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We study here lattice-gas models consisting of two-component classical spins (unit vectors),
associated with a three-dimensional lattice, and interacting via a pair potential containing both the
scalar product of the two spins, and a chiral (twisting) term; such models can be given magnetic
and cholesteric interpretations. We prove that the saturated-lattice version of the model possesses
an ordering transition at finite temperature; next we go on to the diluted version, and prove the
existence of a chemical potential threshold, above which the model produces long-range orientational

order at sufficiently low temperatures. We also comment on extensions of these rigorous results to

three-component spins.
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I. INTRODUCTION

Some simple classical lattice spin models, extensively
studied in the literature, are defined by pair interaction
potentials restricted to nearest neighbours, and of the
general form

G =G = eF(n), (1)

here € denotes a positive quantities setting energy and
temperature scales, i. e. T* = kpT/e (and which can be
scaled away from the following equations), and » denotes
the scalar product between v-component unit vectors
(v = 2, 3) associated with sites of a d-dimensional lattice;
these interaction models are isotropic in both spin space
and lattice space, and some of their commonly studied
functional forms are

F(n) = —n (ferromagnetic);

F(n) = +n (antiferromagnetic);

F(n) = —P2(n), v =3 (nematogenic lattice model);
in the resulting (continuosly degenerate) ground state,
the scalar product of any two spins equals 1 in magni-
tude, 1.e., all particles are aligned in a common direc-
tion. In turn, this kind of order may or may not survive
at finite temperatures [1]; by now, a number of rigor-
ous results have been worked out, entailing existence or
absence (and sometimes type) of phase transitions, de-
pending on lattice dimensionality, number of spin com-
ponents, symmetry and range of the interaction [1,2].
The above spin models are of saturated-lattice (SL) type,
i.e., each lattice site is occupied by one and only one
spin; their lattice-gas extensions (LG) can also be de-
fined, where each lattice site hosts one spin at most, and
site occupation is also controlled by the chemical poten-
tial p.

LG gas extensions of the above models have also been
investigated in terms of rigorous statistical mechanical

results; it has often been possible to prove that, when
the SL model supports an ordering transition at finite
temperature, so also do its LG counterparts, at least for
sufficiently large chemical potential [3-5].

Moreover, the above lattice spin models have been
continuously and vigorously investigated by other tech-
niques as well, e.g., Mean Field treatments, Renormal-
ization Group, high-temperature series expansions of the
partition function, simulation, especially in the SL cases.

On the other hand, there also exist other pair potential
models containing both a simple polynomial in the scalar
product of the two interacting spins, and a “chiral” or
“twisting” term, involving their vector product (and to
be specified later); this term is usually restricted to near-
est neighbours lying on a certain lattice axis (“vertical”
nearest neighbours); in some cases, this family of poten-
tial models produces a “spiralling” ground state, where
spins associated with lattice sites belonging to a given
“horizontal” lattice plane are ordered in a common direc-
tion, and the the common orientations of neighbouring
lattice planes evolve in space in a helical fashion, around
the “vertical” lattice direction.

As for physical meaning and physical realizations, let
us mention that chiral magnetic models allow for the
Dzyaloshinsky—Moriya interaction [6—10]; their counter-
parts being quadratic in the scalar products have been
proposed for cholesteric liquid crystals some twenty-five
years ago; they were studied by Mean Field treatment,
and, more recently, addressed by computer simulation
[11-21].

Let us finally mention that helicoidal order in the
ground state can result from appropriate competing an-
tiferromagnetic (or ferro- and antiferromagnetic) inter-
actions, defined by simple scalar products of the spins;
however we are not considering such models, also exten-
sively studied in the literature.

The present paper aims at studying some lattice spin
models with chiral interactions; we have chosen to start
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with v = 2 component spins for a couple of reasons:

— on the one hand, different potential models become
equivalent when v = 2, as explained in detail in the Ap-
pendix;

— on the other hand, the case v = 2 allows us to
use a well developed apparatus of correlation inequali-
ties [22-29], and thus to faciltate demonstrations.

The scope of the present note is thus twofold:

— on the one hand, we prove existence of an ordering
transition at low but finite temperature for (SL) spin
models associated with a three-dimensional lattice;

— next we go on to consider their LG extensions, and
prove the existence of an ordering transition for suffi-
ciently large chemical potentials

II. SYMBOLS AND MODELS

As for other symbols and definitions to be used in the
following, we are considering here a classical model, con-
sisting of v-component unit vectors, associated with a
d-dimensional lattice {wy, k € Z4} (usually d = 3),
and parameterized by the usual polar angles {¢s} or
{ér, 0k }; let {rg} denote their coordinate vectors, let
{eq, a = 1,2,3} denote orthonormal basis vectors de-
fined (at least partly) by lattice axes; Cartesian com-
ponents of the j-th unit vector will be denoted by w7
Cartesian coordinates of lattice sites will be noted by
the sets of integers (ky, ky, k.). It will also prove use-
ful to reserve the symbols u; and v;, for two- and three-

Uji(uy, uy, sjp) =

component unit vectors, respectively, and to mantain the
general one wy when both cases can be meant; moreover,
Vk, let u; = cos ¢rpey + sin ¢pes, 1.e., all unit vectors uy
are assumed to belong to the “horizontal” (z,y) plane,
and to be perpendicular to the “vertical” direction es.
As for three-component unit vectors, in some equations it
will prove useful to simplify notation by means of the the
symbols C; = cos #;, S; = sind;, etc.. Here and in the fol-
lowing, interaction potentials will be restricted to near-
est neighbours (nn); for any pair of nearest-neighbouring
sites j and k, (and for two-component unit vectors), we
also define

sjk = (vx —1j),  fik = 2 — zj = €3 - sjx, (2)

Nk = ;- = cos(¢x — @),

tjk =u; Aug = sin(qbk — (/>j)e3; (3)

notice that s;; is a unit vector, coinciding with one of
the e,. Consider the three-dimensional lattice Z%=3. Let
A C Z3be afinite prism of the form: A = Azy x A, where
Apy C Z%and A, C Z'. Let Agy = {{ij) C Agy} be the
set of bonds in A,,, and the same: A% = {(st) C A.} in
z-direction, i.e., A% = Agy x A%; the Hamiltonian of the
model [16-21] defined by the following nearest-neighbour
interaction between two molecules sitting on the bond

(Jk):

—J[2(u; -ug)® = 1] = K(u; - ug)[sje - (uj Aug)l; (4)

where J > 0 and K > 0 denote the coupling constants (strength parameters). Eq. (4) can also be written in a more

compact way:

Uik (ay,up,855) = =J (207 — 1) — K0 (sjn - t5)]; (5)

On the other hand, one can make the angular dependence explicit, i.e.,

_ [ —Jcos[2(6x — )] ,
Uik (g, s, j0) = { T eosl2(on — 6] - K fyx sinl2(x — 65)] | ver

where ‘hor” and ‘ver’ denote horizontal (intralayer) and
vertical (interlayer) interactions, respectively; in turn,
the vertical term can be rewritten

—J cos[2(¢r — ¢;)] — K fir sin[2(ox — ¢;)]
= —Pcos[2(¢r — ¢; — 7)), (7)

K

P=+J?+K? tan(?r)zj. (8)
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hor ; (6)

The Hamitonian of this saturated lattice model 1s

Ha({uiljea) = D Uluj,uy, sj). (9)

(jk)eA,

To make this model in better touch with the fluid nature
of liquid crystals we propose its following modification.
Associate with each site j € A there is a random vari-
able (occupation number) n; = 0, 1. Then we propose a
diluted (lattice-gas) version of the model (4):
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Ha({uj}jen, {nj}tjea) (10)

Z U(njuj, nguag, Sjk) - /Jan.

(JkyeAy JEA

Here ;1 € R' is chemical potential of the lattice gas
governing the Bernoulli measure for random variables
{n; =0,1}jea.

In spite of the fact that both of these models are still
rather far from a continuous fluid, the lattice-gas gener-
alization has the advantage of allowing for the possible
density or pressure dependence of the critical behaviour
of liquid crystals.

The aim of the following section is twofold:

— first, we prove that the model (9) manifests a Long-
Range Order (LRO) parameter for low temperatures;

— second, we prove the same for our model (10) for low
temperatures and large chemical potentials, 1. e., for high
densities of the lattice-gas particles.

III. MAIN RESULTS AND THEIR PROOFS

In order to establish the existence of LRO in model
(4), we introduce the two-spin correlation function

FAyﬁ(k’l) = <COS[2(¢R_¢l)]>HA(ﬁ)a kaZEA’ (11)

where the right-hand site is the Gibbs expectation value
with Hamiltonian (9), for inverse temperature g = ©71.
Since we are dealing with an O(2)-symmetric lattice
model, we need Reflection Positivity and Infrared Bound
techniques [30,31] for the proof of LRO; therefore, some
restrictions will be implemented on the model (4), in
order to apply [30,31]; possible generalizations will be
discussed in Section TV.

First, the interaction (4) itself must be quadratic; it
is known [3-5] that for nematics, the appropriate set
of variables to express that are real symmetric matrices

{Qiljea:
Q;” = u;‘ —(1/v)0ary, a,y=1,2,. (12)

assoclated with unit vectors {u;};ea for v = 2, see [3].
Then

Uhor(¢j, ¢k) =-=2J TI'(Q]' : Qk)a J. = kza (13)
and

U (¢s, 01) =
—2P Tr(R,. Q, R,

—2P TI'(QS'RtZ—s,, Qt’er—sz)

“Re, QeRE), (14)

for (st) C A'. Here the orthogonal transformations
{R:,, t € A} are implemented by uniform relative ro-

tations of molecules in two adjacent layers Aj,, Atxy,

[t; — s.| = 1, by the helical wave-vector ¢, based on the
treatment in Ref. [10]

+ (L = 5:)q] (15)

sz )q].

up = R, —s, us = €1 cos[ds

+ egsinf¢, + (1. —
Upon changing matrix variables to
Qi = Ri, QrRy,, k €A, (16)
we get for interactions (13) and (14)

TP (4 ) = —2J Te(Q;Qk), = = ks (17)

and

Uver(ws’ 1/%) = 2P TI'(Qth)a (18)

where ¥ = ¢ — k,q and (st) C AL. Therefore, after the
helical transformation (Eq. (15) and (16), the interaction
stays quadratic and purely nematic.

The second restriction applicable [30,31] is to a
nearest-neigbhour interaction (or to long-ranged one of
appropriate type), and which is attractive. Both aspects
are present in the original interaction (4) as accepted in
the literature, e.g., Refs. [11-14]; we do not insist here
on these restrictions, see Section IV.

The third restriction concerns periodic boundary con-
ditions on JA, and poses no problem in our case.

After assemblying all the necessary elements [30], [31],
we are now able to state the first result.

Theorem 1
There exists a temperature
Qg :=8J(m — 1)/[m*(m +1)D], m = 2, (19)
where
k=3 -1
D= (2m)” / [Z 1 — cospy) ] , (20)
B = [_ﬂ-a +7T]3a

and such that, for all ©@ < @y, the model defined by Eq.
(9) manifests a non-zero translationally invariant LRO
in zy-planes, as well as helical LRO in the z-direction:

(@)(B > Bo) = R} (Q=0)(B > o) Ry, j € Z%. (21)

Proof

Notice that Tr@Q; = 0, i.e., Tr{(Q;)z, = 0, and by
the O(2) invariance of the system one gets <QJ>FIA =0.
Therefore, in oder to establish the existence of LRO one
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has to prove that

li lim Fy 5(k,1
e o A o (:0)

= lim lim{cos2(¢x — 1)), (B) (22)

|k—1|—oo ATES

= lim lim QTT<Qle>fIA (B)#0

|k—1|—oo ATES

for low temperatures. This statement in due to the tech-
niques of [30,31], as was demonstrated in [3]. Since the
interaction in Hy is anisotropic, we get the estimate of
temperature Oy (Eq. (19)) as developed and discussed
in Refs. [5,32], with reference to the smallest coupling J.
The statement (21) is immediate from the helical trans-
formation (Eqns. (16) and (16)).

Next we state and prove a similar result for the diluted
(lattice-gas) version of the model (10).

Theorem 2

There exists a chemical potential py such that, for ev-
ery p > pp there is a ©g(p), such that, for all © < Og(p)
the model (10) manifests a non-zero translation-invariant
LRO in the zy-planes, and helicoidal LRO in the z-
direction.

(n;Q;)(8 > Bo(p), > po)

=R (njQj.=0)(B > Bo(p), > po)R;,, j € Z5  (23)

Proof

Notice that, after carrying out the helical transforma-
tion (Eqns. (16) and (16)) the model (4) reduces to a ne-
matic lattice-gas model with a nearest-neighbour attrac-
tive (ferromagnetic) coupling, known since [3]; by virtue
of the reasoning in [5], one obtains that <anj>(ﬁ, 1) #£0
is ensured by

Here (for some £ > 0 and ¢ > 0)

LB p) = (1/2){1 = (1/€)

x exp[—f(c(4J + 2P + )]}, (25)
and
o k=2
Ii=3(0) = W/B lJ};(l — cospy)
+ P(1-— cospg)] . (26)
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From these equations it is clear that, for

> o = —e(dJ + 2/ T2 + K2), (27)
there exists a Fy(y) such that

L(Bo(p), ) = La=3(Bo(p)) (28)

and that the inequality (24) is ensured in the domain

{110 > po, © < (Bo(w)™"} (29)

Finally, Eq. (23) follows from the helical transformation.

IV. COMMENTS

Subsection 4.1
We first comment on the conditions for the proof of
Theorem 1.

a) The model (9) manifests helical LRO at low tem-
peratures, with a temperature-independent wave vector
q, and this does not seem to be very realistic from the
physical point of view. In order to make the helical wave-
vector temperature-dependent, one has to perturb the
interaction UP°" or UYe" by some “anharmonic” terms,
which, a priori, does not allow to use the techniques from
Refs. [30,31]. One possibility used in Mean-Field and sim-
ulation work (see, e. g., Ref. [18]) is to add a quartic term
to Uhor

TR (¢, b)) = U™ (¢, ék) — Jalcos(d; — éx)]:. (30)

Corollary 1.1

For Jy > 0 there exists a temperature Oy such that,
for all @ < ©p a perturbed model with interaction
Uhor 1 7ver manifests LRO similar to that in Theorem 1.

Proof

The quartic perturbation makes the interaction /e +
UY®" non-quadratic, and thus it harms the technique
based on Refs. [30,31]. On the other hand, since Js > 0
(ferromagnetic perturbation), one can use the Ginibre in-
equalities [24] for the ferromagnetic plane-rotator model
with Hamiltonian I to estimate the corresponding two-
spin correlation function from below:

(cos2(¢x = o)) g, (B) = Fap(k,1). (31)

This inequality, together with the statement (21) in The-
orem 1, finishes the proof.

Remark
One could equally well consider adding a similar quar-
tic term to UY", or add quartic terms to both /P°" and

UVeI‘
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b) Again, by Ginibre inequalities [24], we can relax the
nearest-neighbour interaction in (4) to any ferromagnetic
(long-range) interaction UL (¢;, ¢x) or UYE (¢, ¢x). If
H}™ corresponds to the nearest-neighbour restriction of

the longer-range interactions, then

(cos[2(¢; — ék)]) grermo > (cos[2(¢; — d))myn. (32)

Now by Theorem 1 one gets LRO in the system with
Hlf\erro for sufficiently low temperature.

Remark 3.1

In both previous cases a) and b), one proves the exis-
tence of LRO, but can not control the value of the helical
wave vector.

c) The ferromagnetic character of the nearest-
neigbhbour interaction can be relaxed; actually one can
equally well consider the antiferromagnetic version of
this model (spin-flip symmetry). Here 7/2 rotations of
the internal frame systems on the odd (or even) sublat-
tices of Z3 result in the change of sign for the coupling
constants, and this change of variables maps the O(2) an-
tinematic model to the ferromagnetic chiral model (4),
so that Theorem 1 is again applicable.

d) Instead of planar rotators {u;, j € Z3 u; €
S}, let us now consider three-component unit vectors
{vj, j € Z3 v; € S?}; We address first the extreme
anisotropic case where only #- and y-spin components
are involved in the interaction (xy model): more pre-
cisely, we consider here the model

Vxhyor(ﬁj, ¢, 0k, ¢1) = —J(sind; sin O ) cos[2(¢; — ¢x)], (33)
and
Vg (05,85, 0k, ¢1) = =V J2 + K*(sin 0; sin 0y ) cos[2(¢; — ¢ — q)]. (34)

Then, upon applying Wells’ inequality [25—29], one readily gets the estimate

(cos[2(dx — o)) rry () < (cos[2(dx — ¢1))) v (B) < (cos[2(dx — )] ar, (5) (35)

where ¢ < 1 18 a positive constant, independent of 3.
Together with Theorem 1, this estimate entails that the
zy model exhibits LRO for © < €By. In the Appendix
we show that a similar inequality holds for more general
interactions.

Subsection 4.2

We present here some remarks concerning the lattice-
gas model (4) and Theorem 2.

a) Due to the results in Ref. [33], we can tell some-
thing about how the nematic/helical LRO appears, and
about its correlation with the behaviour of the mean oc-
cupation number (particle density) p(8, 1) = (n;)(5, 1).

— We first note that, by the chiral transformation
(Eqgns. (16) and (16)), the chiral nematic can be mapped
to the non-chiral one;

— we next note that, by the simple change of vari-
ables {2¢); = 1;, j € Z3}, the nematic model becomes
equivalent to a lattice-gas model involving ferromagnetic
0O(2)-symmetric plane rotators, and for which it has been
possible to prove that, for sufficiently large 8 > 5*, there
exists a line p(8), across which the system exhibits a
first-order transition, involving discontinuities in both
magnetization (u)(3, u) and density p(f, pt); therefore,
the same behaviour ensues for the present model (4).
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APPENDIX

Equivalence of potential models

Consider the integrals
2w
7, = / A(cost,sint)dt,
0
2w
I, = / A(cos mt,sinmt)dt, (36)
0

where A is an arbitray integrable function, and m # 0
is an arbitrary integer; by a change of variable (¢ to mt)
one obtains Z,,, = Z1, ¥Ym [34,35]; moreover [34,35], on
the basis of the trigonometric identity
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k=M Ik
exp( WZ) =0, M>2, (37)
k=1
it easy to check that
27
/ exp(£iSt)A(cos mt, sin mt) dt = 0, (38)
0

when S # 0 is an integer number but not a multiple of
m; on the other hand, when S is a multiple of m, say
S = om, one is again reduced to Eq. (36), so that the
value of the integral depends on ¢ but not on m.

Now consider two arbitrary real numbers a and b, and
the interaction potential(s)

acos[m(én — é1)] , hor

bcos[mcos(¢r — ¢;)] , ver (39)

Up = jkim = {

one can easily check that, for assigned values of a and
b, all potentials Uy, lead to the same partition func-
tion (hence thermodynamic properties), and essentially
to the same structural properties; the choice m = 1 de-
fines magnetic models, and the choice m = 2 may lead to

Wi = { acos[m(én — é1)]

where the vertical term can be rewritten

beos[m(dr — ¢;)] + cfinsin[m(dr — ¢;)] = pcos[m(¢; —

p=Vb*+c?, tan(mr) = %

By the same argument as above, one recognizes the
equivalence of potential models defined by the same val-
ues of a, b and ¢, but different values of m. In the follow-
ing, we shall be considering and comparing two potentail
models defined by

W' =d'njk + b fix(es - tjr), (45)

W' = d" (203, — 1) 4+ " njk(sjr - tjr)- (46)

Upon expanding the formulae, and recalling the previous
analysis (especially Egs. (36) to (38)), one can recognize

cos(os —00) = |
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beosim(or — ¢;)] + cfjusin[m(dr — ¢;)] , ver ’

cos(¢g — ¥5)
cos[(zx — 2; )2 + (Yr — ¥y)] , ver ~

ZAGREBNOV

nematogenic one. Moreover, let m = 1, and consider the
four potential models defined by common values of |al,
|b], and only differing in the sign of the named param-
eters; since the lattice is bipartite, spin-flip symmetry
entails that, in the absence of external fields, the four
models again produce the same partition function, and
esentially the same structural properties, 1.e., potential
models only differing on the signs of the named parame-
ters produce correlation functions related by known sign
factors. Notice that spin-flip symmetry holds for three-
component spins as well, and in general, for a bipar-
tite lattice and nearest-neighbour interactions defined
by an arbitrary odd function of spin components. Thus,
Eq. (39) can be reduced to the “generalized ferromag-
netic” (GFM) case

| —Acos[m(¢r — ¢1)] , hor
Vikim = { —B cos[m coks(qbk k— ¢;)] , ver ’ (40)
A>0, B>0 (41)

where the choice m = 1 defines the strict ferromagnetic
(FM) interpretation, whereas the choice m = 2 defines a
nematogenic lattice model.

Next we consider the potential model(s)

, hor (42)
¢k — 7)), (43)
(44)

that the two potential models W’ and W” produce the
same thermodynamic and structural properties provided
that

d'=d, b///2 — .

Let us now restrict our attention to Eq. (42), and let
= denote an arbitrary number; each polar angle ¢ can
be identically decomposed

Or = Ezg + Yr; (47)

so that

hor

bl

(48)
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After allowing for Eqgs. (43) and (44), and choosing E =

;| a cos(¢p — ;) , hor
JE T plcos(r —bj) , ver

and a similar transformation can be applied on Eq. (46);
this approach is based on Ref. [10]. With appropriate
signs of the parameters, Eqs. (42) produces a helical
ground state where each layer is completely ordered fer-
romagnetically, and the common orientations of two con-
secutive layers are rotated by an angle 7; on the other
hand, the previous discussion shows how this twist can
be transformed away; since the transformation is tem-
perature independent, the pitch 1s also independent of
temperature, if order survives at finite temperature (i.e.,
when d > 3).

The interaction term containing the vector product
t;x in Eq. (42) was proposed some thirty-five years ago
by Dzaloshinsky [6] and Moriya [7], as a model explain-
ing the phenomenon of weak ferromagnetism in systems
with predominant antiferromagnetic interactions [8-10];
in microscopic terms, it originates from spin-orbit in-
teractions; extensions to three-component spins are also
known, and there also the ground-state twist can be
transformed away. This model has been extensively in-
vestigated, both for classical and quantum spins (see,
e.g., Refs. [36-40] for a few papers published after 1990);

exact solutions are known when d = 1 [41-43].

Some remarks on chiral nematic models

Nematogenic molecules are usually neither rigid nor
cylindrically symmetric, and often possess appreciable
dipole moments, yet the resulting thermotropic nematic
phases are apolar and usually possess uniaxial symmetry;
therefore, the simplifying assumption of uniaxial molecu-
lar symmetry (Csoy, or, more frequently Dep) has been
extensively used in theoretical treatments; moreover, to
a reasonable approximation, the existence or absence
of long-range orientational order marks the one differ-
ence between a nematic phase and the isotropic liquid
to which it transits at higher temperature; this has sug-
gested the additional simplification of nematogenic lat-
tice models, also extensively studied in the literature.
In cholesteric liquid crystals, there exists locally nematic
orientational order, and this locally preferred orientation
spirals in space, around an axis perpendicular to it; the
pitch of the helix is in general temperature-dependent,
and in some cases it can even change sign with temper-
ature.

On the other hand, the corresponding term in Eq. (46)
was proposed and discussed some twenty-five years ago,
especially by van der Meer et al. [11-14]; the interac-
tion model is based on a perturbation treatment of in-
termolecular interactions, and on further assumptions,
as discussed in the original papers, for example:

— on a multipolar expansion of Coulombian interac-

7, Eq. (42) becomes

= V@Y

tions between the two particles, and on the neglect of
permanent multipolar terms; notice that short-range re-
pulsion between the two molecules is not explictly in-
cluded, and is often allowed for by constraining molecules
on a lattice;

— on the assumption of an effective cylindrical symme-
try of the interacting molecules; After additional simpli-
fications, the following potential model is defined in the
named papers:

ij = W(Wj, We,X; — Xk) (50)

= —Jnj — K (eje - i) — Doy — Md(vgs - tx)

where w; and wy denote 2- or 3-component unit vectors
defining molecular orientations, x; and x; denote their
continuous centre-of-mass coordinates,

R;

e L 51
R 4] 5D

Rjp =% —xp, 7jp=

Nik = Wi - Wi, tijx=wW; Awg.

In general the coefficients J, K, L, M are functions of the
distance between the two centers of mass [11-14]; on the
other hand, when a lattice model with nearest-neighbour
interaction is considered, the named coefficients just be-
come adjustable parameters. Notice also that J > 0, and
that signs of K and M can be taken as positive with-
out loss of generality. The above equation was derived
for three-component unit vectors [12-14]; on the other
hand, a further simplifications has often been proposed
and used, 1.e., the unit vectors have been constrained
to two components, on a plane orthogonal to the axis
of the helix. The resulting models have been studied by
Mean Field or Two-Site Cluster treatment, as well as by
Monte Carlo simulation [11,15-21]. The Authors of some
recent papers have tried to explicitly allow for molecular
biaxiality [44-47].

Let us finally consider the three-component counter-
part of W” i.e.,

W = —al(3/2)(v; - vi)* — (1/2)] (52)

+0(vj - vi)(zj — zx)les - (v Avg)], a>0

where the b term does not act among horizontal neigh-
bours, and the vertical interaction reads:
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Wt = —a(3/2)[(C;Cy)?
+25jCjSka COS(qf)k — QS]) + (SjSK)Z COS(qf)k — qu)z]
Fa/2+b(zr — 2j)(C;Ck + 5jSk cos(x — 6;))

xS Sk sin(gr — 6;); (53)

W' = C;S;CrSk[3acos(¢r — ¢5)

+b(zk — zj) sin(¢x — 6;)]

—(5;5K)*{(3/2)a(1/2)[1 + cos(2(¢x — ;))]
+(1/2)b(zk — zj) sin[2(¢x — ¢5)1} + a/2, (54)

W"" = —aP5(Cj) P2 (Ck)
_\/mchjCkSk COS((Z)k — qu _ 7—) (55)
SETTTTTI(S;5%)" cosl2(n — 65 — 7],

where

b b
tan T = 30 tan(27') = 23—a. (56)

There seems to be no general way of simplifying these
equations; on the other hand, in the limit 0 < |b|/a < 1,
one can approximate tan(27') = tan(27) so that the in-
teraction potential becomes

W/// = —Cle(Cj)Pz(Ck)
=V (3a)? +62(C;5;)(CrSk) cos(¢ — ¢ — 1) (57)

—V/(3a/4)? + (b/2)*(S;S%)* cos[2(dk — 65 — T));

one recognizes at this stage that the twisting term can
be transformed away, along the previous lines; more-
over, reflection positivity in the interaction still holds,
and one can again conclude the existence of an orien-
tational ordering transition at low but finite temper-
ature; in the named limit, the chiral wave vector be-
comes temperature-independent; this was also noted in
the Mean Field treatment of Ref. [12].

Bounds on transition temperatures

To be specific, let us consider the layered FM model
defined by

| —Acos(¢r —¢;) , hor
Vikim = { —B cos(q/)l; — (/)i) , ver ’ (58)
A>0, B>0 (59)
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extensively studied in the literature; the model defined
by A = B = 1 is rigorously known to possess an or-
dering transition, whose transition temperature may be
conservatively estimated to be ©pgr = 2.202+0.001 (see,
e.g., Ref. [48]); one can use the Ginibre inequality [24]
to conclude that the model(s) defined by Eq. (58) pos-
sess an ordering transition, whose transition temperature

Oora(A, B) is bounded by
min(A, B)@pR S @Ord(A, B) S max(A, B)@pR. (60)

On the other hand, when 0 < B < A, it 1s commonly be-
lieved that, above Ogq the system possess a disordered
phase with slow decay of correlations and infinite suscep-
tibility, i.e., a Berezinskii-Kosterlitz—Thouless (BKT)
phase, and, at higher temperature, a BKT transition
[49-54] (we do not know any rigorous proof nor refuta-
tion of the conjecture); if this happens, then the following
bound can be obtained, again by correlation inequalities

Ok1(A4, B) > AOpkT(d = 2), (61)

where OpgT(d = 2) denotes the transition temperature
for the strict two-dimensional counterpart, whose numer-
ical value is Opgr(d = 2) = 0.89 + 0.01 [51]. On the
other hand, according to Renormalization-Group treat-
ments and in the same limit (see, e. g., Refs. [55,56])

GBKT(A, B) ~ A GBKT(d = 2)

+ (7/2)*|log(B/A)|*|. (62)

Comparison inequalities

We consider here 3-component spins associated with a
d-dimensional lattice and interacting via a ferromagnetic
pair potential restricted to nearest neighbours and of the
form

U="Uj,=—(sind;sin 0" cos(g; — éi), (63)

where ! is an arbitrary positive integer; let H, denote
the resulting Hamiltonian,

Hy = —Z(sinﬁj sin 0 )! cos(o; - 95); (64)
(if)

let Z5 denote the corresponding partition function, and
let

Fyq = ((sin 0, sin gq)l cos(¢p — ¢g))m, (B) (65)

denote the correlation function. Owing to the functional
form of the integrands, and since sin @ = sin(7—#9), in the
definition of F,, each integral over a variable #; ranging
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from 0 to 7 is twice the integral of the same function of
6; over the range between 0 and 7/2, and the powers of
two resulting in both denominator and numerator cancel
out identically; over the named range, sin§ and (sin )’
are monotonic increasing and invertible functions of the
argument; thus, upon defining r; = (sin 6;), single-site
variables have the probability distribution

AP} o dp(ri)dé;,
dp(ri) = (1/1)’77/ldm, (66)

0<r <1, 0<¢; <2m;
where the measure du(r;) is not concentrated at 0; the

thermal ensemble average (Eq. (65)) can be rewritten as
as

Fpq = (F(o,9))* (67)

1.e., as expectation value with respect to the probability
measure

dx o exp(—BH,) H dP?. (68)
J

Moreover, let b denote a positive number, 0 < b < 1,
and let (F(g,¢)) denote the mean value obtained by
constraining all r variables to the value b, and let 74
denote the corresponding partition function; according
to Well’s inequality and its generalizations to continuous
spins [25-29], there exists a positive number a such that

(Flo, ) = (Fle, o)) = (F(eg, ¢))a- (69)

By scaling, the potential model defined by Eq. (63) with
r; = a, Vj and at inverse temperature § is the same as
the one defined by r; = 1, Vj (i.e., planar rotators) at
the inverse temperature a?g.

Thus, when d = 2 and V!, the potential model (63)
produces disorder at all finite temperature and a BKT-
like transition at low temperature; on the other hand,
when d = 3, the potential model supports an ordering
transition at finite temperature.

The previous result can be generalized as follows: let
now s denote an arbitrary positive integer, and let us
consider the mean value

Firs = {(sind; sin Hk)ls cos(@; — ér))r, (9)

= (1/ZA)/ H déydyi, (sin 0) exp(—BH ) (sin 0 sin 0 )" cos(¢; — éx); (70)

TEA

(1) then it will be proven that Ja >0 :

Fikjs = Fiklssa = (1/ZA,a)/ [[ (s — a)dredéaexp | 3> (rivj)cos(di — 6;) | (rjre)* cos(ér — 1), (71)

TEA

ij

where the above transformation r; = (sin Hj)l has been applied;

(ii) by the method of duplicated variables

1 1 27 27
Fiorsa = ][ / dyi(pe) / dry 6(r, — a) / ds / 46!, exp d 83 M(pips) + (rirs)] cos(6i — &)

zEA (if)
X ((prpm)® = (rk7m)") cos(¢x = ¢m) 2 0; (72)
moreover the trigonometric identity
cos(gr — ¢m) = COS P, COS Py, + SIN P SIN By,
entails
27 27
/0 deh, cos /0 A €05 > 0; (73)
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morover, the defintions

pr = (1/2)[(pe + 1) + (o — )], e = (1/2)[(pr + 1) — (e — 7)) (74)
imply
(i = pm)" = (i =) = D g arlon+70) (o = 18) (oo )" (o = 7m) " (75)
4P g
where each coefficient C} 4,/ 4 18 non-negative;
let us now consider
1 1 1
[ duto) [ avstr=aios it ip =" = [ dutplo+ 0 ()’ (70
0 0 0

where 0 < a < 1; if J is even the integral is also posi-
tive; Since supp p # {0}, e > 0 : supp p N [e,1] # 0;
p is differentiable, and let v = 2—’;. Then frj(a) =

fol dpv(p)(p + a)!(p — a)’ is a continuous function €

[
C10,1], and frs(a = 0) = fol du(p) p'*7 > 0; hence
Ja*,0<a* < 1,Y0<a<a*: frj(a) >0, VI, J.

Therefore one obtains result () for ¢ < a* and arbi-
trary non-negative [, s.
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IMPO CIITHOBI MOIEJII TPATKOBOTO T'A3Y 3 KIPAJILHUMUW B3AEMOIISIMUA
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Ha tpusmmipHiit rpariii BUBUeHO MOIel I'PATKOBOTO Tasy, MO CKIATAIOThCA 3 IBOKOMIIOHEHTHAX KJIACHIHUX

criHiB (OIMHMYHNX BEKTODIB), AKi B3a€MOMIIOTH Yepes HMapHUH MOTEHIsl, WO MICTUTH AK CKaJadpHuil mo6yTox

OBOX CIIHIB, Tak 1 KipaJbHUI momaHOK. TakuMm Mome/daM MOXKHa HaJaTh K MaTHEeTHOl, TaK 1 XOJIeCTepPHIHOI
iHTepperari. JloBemeHo, 1o Bepcid Momesi, y dAKiii ycl By3/M 3allOBHEHI, IEPEXOAUTh y BIIOPAIKOBAHUI CTaH
mpu cKindeHHIT Temieparypl. Jajal MH po3DadmaeMo po3BedeHY Bepcito Mojesl i JoBOAMMO ICHYBaHHS IOpOTa
XeMIYHOTO TOTEHINANY, TIOHA AKUM MOMEb Aa€ NaJIeKWii OpieHTAIAHNE TTOPANOK TPHU JOCTATHHO HU3BKHUX TEM-

meparypax. Takox 06TOBOPEHO MOMMPEHHA IMX CTPOTUX Pe3yJIHTATIB Ha TPUKOMIIOHEHTHI CITIHE.
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