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Theory of nonlinear resonane, inluding stohasti one, is developed on the basis of the statistial

�eld theory and using variables ation-angle. Expliit expressions of ation, proper frequeny and

nonlinearity parameter as funtions of the system energy and the external signal frequeny are

found for the ases of nonlinear pendulum and double well potential.
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I. INTRODUCTION

Sine the late 1980s, a variety of theoretial and exper-

imental papers appears devoted to the study of stohasti

resonane and disovering its new appliations in di�er-

ent �elds of siene and engineering [1℄. Nowadays, the

stohasti resonane is a well established phenomenon

displayed in a bistabile system simultaneously driven by

noise and a periodi signal. There appears to be an op-

timal noise level at whih the system exhibits almost

periodi transitions from one state to other with the

frequeny of the oherent signal. The enhanement of

a weak input signal has been suggested to haraterize

by the signal-to-noise ratio (SNR) that takes a maximum

value at an optimal noise level, i. e., a behaviour whih

is reminisent of a usual resonane phenomenon.

The observed enhanement is not due to the math-

ing of two frequenies, but rather to a ooperative e�et

of the oherent signal and the noise. This peuliarity is

reeted formally as follows. The kinemati ondition
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= 
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 to the

Kramers rate r
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Here, the prime denotes the derivation with respet to

a generalized oordinate x, F (x) is a related depen-

dene of the e�etive energy, whih has a minimum at

the point x

0

, a maximum at x

b

and a barrier of the

height �F � F (x

b

) � F (x

0

); m is a partile mass,  is

a kineti oeÆient. Physially, the kinemati ondition

means that for every frequeny 
, the stohasti system

ould pik out suitable noise level T . However, the value

SNR [1℄

SNR / T

�2

r

K

(T ); (3)

being found on the basis of the statistial theory, displays

the stohasti resonane maximum at the temperature

T

m

=

1

2

�F; (4)

whose value is �xed by the energy barrier �F , but not

the external signal frequeny 
.

It is easy to see that the reason of this ontradition is

using the linear approah for the SNR determination. In

this paper, we develop the theory of nonlinear resonane,

inluding the stohasti one. The main ingredients of our

approah are: (i) the noise aounting by means of intro-

dution of a generalized momentum and (ii) passage to

the variables ation-angle, being usual at studying non-

linear phenomena [2℄. Setion II is devoted to the �rst of

these approahes on the basis of the statistial �eld the-

ory [3℄. Setion III ontains details of examination of non-

linear resonane in terms of variables ation{angle. The

latter are tested on the example of the simplest model

of a harmoni osillator. Then, expliit expressions of

ation, proper frequeny and nonlinearity parameter as

funtions of the system energy are found for the ases

of nonlinear pendulum, double well potential and non-

linear pendulum under onstant external �eld. Assum-

ing the proper frequeny be idential to the frequeny of

external signal, we examine resonane onditions of the

nonlinear pendulum in Setion IV and the ase of the

stohasti resonane in Setion V. Conlusion in Setion

VI shows that the above mentioned ontradition is re-

solved beause the nonlinear resonane ondition �xes

the proper frequeny as funtion of the external one, but

not the noise level, as in the linear ase.

II. BASIC EQUATIONS

Let us study a hydrodynami mode amplitude x(r; t)

whih spae-time dependene is determined by the

Langevin equation
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NONLINEAR THEORY OF STOCHASTIC RESONANCE

_x(r; t) = f(x; t) + �(r; t); (5)

whih an be interpreted in the Ito sense. Here the dot

indiates the di�erentiation with respet to time t, r is

oordinate,  is a kineti oeÆient, f(x; t) is a fore

onjugated to the stohasti variable x, and �(r; t) is a

stohasti term having the form of white noise:

h�(r; t)i = 0; h�(r; t)�(0; 0)i = TÆ(r)Æ(t); (6)

where the angle brakets denote averaging and T is a

noise intensity of temperature type [4℄. For the system

under onsideration, the total fore

f(x; t) = f

0

(x) + f

ext

(t) (7)

onsists of the usual internal term

f

0

(x(r; t)) = �

ÆF

Æx(r; t)

;

Ffx(r; t)g =

Z

�

F (x) +

�

2

jrxj

2

�

dr; (8)

where F (x) is a system potential per unit volume, � > 0

is a onstant, r � �=�r, and external harmoni term

f

ext

(t) = A os(
t+ ') (9)

being determined by an amplitude A, frequeny 
, and

an initial phase '. It is now onvenient to go over to di-

mensionless quantities by referring the oordinate r to a

harateristi spaing a, the time t and the inverse fre-

queny 


�1

to the sale a

3

=T, the amplitude A, the

internal fore f

0

, and the quantity F to T=a

3

, and the

utuation � to T=a

3

. In this ase, Eq. (5) an be writ-

ten as follows:

_x = [r

2

x+ f(x; t)℄ + �(t);

f(x; t) = f

0

(x) + f

ext

(t);

f

0

� ��F=�x;

f

ext

(t) = A os(
t + '): (10)

The range of appliability of the Ginzburg{Landau ap-

proximation (8) is determined by the ondition aording

to whih the sale a is muh smaller than the orrelation

length � = �

1=2

j�

2

F=�x

2

j

�1=2

x=0

[6℄. Averaging Eq. (5)

and disregarding orrelations, we obtain the Landau{

Khalatnikov equation for the order parameter hx(r; t)i.

The standard �eld sheme [3℄ is based on the investi-

gation of the generating funtional orresponding to the

stohasti equation (10). It is a funtional Laplae trans-

form

Z fu(r; t)g =

Z

Z fx(r; t)g exp

�

Z

ux drdt

�

Dx(r; t)

(11)

for the generalized partition funtion

Z fx(r; t)g =

*

Y

(r;t)

Æ

�

_x(r; t)�r

2

x(r; t)� f(r; t)� �(r; t)

	

det

�

�

�

�

Æ�(r; t)

Æx(r; t)

�

�

�

�

+

�

: (12)

Here, the argument of the Æ-funtion redues to the

Langevin equation (10), and the determinant, providing

the passage from the ontinual integration over �(r; t) to

x(r; t), is equal to the unity within the Ito alulus.

In the framework of the standard approah [3℄, the

n-fold variation of the funtional (11) with respet to

the auxiliary �eld u(r; t) allows one to �nd the n-th

order orrelator for the hydrodynami mode amplitude

x(r; t) and to onstrut the perturbation theory. How-

ever, we shall proeed from expression (12) for the on-

jugated funtional Zfx(r; t)g, variation of whih leads

to the most probable realization of the stohasti �eld

x(r; t). Obviously, in the framework of the mean-�eld ap-

proximation funtional (12) redues to the dependene

Zfhx(r; t)ig, whih orresponds to the Landau free en-

ergy Ffhx(r; t)ig = �T lnZfhx(r; t)ig [6℄.

Passing to the onsideration of funtional (12), we rep-

resent the Æ-funtion in the integral form

Æ fx(r; t)g =

i1

Z

�i1

exp

�

�

Z

px drdt

�

Dp: (13)

Then, averaging over the noise � with using the Gauss

distribution

P

0

f�g / exp

�

�

1

2

Z

�

2

(r; t) drdt

�

; (14)

whih orresponds to ondition (6), and taking into a-

ount Eq. (13), we redue funtional (12) to the standard

form
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Z fx(r; t)g =

Z

Pfx(r; t); p(r; t)gDp; P � e

�S

: (15)

Here, probability distribution Pfx; pg is given by ation

S =

R

L drdt, where Lagrangian is

L = p

�

_x�r

2

x� f

�

� p

2

=2: (16)

Further, we use Euler equations

�L

�x

�

d

dt

�L

� _x

�r

�L

�rx

+r

2

�L

�r

2

x

=

�R

� _x

;

x � fx; pg; (17)

where dissipative funtion is R =

1

2

_x

2

. As a result, equa-

tions for the most probable realizations of the stohasti

�elds x(r; t), p(r; t) take the form:

_x = (r

2

x+ f) + p; (18)

_p = �r

2

p� f

0

p� _x; (19)

where prime stands for derivation with respet to vari-

able x. A omparison of (18) with the stohasti equation

(10), having the same form, shows that the �eld p(r; t) is

the most probable value of the utuations �(r; t) of the

onjugate fore. Di�erentiating Eq. (18) with respet to

the time and inserting result into Eq. (19), we obtain the

equation of motion as follows:

�x+ (1 + f

0

) _x = 2f

0

r

2

x+

_

f + ff

0

; (20)

where only terms of the lowest order of spatiotemporal

derivations are kept.

Using the desribed �eld theory allows us to pass from

the di�erentiation stohasti equation of motion (5) of

the �rst order to the equivalent system of two di�eren-

tiation equations (18), (19) of the same order, or to the

single di�erentiation equation (20) of the seond order.

Further, we need in using Hamiltonian H = p _x�L that

depends on the �eld variable x and the onjugate mo-

mentum p. Aording to Eq. (16), Hamiltonian an be

written in the form

H(x; p; t) = H

0

(x; p) +H

1

(p; t);

H

0

= �rxrp+

1

2

p

2

+ pf

0

;

H

1

= Ap os(
t+ '): (21)

It is easy to see that these expressions, being inserted

into dissipative Hamilton equations

_x =

�H

�p

�r

�H

�rp

; (22)

_p = �

�

�H

�x

�r

�H

�rx

�

�

�R

� _x

;

lead to the equations of motion (18), (19).

It is very important to take into aount further that

the most probable amplitude p of utuations varies near

the magnitude �f

0

, so that we ought to pass to osillat-

ing momentum: p+ f

0

! p. Moreover, as it is seen from

the Fourier transformation (13), the momentum p takes

imaginary magnitudes, so that the power f

0

has to be

onsidered as the imaginary one, as well, and the sign in

front of the last term ofH

0

in Eqs. (21) must be reversed

[5℄:

H(x; p; t) = H

0

(x; p) +H

1

(p; t);

H

0

=

1

2

p

2

+

1

2

f

2

0

;

H

1

= �Af

0

os(
t+ '); (23)

where gradient terms are suppressed for brevity.

III. NONLINEAR RESONANCE IN TERMS

OF VARIABLES ACTION{ANGLE

To analyze the set of equations (18), (19), it is onve-

nient to use the phase portrait method. However, in our

ase suh a portrait ows in the ourse of the time due to

the appearane of the time-dependent external fore (9).

To avoid this time-variation in phase portrait we need to

pass from the above used variables x, p to the new ones:

ation I and angle # de�ned as follows [2℄:

I(H) �

1

2�

I

p(x;H) dx;

# �

�S(x; I)

�I

;

S(x; I) �

x

Z

0

p(x

0

;H(I)) dx

0

; (24)

where the shorted ation S(x; I) plays a role of the gen-

eralized funtion. The onveniene of the so-introdued

variables is that the zero Hamiltonian H

0

in Eqs. (23)

does not depend on the angle #, so that the orrespond-

ing phase portrait is stable in the ourse of the time. The

equations of motion for the generalized oordinate # and

the onjugate momentum I read (f. Eqs. (23))

_

# =

�H

�I

;

_

I = �

�H

1

�#

; (25)

where non-homogeneity and dissipation e�ets are sup-

pressed. Aording to the seond of these equations the

ation I is a onstant if an external perturbation is ab-

sent.

10



NONLINEAR THEORY OF STOCHASTIC RESONANCE

A. Harmoni osillator

To reall a physial meaning of the variables #, I

introdued, let us onsider �rstly the simplest ase of

harmoni osillator. In this ase, the internal power in

Eq. (23)

f

0

= �!

0

x (26)

is linear and �xed by a proper frequeny !

0

. Then, the

Hamilton equations (23) lead to the equation of damping

osillation under external power:

�x+ _x+ !

2

0

x = �A!

0

os(
t+ '): (27)

This equation di�ers ruially from Eq. (20) beause

the former orresponds to the momentum origin p = 0,

whereas the latter | to p = �f

0

. Aording to Eq.(27),

dissipation shifts resonane frequeny from proper mag-

nitude !

0

to value

$ =

q

!

2

0

� 2

�2

; (28)

whereas a maximum real part of harateristi relation

x=A relates to frequeny

!

max

=

q

!

2

0

� 2

�1

: (29)

Suh a harater of the dissipation inuene keeps at a-

ounting for anharmoniity e�ets if under parameter !

0

one means a proper frequeny !(H) of nonlinear osilla-

tions depending on the system energy.

To demonstrate advantages of using variables ation-

angle, let us alulate now their magnitudes at the ondi-

tion that external power in Hamiltonian (23) is swithed

o�. Then, the �rst Eqs. (24), (25) give immediately

I =

H

!

0

;

_

# = !

0

: (30)

Respetively, the shorted ation and angle takes the

form:

S = I

2

4

arsin

�

x

x

0

�

+

x

x

0

s

1�

�

x

x

0

�

2

3

5

;

# = arsin

�

x

x

0

�

; x

2

0

�

2I

!

0

: (31)

The last of Eqs. (30) gives the usual relation between the

angle and the time

# = !

0

t+ #

0

; (32)

the using of whih arrives at the harmoni laws of motion

x = (2H=!

2

0

)

1=2

sin(!

0

t+ #

0

);

p = (2H)

1=2

os(!

0

t+ #

0

): (33)

B. Nonlinear pendulum

The simplest model of the system with the possibility

of the barrier overoming is known to be the nonlinear

pendulum (in this Subsetion, we onsider the pendulum

without a frition and an external perturbation). Here,

Hamiltonian takes the form

H

0

=

1

2

p

2

+ 2!

2

0

sin

2

(x=2); (34)

orresponding to the power f

0

= �2!

0

sin(x=2) in

Eqs. (23). Hamilton equations (23) arrive at the system

_x = p; _p = �!

2

0

sinx: (35)

Combination of these equations gives the nonlinear one:

�x+ !

2

0

sinx = 0: (36)

This equation is non-solvable in analytial form and we

ought to use the phase portrait method. The form of this

portrait follows from Eqs. (35) to be shown in Fig. 1a. It

is seen that the system behaviour is governed by energy

H with respet to the ritial value H



� 2!

2

0

. At on-

dition H < H



, the system moves �nitely, whereas with

overoming the ritial energy H



it passes to in�nite

motion. Let us desribe suh a behaviour quantitatively.

In this line, the simplest topi is the solution orre-

sponding to separatrix, for whih the energy is ritial

one: H = H



. In suh a ase, the de�nition (34) gives the

separatrix form as follows:

p = �2!

0

os(x=2): (37)

Then, the �rst of Eqs. (35) arrives at the separatrix law

of motion

x = 4artan exp(�!

0

t)� �; (38)

where the di�erent signs orrespond to upper and lower

branhes of the separatrix. This dependene an be

written in muh more elegant form of os(x=2) =

[osh(�!

0

t)℄

�1

, the insertion of whih into Eq. (37) ar-

rives at the famous soliton dependene

p = �

2!

0

osh(!

0

t)

; (39)
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where hoie of signs orresponds to solitons moving to

right or left sides. In aordane with the motion laws

(38), (39), the system behaviour on the separatrix (37)

is as follows: at time t = �1 the system is loated in

the saddles S

�

, where the oordinate x = �� and the

momentum p = 0. In the ourse of the time within the

domain �1 < t < 1, the former arises monotonously

from �� to �, whereas the latter inreases at t < 0 and

dereases at t > 0. It is harateristial that oordinate

variation and �nite magnitudes of the momentum take

plae within the domain �t � !

�1

0

loated near the time

t = 0. The forms of the orresponding kink x(t) and

soliton p(t) are depited in Fig. 2.

Fig. 1. Phase portraits for nonlinear pendulum (a) and

double well potential (b).

Fig. 2. (a) Motion laws for nonlinear pendulum (urve 1)

and double well potential (urve 2); (b) Corresponding time

dependenies of the onjugate momentum.

General solution of Eqs. (35) an be obtained with us-

ing the variables ation-angle de�ned by Eqs. (24). It is

onvenient to introdue a parameter

�

2

�

1

2

H

!

2

0

�

H

H



; H



� 2!

2

0

; (40)

taking the magnitude � = 1 at ritial energy H = H



,

and a new variable � de�ned by equalities

sin � �

�

�

�1

sin(x=2) at � � 1;

sin(x=2) at � � 1:

(41)

Then, the generating funtion is expressed in terms of the

inomplete Jaobian ellipti integrals F (�; �), E(�; �) of

the �rst and seond orders [7℄ as follows:

S(x; I) = 4!

0

�
�

E(�; �)� (1� �

2

)F (�; �)

�

at� � 1;

�E(�; 1=�) at� � 1:

(42)

Di�erentiation of these equalities with respet to I ar-

rives at expressions for the angle # that generalyzes the

last equality (31) (we supress these expressions beause

of their very ompliated form).

Fortunately, formulas for ation I � 4S(� = �=2)=2�

follow from Eqs. (42) immediately and are expressed

by means of the omplete Jaobian ellipti integrals

K(�) � F (� = �=2; �), E(�) � E(� = �=2; �). Taking
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into aount orresponding dependenes shown in Fig. 3,

we shall need further in using asymptotis of these inte-

grals [7℄

K(�) �

(

�

2

�

1 +

�

2

4

�

at �� 1;

ln

4

p

1��

2

at 1� �

2

� 1;

(43)

E(�) �

8

<

:

�

2

�

1�

�

2

4

�

at �� 1;

1 +

1��

2

2

ln

4

p

1��

2

at 1� �

2

� 1:

(44)

Resulting dependene I(H) depited in Fig. 4 shows

monotoni inrease from I = 0 at H = 0 to in�nity with

the logarithmial inetion at the ritial energy H



.

This behaviour is haraterized by the following asymp-

totis:

I � 2!

0

8

>

>

>

>

>

<

>

>

>

>

>

:

H=H



at H �H



;

4

�

�

1�

1�H=H



4

ln

16

1�H=H



�

at 0 < H



�H � H



;

4

�

�

1 +

H=H



�1

4

ln

16

H=H



�1

�

at 0 < H�H



�H



;

2

q

H

H



�

1�

H



4H

�

at H �H



:

(45)

Fig. 3. Form of Jaobian ellipti funtions and integrals.
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Aounting the properties of the ellipti integrals [7℄,

we obtain for the proper frequeny ! �

_

# determined by

the �rst equality (25) in the following form:

! =

�

2

!

0

K(��)

�

1 at � � 1;

� at � � 1;

(46)

where

�� �

�

� at � � 1;

�

�1

at � � 1:

(47)

As it is seen in Fig. 4, the proper frequeny falls down

from the bare magnitude !

0

at the minimal energy H = 0

to zero at H = H



and then, after an in�nitely sharp

usp, the value ! inreases monotonously. Aording to

Eqs. (44), suh a behaviour is presented by asymptotis:

! � !

0

8

>

>

<

>

>

:

1�

H

4H



atH �H



;

�

�

ln

16

j1�H=H



j

�

�1

at jH �H



j � H



;

q

H

H



�

1�

H



4H

�

atH �H



:

(48)

On the other hand, de�nitions (34), (41) arrive at time-

dependenies of the momentum:

Fig. 4. Energy dependenies of the ation and the proper

frequeny for nonlinear pendulum.

p = �2!

0

�

�

os � = n(t; �) at H � H



;

p

1� �

�2

sin

2

� = dn(t; �

�1

) at H � H



;

(49)

where �

2

� H=H



; n(t; �), dn(t; �

�1

) are the Jaobian

ellipti funtions shown in Fig. 3. With aounting for

Eqs. (41), these expressions pass to Eqs. (37), (39) at

H = H



.

To eluidate the system behaviour with energy in-

rease, let us expand the dependenes (49) into Fourier

series [2℄

p = �8!

8

>

<

>

:

1

P

n=1

a

n

os[(2n� 1)!t℄ atH � H



;

1

4

+

1

P

n=1

a

n

os(n!t) atH � H



;

(50)

where one denotes

a

n

�

(

k

n�1=2

1+k

2n�1

atH � H



;

k

n

1+k

2n

atH � H



;

(51)

k � exp

�

��

K

0

K

�

;

K

0

� K(

p

1� ��

2

); K � K(��);

parameter �� is determined by Eq. (47). Aording to

Eqs. (44), one has asymptotis

k �

�

�

2

=32 at�� 1;

k � exp(��=N ) at 1� �

2

� 1;

(52)

where number N � !

0

=! is asymptotially as follows:

N �

�

1 atH �H



;

1

�

ln

16H



jH�H



j

at jH �H



j � H



:

(53)

Thus, at low energies a single harmonis prevails to or-

respond to the oeÆient of the Fourier series (50)

a

n

�

�

H

32H



�

n�1=2

; H �H



: (54)
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Respetively, near the ritial energy, where the Fourier

series gets the harmonis number N � 1, one obtaines

a

n

� 8!

�

1 at 1 < n < N;

exp[��(n=N )℄ at n > N:

(55)

As is known [2℄, the above desribed behaviour is har-

aterized by nonlinearity parameter

� �

�

�

�

�

d ln!

d ln I

�

�

�

�

: (56)

Aording to (42), (46), this parameter is determined by

the following equation:

� =

8

>

<

>

:

1��

2

�

2

h

1

1��

2

E(�)

K(�)

� 1

i

2

at � � 1;

�

2

�

2

�1

�

E(�

�1

)

K(�

�1

)

�

2

at � � 1:

(57)

As it is shown in Fig. 5a, the non-linearity parameter

takes on the value � = 0 at H = 0 and then goes to

in�nity at the ritial energy H



, tending to magnitude

� = 1 at H ! 1. Suh a behaviour is haraterized by

the following asymptotis:

Fig. 5. Energy dependenies of the nonlinearity parameter

(a) and urvature of the dependene H(I) (b) for nonlinear

pendulum.

� �

8

>

>

>

>

<

>

>

>

>

:

1

4

(H=H



) at H �H



;

4

�

1�

H

H



�

�1

�

ln

16

1�H=H



�

�2

h

1�

1�H=H



2

ln

16

1�H=H



i

at 0 < H



�H � H



;

4

�

H

H



� 1

�

�1

�

ln

16

H=H



�1

�

�2

h

1 +

H=H



�1

2

ln

16

H=H



�1

i

at 0 < H�H



�H



;

1�H



=H at H �H



:

(58)

As a result, the observed piture of nonlinear osilla-

tion is as follows. At low energy, when H � H



, only

single harmoni with the frequeny ! � !

0

keeps in the

Fourier series (50), so that the low-energy limit redues

to above onsidered ase of harmoni osillation (see Sub-

setion III.A). With the energy inrease, the harmonis

number N arises in a manner of the dependene K(�)

shown in Fig. 3, taking logarithmially large magnitudes

(53) near the ritial valueH



� 2!

2

0

. On the other hand,

the osillation frequeny (48) and the harmoni ampli-

tudes (55) derease monotonously to zero. Thus, one an

mean in a oarse manner that, with energy inrease in

the domain 0 � H � H



, the single harmoni osillation

transforms to a harmonis superposition, whose number

N inreases monotonously to in�nity, whereas frequeny

! and amplitude a

n

� 8! derease to zero. Just under

the ritial energy (0 < H



� H � H



) the system be-

haviour is haraterized by a set of solitons of di�erent

signs, whereas just above H



the signs of these solitons

oinide (see Eqs. (49)). Remarkable peuliarity of suh

soliton set is that the width of a single soliton is re-

dued to �t � !

�1

0

, whereas the distane between them

is N�t � !

�1

� !

�1

0

. Just for ritial energy H



, the

system behaviour is araterized by the separatrix solu-

tion (39) that redues to the single soliton.

C. Double well potential

Taking into aount the use in the stohasti resonane

problem [1℄, let us onsider now the osillation in a dou-

ble well potential. We will show that, in terms of the vari-
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A. I. OLEMSKOI

ables ation{angle, the di�erene with the above studied

ase of the nonlinear pendulum is quite quantitative, but

not qualititative.

The basi model is presented by the potential

F =

!

2

0

4

(1� x

2

)

2

; (59)

ounting o� the energy at the equilibrium positions

x = �1, !

0

is bare frequeny. In this ase, Hamilton

equations (23) take the forms type of Eqs. (35):

_x = p; _p = !

2

0

x(1� x

2

): (60)

Near the saddle point x = 0, p = 0, orresponding phase

portrait (see Fig. 1b) has the form di�ering from the one

depited in Fig. 1a for a nonlinear pendulum. This form

is haraterized by the separatrix (f. Eq. (37))

p = �!

0

x

p

1� x

2

=2; (61)

orresponding to the ondition H = (!

0

=2)

2

. Similarly

to the ase of nonlinear pendulum, the �rst of Eqs. (60)

arrives at the separatrix law of motion:

x = �2

1=2

p

1� [sinh(!

0

t)℄

2

: (62)

For the time-dependene of the momentum, one has

double-soliton solution (f. Eq. (39))

p = �2

1=2

!

0

sinh(!

0

t)

p

1� [sinh(!

0

t)℄

2

; (63)

where the hoie of signs orresponds to solitons moving

to the right or left sides. Aording to the motion laws

(62), (63) | on the one hand, and Eqs. (38), (39) |

on the other, the di�erene between the separatrix solu-

tions for double well potential and nonlinear pendulum

is that, in the ourse of the time near the point t = 0,

the momentum gains two peaks of di�erent signs in the

former ase and the single peak in the latter.

To introdue the variables ation{angle, it is onve-

nient to use parameter � of the type given by Eq. (40)

and a new variable � determined by the equality type of

(41):

�

2

�

H

H



; H



�

�

!

0

2

�

2

; (64)

x

2

� 1�

�

� sin � at � � 1;

sin � at � � 1:

(65)

Moreover, we shall need in using integrals

I

n

(�; �) �

�

Z

0

(1 � ��)

n�

1

2

p

1� �

2

d�; � � 1;

n = 0;�1;�2; : : : at � � 1;

J

n

(�; �) �

�

Z

0

(1� �

�2

�

2

)

1

2

�n

p

1� �

d�; � � 1;

n = 0; 1; 2; : : : at � � 1: (66)

Fig. 6. Form of the integrals (66).

The form of dependenies I

n

(�) � I

n

(� = 1; �),J

n

(�) �

J

n

(� = 1; �) is depited in Fig. 6, the orresponding

asymptotis read:

I

n

(�) �

�

2

�

1

2

(2n� 1)�; �� 1;

J

n

(�) � 2 +

8

15

(2n� 1)�

�2

; �� 1: (67)

The integrals are subjeted to simple derivation rules

�

dI

n

d�

=

�

n�

1

2

�

(I

n

� I

n�1

) ;

�

dJ

n

d�

= (2n� 1) (J

n

�J

n�1

) ; (68)

where the arguments �, � are supressed for brevity.

As a result, the last of de�nitions (24) arrives at the
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expression (f. Eq. (42))

S =

!

0

2

p

2

�

�(1� �

2

)I

0

+ 2I

1

� I

2

at � � 1;

�J

0

at � � 1:

(69)

The ation I � (2=�)S follows from this at � = 1. Re-

spetively, for the proper frequeny one obtains instead

of Eq. (46)

! =

p

2�!

0

�

2

�
�

�(1� �

2

)I

�1

+ (3�

2

� 1)I

0

+ 5I

1

� 3I

2

�

�1

at � � 1;

(2�J

1

)

�1

at � � 1:

(70)

Energy dependenes I(H), !(H), following from Eqs. (69), (70), are depited in Fig. 7. It is seen that these take

the form type of the orresponding dependenes for a nonlinear pendulum (see Fig. 4). Fourier spetrum of the time

dependene p(t) of the momentum behaves in analogous manner as in Eqs. (50): with the energy inrease in the

domain 0 � H � H



, single harmoni osillation transforms to a harmoni superposition, whose number inreases

monotonously to in�nity, whereas frequenies and amplitudes derease to zero. Suh a behaviour is haraterized by

the nonlinearity parameter (56), taking the following form (f. Eq. (57)):

� =

8

<

:

6

[

(1��

2

)I

�2

�2I

�1

+�

2

I

0

+2I

1

�I

2
℄[

�(1��

2

)I

0

+2I

1

�I

2
℄

[�(1��

2

)I

�1

+(3�

2

�1)I

0

+5I

1

�3I

2

℄

2

at � � 1;

J

0

J

2

J

2

1

at � � 1:

(71)

Fig. 7. Energy dependenies of the ation (a) and the proper frequeny (b) for double well potential.

Respetively, double urvature � � 2

d!

dI

of the dependene H(I) is onneted with the parameter � as � � 2(!=I)�

to read
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� = 2�

2

(

6�

2

(1��

2

)I

�2

�2I

�1

+�

2

I

0

+2I

1

�I

2

[�(1��

2

)I

�1

+(3�

2

�1)I

0

+5I

1

�3I

2

℄

3

at � � 1;

J

2

J

3

1

at � � 1:

(72)

D. Nonlinear pendulum under onstant external

�eld

Before studying the e�et of periodial external �eld,

let us anoune main peuliatities of the onstant pertur-

bation following supersymmetry theory [8℄. In this ase,

the potential energy

F = 2!

2

0

sin(x=2)� Ex (73)

is haraterized, besides the proper frequeny !

0

, by a

�eld strength E . Swithing suh bias �eld arrives at the

expression for the ux j � hxi=t as follows:

j = 

2�T

I

2

(E)

sinh

�E

T

; (74)

where one introdues the integral

I(E) =

x

e

+2�

Z

x

e

exp

�

F (x)

T

�

dx; (75)

sinx

e

�

E

!

2

0

;

T is the temperature. In ergodi systems, the di�usion

oeÆient determined by equality

h(x� jt)

2

i � Dt (76)

takes the form

D � T

�j

�E

= 

2�

2

T

I

2

(E)

h

�E

T

: (77)

However, non-ergodiity e�ets arrive at a muh more

ompliated form of the di�usion oeÆient [8℄

D = j

�

�oth

�E

T

+

1

2

arsin

E

!

2

0

+

IE

2(!

4

0

� E

2

)

�

; (78)

where I is harateristi magnitude of the integral (76).

Dependenes j(E), D(E) related to Eqs.(74), (78) are de-

pited in Fig. 8.

Fig. 8. Dependene of the ux j and the di�usion oeÆ-

ient D on the fore E of external �eld for nonlinear pendu-

lum.

IV. NONLINEAR RESONANCE CONDITIONS

With aounting dissipation e�ets shifting the bare

frequeny !

0

aording to Eq. (28), the resonane on-

dition reads

m

n

$ = 
; $ �

p

[!(H)℄

2

� 2

�2

; n = 1; 2; : : :; (79)

where 
 is the frequeny of external signal, !(H) is

the energy-dependent proper frequeny determined by

Eqs. (48), (46),m

n

is a resonane multipliity being a ra-

tional number related to the natural one n. Formally, this

ondition means that we have to onsider the phase por-

trait plane, whih is revolved with angle veloity m

n

$.

Then, the external addition of the Hamiltonian (23) is

written in the form

H

1

= �Af

00

os #; # � (
�m

n

$) t; (80)

where the internal power f

00

orresponds to resonane

onditions (79). Respetively, the zero term of the Hamil-

tonian (23) an be expanded near the resonant ation I

0

as follows:

H

0

� H

00

+ !

00

ÆI +

�

0

4

(ÆI)

2

; ÆI � I � I

0

: (81)
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Here, the resonant ation I

0

, as well as other resonant values

H

00

� H

0

(I = I

0

); !

00

�

dH

0

dI

�

�

�

�

I=I

0

;

�

0

� 2

d!

dI

�

�

�

�

I=I

0

= 2

!

00

I

0

�

0

; �

0

� �(I = I

0

) (82)

are given by resonane ondition (79). It is worthwhile noting that urvature �=2 is determined by the nonlinear-

ity parameter (56) taken at resonane ondition I = I

0

(see Figs. 5). The energy-dependene of the urvature is

haraterized by the following asymptotis:

� � �

2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(2�)

�2

�

1�

1

4

H

H



�

at H �H



;

�

1�

H

H



�

�1

�

ln

16

1�H=H



�

�3

h

1�

1�H=H



4

ln

16

1�H=H



i

at H



�H � H



;

�

H

H



� 1

�

�1

�

ln

16

H=H



�1

�

�3

h

1 +

H=H



�1

4

ln

16

H=H



�1

i

at H�H



�H



;

1

2�

2

�

1�

H



H

�

at H �H



:

(83)

As a result, Hamilton equations (25) arrive at the

equation type of Eq. (36) for nonliniar pendulum:

�

#+ !

2

m

sin# = 0: (84)

Here, instead of the proper frequeny !

0

, the value !

m

stands for modulation frequeny being determined as fol-

lows:

!

m

=

�

A�f

00

2

�

1=2

: (85)

Respetively, the maximum value of the resonant energy

variation and orresponding magnitude for the ation

ÆH

m

= Af

00

; ÆI

m

=

�

4Af

00

�

�

1=2

(86)

are determined by Eqs. (80), (81) to haraterize a reso-

nane window.

Thus, we obtain the following piture of nonlinear res-

onane. At given magnitudes of the frequeny 
 of ex-

ternal signal, the ondition (79) �xes the system energy

H as follows:

�

q

!

�2

0

+ (2
=m

n

!

0

)

2

= K(�)

�

1 at � � 1;

�

�1

at � � 1:

(87)

Aording to Fig. 9, the orresponding dependene

H

00

(
) has two branhes, the lower of whih relates to

the �nite motion, the upper | to the in�nite one. Energy

H

00

related to the former falls down monotonously from

the upper magnitude �xed by ondition K(�) = �!

0

to

zero within interval 0 < 
 < 


m

, where maximum fre-

queny is




m

= m

n

!

0

p

1� (2!

0

)

�2

: (88)

Respetively, energy of the in�nite motion arises

monotonously from minimal magnitude �xed at 
 = 0

by ondition �

�1

K(�

�1

) = �!

0

to H

00

!1 at 
!1.

Fig. 9. Dependene of the nonlinear pendulum energy on

the external signal frequeny: urve 1 relates to �nite motion,

urve 2 | to in�nite one.
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Using abbreviated notation

~




2

� 1 + (2=m

n

)

2




2

; (89)

one obtains the following asymptotis:

H

00

� H



(

1� 16 exp

h

�2�(!

0

=

~


)

i

at 
� 


m

;

4

�

1� (2!

0

)

�2

�




m

�





m

at 0 < 


m

� 
� 


m

(90)

for the �nite motion and

H

00

� H



8

<

:

1 + 16 exp

h

�2�(!

0

=

~


)

i

at 
� 


m

;

�

~




2!

0

�

2

at 
� 


m

(91)

for the in�nite one. Frequeny-dependenies of the resonant magnitudes I

0

(
), !

00

(
), �(
), �

0

(
) of the ation,

the proper frequeny, the nonlinearity parameter and the double urvature of urve H

0

(I) are depited in Figs. 10,

11. In the ase of the �nite motion, these dependenies are haraterized by the following asymptotis:

Fig. 10. Frequeny dependenies of the ation (a) and the

proper frequeny (b) for nonlinear pendulum: urve 1 relates

to �nite motion, urve 2 | to in�nite one.

Fig. 11. Frequeny dependenies of the nonlinearity pa-

rameter (a) and urvature of the dependene H(I) (b) for

nonlinear pendulum: urve 1 relates to �nite motion, urve 2

| to in�nite one.

I

0

� 8!

0

(

�

�1

n

1� 8�(!

0

=

~


) exp

h

�2�(!

0

=

~


)

io

at 
� 


m

;

�

1� (2!

0

)

�2

�




m

�





m

at 0 < 


m

� 
� 


m

;

(92)
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!

00

� !

0

(

~




2!

0

at 
� 


m

;

1�

�

1� (2!

0

)

�2

�




m

�





m

at 0 < 


m

� 
� 


m

;

(93)

�

0

�

1

4

8

<

:

�

~




2!

0

�

2

n

~




8�!

0

exp

h

2�(!

0

=

~


)

i

� 1

o

at 
� 


m

;

1�

�

1� (2!

0

)

�2

�




m

�





m

at 0 < 


m

� 
� 


m

:

(94)

Respetively, for the in�nite motion one has:

I

0

� 2!

0

(

4

�

n

1 + 8�(!

0

=

~


) exp

h

�2�(!

0

=

~


)

io

at 
� 


m

;

~


=!

0

at 
� 


m

;

(95)

!

00

�

~


=2 at 
� 


m

and 
� 


m

; (96)

�

0

�

1

2

(

1

2

�

~




2!

0

�

2

n

~




8�!

0

exp

h

2�(!

0

=

~


)

i

+ 1

o

at 
� 


m

;

1� (2!

0

=

~


)

2

at 
� 


m

:

(97)

At !

0

� 1=2, when 


m

� m

n

!

0

, e�etive frequeny

~




may be replaed by the short-ut term (2=m

n

)
� 1.

If the osillations were linear in harater, the reso-

nane might realize within window loated between en-

ergies H

00

� ÆH

m

and H

00

+ ÆH

m

. In this window, the

osillations would have single frequeny $ determined

by Eq. (79) and would be modulated with the frequeny

!

m

given by Eq. (85). However, nonlinearity e�ets de-

sribed in Subsetion III.B arrive at expanding the har-

monis number to magnitude N

0

= !

0

=!

00

> 1 and nar-

rowing the energy window to the width H

m

� 2!

2

m

. So,

nonlinear resonane is realized for a share of nonlinear

osillations determined by the ratio

H

m

ÆH

m

= �

0

= 2

!

00

I

0

�

0

; (98)

where Eqs.(82), (85), (86) are taken into aount. As it is

seen from Fig. 11, the double urvature �(
) dereases

monotonously with the external frequeny growth within

the interval 0 < 
 < p


m

. This means that preferene

of the nonlinear resonane dereases with this frequeny

growth.

V. STOCHASTIC RESONANCE CONDITIONS

The stohasti resonane is known to be observed at

ondition (79), where m

n

= (2n)

�1

, n = 1; 2; : : :. This

ondition means that during a period T = 2�=
 of the

external osillation the stohasti system has a time to

overome an energy barrier �F even times 2n [1℄. The

proper frequeny of stohasti resonane ! � 2�r

K

is

redued to the Kramers' rate r

K

given by Eq. (2). This

ase di�ers from the above onsidered ase of nonlinear

pendulum by only inserting temperature T instead of

the system energy H. In the ase of the double well po-

tential onsidered in Subsetion III.C, the energy barrier

�F = (!

0

=2)

2

is related to the temperature by hara-

teristi parameter �

2

� 4T=!

2

0

. Then, the frequeny of

the barier overoming is de�ned by equation

! = !

K

exp(��

�2

); �

2

� 4T=!

2

0

(99)

instead of the orresponding equation (46) for nonlinear

pendulum. Taking into onsideration dissipation e�ets,

we obtaine the following ondition of the stohasti res-

onane:

T

0

=

!

2

0

2

�

ln

(2!

K

)

2

1 + (4n)

2




2

�

�1

: (100)

As is shown in Fig. 12, the resonant temperature T

0

(
)

arises monotonously, taking inde�nite values at hara-

teristi frequeny




m

=

!

K

2n

p

1� (2!

K

)

�2

: (101)

Basing on the dependene T

0

(
) replaing the above

used relation H(
), we are in position to onsider the
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A. I. OLEMSKOI

stohasti resonane onditions in analogy with the non-

linear pendulum.

Here, instead of Eqs. (40), (42), (46), the equalities

(65), (69), (70) determine the resonant magnitudes I

0

,

!

00

, �, � of the ation, the proper frequeny, the non-

linearity parameter and the double urvature of the res-

onant dependene H

00

(I). Corresponding dependenies

on the temperature are depited in Figs. 13, 14 to show

the inde�nite inrease of the proper frequeny and the a-

tion with tending to the harateristi magnitude (101).

Related values of the nonlinearity parameter and the ur-

vature derease thereby.

Fig. 12. Dependene of the stohasti resonane tempera-

ture on the external signal frequeny.

Fig. 13. Frequeny dependenies of the ation (a) and the

proper frequeny (b) of the stohasti resonane.

Fig. 14. Frequeny dependenies of the nonlinearity pa-

rameter �

0

and urvature �

0

of the dependene H(I) at

stohasti resonane.

VI. CONCLUSION

The observed piture of nonlinear osillations shows

that with the energy inrease the single harmoni osil-

lation transforms to a harmonis superposition, whose

number inreases monotonously to in�nity, whereas fre-

queny and amplitude derease to zero. In other words,

with tending to a threshold energy, transition of the har-

moni osillations into a set of solitons is observed. We

have shown that suh a behaviour, being typial for both

the nonlinear pendulum and the double well potential, is

haraterized by the nonlinearity parameter (56).

Our hoie of the ation S and angle # as priniple

variables is aused by the fat that Hamiltonian of free

nonlinear osillations does not depend on the angle #.

In aordane with Eq. (84), swithing on external har-

moni signal arrives at a modulation of nonlinear osilla-

tions with the harateristi frequeny (85) and nonlin-

earity parameter (82). It appears that the nonlinearity

e�et narrows the resonane window to the width �xed

by ratio (98) that is redued to the urvature � of the

dependene H(I). Aording to the dependene �

0

(
)

depited in Fig. 14, this window is shrunk with the ex-

ternal frequeny growth. As a result, preferene of the

stohasti resonane dereases with the growth of fre-

queny 
 of the external signal.
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NEL�N��NA TEOR�� STOHASTIQNOGO REZONANSU

O. �. Olmsko�
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vul. Rims~kogo-Korsakova, 2, 40007, Sumi, UkraÝna

Teor�� nel�n��nogo stohastiqnogo rezonansu zbudovana na osnov� statistiqnoÝ teor�Ý pol�, �ka vikoris-

tovu zm�nn� \d��{kut". Dl� nel�n��nogo ma�tnika ta dvo�mnogo poten��lu zna�deno �vn� virazi dl� d�Ý,

vlasnoÝ qastoti ta parametra nel�n��nosti zale�no v�d ener��Ý sistemi ta qastoti zovn�xn~ogo si�nalu.
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