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Theory of nonlinear resonan
e, in
luding sto
hasti
 one, is developed on the basis of the statisti
al

�eld theory and using variables a
tion-angle. Expli
it expressions of a
tion, proper frequen
y and

nonlinearity parameter as fun
tions of the system energy and the external signal frequen
y are

found for the 
ases of nonlinear pendulum and double well potential.
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I. INTRODUCTION

Sin
e the late 1980s, a variety of theoreti
al and exper-

imental papers appears devoted to the study of sto
hasti


resonan
e and dis
overing its new appli
ations in di�er-

ent �elds of s
ien
e and engineering [1℄. Nowadays, the

sto
hasti
 resonan
e is a well established phenomenon

displayed in a bistabile system simultaneously driven by

noise and a periodi
 signal. There appears to be an op-

timal noise level at whi
h the system exhibits almost

periodi
 transitions from one state to other with the

frequen
y of the 
oherent signal. The enhan
ement of

a weak input signal has been suggested to 
hara
terize

by the signal-to-noise ratio (SNR) that takes a maximum

value at an optimal noise level, i. e., a behaviour whi
h

is reminis
ent of a usual resonan
e phenomenon.

The observed enhan
ement is not due to the mat
h-

ing of two frequen
ies, but rather to a 
ooperative e�e
t

of the 
oherent signal and the noise. This pe
uliarity is

re
e
ted formally as follows. The kinemati
 
ondition

�r

K

= 
 (1)

relates the frequen
y of the 
oherent signal 
 to the

Kramers rate r

K

, whi
h is the fun
tion of the noise level

type of temperature T :
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00
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Here, the prime denotes the derivation with respe
t to

a generalized 
oordinate x, F (x) is a related depen-

den
e of the e�e
tive energy, whi
h has a minimum at

the point x

0

, a maximum at x

b

and a barrier of the

height �F � F (x

b

) � F (x

0

); m is a parti
le mass, 
 is

a kineti
 
oeÆ
ient. Physi
ally, the kinemati
 
ondition

means that for every frequen
y 
, the sto
hasti
 system


ould pi
k out suitable noise level T . However, the value

SNR [1℄

SNR / T

�2

r

K

(T ); (3)

being found on the basis of the statisti
al theory, displays

the sto
hasti
 resonan
e maximum at the temperature

T

m

=

1

2

�F; (4)

whose value is �xed by the energy barrier �F , but not

the external signal frequen
y 
.

It is easy to see that the reason of this 
ontradi
tion is

using the linear approa
h for the SNR determination. In

this paper, we develop the theory of nonlinear resonan
e,

in
luding the sto
hasti
 one. The main ingredients of our

approa
h are: (i) the noise a

ounting by means of intro-

du
tion of a generalized momentum and (ii) passage to

the variables a
tion-angle, being usual at studying non-

linear phenomena [2℄. Se
tion II is devoted to the �rst of

these approa
hes on the basis of the statisti
al �eld the-

ory [3℄. Se
tion III 
ontains details of examination of non-

linear resonan
e in terms of variables a
tion{angle. The

latter are tested on the example of the simplest model

of a harmoni
 os
illator. Then, expli
it expressions of

a
tion, proper frequen
y and nonlinearity parameter as

fun
tions of the system energy are found for the 
ases

of nonlinear pendulum, double well potential and non-

linear pendulum under 
onstant external �eld. Assum-

ing the proper frequen
y be identi
al to the frequen
y of

external signal, we examine resonan
e 
onditions of the

nonlinear pendulum in Se
tion IV and the 
ase of the

sto
hasti
 resonan
e in Se
tion V. Con
lusion in Se
tion

VI shows that the above mentioned 
ontradi
tion is re-

solved be
ause the nonlinear resonan
e 
ondition �xes

the proper frequen
y as fun
tion of the external one, but

not the noise level, as in the linear 
ase.

II. BASIC EQUATIONS

Let us study a hydrodynami
 mode amplitude x(r; t)

whi
h spa
e-time dependen
e is determined by the

Langevin equation
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NONLINEAR THEORY OF STOCHASTIC RESONANCE

_x(r; t) = 
f(x; t) + �(r; t); (5)

whi
h 
an be interpreted in the Ito sense. Here the dot

indi
ates the di�erentiation with respe
t to time t, r is


oordinate, 
 is a kineti
 
oeÆ
ient, f(x; t) is a for
e


onjugated to the sto
hasti
 variable x, and �(r; t) is a

sto
hasti
 term having the form of white noise:

h�(r; t)i = 0; h�(r; t)�(0; 0)i = TÆ(r)Æ(t); (6)

where the angle bra
kets denote averaging and T is a

noise intensity of temperature type [4℄. For the system

under 
onsideration, the total for
e

f(x; t) = f

0

(x) + f

ext

(t) (7)


onsists of the usual internal term

f

0

(x(r; t)) = �

ÆF

Æx(r; t)

;

Ffx(r; t)g =

Z

�

F (x) +

�

2

jrxj

2

�

dr; (8)

where F (x) is a system potential per unit volume, � > 0

is a 
onstant, r � �=�r, and external harmoni
 term

f

ext

(t) = A 
os(
t+ ') (9)

being determined by an amplitude A, frequen
y 
, and

an initial phase '. It is now 
onvenient to go over to di-

mensionless quantities by referring the 
oordinate r to a


hara
teristi
 spa
ing a, the time t and the inverse fre-

quen
y 


�1

to the s
ale a

3

=T
, the amplitude A, the

internal for
e f

0

, and the quantity F to T=a

3

, and the


u
tuation � to T
=a

3

. In this 
ase, Eq. (5) 
an be writ-

ten as follows:

_x = [r

2

x+ f(x; t)℄ + �(t);

f(x; t) = f

0

(x) + f

ext

(t);

f

0

� ��F=�x;

f

ext

(t) = A 
os(
t + '): (10)

The range of appli
ability of the Ginzburg{Landau ap-

proximation (8) is determined by the 
ondition a

ording

to whi
h the s
ale a is mu
h smaller than the 
orrelation

length � = �

1=2

j�

2

F=�x

2

j

�1=2

x=0

[6℄. Averaging Eq. (5)

and disregarding 
orrelations, we obtain the Landau{

Khalatnikov equation for the order parameter hx(r; t)i.

The standard �eld s
heme [3℄ is based on the investi-

gation of the generating fun
tional 
orresponding to the

sto
hasti
 equation (10). It is a fun
tional Lapla
e trans-

form

Z fu(r; t)g =

Z

Z fx(r; t)g exp

�

Z

ux drdt

�

Dx(r; t)

(11)

for the generalized partition fun
tion

Z fx(r; t)g =

*

Y

(r;t)

Æ

�

_x(r; t)�r

2

x(r; t)� f(r; t)� �(r; t)

	

det

�

�

�

�

Æ�(r; t)

Æx(r; t)

�

�

�

�

+

�

: (12)

Here, the argument of the Æ-fun
tion redu
es to the

Langevin equation (10), and the determinant, providing

the passage from the 
ontinual integration over �(r; t) to

x(r; t), is equal to the unity within the Ito 
al
ulus.

In the framework of the standard approa
h [3℄, the

n-fold variation of the fun
tional (11) with respe
t to

the auxiliary �eld u(r; t) allows one to �nd the n-th

order 
orrelator for the hydrodynami
 mode amplitude

x(r; t) and to 
onstru
t the perturbation theory. How-

ever, we shall pro
eed from expression (12) for the 
on-

jugated fun
tional Zfx(r; t)g, variation of whi
h leads

to the most probable realization of the sto
hasti
 �eld

x(r; t). Obviously, in the framework of the mean-�eld ap-

proximation fun
tional (12) redu
es to the dependen
e

Zfhx(r; t)ig, whi
h 
orresponds to the Landau free en-

ergy Ffhx(r; t)ig = �T lnZfhx(r; t)ig [6℄.

Passing to the 
onsideration of fun
tional (12), we rep-

resent the Æ-fun
tion in the integral form

Æ fx(r; t)g =

i1

Z

�i1

exp

�

�

Z

px drdt

�

Dp: (13)

Then, averaging over the noise � with using the Gauss

distribution

P

0

f�g / exp

�

�

1

2

Z

�

2

(r; t) drdt

�

; (14)

whi
h 
orresponds to 
ondition (6), and taking into a
-


ount Eq. (13), we redu
e fun
tional (12) to the standard

form

9
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Z fx(r; t)g =

Z

Pfx(r; t); p(r; t)gDp; P � e

�S

: (15)

Here, probability distribution Pfx; pg is given by a
tion

S =

R

L drdt, where Lagrangian is

L = p

�

_x�r

2

x� f

�

� p

2

=2: (16)

Further, we use Euler equations

�L

�x

�

d

dt

�L

� _x

�r

�L

�rx

+r

2

�L

�r

2

x

=

�R

� _x

;

x � fx; pg; (17)

where dissipative fun
tion is R =

1

2

_x

2

. As a result, equa-

tions for the most probable realizations of the sto
hasti


�elds x(r; t), p(r; t) take the form:

_x = (r

2

x+ f) + p; (18)

_p = �r

2

p� f

0

p� _x; (19)

where prime stands for derivation with respe
t to vari-

able x. A 
omparison of (18) with the sto
hasti
 equation

(10), having the same form, shows that the �eld p(r; t) is

the most probable value of the 
u
tuations �(r; t) of the


onjugate for
e. Di�erentiating Eq. (18) with respe
t to

the time and inserting result into Eq. (19), we obtain the

equation of motion as follows:

�x+ (1 + f

0

) _x = 2f

0

r

2

x+

_

f + ff

0

; (20)

where only terms of the lowest order of spatiotemporal

derivations are kept.

Using the des
ribed �eld theory allows us to pass from

the di�erentiation sto
hasti
 equation of motion (5) of

the �rst order to the equivalent system of two di�eren-

tiation equations (18), (19) of the same order, or to the

single di�erentiation equation (20) of the se
ond order.

Further, we need in using Hamiltonian H = p _x�L that

depends on the �eld variable x and the 
onjugate mo-

mentum p. A

ording to Eq. (16), Hamiltonian 
an be

written in the form

H(x; p; t) = H

0

(x; p) +H

1

(p; t);

H

0

= �rxrp+

1

2

p

2

+ pf

0

;

H

1

= Ap 
os(
t+ '): (21)

It is easy to see that these expressions, being inserted

into dissipative Hamilton equations

_x =

�H

�p

�r

�H

�rp

; (22)

_p = �

�

�H

�x

�r

�H

�rx

�

�

�R

� _x

;

lead to the equations of motion (18), (19).

It is very important to take into a

ount further that

the most probable amplitude p of 
u
tuations varies near

the magnitude �f

0

, so that we ought to pass to os
illat-

ing momentum: p+ f

0

! p. Moreover, as it is seen from

the Fourier transformation (13), the momentum p takes

imaginary magnitudes, so that the power f

0

has to be


onsidered as the imaginary one, as well, and the sign in

front of the last term ofH

0

in Eqs. (21) must be reversed

[5℄:

H(x; p; t) = H

0

(x; p) +H

1

(p; t);

H

0

=

1

2

p

2

+

1

2

f

2

0

;

H

1

= �Af

0


os(
t+ '); (23)

where gradient terms are suppressed for brevity.

III. NONLINEAR RESONANCE IN TERMS

OF VARIABLES ACTION{ANGLE

To analyze the set of equations (18), (19), it is 
onve-

nient to use the phase portrait method. However, in our


ase su
h a portrait 
ows in the 
ourse of the time due to

the appearan
e of the time-dependent external for
e (9).

To avoid this time-variation in phase portrait we need to

pass from the above used variables x, p to the new ones:

a
tion I and angle # de�ned as follows [2℄:

I(H) �

1

2�

I

p(x;H) dx;

# �

�S(x; I)

�I

;

S(x; I) �

x

Z

0

p(x

0

;H(I)) dx

0

; (24)

where the shorted a
tion S(x; I) plays a role of the gen-

eralized fun
tion. The 
onvenien
e of the so-introdu
ed

variables is that the zero Hamiltonian H

0

in Eqs. (23)

does not depend on the angle #, so that the 
orrespond-

ing phase portrait is stable in the 
ourse of the time. The

equations of motion for the generalized 
oordinate # and

the 
onjugate momentum I read (
f. Eqs. (23))

_

# =

�H

�I

;

_

I = �

�H

1

�#

; (25)

where non-homogeneity and dissipation e�e
ts are sup-

pressed. A

ording to the se
ond of these equations the

a
tion I is a 
onstant if an external perturbation is ab-

sent.

10



NONLINEAR THEORY OF STOCHASTIC RESONANCE

A. Harmoni
 os
illator

To re
all a physi
al meaning of the variables #, I

introdu
ed, let us 
onsider �rstly the simplest 
ase of

harmoni
 os
illator. In this 
ase, the internal power in

Eq. (23)

f

0

= �!

0

x (26)

is linear and �xed by a proper frequen
y !

0

. Then, the

Hamilton equations (23) lead to the equation of damping

os
illation under external power:

�x+ _x+ !

2

0

x = �A!

0


os(
t+ '): (27)

This equation di�ers 
ru
ially from Eq. (20) be
ause

the former 
orresponds to the momentum origin p = 0,

whereas the latter | to p = �f

0

. A

ording to Eq.(27),

dissipation shifts resonan
e frequen
y from proper mag-

nitude !

0

to value

$ =

q

!

2

0

� 2

�2

; (28)

whereas a maximum real part of 
hara
teristi
 relation

x=A relates to frequen
y

!

max

=

q

!

2

0

� 2

�1

: (29)

Su
h a 
hara
ter of the dissipation in
uen
e keeps at a
-


ounting for anharmoni
ity e�e
ts if under parameter !

0

one means a proper frequen
y !(H) of nonlinear os
illa-

tions depending on the system energy.

To demonstrate advantages of using variables a
tion-

angle, let us 
al
ulate now their magnitudes at the 
ondi-

tion that external power in Hamiltonian (23) is swit
hed

o�. Then, the �rst Eqs. (24), (25) give immediately

I =

H

!

0

;

_

# = !

0

: (30)

Respe
tively, the shorted a
tion and angle takes the

form:

S = I

2

4

ar
sin

�

x

x

0

�

+

x

x

0

s

1�

�

x

x

0

�

2

3

5

;

# = ar
sin

�

x

x

0

�

; x

2

0

�

2I

!

0

: (31)

The last of Eqs. (30) gives the usual relation between the

angle and the time

# = !

0

t+ #

0

; (32)

the using of whi
h arrives at the harmoni
 laws of motion

x = (2H=!

2

0

)

1=2

sin(!

0

t+ #

0

);

p = (2H)

1=2


os(!

0

t+ #

0

): (33)

B. Nonlinear pendulum

The simplest model of the system with the possibility

of the barrier over
oming is known to be the nonlinear

pendulum (in this Subse
tion, we 
onsider the pendulum

without a fri
tion and an external perturbation). Here,

Hamiltonian takes the form

H

0

=

1

2

p

2

+ 2!

2

0

sin

2

(x=2); (34)


orresponding to the power f

0

= �2!

0

sin(x=2) in

Eqs. (23). Hamilton equations (23) arrive at the system

_x = p; _p = �!

2

0

sinx: (35)

Combination of these equations gives the nonlinear one:

�x+ !

2

0

sinx = 0: (36)

This equation is non-solvable in analyti
al form and we

ought to use the phase portrait method. The form of this

portrait follows from Eqs. (35) to be shown in Fig. 1a. It

is seen that the system behaviour is governed by energy

H with respe
t to the 
riti
al value H




� 2!

2

0

. At 
on-

dition H < H




, the system moves �nitely, whereas with

over
oming the 
riti
al energy H




it passes to in�nite

motion. Let us des
ribe su
h a behaviour quantitatively.

In this line, the simplest topi
 is the solution 
orre-

sponding to separatrix, for whi
h the energy is 
riti
al

one: H = H




. In su
h a 
ase, the de�nition (34) gives the

separatrix form as follows:

p = �2!

0


os(x=2): (37)

Then, the �rst of Eqs. (35) arrives at the separatrix law

of motion

x = 4ar
tan exp(�!

0

t)� �; (38)

where the di�erent signs 
orrespond to upper and lower

bran
hes of the separatrix. This dependen
e 
an be

written in mu
h more elegant form of 
os(x=2) =

[
osh(�!

0

t)℄

�1

, the insertion of whi
h into Eq. (37) ar-

rives at the famous soliton dependen
e

p = �

2!

0


osh(!

0

t)

; (39)

11
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where 
hoi
e of signs 
orresponds to solitons moving to

right or left sides. In a

ordan
e with the motion laws

(38), (39), the system behaviour on the separatrix (37)

is as follows: at time t = �1 the system is lo
ated in

the saddles S

�

, where the 
oordinate x = �� and the

momentum p = 0. In the 
ourse of the time within the

domain �1 < t < 1, the former arises monotonously

from �� to �, whereas the latter in
reases at t < 0 and

de
reases at t > 0. It is 
hara
teristi
al that 
oordinate

variation and �nite magnitudes of the momentum take

pla
e within the domain �t � !

�1

0

lo
ated near the time

t = 0. The forms of the 
orresponding kink x(t) and

soliton p(t) are depi
ted in Fig. 2.

Fig. 1. Phase portraits for nonlinear pendulum (a) and

double well potential (b).

Fig. 2. (a) Motion laws for nonlinear pendulum (
urve 1)

and double well potential (
urve 2); (b) Corresponding time

dependen
ies of the 
onjugate momentum.

General solution of Eqs. (35) 
an be obtained with us-

ing the variables a
tion-angle de�ned by Eqs. (24). It is


onvenient to introdu
e a parameter

�

2

�

1

2

H

!

2

0

�

H

H




; H




� 2!

2

0

; (40)

taking the magnitude � = 1 at 
riti
al energy H = H




,

and a new variable � de�ned by equalities

sin � �

�

�

�1

sin(x=2) at � � 1;

sin(x=2) at � � 1:

(41)

Then, the generating fun
tion is expressed in terms of the

in
omplete Ja
obian ellipti
 integrals F (�; �), E(�; �) of

the �rst and se
ond orders [7℄ as follows:

S(x; I) = 4!

0

�
�

E(�; �)� (1� �

2

)F (�; �)

�

at� � 1;

�E(�; 1=�) at� � 1:

(42)

Di�erentiation of these equalities with respe
t to I ar-

rives at expressions for the angle # that generalyzes the

last equality (31) (we supress these expressions be
ause

of their very 
ompli
ated form).

Fortunately, formulas for a
tion I � 4S(� = �=2)=2�

follow from Eqs. (42) immediately and are expressed

by means of the 
omplete Ja
obian ellipti
 integrals

K(�) � F (� = �=2; �), E(�) � E(� = �=2; �). Taking

12
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into a

ount 
orresponding dependen
es shown in Fig. 3,

we shall need further in using asymptoti
s of these inte-

grals [7℄

K(�) �

(

�

2

�

1 +

�

2

4

�

at �� 1;

ln

4

p

1��

2

at 1� �

2

� 1;

(43)

E(�) �

8

<

:

�

2

�

1�

�

2

4

�

at �� 1;

1 +

1��

2

2

ln

4

p

1��

2

at 1� �

2

� 1:

(44)

Resulting dependen
e I(H) depi
ted in Fig. 4 shows

monotoni
 in
rease from I = 0 at H = 0 to in�nity with

the logarithmi
al in
e
tion at the 
riti
al energy H




.

This behaviour is 
hara
terized by the following asymp-

toti
s:

I � 2!

0

8

>

>

>

>

>

<

>

>

>

>

>

:

H=H




at H �H




;

4

�

�

1�

1�H=H




4

ln

16

1�H=H




�

at 0 < H




�H � H




;

4

�

�

1 +

H=H




�1

4

ln

16

H=H




�1

�

at 0 < H�H




�H




;

2

q

H

H




�

1�

H




4H

�

at H �H




:

(45)

Fig. 3. Form of Ja
obian ellipti
 fun
tions and integrals.
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A

ounting the properties of the ellipti
 integrals [7℄,

we obtain for the proper frequen
y ! �

_

# determined by

the �rst equality (25) in the following form:

! =

�

2

!

0

K(��)

�

1 at � � 1;

� at � � 1;

(46)

where

�� �

�

� at � � 1;

�

�1

at � � 1:

(47)

As it is seen in Fig. 4, the proper frequen
y falls down

from the bare magnitude !

0

at the minimal energy H = 0

to zero at H = H




and then, after an in�nitely sharp


usp, the value ! in
reases monotonously. A

ording to

Eqs. (44), su
h a behaviour is presented by asymptoti
s:

! � !

0

8

>

>

<

>

>

:

1�

H

4H




atH �H




;

�

�

ln

16

j1�H=H




j

�

�1

at jH �H




j � H




;

q

H

H




�

1�

H




4H

�

atH �H




:

(48)

On the other hand, de�nitions (34), (41) arrive at time-

dependen
ies of the momentum:

Fig. 4. Energy dependen
ies of the a
tion and the proper

frequen
y for nonlinear pendulum.

p = �2!

0

�

�


os � = 
n(t; �) at H � H




;

p

1� �

�2

sin

2

� = dn(t; �

�1

) at H � H




;

(49)

where �

2

� H=H




; 
n(t; �), dn(t; �

�1

) are the Ja
obian

ellipti
 fun
tions shown in Fig. 3. With a

ounting for

Eqs. (41), these expressions pass to Eqs. (37), (39) at

H = H




.

To elu
idate the system behaviour with energy in-


rease, let us expand the dependen
es (49) into Fourier

series [2℄

p = �8!

8

>

<

>

:

1

P

n=1

a

n


os[(2n� 1)!t℄ atH � H




;

1

4

+

1

P

n=1

a

n


os(n!t) atH � H




;

(50)

where one denotes

a

n

�

(

k

n�1=2

1+k

2n�1

atH � H




;

k

n

1+k

2n

atH � H




;

(51)

k � exp

�

��

K

0

K

�

;

K

0

� K(

p

1� ��

2

); K � K(��);

parameter �� is determined by Eq. (47). A

ording to

Eqs. (44), one has asymptoti
s

k �

�

�

2

=32 at�� 1;

k � exp(��=N ) at 1� �

2

� 1;

(52)

where number N � !

0

=! is asymptoti
ally as follows:

N �

�

1 atH �H




;

1

�

ln

16H




jH�H




j

at jH �H




j � H




:

(53)

Thus, at low energies a single harmoni
s prevails to 
or-

respond to the 
oeÆ
ient of the Fourier series (50)

a

n

�

�

H

32H




�

n�1=2

; H �H




: (54)
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Respe
tively, near the 
riti
al energy, where the Fourier

series gets the harmoni
s number N � 1, one obtaines

a

n

� 8!

�

1 at 1 < n < N;

exp[��(n=N )℄ at n > N:

(55)

As is known [2℄, the above des
ribed behaviour is 
har-

a
terized by nonlinearity parameter

� �

�

�

�

�

d ln!

d ln I

�

�

�

�

: (56)

A

ording to (42), (46), this parameter is determined by

the following equation:

� =

8

>

<

>

:

1��

2

�

2

h

1

1��

2

E(�)

K(�)

� 1

i

2

at � � 1;

�

2

�

2

�1

�

E(�

�1

)

K(�

�1

)

�

2

at � � 1:

(57)

As it is shown in Fig. 5a, the non-linearity parameter

takes on the value � = 0 at H = 0 and then goes to

in�nity at the 
riti
al energy H




, tending to magnitude

� = 1 at H ! 1. Su
h a behaviour is 
hara
terized by

the following asymptoti
s:

Fig. 5. Energy dependen
ies of the nonlinearity parameter

(a) and 
urvature of the dependen
e H(I) (b) for nonlinear

pendulum.

� �

8

>

>

>

>

<

>

>

>

>

:

1

4

(H=H




) at H �H




;

4

�

1�

H

H




�

�1

�

ln

16

1�H=H




�

�2

h

1�

1�H=H




2

ln

16

1�H=H




i

at 0 < H




�H � H




;

4

�

H

H




� 1

�

�1

�

ln

16

H=H




�1

�

�2

h

1 +

H=H




�1

2

ln

16

H=H




�1

i

at 0 < H�H




�H




;

1�H




=H at H �H




:

(58)

As a result, the observed pi
ture of nonlinear os
illa-

tion is as follows. At low energy, when H � H




, only

single harmoni
 with the frequen
y ! � !

0

keeps in the

Fourier series (50), so that the low-energy limit redu
es

to above 
onsidered 
ase of harmoni
 os
illation (see Sub-

se
tion III.A). With the energy in
rease, the harmoni
s

number N arises in a manner of the dependen
e K(�)

shown in Fig. 3, taking logarithmi
ally large magnitudes

(53) near the 
riti
al valueH




� 2!

2

0

. On the other hand,

the os
illation frequen
y (48) and the harmoni
 ampli-

tudes (55) de
rease monotonously to zero. Thus, one 
an

mean in a 
oarse manner that, with energy in
rease in

the domain 0 � H � H




, the single harmoni
 os
illation

transforms to a harmoni
s superposition, whose number

N in
reases monotonously to in�nity, whereas frequen
y

! and amplitude a

n

� 8! de
rease to zero. Just under

the 
riti
al energy (0 < H




� H � H




) the system be-

haviour is 
hara
terized by a set of solitons of di�erent

signs, whereas just above H




the signs of these solitons


oin
ide (see Eqs. (49)). Remarkable pe
uliarity of su
h

soliton set is that the width of a single soliton is re-

du
ed to �t � !

�1

0

, whereas the distan
e between them

is N�t � !

�1

� !

�1

0

. Just for 
riti
al energy H




, the

system behaviour is 
ara
terized by the separatrix solu-

tion (39) that redu
es to the single soliton.

C. Double well potential

Taking into a

ount the use in the sto
hasti
 resonan
e

problem [1℄, let us 
onsider now the os
illation in a dou-

ble well potential. We will show that, in terms of the vari-

15
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ables a
tion{angle, the di�eren
e with the above studied


ase of the nonlinear pendulum is quite quantitative, but

not qualititative.

The basi
 model is presented by the potential

F =

!

2

0

4

(1� x

2

)

2

; (59)


ounting o� the energy at the equilibrium positions

x = �1, !

0

is bare frequen
y. In this 
ase, Hamilton

equations (23) take the forms type of Eqs. (35):

_x = p; _p = !

2

0

x(1� x

2

): (60)

Near the saddle point x = 0, p = 0, 
orresponding phase

portrait (see Fig. 1b) has the form di�ering from the one

depi
ted in Fig. 1a for a nonlinear pendulum. This form

is 
hara
terized by the separatrix (
f. Eq. (37))

p = �!

0

x

p

1� x

2

=2; (61)


orresponding to the 
ondition H = (!

0

=2)

2

. Similarly

to the 
ase of nonlinear pendulum, the �rst of Eqs. (60)

arrives at the separatrix law of motion:

x = �2

1=2

p

1� [sinh(!

0

t)℄

2

: (62)

For the time-dependen
e of the momentum, one has

double-soliton solution (
f. Eq. (39))

p = �2

1=2

!

0

sinh(!

0

t)

p

1� [sinh(!

0

t)℄

2

; (63)

where the 
hoi
e of signs 
orresponds to solitons moving

to the right or left sides. A

ording to the motion laws

(62), (63) | on the one hand, and Eqs. (38), (39) |

on the other, the di�eren
e between the separatrix solu-

tions for double well potential and nonlinear pendulum

is that, in the 
ourse of the time near the point t = 0,

the momentum gains two peaks of di�erent signs in the

former 
ase and the single peak in the latter.

To introdu
e the variables a
tion{angle, it is 
onve-

nient to use parameter � of the type given by Eq. (40)

and a new variable � determined by the equality type of

(41):

�

2

�

H

H




; H




�

�

!

0

2

�

2

; (64)

x

2

� 1�

�

� sin � at � � 1;

sin � at � � 1:

(65)

Moreover, we shall need in using integrals

I

n

(�; �) �

�

Z

0

(1 � ��)

n�

1

2

p

1� �

2

d�; � � 1;

n = 0;�1;�2; : : : at � � 1;

J

n

(�; �) �

�

Z

0

(1� �

�2

�

2

)

1

2

�n

p

1� �

d�; � � 1;

n = 0; 1; 2; : : : at � � 1: (66)

Fig. 6. Form of the integrals (66).

The form of dependen
ies I

n

(�) � I

n

(� = 1; �),J

n

(�) �

J

n

(� = 1; �) is depi
ted in Fig. 6, the 
orresponding

asymptoti
s read:

I

n

(�) �

�

2

�

1

2

(2n� 1)�; �� 1;

J

n

(�) � 2 +

8

15

(2n� 1)�

�2

; �� 1: (67)

The integrals are subje
ted to simple derivation rules

�

dI

n

d�

=

�

n�

1

2

�

(I

n

� I

n�1

) ;

�

dJ

n

d�

= (2n� 1) (J

n

�J

n�1

) ; (68)

where the arguments �, � are supressed for brevity.

As a result, the last of de�nitions (24) arrives at the
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expression (
f. Eq. (42))

S =

!

0

2

p

2

�

�(1� �

2

)I

0

+ 2I

1

� I

2

at � � 1;

�J

0

at � � 1:

(69)

The a
tion I � (2=�)S follows from this at � = 1. Re-

spe
tively, for the proper frequen
y one obtains instead

of Eq. (46)

! =

p

2�!

0

�

2

�
�

�(1� �

2

)I

�1

+ (3�

2

� 1)I

0

+ 5I

1

� 3I

2

�

�1

at � � 1;

(2�J

1

)

�1

at � � 1:

(70)

Energy dependen
es I(H), !(H), following from Eqs. (69), (70), are depi
ted in Fig. 7. It is seen that these take

the form type of the 
orresponding dependen
es for a nonlinear pendulum (see Fig. 4). Fourier spe
trum of the time

dependen
e p(t) of the momentum behaves in analogous manner as in Eqs. (50): with the energy in
rease in the

domain 0 � H � H




, single harmoni
 os
illation transforms to a harmoni
 superposition, whose number in
reases

monotonously to in�nity, whereas frequen
ies and amplitudes de
rease to zero. Su
h a behaviour is 
hara
terized by

the nonlinearity parameter (56), taking the following form (
f. Eq. (57)):

� =

8

<

:

6

[

(1��

2

)I

�2

�2I

�1

+�

2

I

0

+2I

1

�I

2
℄[

�(1��

2

)I

0

+2I

1

�I

2
℄

[�(1��

2

)I

�1

+(3�

2

�1)I

0

+5I

1

�3I

2

℄

2

at � � 1;

J

0

J

2

J

2

1

at � � 1:

(71)

Fig. 7. Energy dependen
ies of the a
tion (a) and the proper frequen
y (b) for double well potential.

Respe
tively, double 
urvature � � 2

d!

dI

of the dependen
e H(I) is 
onne
ted with the parameter � as � � 2(!=I)�

to read
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� = 2�

2

(

6�

2

(1��

2

)I

�2

�2I

�1

+�

2

I

0

+2I

1

�I

2

[�(1��

2

)I

�1

+(3�

2

�1)I

0

+5I

1

�3I

2

℄

3

at � � 1;

J

2

J

3

1

at � � 1:

(72)

D. Nonlinear pendulum under 
onstant external

�eld

Before studying the e�e
t of periodi
al external �eld,

let us anoun
e main pe
uliatities of the 
onstant pertur-

bation following supersymmetry theory [8℄. In this 
ase,

the potential energy

F = 2!

2

0

sin(x=2)� Ex (73)

is 
hara
terized, besides the proper frequen
y !

0

, by a

�eld strength E . Swit
hing su
h bias �eld arrives at the

expression for the 
ux j � hxi=t as follows:

j = 


2�T

I

2

(E)

sinh

�E

T

; (74)

where one introdu
es the integral

I(E) =

x

e

+2�

Z

x

e

exp

�

F (x)

T

�

dx; (75)

sinx

e

�

E

!

2

0

;

T is the temperature. In ergodi
 systems, the di�usion


oeÆ
ient determined by equality

h(x� jt)

2

i � Dt (76)

takes the form

D � T

�j

�E

= 


2�

2

T

I

2

(E)


h

�E

T

: (77)

However, non-ergodi
ity e�e
ts arrive at a mu
h more


ompli
ated form of the di�usion 
oeÆ
ient [8℄

D = j

�

�
oth

�E

T

+

1

2

ar
sin

E

!

2

0

+

IE

2(!

4

0

� E

2

)

�

; (78)

where I is 
hara
teristi
 magnitude of the integral (76).

Dependen
es j(E), D(E) related to Eqs.(74), (78) are de-

pi
ted in Fig. 8.

Fig. 8. Dependen
e of the 
ux j and the di�usion 
oeÆ-


ient D on the for
e E of external �eld for nonlinear pendu-

lum.

IV. NONLINEAR RESONANCE CONDITIONS

With a

ounting dissipation e�e
ts shifting the bare

frequen
y !

0

a

ording to Eq. (28), the resonan
e 
on-

dition reads

m

n

$ = 
; $ �

p

[!(H)℄

2

� 2

�2

; n = 1; 2; : : :; (79)

where 
 is the frequen
y of external signal, !(H) is

the energy-dependent proper frequen
y determined by

Eqs. (48), (46),m

n

is a resonan
e multipli
ity being a ra-

tional number related to the natural one n. Formally, this


ondition means that we have to 
onsider the phase por-

trait plane, whi
h is revolved with angle velo
ity m

n

$.

Then, the external addition of the Hamiltonian (23) is

written in the form

H

1

= �Af

00


os #; # � (
�m

n

$) t; (80)

where the internal power f

00


orresponds to resonan
e


onditions (79). Respe
tively, the zero term of the Hamil-

tonian (23) 
an be expanded near the resonant a
tion I

0

as follows:

H

0

� H

00

+ !

00

ÆI +

�

0

4

(ÆI)

2

; ÆI � I � I

0

: (81)
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Here, the resonant a
tion I

0

, as well as other resonant values

H

00

� H

0

(I = I

0

); !

00

�

dH

0

dI

�

�

�

�

I=I

0

;

�

0

� 2

d!

dI

�

�

�

�

I=I

0

= 2

!

00

I

0

�

0

; �

0

� �(I = I

0

) (82)

are given by resonan
e 
ondition (79). It is worthwhile noting that 
urvature �=2 is determined by the nonlinear-

ity parameter (56) taken at resonan
e 
ondition I = I

0

(see Figs. 5). The energy-dependen
e of the 
urvature is


hara
terized by the following asymptoti
s:

� � �

2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(2�)

�2

�

1�

1

4

H

H




�

at H �H




;

�

1�

H

H




�

�1

�

ln

16

1�H=H




�

�3

h

1�

1�H=H




4

ln

16

1�H=H




i

at H




�H � H




;

�

H

H




� 1

�

�1

�

ln

16

H=H




�1

�

�3

h

1 +

H=H




�1

4

ln

16

H=H




�1

i

at H�H




�H




;

1

2�

2

�

1�

H




H

�

at H �H




:

(83)

As a result, Hamilton equations (25) arrive at the

equation type of Eq. (36) for nonliniar pendulum:

�

#+ !

2

m

sin# = 0: (84)

Here, instead of the proper frequen
y !

0

, the value !

m

stands for modulation frequen
y being determined as fol-

lows:

!

m

=

�

A�f

00

2

�

1=2

: (85)

Respe
tively, the maximum value of the resonant energy

variation and 
orresponding magnitude for the a
tion

ÆH

m

= Af

00

; ÆI

m

=

�

4Af

00

�

�

1=2

(86)

are determined by Eqs. (80), (81) to 
hara
terize a reso-

nan
e window.

Thus, we obtain the following pi
ture of nonlinear res-

onan
e. At given magnitudes of the frequen
y 
 of ex-

ternal signal, the 
ondition (79) �xes the system energy

H as follows:

�

q

!

�2

0

+ (2
=m

n

!

0

)

2

= K(�)

�

1 at � � 1;

�

�1

at � � 1:

(87)

A

ording to Fig. 9, the 
orresponding dependen
e

H

00

(
) has two bran
hes, the lower of whi
h relates to

the �nite motion, the upper | to the in�nite one. Energy

H

00

related to the former falls down monotonously from

the upper magnitude �xed by 
ondition K(�) = �!

0

to

zero within interval 0 < 
 < 


m

, where maximum fre-

quen
y is




m

= m

n

!

0

p

1� (2!

0

)

�2

: (88)

Respe
tively, energy of the in�nite motion arises

monotonously from minimal magnitude �xed at 
 = 0

by 
ondition �

�1

K(�

�1

) = �!

0

to H

00

!1 at 
!1.

Fig. 9. Dependen
e of the nonlinear pendulum energy on

the external signal frequen
y: 
urve 1 relates to �nite motion,


urve 2 | to in�nite one.
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Using abbreviated notation

~




2

� 1 + (2=m

n

)

2




2

; (89)

one obtains the following asymptoti
s:

H

00

� H




(

1� 16 exp

h

�2�(!

0

=

~


)

i

at 
� 


m

;

4

�

1� (2!

0

)

�2

�




m

�





m

at 0 < 


m

� 
� 


m

(90)

for the �nite motion and

H

00

� H




8

<

:

1 + 16 exp

h

�2�(!

0

=

~


)

i

at 
� 


m

;

�

~




2!

0

�

2

at 
� 


m

(91)

for the in�nite one. Frequen
y-dependen
ies of the resonant magnitudes I

0

(
), !

00

(
), �(
), �

0

(
) of the a
tion,

the proper frequen
y, the nonlinearity parameter and the double 
urvature of 
urve H

0

(I) are depi
ted in Figs. 10,

11. In the 
ase of the �nite motion, these dependen
ies are 
hara
terized by the following asymptoti
s:

Fig. 10. Frequen
y dependen
ies of the a
tion (a) and the

proper frequen
y (b) for nonlinear pendulum: 
urve 1 relates

to �nite motion, 
urve 2 | to in�nite one.

Fig. 11. Frequen
y dependen
ies of the nonlinearity pa-

rameter (a) and 
urvature of the dependen
e H(I) (b) for

nonlinear pendulum: 
urve 1 relates to �nite motion, 
urve 2

| to in�nite one.

I

0

� 8!

0

(

�

�1

n

1� 8�(!

0

=

~


) exp

h

�2�(!

0

=

~


)

io

at 
� 


m

;

�

1� (2!

0

)

�2

�




m

�





m

at 0 < 


m

� 
� 


m

;

(92)
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!

00

� !

0

(

~




2!

0

at 
� 


m

;

1�

�

1� (2!

0

)

�2

�




m

�





m

at 0 < 


m

� 
� 


m

;

(93)

�

0

�

1

4

8

<

:
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Respe
tively, for the in�nite motion one has:
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At !

0

� 1=2, when 


m

� m

n

!

0

, e�e
tive frequen
y

~




may be repla
ed by the short-
ut term (2=m

n

)
� 1.

If the os
illations were linear in 
hara
ter, the reso-

nan
e might realize within window lo
ated between en-

ergies H

00

� ÆH

m

and H

00

+ ÆH

m

. In this window, the

os
illations would have single frequen
y $ determined

by Eq. (79) and would be modulated with the frequen
y

!

m

given by Eq. (85). However, nonlinearity e�e
ts de-

s
ribed in Subse
tion III.B arrive at expanding the har-

moni
s number to magnitude N

0

= !

0

=!

00

> 1 and nar-

rowing the energy window to the width H

m

� 2!

2

m

. So,

nonlinear resonan
e is realized for a share of nonlinear

os
illations determined by the ratio

H

m

ÆH

m

= �

0

= 2

!

00

I

0

�

0

; (98)

where Eqs.(82), (85), (86) are taken into a

ount. As it is

seen from Fig. 11, the double 
urvature �(
) de
reases

monotonously with the external frequen
y growth within

the interval 0 < 
 < p


m

. This means that preferen
e

of the nonlinear resonan
e de
reases with this frequen
y

growth.

V. STOCHASTIC RESONANCE CONDITIONS

The sto
hasti
 resonan
e is known to be observed at


ondition (79), where m

n

= (2n)

�1

, n = 1; 2; : : :. This


ondition means that during a period T = 2�=
 of the

external os
illation the sto
hasti
 system has a time to

over
ome an energy barrier �F even times 2n [1℄. The

proper frequen
y of sto
hasti
 resonan
e ! � 2�r

K

is

redu
ed to the Kramers' rate r

K

given by Eq. (2). This


ase di�ers from the above 
onsidered 
ase of nonlinear

pendulum by only inserting temperature T instead of

the system energy H. In the 
ase of the double well po-

tential 
onsidered in Subse
tion III.C, the energy barrier

�F = (!

0

=2)

2

is related to the temperature by 
hara
-

teristi
 parameter �

2

� 4T=!

2

0

. Then, the frequen
y of

the barier over
oming is de�ned by equation

! = !

K

exp(��

�2

); �

2

� 4T=!

2

0

(99)

instead of the 
orresponding equation (46) for nonlinear

pendulum. Taking into 
onsideration dissipation e�e
ts,

we obtaine the following 
ondition of the sto
hasti
 res-

onan
e:

T

0

=

!

2

0

2

�

ln

(2!

K

)

2

1 + (4n)

2




2

�

�1

: (100)

As is shown in Fig. 12, the resonant temperature T

0

(
)

arises monotonously, taking inde�nite values at 
hara
-

teristi
 frequen
y




m

=

!

K

2n

p

1� (2!

K

)

�2

: (101)

Basing on the dependen
e T

0

(
) repla
ing the above

used relation H(
), we are in position to 
onsider the
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sto
hasti
 resonan
e 
onditions in analogy with the non-

linear pendulum.

Here, instead of Eqs. (40), (42), (46), the equalities

(65), (69), (70) determine the resonant magnitudes I

0

,

!

00

, �, � of the a
tion, the proper frequen
y, the non-

linearity parameter and the double 
urvature of the res-

onant dependen
e H

00

(I). Corresponding dependen
ies

on the temperature are depi
ted in Figs. 13, 14 to show

the inde�nite in
rease of the proper frequen
y and the a
-

tion with tending to the 
hara
teristi
 magnitude (101).

Related values of the nonlinearity parameter and the 
ur-

vature de
rease thereby.

Fig. 12. Dependen
e of the sto
hasti
 resonan
e tempera-

ture on the external signal frequen
y.

Fig. 13. Frequen
y dependen
ies of the a
tion (a) and the

proper frequen
y (b) of the sto
hasti
 resonan
e.

Fig. 14. Frequen
y dependen
ies of the nonlinearity pa-

rameter �

0

and 
urvature �

0

of the dependen
e H(I) at

sto
hasti
 resonan
e.

VI. CONCLUSION

The observed pi
ture of nonlinear os
illations shows

that with the energy in
rease the single harmoni
 os
il-

lation transforms to a harmoni
s superposition, whose

number in
reases monotonously to in�nity, whereas fre-

quen
y and amplitude de
rease to zero. In other words,

with tending to a threshold energy, transition of the har-

moni
 os
illations into a set of solitons is observed. We

have shown that su
h a behaviour, being typi
al for both

the nonlinear pendulum and the double well potential, is


hara
terized by the nonlinearity parameter (56).

Our 
hoi
e of the a
tion S and angle # as prin
iple

variables is 
aused by the fa
t that Hamiltonian of free

nonlinear os
illations does not depend on the angle #.

In a

ordan
e with Eq. (84), swit
hing on external har-

moni
 signal arrives at a modulation of nonlinear os
illa-

tions with the 
hara
teristi
 frequen
y (85) and nonlin-

earity parameter (82). It appears that the nonlinearity

e�e
t narrows the resonan
e window to the width �xed

by ratio (98) that is redu
ed to the 
urvature � of the

dependen
e H(I). A

ording to the dependen
e �

0

(
)

depi
ted in Fig. 14, this window is shrunk with the ex-

ternal frequen
y growth. As a result, preferen
e of the

sto
hasti
 resonan
e de
reases with the growth of fre-

quen
y 
 of the external signal.
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NEL�N��NA TEOR�� STOHASTIQNOGO REZONANSU
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vul. Rims~kogo-Korsakova, 2, 40007, Sumi, UkraÝna

Teor�� nel�n��nogo stohastiqnogo rezonansu zbudovana na osnov� statistiqnoÝ teor�Ý pol�, �ka vikoris-

tovu
 zm�nn� \d��{kut". Dl� nel�n��nogo ma�tnika ta dvo�mnogo poten
��lu zna�deno �vn� virazi dl� d�Ý,

vlasnoÝ qastoti ta parametra nel�n��nosti zale�no v�d ener��Ý sistemi ta qastoti zovn�xn~ogo si�nalu.
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