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We study here lattie-gas models onsisting of two-omponent lassial spins (unit vetors),

assoiated with a three-dimensional lattie, and interating via a pair potential ontaining both the

salar produt of the two spins, and a hiral (twisting) term; suh models an be given magneti

and holesteri interpretations. We prove that the saturated-lattie version of the model possesses

an ordering transition at �nite temperature; next we go on to the diluted version, and prove the

existene of a hemial potential threshold, above whih the model produes long-range orientational

order at suÆiently low temperatures. We also omment on extensions of these rigorous results to

three-omponent spins.
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I. INTRODUCTION

Some simple lassial lattie spin models, extensively

studied in the literature, are de�ned by pair interation

potentials restrited to nearest neighbours, and of the

general form

G = G

jk

= �F(�); (1)

here � denotes a positive quantities setting energy and

temperature sales, i. e. T

�

= k

B

T=� (and whih an be

saled away from the following equations), and � denotes

the salar produt between �-omponent unit vetors

(� = 2; 3) assoiated with sites of a d-dimensional lattie;

these interation models are isotropi in both spin spae

and lattie spae, and some of their ommonly studied

funtional forms are

F(�) = �� (ferromagneti);

F(�) = +� (antiferromagneti);

F(�) = �P

2

(�); � = 3 (nematogeni lattie model);

in the resulting (ontinuosly degenerate) ground state,

the salar produt of any two spins equals 1 in magni-

tude, i. e., all partiles are aligned in a ommon dire-

tion. In turn, this kind of order may or may not survive

at �nite temperatures [1℄; by now, a number of rigor-

ous results have been worked out, entailing existene or

absene (and sometimes type) of phase transitions, de-

pending on lattie dimensionality, number of spin om-

ponents, symmetry and range of the interation [1,2℄.

The above spin models are of saturated-lattie (SL) type,

i. e., eah lattie site is oupied by one and only one

spin; their lattie-gas extensions (LG) an also be de-

�ned, where eah lattie site hosts one spin at most, and

site oupation is also ontrolled by the hemial poten-

tial �.

LG gas extensions of the above models have also been

investigated in terms of rigorous statistial mehanial

results; it has often been possible to prove that, when

the SL model supports an ordering transition at �nite

temperature, so also do its LG ounterparts, at least for

suÆiently large hemial potential [3{5℄.

Moreover, the above lattie spin models have been

ontinuously and vigorously investigated by other teh-

niques as well, e. g., Mean Field treatments, Renormal-

ization Group, high-temperature series expansions of the

partition funtion, simulation, espeially in the SL ases.

On the other hand, there also exist other pair potential

models ontaining both a simple polynomial in the salar

produt of the two interating spins, and a \hiral" or

\twisting" term, involving their vetor produt (and to

be spei�ed later); this term is usually restrited to near-

est neighbours lying on a ertain lattie axis (\vertial"

nearest neighbours); in some ases, this family of poten-

tial models produes a \spiralling" ground state, where

spins assoiated with lattie sites belonging to a given

\horizontal" lattie plane are ordered in a ommondire-

tion, and the the ommon orientations of neighbouring

lattie planes evolve in spae in a helial fashion, around

the \vertial" lattie diretion.

As for physial meaning and physial realizations, let

us mention that hiral magneti models allow for the

Dzyaloshinsky{Moriya interation [6{10℄; their ounter-

parts being quadrati in the salar produts have been

proposed for holesteri liquid rystals some twenty-�ve

years ago; they were studied by Mean Field treatment,

and, more reently, addressed by omputer simulation

[11{21℄.

Let us �nally mention that helioidal order in the

ground state an result from appropriate ompeting an-

tiferromagneti (or ferro- and antiferromagneti) inter-

ations, de�ned by simple salar produts of the spins;

however we are not onsidering suh models, also exten-

sively studied in the literature.

The present paper aims at studying some lattie spin

models with hiral interations; we have hosen to start
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with � = 2 omponent spins for a ouple of reasons:

{ on the one hand, di�erent potential models beome

equivalent when � = 2, as explained in detail in the Ap-

pendix;

{ on the other hand, the ase � = 2 allows us to

use a well developed apparatus of orrelation inequali-

ties [22{29℄, and thus to failtate demonstrations.

The sope of the present note is thus twofold:

{ on the one hand, we prove existene of an ordering

transition at low but �nite temperature for (SL) spin

models assoiated with a three-dimensional lattie;

{ next we go on to onsider their LG extensions, and

prove the existene of an ordering transition for suÆ-

iently large hemial potentials

II. SYMBOLS AND MODELS

As for other symbols and de�nitions to be used in the

following, we are onsidering here a lassial model, on-

sisting of �-omponent unit vetors, assoiated with a

d-dimensional lattie fw

k

; k 2 Z

d

g (usually d = 3),

and parameterized by the usual polar angles f�

k

g or

f�

k

; �

k

g; let fr

k

g denote their oordinate vetors, let

fe

�

; � = 1; 2; 3g denote orthonormal basis vetors de-

�ned (at least partly) by lattie axes; Cartesian om-

ponents of the j-th unit vetor will be denoted by w

�

j

;

Cartesian oordinates of lattie sites will be noted by

the sets of integers (k

x

; k

y

; k

z

). It will also prove use-

ful to reserve the symbols u

j

and v

k

for two- and three-

omponent unit vetors, respetively, and to mantain the

general one w

k

when both ases an be meant; moreover,

8k, let u

k

= os�

k

e

1

+ sin�

k

e

2

, i. e., all unit vetors u

k

are assumed to belong to the \horizontal" (x; y) plane,

and to be perpendiular to the \vertial" diretion e

3

.

As for three-omponent unit vetors, in some equations it

will prove useful to simplify notation by means of the the

symbolsC

j

= os �

j

, S

j

= sin �

j

, et.. Here and in the fol-

lowing, interation potentials will be restrited to near-

est neighbours (nn); for any pair of nearest-neighbouring

sites j and k, (and for two-omponent unit vetors), we

also de�ne

s

jk

= (r

k

� r

j

); f

jk

= z

k

� z

j

= e

3

� s

jk

; (2)

�

jk

= u

j

� u

k

= os(�

k

� �

j

);

t

jk

= u

j

^ u

k

= sin(�

k

� �

j

)e

3

; (3)

notie that s

jk

is a unit vetor, oiniding with one of

the e

�

. Consider the three-dimensional lattieZ

d=3

. Let

� �Z

3

be a �nite prism of the form: � = �

xy

��

z

, where

�

xy

� Z

2

and �

z

� Z

1

. Let �

b

xy

= fhiji � �

xy

g be the

set of bonds in �

xy

, and the same: �

b

z

= fhsti � �

z

g in

z-diretion, i. e., �

b

= �

b

xy

� �

b

z

; the Hamiltonian of the

model [16{21℄ de�ned by the following nearest-neighbour

interation between two moleules sitting on the bond

hjki:

U

jk

(u

j

;u

k

; s

jk

) = �J [2(u

j

�u

k

)

2

� 1℄�K(u

j

� u

k

)[s

jk

� (u

j

^ u

k

)℄; (4)

where J > 0 and K > 0 denote the oupling onstants (strength parameters). Eq. (4) an also be written in a more

ompat way:

U

jk

(u

j

;u

k

; s

jk

) = �J(2�

2

jk

� 1)�K[�

jk

(s

jk

� t

jk

)℄; (5)

On the other hand, one an make the angular dependene expliit, i. e.,

U

jk

(u

j

;u

k

; s

jk

) =

�

�J os[2(�

k

� �

k

)℄ ; hor

�J os[2(�

k

� �

j

)℄�Kf

jk

sin[2(�

k

� �

j

)℄ ; ver

; (6)

where `hor' and `ver' denote horizontal (intralayer) and

vertial (interlayer) interations, respetively; in turn,

the vertial term an be rewritten

�J os[2(�

k

� �

j

)℄�Kf

jk

sin[2(�

k

� �

j

)℄

= �P os[2(�

k

� �

j

� � )℄; (7)

P =

p

J

2

+K

2

; tan(2� ) =

K

J

: (8)

The Hamitonian of this saturated lattie model is

H

�

(fu

j

g

j2�

) =

X

hjki2�

b

U (u

j

;u

k

; s

jk

): (9)

To make this model in better touh with the uid nature

of liquid rystals we propose its following modi�ation.

Assoiate with eah site j 2 � there is a random vari-

able (oupation number) n

j

= 0; 1. Then we propose a

diluted (lattie-gas) version of the model (4):
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H

�

(fu

j

g

j2�

; fn

j

g

j2�

) (10)

=

X

hjki2�

b

U (n

j

u

j

; n

k

u

k

; s

jk

)� �

X

j2�

n

j

:

Here � 2 R

1

is hemial potential of the lattie gas

governing the Bernoulli measure for random variables

fn

j

= 0; 1g

j2�

.

In spite of the fat that both of these models are still

rather far from a ontinuous uid, the lattie-gas gener-

alization has the advantage of allowing for the possible

density or pressure dependene of the ritial behaviour

of liquid rystals.

The aim of the following setion is twofold:

{ �rst, we prove that the model (9) manifests a Long-

Range Order (LRO) parameter for low temperatures;

{ seond, we prove the same for our model (10) for low

temperatures and large hemial potentials, i. e., for high

densities of the lattie-gas partiles.

III. MAIN RESULTS AND THEIR PROOFS

In order to establish the existene of LRO in model

(4), we introdue the two-spin orrelation funtion

F

�;�

(k; l) = hos[2(�

k

� �

l

)℄i

H

�

(�); k; l 2 �; (11)

where the right-hand site is the Gibbs expetation value

with Hamiltonian (9), for inverse temperature � = �

�1

.

Sine we are dealing with an O(2)-symmetri lattie

model, we need Reetion Positivity and Infrared Bound

tehniques [30,31℄ for the proof of LRO; therefore, some

restritions will be implemented on the model (4), in

order to apply [30,31℄; possible generalizations will be

disussed in Setion IV.

First, the interation (4) itself must be quadrati; it

is known [3{5℄ that for nematis, the appropriate set

of variables to express that are real symmetri matries

fQ

j

g

j2�

:

Q

�

j

= u

�

j

u



j

� (1=�)Æ

�

; �;  = 1; 2; : : :�; (12)

assoiated with unit vetors fu

j

g

j2�

for � = 2, see [3℄.

Then

U

hor

(�

j

; �

k

) = �2J Tr(Q

j

�Q

k

); j

z

= k

z

; (13)

and

U

ver

(�

s

; �

t

) = �2P Tr(Q

s

R

t

z

�s

z

Q

t

R

�

t

z

�s

z

)

�2P Tr(R

s

z

Q

s

R

�

s

z

� R

t

z

Q

t

R

�

t

z

); (14)

for hsti � �

l

z

. Here the orthogonal transformations

fR

t

z

; t 2 �g are implemented by uniform relative ro-

tations of moleules in two adjaent layers �

s

xy

; �

t

xy

,

jt

z

� s

z

j = 1, by the helial wave-vetor q, based on the

treatment in Ref. [10℄

u

t

= R

t

z

�s

z

u

s

= e

1

os[�

s

+ (t

z

� s

z

)q℄ (15)

+ e

2

sin[�

s

+ (t

z

� s

z

)q℄:

Upon hanging matrix variables to

~

Q

k

= R

k

z

Q

k

R

�

k

z

; k 2 �; (16)

we get for interations (13) and (14)

~

U

hor

( 

j

;  

k

) = �2J Tr(

~

Q

j

~

Q

k

); j

z

= k

z

(17)

and

~

U

ver

( 

s

;  

t

) = �2P Tr(

~

Q

s

~

Q

t

); (18)

where  

k

= �

k

� k

z

q and hsti � �

l

z

. Therefore, after the

helial transformation (Eq. (15) and (16), the interation

stays quadrati and purely nemati.

The seond restrition appliable [30,31℄ is to a

nearest-neigbhour interation (or to long-ranged one of

appropriate type), and whih is attrative. Both aspets

are present in the original interation (4) as aepted in

the literature, e. g., Refs. [11{14℄; we do not insist here

on these restritions, see Setion IV.

The third restrition onerns periodi boundary on-

ditions on ��, and poses no problem in our ase.

After assemblying all the neessary elements [30℄, [31℄,

we are now able to state the �rst result.

Theorem 1

There exists a temperature

�

0

:= 8J(m� 1)=[m

2

(m + 1)D℄; m = 2; (19)

where

D := (2�)

�3

Z

B

d

3

p

"

k=3

X

k=1

(1� os p

k

)

#

�1

; (20)

B = [��;+�℄

3

;

and suh that, for all � < �

0

, the model de�ned by Eq.

(9) manifests a non-zero translationally invariant LRO

in xy-planes, as well as helial LRO in the z-diretion:

hQ

j

i(� > �

0

) = R

�

j

z

h

~

Q

j=0

i(� > �

0

)R

j

z

; j 2Z

3

: (21)

Proof

Notie that TrQ

j

= 0, i. e., TrhQ

j

i

~

H

�

= 0, and by

the O(2) invariane of the system one gets h

~

Q

j

i

~

H

�

= 0.

Therefore, in oder to establish the existene of LRO one
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has to prove that

lim

jk�lj!1

lim

�"Z

3

~

F

�;�

(k; l)

= lim

jk�lj!1

lim

�"Z

3

hos 2( 

k

�  

l

)i

~

H

�

(�) (22)

= lim

jk�lj!1

lim

�"Z

3

2Trh

~

Q

k

~

Q

l

i

~

H

�

(�) 6= 0

for low temperatures. This statement in due to the teh-

niques of [30,31℄, as was demonstrated in [3℄. Sine the

interation in

~

H

�

is anisotropi, we get the estimate of

temperature �

0

(Eq. (19)) as developed and disussed

in Refs. [5,32℄, with referene to the smallest oupling J .

The statement (21) is immediate from the helial trans-

formation (Eqns. (16) and (16)).

Next we state and prove a similar result for the diluted

(lattie-gas) version of the model (10).

Theorem 2

There exists a hemial potential �

0

suh that, for ev-

ery � > �

0

there is a �

0

(�), suh that, for all � < �

0

(�)

the model (10) manifests a non-zero translation-invariant

LRO in the xy-planes, and helioidal LRO in the z-

diretion.

hn

j

Q

j

i(� > �

0

(�); � > �

0

)

= R

�

j

z

hn

j

~

Q

j

z

=0

i(� > �

0

(�); � > �

0

)R

j

z

; j 2Z

3

: (23)

Proof

Notie that, after arrying out the helial transforma-

tion (Eqns. (16) and (16)) the model (4) redues to a ne-

mati lattie-gas model with a nearest-neighbour attra-

tive (ferromagneti) oupling, known sine [3℄; by virtue

of the reasoning in [5℄, one obtains that hn

j

~

Q

j

i(�; �) 6= 0

is ensured by

L(�; �) � I

d=3

(�) > 0 (24)

Here (for some � > 0 and  > 0)

L(�; �) = (1=2)f1� (1=�)

� exp[��((4J + 2P + �)℄g; (25)

and

I

d=3

(�) =

�

(2�)

3

Z

B

"

J

k=2

X

k=1

(1� os p

k

)

+ P (1� os p

3

)

#

�1

: (26)

From these equations it is lear that, for

� > �

0

:= �(4J + 2

p

J

2

+K

2

); (27)

there exists a �

0

(�) suh that

L(�

0

(�); �) = I

d=3

(�

0

(�)) (28)

and that the inequality (24) is ensured in the domain

f�;� : � > �

0

; � < (�

0

(�))

�1

g (29)

Finally, Eq. (23) follows from the helial transformation.

IV. COMMENTS

Subsetion 4.1

We �rst omment on the onditions for the proof of

Theorem 1.

a) The model (9) manifests helial LRO at low tem-

peratures, with a temperature-independent wave vetor

q, and this does not seem to be very realisti from the

physial point of view. In order to make the helial wave-

vetor temperature-dependent, one has to perturb the

interation U

hor

or U

ver

by some \anharmoni" terms,

whih, a priori, does not allow to use the tehniques from

Refs. [30,31℄.One possibility used in Mean-Field and sim-

ulation work (see, e. g., Ref. [18℄) is to add a quarti term

to U

hor

~

U

hor

(�

j

; �

k

) = U

hor

(�

j

; �

k

) � J

4

[os(�

j

� �

k

)℄

4

: (30)

Corollary 1.1

For J

4

> 0 there exists a temperature

^

�

0

suh that,

for all � <

^

�

0

a perturbed model with interation

^

U

hor

+U

ver

manifests LRO similar to that in Theorem 1.

Proof

The quarti perturbation makes the interation

^

U

hor

+

U

ver

non-quadrati, and thus it harms the tehnique

based on Refs. [30,31℄. On the other hand, sine J

4

� 0

(ferromagneti perturbation), one an use the Ginibre in-

equalities [24℄ for the ferromagneti plane-rotator model

with Hamiltonian

^

H

�

to estimate the orresponding two-

spin orrelation funtion from below:

hos[2(�

k

� �

l

)℄i

^

H

�

(�) � F

�;�

(k; l): (31)

This inequality, together with the statement (21) in The-

orem 1, �nishes the proof.

Remark

One ould equally well onsider adding a similar quar-

ti term to U

ver

, or add quarti terms to both U

hor

and

U

ver

.
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b) Again, by Ginibre inequalities [24℄, we an relax the

nearest-neighbour interation in (4) to any ferromagneti

(long-range) interation U

hor

ferro

(�

j

; �

k

) or U

ver

ferro

(�

j

; �

k

). If

H

nn

�

orresponds to the nearest-neighbour restrition of

the longer-range interations, then

hos[2(�

j

� �

k

)℄i

H

ferro

�

� hos[2(�

j

� �

k

)℄i

H

nn

�

: (32)

Now by Theorem 1 one gets LRO in the system with

H

ferro

�

for suÆiently low temperature.

Remark 3.1

In both previous ases a) and b), one proves the exis-

tene of LRO, but an not ontrol the value of the helial

wave vetor.

) The ferromagneti harater of the nearest-

neigbhbour interation an be relaxed; atually one an

equally well onsider the antiferromagneti version of

this model (spin-ip symmetry). Here �=2 rotations of

the internal frame systems on the odd (or even) sublat-

ties of Z

3

result in the hange of sign for the oupling

onstants, and this hange of variables maps the O(2) an-

tinemati model to the ferromagneti hiral model (4),

so that Theorem 1 is again appliable.

d) Instead of planar rotators fu

j

; j 2 Z

3

; u

j

2

S

1

g, let us now onsider three-omponent unit vetors

fv

j

; j 2 Z

3

; v

j

2 S

2

g; We address �rst the extreme

anisotropi ase where only x- and y-spin omponents

are involved in the interation (xy model): more pre-

isely, we onsider here the model

V

hor

xy

(�

j

; �

j

; �

k

; �

k

) = �J(sin �

j

sin �

k

) os[2(�

j

� �

k

)℄; (33)

and

V

ver

xy

(�

j

; �

j

; �

k

; �

k

) = �

p

J

2

+K

2

(sin �

j

sin �

k

) os[2(�

j

� �

k

� q)℄: (34)

Then, upon applying Wells' inequality [25{29℄, one readily gets the estimate

hos[2(�

k

� �

l

)℄i

H

�

(��) � hos[2(�

k

� �

l

)℄i

H

xy

�

(�) � hos[2(�

k

� �

l

)℄i

H

�

(�) (35)

where � < 1 is a positive onstant, independent of �.

Together with Theorem 1, this estimate entails that the

xy model exhibits LRO for � < ��

0

. In the Appendix

we show that a similar inequality holds for more general

interations.

Subsetion 4.2

We present here some remarks onerning the lattie-

gas model (4) and Theorem 2.

a) Due to the results in Ref. [33℄, we an tell some-

thing about how the nemati/helial LRO appears, and

about its orrelation with the behaviour of the mean o-

upation number (partile density) �(�; �) = hn

j

i(�; �).

{ We �rst note that, by the hiral transformation

(Eqns. (16) and (16)), the hiral nemati an be mapped

to the non-hiral one;

{ we next note that, by the simple hange of vari-

ables f2 

j

=

~

 

j

; j 2 Z

3

g, the nemati model beomes

equivalent to a lattie-gas model involving ferromagneti

O(2)-symmetri plane rotators, and for whih it has been

possible to prove that, for suÆiently large � > �

�

, there

exists a line �

t

(�), aross whih the system exhibits a

�rst-order transition, involving disontinuities in both

magnetization hui(�; �) and density �(�; �); therefore,

the same behaviour ensues for the present model (4).
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APPENDIX

Equivalene of potential models

Consider the integrals

I

1

=

Z

2�

0

�

�

os t; sin t

�

dt;

I

m

=

Z

2�

0

�

�

osmt; sinmt

�

dt; (36)

where � is an arbitray integrable funtion, and m 6= 0

is an arbitrary integer; by a hange of variable (t to mt)

one obtains I

m

= I

1

; 8m [34,35℄; moreover [34,35℄, on

the basis of the trigonometri identity
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k=M

X

k=1

exp

�

�

2�k

M

i

�

= 0; M � 2; (37)

it easy to hek that

Z

2�

0

exp(�iSt)�(osmt; sinmt) dt = 0; (38)

when S 6= 0 is an integer number but not a multiple of

m; on the other hand, when S is a multiple of m, say

S = �m, one is again redued to Eq. (36), so that the

value of the integral depends on � but not on m.

Now onsider two arbitrary real numbers a and b, and

the interation potential(s)

U

m

= U

jk;m

=

�

a os[m(�

k

� �

k

)℄ ; hor

b os[m os(�

k

� �

j

)℄ ; ver

(39)

one an easily hek that, for assigned values of a and

b, all potentials U

jk;m

lead to the same partition fun-

tion (hene thermodynami properties), and essentially

to the same strutural properties; the hoie m = 1 de-

�nes magneti models, and the hoie m = 2 may lead to

nematogeni one. Moreover, let m = 1, and onsider the

four potential models de�ned by ommon values of jaj,

jbj, and only di�ering in the sign of the named param-

eters; sine the lattie is bipartite, spin-ip symmetry

entails that, in the absene of external �elds, the four

models again produe the same partition funtion, and

esentially the same strutural properties, i. e., potential

models only di�ering on the signs of the named parame-

ters produe orrelation funtions related by known sign

fators. Notie that spin-ip symmetry holds for three-

omponent spins as well, and in general, for a bipar-

tite lattie and nearest-neighbour interations de�ned

by an arbitrary odd funtion of spin omponents. Thus,

Eq. (39) an be redued to the \generalized ferromag-

neti" (GFM) ase

V

jk;m

=

�

�A os[m(�

k

� �

k

)℄ ; hor

�B os[m os(�

k

� �

j

)℄ ; ver

; (40)

A > 0; B > 0 (41)

where the hoie m = 1 de�nes the strit ferromagneti

(FM) interpretation, whereas the hoie m = 2 de�nes a

nematogeni lattie model.

Next we onsider the potential model(s)

W

jk;m

=

�

a os[m(�

k

� �

k

)℄ ; hor

b os[m(�

k

� �

j

)℄ + f

jk

sin[m(�

k

� �

j

)℄ ; ver

; (42)

where the vertial term an be rewritten

b os[m(�

k

� �

j

)℄ + f

jk

sin[m(�

k

� �

j

)℄ = � os[m(�

j

� �

k

� � )℄; (43)

� =

p

b

2

+ 

2

; tan(m� ) =



b

: (44)

By the same argument as above, one reognizes the

equivalene of potential models de�ned by the same val-

ues of a, b and , but di�erent values of m. In the follow-

ing, we shall be onsidering and omparing two potentail

models de�ned by

W

0

= a

0

�

jk

+ b

0

f

jk

(e

3

� t

jk

); (45)

W

00

= a

00

(2�

2

jk

� 1) + b

00

�

jk

(s

jk

� t

jk

): (46)

Upon expanding the formulae, and realling the previous

analysis (espeially Eqs. (36) to (38)), one an reognize

that the two potential models W

0

and W

00

produe the

same thermodynami and strutural properties provided

that

a

00

= a

0

; b

00

=2 = b

0

.

Let us now restrit our attention to Eq. (42), and let

� denote an arbitrary number; eah polar angle �

k

an

be identially deomposed

�

k

= �z

k

+  

k

; (47)

so that

os(�

j

� �

k

) =

�

os( 

k

�  

j

) ; hor

os[(z

k

� z

j

)� + ( 

k

�  

j

)℄ ; ver

: (48)
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After allowing for Eqs. (43) and (44), and hoosing � = � , Eq. (42) beomes

W

0

jk

=

�

a

0

os( 

k

�  

j

) ; hor

�

0

os( 

k

�  

j

) ; ver

; �

0

=

p

(a

0

)

2

+ (b

0

)

2

(49)

and a similar transformation an be applied on Eq. (46);

this approah is based on Ref. [10℄. With appropriate

signs of the parameters, Eqs. (42) produes a helial

ground state where eah layer is ompletely ordered fer-

romagnetially, and the ommon orientations of two on-

seutive layers are rotated by an angle � ; on the other

hand, the previous disussion shows how this twist an

be transformed away; sine the transformation is tem-

perature independent, the pith is also independent of

temperature, if order survives at �nite temperature (i. e.,

when d � 3).

The interation term ontaining the vetor produt

t

jk

in Eq. (42) was proposed some thirty-�ve years ago

by Dzaloshinsky [6℄ and Moriya [7℄, as a model explain-

ing the phenomenon of weak ferromagnetism in systems

with predominant antiferromagneti interations [8{10℄;

in mirosopi terms, it originates from spin-orbit in-

terations; extensions to three-omponent spins are also

known, and there also the ground-state twist an be

transformed away. This model has been extensively in-

vestigated, both for lassial and quantum spins (see,

e. g., Refs. [36{40℄ for a few papers published after 1990);

exat solutions are known when d = 1 [41{43℄.

Some remarks on hiral nemati models

Nematogeni moleules are usually neither rigid nor

ylindrially symmetri, and often possess appreiable

dipole moments, yet the resulting thermotropi nemati

phases are apolar and usually possess uniaxial symmetry;

therefore, the simplifying assumption of uniaxial moleu-

lar symmetry (C

1v

, or, more frequently D

1h

) has been

extensively used in theoretial treatments; moreover, to

a reasonable approximation, the existene or absene

of long-range orientational order marks the one di�er-

ene between a nemati phase and the isotropi liquid

to whih it transits at higher temperature; this has sug-

gested the additional simpli�ation of nematogeni lat-

tie models, also extensively studied in the literature.

In holesteri liquid rystals, there exists loally nemati

orientational order, and this loally preferred orientation

spirals in spae, around an axis perpendiular to it; the

pith of the helix is in general temperature-dependent,

and in some ases it an even hange sign with temper-

ature.

On the other hand, the orresponding term in Eq. (46)

was proposed and disussed some twenty-�ve years ago,

espeially by van der Meer et al. [11{14℄; the intera-

tion model is based on a perturbation treatment of in-

termoleular interations, and on further assumptions,

as disussed in the original papers, for example:

{ on a multipolar expansion of Coulombian intera-

tions between the two partiles, and on the neglet of

permanent multipolar terms; notie that short-range re-

pulsion between the two moleules is not explitly in-

luded, and is often allowed for by onstraining moleules

on a lattie;

{ on the assumption of an e�etive ylindrial symme-

try of the interating moleules; After additional simpli-

�ations, the following potential model is de�ned in the

named papers:

W

jk

= W (w

j

;w

k

;x

j

� x

k

) (50)

= �J�

2

jk

�K�

jk

(r

jk

� t

jk

)� L�

4

jk

�M�

3

jk

(r

jk

� t

jk

)

where w

j

and w

k

denote 2- or 3-omponent unit vetors

de�ning moleular orientations, x

j

and x

k

denote their

ontinuous entre-of-mass oordinates,

R

jk

= x

j

� x

k

; r

jk

=

R

jk

jR

j

kj

; (51)

�

jk

= w

j

�w

k

; t

jk

= w

j

^w

k

:

In general the oeÆients J ,K, L,M are funtions of the

distane between the two enters of mass [11{14℄; on the

other hand, when a lattie model with nearest-neighbour

interation is onsidered, the named oeÆients just be-

ome adjustable parameters. Notie also that J > 0, and

that signs of K and M an be taken as positive with-

out loss of generality. The above equation was derived

for three-omponent unit vetors [12{14℄; on the other

hand, a further simpli�ations has often been proposed

and used, i. e., the unit vetors have been onstrained

to two omponents, on a plane orthogonal to the axis

of the helix. The resulting models have been studied by

Mean Field or Two-Site Cluster treatment, as well as by

Monte Carlo simulation [11,15{21℄. The Authors of some

reent papers have tried to expliitly allow for moleular

biaxiality [44{47℄.

Let us �nally onsider the three-omponent ounter-

part of W

00

, i. e.,

W

000

= �a[(3=2)(v

j

� v

k

)

2

� (1=2)℄ (52)

+b(v

j

� v

k

)(z

j

� z

k

)[e

3

� (v

j

^ v

k

)℄; a > 0

where the b term does not at among horizontal neigh-

bours, and the vertial interation reads:
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W

000

ver

= �a(3=2)[(C

j

C

k

)

2

+2S

j

C

j

S

k

C

k

os(�

k

� �

j

) + (S

j

S

K

)

2

os(�

k

� �

j

)

2

℄

+a=2 + b(z

k

� z

j

)(C

j

C

k

+ S

j

S

k

os(�

k

� �

j

))

�S

j

S

k

sin(�

k

� �

j

); (53)

i. e.,

W

000

= C

j

S

j

C

k

S

k

[3a os(�

k

� �

j

)

+b(z

k

� z

j

) sin(�

k

� �

j

)℄

�(S

j

S

k

)

2

f(3=2)a(1=2)[1+ os(2(�

k

� �

j

))℄

+(1=2)b(z

k

� z

j

) sin[2(�

k

� �

j

)℄g+ a=2; (54)

W

000

= �aP

2

(C

j

)P

2

(C

k

)

�

p

(3a)

2

+ b

2

C

j

S

j

C

k

S

k

os(�

k

� �

j

� � ) (55)

�

p

(3a=4)

2

+ (b=2)

2

(S

j

S

k

)

2

os[2(�

k

� �

j

� �

0

)℄;

where

tan � =

b

3a

; tan(2�

0

) = 2

b

3a

: (56)

There seems to be no general way of simplifying these

equations; on the other hand, in the limit 0 < jbj=a� 1,

one an approximate tan(2�

0

) = tan(2� ) so that the in-

teration potential beomes

W

000

= �aP

2

(C

j

)P

2

(C

k

)

�

p

(3a)

2

+ b

2

(C

j

S

j

)(C

k

S

k

) os(�

k

� �

j

� � ) (57)

�

p

(3a=4)

2

+ (b=2)

2

(S

j

S

k

)

2

os[2(�

k

� �

j

� � )℄;

one reognizes at this stage that the twisting term an

be transformed away, along the previous lines; more-

over, reetion positivity in the interation still holds,

and one an again onlude the existene of an orien-

tational ordering transition at low but �nite temper-

ature; in the named limit, the hiral wave vetor be-

omes temperature-independent; this was also noted in

the Mean Field treatment of Ref. [12℄.

Bounds on transition temperatures

To be spei�, let us onsider the layered FM model

de�ned by

V

jk;m

=

�

�A os(�

k

� �

j

) ; hor

�B os(�

k

� �

j

) ; ver

; (58)

A > 0; B > 0 (59)

extensively studied in the literature; the model de�ned

by A = B = 1 is rigorously known to possess an or-

dering transition, whose transition temperature may be

onservatively estimated to be �

PR

= 2:202�0:001 (see,

e. g., Ref. [48℄); one an use the Ginibre inequality [24℄

to onlude that the model(s) de�ned by Eq. (58) pos-

sess an ordering transition, whose transition temperature

�

ord

(A;B) is bounded by

min(A;B)�

PR

� �

ord

(A;B) � max(A;B)�

PR

: (60)

On the other hand, when 0 < B � A, it is ommonly be-

lieved that, above �

ord

the system possess a disordered

phase with slow deay of orrelations and in�nite susep-

tibility, i. e., a Berezinski��{Kosterlitz{Thouless (BKT)

phase, and, at higher temperature, a BKT transition

[49{54℄ (we do not know any rigorous proof nor refuta-

tion of the onjeture); if this happens, then the following

bound an be obtained, again by orrelation inequalities

�

BKT

(A;B) � A�

BKT

(d = 2); (61)

where �

BKT

(d = 2) denotes the transition temperature

for the strit two-dimensional ounterpart, whose numer-

ial value is �

BKT

(d = 2) = 0:89 � 0:01 [51℄. On the

other hand, aording to Renormalization-Group treat-

ments and in the same limit (see, e. g., Refs. [55,56℄)

�

BKT

(A;B) � A

h

�

BKT

(d = 2)

+ (�=2)

2

j log(B=A)j

�2

i

: (62)

Comparison inequalities

We onsider here 3-omponent spins assoiated with a

d-dimensional lattie and interating via a ferromagneti

pair potential restrited to nearest neighbours and of the

form

U = U

jk

= �(sin �

j

sin �

k

)

l

os(�

j

� �

k

); (63)

where l is an arbitrary positive integer; let H

�

denote

the resulting Hamiltonian,

H

�

= �

X

hiji

(sin �

j

sin �

k

)

l

os(�

i

� �

j

); (64)

let Z

�

denote the orresponding partition funtion, and

let

F

pq

= h(sin �

p

sin �

q

)

l

os(�

p

� �

q

)i

H

�

(�) (65)

denote the orrelation funtion. Owing to the funtional

form of the integrands, and sine sin � = sin(���), in the

de�nition of F

pq

, eah integral over a variable �

j

ranging
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from 0 to � is twie the integral of the same funtion of

�

j

over the range between 0 and �=2, and the powers of

two resulting in both denominator and numerator anel

out identially; over the named range, sin � and (sin �)

l

are monotoni inreasing and invertible funtions of the

argument; thus, upon de�ning r

j

= (sin �

j

)

l

, single-site

variables have the probability distribution

dP

0

i

/ d�(r

i

)d�

i

;

d�(r

i

) = (1=l)

r

(2=l)

i

q

1� r

(2=l)

i

dr

i

; (66)

0 � r

i

� 1; 0 � �

i

� 2�;

where the measure d�(r

j

) is not onentrated at 0; the

thermal ensemble average (Eq. (65)) an be rewritten as

as

F

pq

= hF (%; ')i

�

(67)

i. e., as expetation value with respet to the probability

measure

d� / exp(��H

�

)

Y

j

dP

0

j

: (68)

Moreover, let b denote a positive number, 0 < b � 1,

and let hF (%; ')i

b

denote the mean value obtained by

onstraining all r variables to the value b, and let Z

�;b

denote the orresponding partition funtion; aording

to Well's inequality and its generalizations to ontinuous

spins [25{29℄, there exists a positive number a suh that

hF (%; ')i

1

� hF (%; ')i

�

� hF (%; ')i

a

: (69)

By saling, the potential model de�ned by Eq. (63) with

r

j

= a; 8j and at inverse temperature � is the same as

the one de�ned by r

j

= 1; 8j (i. e., planar rotators) at

the inverse temperature a

2

�.

Thus, when d = 2 and 8l, the potential model (63)

produes disorder at all �nite temperature and a BKT-

like transition at low temperature; on the other hand,

when d = 3, the potential model supports an ordering

transition at �nite temperature.

The previous result an be generalized as follows: let

now s denote an arbitrary positive integer, and let us

onsider the mean value

F

jk;ls

= h(sin �

j

sin �

k

)

ls

os(�

j

� �

k

)i

H

�

(�)

= (1=Z

�

)

Z

Y

x2�

d�

x

d�

x

(sin �) exp(��H

�

)(sin �

j

sin �

k

)

ls

os(�

j

� �

k

); (70)

(i) then it will be proven that 9a > 0 :

F

jk;ls

� F

jk;ls;a

= (1=Z

�;a

)

Z

Y

x2�

Æ(r

x

� a)dr

x

d�

x

exp

2

4

�

X

ij

(r

i

r

j

)os(�

i

� �

j

)

3

5

(r

j

r

k

)

s

os(�

k

� �

l

); (71)

where the above transformation r

j

= (sin �

j

)

l

has been applied;

(ii) by the method of dupliated variables

F

jk;ls;a

=

Y

x2�

Z

1

0

d�(�

x

)

Z

1

0

dr

x

Æ(r

x

� a)

Z

2�

0

d�

x

Z

2�

0

d�

0

x

exp

8

<

:

�

X

hiji

[(�

i

�

j

) + (r

i

r

j

)℄ os(�

i

� �

j

)

9

=

;

� ((�

k

�

m

)

s

� (r

k

r

m

)

s

) os(�

k

� �

m

) � 0 ; (72)

moreover the trigonometri identity

os(�

k

� �

m

) = os �

k

os�

m

+ sin�

k

sin�

m

entails

Z

2�

0

d�

k

os�

k

Z

2�

0

d�

m

os�

m

� 0; (73)
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morover, the de�ntions

�

k

= (1=2)[(�

k

+ r

k

) + (�

k

� r

k

)℄; r

k

= (1=2)[(�

k

+ r

k

)� (�

k

� r

k

)℄ (74)

imply

(�

k

� �

m

)

s

� (r

k

� r

m

)

s

=

X

p;q;p

0

;q

0

C

p;q;p

0

;q

0

(�

k

+ r

k

)

p

(�

k

� r

k

)

q

(�

m

+ r

m

)

p

0

(�

m

� r

m

)

q

0

(75)

where eah oeÆient C

p;q;p

0

;q

0

is non-negative;

let us now onsider

Z

1

0

d�(�)

Z

1

0

drÆ(r� a)(� + r)

I

(� � r)

J

=

Z

1

0

d�(�)(� + a)

J

(�

a

)

J

(76)

where 0 < a < 1; if J is even the integral is also posi-

tive; Sine supp � 6= f0g, 9� > 0 : supp � \ [�; 1℄ 6= ;;

� is di�erentiable, and let � =

d�

d�

. Then f

IJ

(a) =

R

1

0

d� �(�)(� + a)

I

(� � a)

J

is a ontinuous funtion 2

C[0; 1℄, and f

IJ

(a = 0) =

R

1

0

d�(�) �

I+J

> 0; hene

9a

�

; 0 < a

�

< 1; 80 < a < a

�

: f

IJ

(a) > 0; 8I; J .

Therefore one obtains result (i) for a < a

�

and arbi-

trary non-negative l; s.

[1℄ Ya. G. Sina��, Theory of Phase Transitions; Rigorous Re-

sults, (Pergamon Press, Oxford, 1982).

[2℄ H.-O. Georgii, Gibbs Measures and Phase transitions, (de

Gruyter, Berlin{New York, 1988).

[3℄ N. Angelesu, V. A. Zagrebnov, J. Phys. A 15, L639

(1982).

[4℄ N. Angelesu, S. Romano, V. A. Zagrebnov, Phys. Lett,

A 200, 433 (1995).

[5℄ V. A. Zagrebnov, Physia A 232, 737 (1996).

[6℄ I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958);

Zh. Eksp. Teor. Fiz. [Sov. Phys. | JETP℄ 10, 814 (1960).

[7℄ T. Moriya, Phys. Rev. Lett. 4, 228 (1960); Phys. Rev.

117, 635 (1960); 120, 91 (1960).

[8℄ T. Moriya, in Magnetism, a treatise on modern the-

ory and materials, edited by G. T. Radom, H. Suhl

(Aademi Press, London and New York, 1963), Vol. 1,

Chap. 3, p. 85{125.

[9℄ T. Nagamiya, Solid State Phys. 20, 306 (1967).

[10℄ D. D. Betts, in Phase Transitions and Critial Phenom-

ena, (Aademi Press, London and New York, 1974),

Vol. 3, Chap. 8, p. 569{652.

[11℄ Y. R. Lin-Liu, Y. M. Shi, C.-W. Woo, H. T. Tan, Phys.

Rev. A 14, 445 (1976).

[12℄ B. W. van der Meer, G. Vertogen, A. J. Dekker,

J. G. J. Ypma, J. Chem. Phys. 65, 3935 (1976).

[13℄ B. W. van der Meer, G. Vertogen, in The Moleular

Physis of Liquid Crystals, edited by G. R. Lukhurst,

G. W. Gray, (Aademi Press, London, 1979), Chap. 6,

p. 149{168.

[14℄ H. Shr�oder, in The Moleular Physis of Liquid Crys-

tals, edited by G. R. Lukhurst, G. W. Gray, (Aademi

Press, London, 1979), Chap. 5, p. 121{147.

[15℄ L. Hu, Y. Jiang, R. Tao, Phys. Rev. E 57, 4289 (1998).

[16℄ J. Saha, B. Nandi, P. K. Mukherjee, M. Saha, Mol. Cryst.

Liq. Cryst. 250, 185 (1994).

[17℄ G. R. Lukhurst, S. Romano, H. B. Zewdie, J. Chem.

So. Faraday Trans. 92, 1781 (1996).

[18℄ R. Memmer, F. Janssen, Liq. Cryst. 24, 805 (1998).

[19℄ R. Memmer, F. Janssen, J. Chem. So. Faraday Trans.

94, 267 (1998).

[20℄ R. Memmer, F. Janssen, Z. Naturforsh. A 54, 747

(2000).

[21℄ Z. Zhidong, L. Jinwei, Z. Wu, Int. J. Mod. Phys. B 14,

475 (2000).

[22℄ G. A. Baker, Jr., Quantitative Theory of Critial Phe-

nomena, (Aademi Press, Boston, 1990).

[23℄ J. Glimm, A. Ja�e, Quantum Physis, a Funtional In-

tegral Point of View (Springer, Berlin-New York, 1981).

[24℄ J. Ginibre, Commun. Math. Phys. 16, 310 (1970).

[25℄ D. Wells, PhD Thesis, (Indiana University, 1977).

[26℄ J. Brimont, J. L. Lebowitz, C.-E. P�ster, J. Stat. Phys.

24, 269 (1981).

[27℄ J. Brimont, J. L. Lebowitz, C. E. P�ster, in The Won-

derful World of Stohastis:A Tribute to Elliott W. Mon-

troll, edited by M. F. Shlesinger, G. H. Weiss, (Elsevier,

Amsterdam, 1985), Chap. 10, p. 206{213.

[28℄ J. Brimont, J.-R. Fontaine, J. Stat. Phys. 26, 745

(1981).

[29℄ F. Dunlop, J. Stat. Phys. 41, 733 (1985).

[30℄ J. Fr�ohlih, Bull. Am. Math. So. 84, 165 (1978).

[31℄ J. Fr�ohlih, R. Israel, E. H. Lieb, B. Simon, Commun.

Math. Phys. 62, 1 (1978).

[32℄ M. Campbell, L. Chayes, J. Phys. A 32, 8881 (1999).

[33℄ L. Chayes, S. B. Shlosman, V. A. Zagrebnov, J. Stat.

Phys. 98, 537 (2000).

[34℄ H.-O. Carmesin, Phys. Lett. A 125, 294 (1987).

162



ON LATTICE-GAS SPIN MODELS WITH CHIRAL INTERACTIONS

[35℄ S. Romano, Nuovo Cimento B 100, 447 (1987).

[36℄ L. Klein, A. Aharony, Phys. Rev. B 44, 856 (1991).

[37℄ C. E. Cordeiro, E. V. de Mello, M. A. Continentino,

Z. Phys. B 85, 307 (1993).

[38℄ A. R. V�olkel, F. G. Mertens, A. R. Bishop, G. M. Wysin,

Ann. Phys. (Leipzig) 2, 308 (1993).

[39℄ F. Laerda, J. Riardo da Sousa, I. P. Fittipaldi, J. Appl.

Phys. 75, 5829 (1994).

[40℄ L. Biegala and J. Sznajd, Physia A 209, 422 (1994).

[41℄ C. E. Zaspel, Phys. Lett. A 94, 97 (1983).

[42℄ J. Cur�ely, R. Georges, Phys. Lett. A 184, 310 (1994).

[43℄ J. Cur�ely, Physia B 205, 31 (1995).

[44℄ A. B. Harris, R. D. Kamien, T. C. Lubensky, Phys. Rev.

lett. 78, 1476 (1997).

[45℄ S. A. Issaenko, A. B. Harris, T. C. Lubensky, Phys. Rev.

E 60, 578 (1999)

[46℄ S. A. Issaenko, A. B. Harris, Phys. Rev. E 61, 2777

(2000).

[47℄ A. V. Emelyanenko, M. A. Osipov, D. A. Dunmur, Phys.

Rev. E 62, 2340 (2000)

[48℄ P. Butera, M. Comi, Phys. Rev. B 56, 8212 (1997).

[49℄ J. Fr�ohlih, T. Spener, Commun. Math. Phys. 81, 527

(1981).

[50℄ P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

[51℄ R. Gupta, J. De Lapp, G. G. Batrouni, G. C. Fox,

C. F. Baillie, J. Apostolakis, Phys. Rev. Lett. 61, 1996

(1988); R. Gupta, C. F. Baillie, Phys. Rev. B 45, 2883

(1992).

[52℄ P. Butera, M. Comi, Phys. Rev. B 50, 3052 (1994)

[53℄ S. W. Pierson, Philos. Mag. B 76, 715 (1997).

[54℄ Z. Gul�asi, M. Gul�asi, Adv. Phys. 47, 1 (1998).

[55℄ S. Hikami, T. Tsuneto, Prog. Theor. Phys. 63, 387

(1980).

[56℄ E. Rastelli, A. Tassi, J. Appl. Phys. 81, 4140 (1997).

PRO SP�NOV� MODEL� �RATKOVOGO GAZU Z K�RAL^NIMI VZA�MOD��MI

S. Romano

1

, V. Za�rebnov

2

1

Na�onal~ni� �nstitut f�ziki mater��l�v � f�ziqni� fakul~tet,

Un�versitet m. Pav�� v�a A. Bass�, I{27100, Pav��, �tal��

romano�pv.infn.it
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Un�versitet Seredzemnogo mor� � Centr teoretiqnoÝ f�ziki,

CNRS{L�m�n� 907, F{13288, Marsel~, Fran��

zagrebnov�pt.univ-mrs.fr

Na trivim�rn�� �rat� vivqeno model� �ratkovogo gazu, wo sklada�t~s� z dvokomponentnih klasiqnih

sp�n�v (odiniqnih vektor�v), �k� vzamod��t~ qerez parni� poten��l, wo m�stit~ �k skal�rni� dobutok

dvoh sp�n�v, tak � k�ral~ni� dodanok. Takim model�m mo�na nadati �k magnetnoÝ, tak � holesteriqnoÝ

�nterpreta�Ý. Dovedeno, wo vers�� model�, u �k�� us� vuzli zapovnen�, perehodit~ u vpor�dkovani� stan

pri sk�nqenn�� temperatur�. Dal� mi rozgl�damo rozvedenu vers�� model� � dovodimo �snuvann� poroga

hem�qnogo poten��lu, ponad �kim model~ da daleki� or�nta��ni� por�dok pri dostatn~o niz~kih tem-

peraturah. Tako� obgovoreno poxirenn� ih strogih rezul~tat�v na trikomponentn� sp�ni.

163


