHOIO HOTEHINANY 3HalIeHO sABHI BUpa3WU IJjId il
?

BJIACHOI YaCTOTH Ta MapaMeTpa HeJIHIHHOCTH 3aJIesKHO B eHepril CUCTeMH Ta YaCTOTH 30BHINIHBOTO CHIHAJY.
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