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We study here latti
e-gas models 
onsisting of two-
omponent 
lassi
al spins (unit ve
tors),

asso
iated with a three-dimensional latti
e, and intera
ting via a pair potential 
ontaining both the

s
alar produ
t of the two spins, and a 
hiral (twisting) term; su
h models 
an be given magneti


and 
holesteri
 interpretations. We prove that the saturated-latti
e version of the model possesses

an ordering transition at �nite temperature; next we go on to the diluted version, and prove the

existen
e of a 
hemi
al potential threshold, above whi
h the model produ
es long-range orientational

order at suÆ
iently low temperatures. We also 
omment on extensions of these rigorous results to

three-
omponent spins.
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e spin models, latti
e gases, 
hiral intera
tions, 
holesteri
 models.

PACS number(s): 05.50.+q, 61.30.{v, 64.70.{p

I. INTRODUCTION

Some simple 
lassi
al latti
e spin models, extensively

studied in the literature, are de�ned by pair intera
tion

potentials restri
ted to nearest neighbours, and of the

general form

G = G

jk

= �F(�); (1)

here � denotes a positive quantities setting energy and

temperature s
ales, i. e. T

�

= k

B

T=� (and whi
h 
an be

s
aled away from the following equations), and � denotes

the s
alar produ
t between �-
omponent unit ve
tors

(� = 2; 3) asso
iated with sites of a d-dimensional latti
e;

these intera
tion models are isotropi
 in both spin spa
e

and latti
e spa
e, and some of their 
ommonly studied

fun
tional forms are

F(�) = �� (ferromagneti
);

F(�) = +� (antiferromagneti
);

F(�) = �P

2

(�); � = 3 (nematogeni
 latti
e model);

in the resulting (
ontinuosly degenerate) ground state,

the s
alar produ
t of any two spins equals 1 in magni-

tude, i. e., all parti
les are aligned in a 
ommon dire
-

tion. In turn, this kind of order may or may not survive

at �nite temperatures [1℄; by now, a number of rigor-

ous results have been worked out, entailing existen
e or

absen
e (and sometimes type) of phase transitions, de-

pending on latti
e dimensionality, number of spin 
om-

ponents, symmetry and range of the intera
tion [1,2℄.

The above spin models are of saturated-latti
e (SL) type,

i. e., ea
h latti
e site is o

upied by one and only one

spin; their latti
e-gas extensions (LG) 
an also be de-

�ned, where ea
h latti
e site hosts one spin at most, and

site o

upation is also 
ontrolled by the 
hemi
al poten-

tial �.

LG gas extensions of the above models have also been

investigated in terms of rigorous statisti
al me
hani
al

results; it has often been possible to prove that, when

the SL model supports an ordering transition at �nite

temperature, so also do its LG 
ounterparts, at least for

suÆ
iently large 
hemi
al potential [3{5℄.

Moreover, the above latti
e spin models have been


ontinuously and vigorously investigated by other te
h-

niques as well, e. g., Mean Field treatments, Renormal-

ization Group, high-temperature series expansions of the

partition fun
tion, simulation, espe
ially in the SL 
ases.

On the other hand, there also exist other pair potential

models 
ontaining both a simple polynomial in the s
alar

produ
t of the two intera
ting spins, and a \
hiral" or

\twisting" term, involving their ve
tor produ
t (and to

be spe
i�ed later); this term is usually restri
ted to near-

est neighbours lying on a 
ertain latti
e axis (\verti
al"

nearest neighbours); in some 
ases, this family of poten-

tial models produ
es a \spiralling" ground state, where

spins asso
iated with latti
e sites belonging to a given

\horizontal" latti
e plane are ordered in a 
ommondire
-

tion, and the the 
ommon orientations of neighbouring

latti
e planes evolve in spa
e in a heli
al fashion, around

the \verti
al" latti
e dire
tion.

As for physi
al meaning and physi
al realizations, let

us mention that 
hiral magneti
 models allow for the

Dzyaloshinsky{Moriya intera
tion [6{10℄; their 
ounter-

parts being quadrati
 in the s
alar produ
ts have been

proposed for 
holesteri
 liquid 
rystals some twenty-�ve

years ago; they were studied by Mean Field treatment,

and, more re
ently, addressed by 
omputer simulation

[11{21℄.

Let us �nally mention that heli
oidal order in the

ground state 
an result from appropriate 
ompeting an-

tiferromagneti
 (or ferro- and antiferromagneti
) inter-

a
tions, de�ned by simple s
alar produ
ts of the spins;

however we are not 
onsidering su
h models, also exten-

sively studied in the literature.

The present paper aims at studying some latti
e spin

models with 
hiral intera
tions; we have 
hosen to start
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with � = 2 
omponent spins for a 
ouple of reasons:

{ on the one hand, di�erent potential models be
ome

equivalent when � = 2, as explained in detail in the Ap-

pendix;

{ on the other hand, the 
ase � = 2 allows us to

use a well developed apparatus of 
orrelation inequali-

ties [22{29℄, and thus to fa
iltate demonstrations.

The s
ope of the present note is thus twofold:

{ on the one hand, we prove existen
e of an ordering

transition at low but �nite temperature for (SL) spin

models asso
iated with a three-dimensional latti
e;

{ next we go on to 
onsider their LG extensions, and

prove the existen
e of an ordering transition for suÆ-


iently large 
hemi
al potentials

II. SYMBOLS AND MODELS

As for other symbols and de�nitions to be used in the

following, we are 
onsidering here a 
lassi
al model, 
on-

sisting of �-
omponent unit ve
tors, asso
iated with a

d-dimensional latti
e fw

k

; k 2 Z

d

g (usually d = 3),

and parameterized by the usual polar angles f�

k

g or

f�

k

; �

k

g; let fr

k

g denote their 
oordinate ve
tors, let

fe

�

; � = 1; 2; 3g denote orthonormal basis ve
tors de-

�ned (at least partly) by latti
e axes; Cartesian 
om-

ponents of the j-th unit ve
tor will be denoted by w

�

j

;

Cartesian 
oordinates of latti
e sites will be noted by

the sets of integers (k

x

; k

y

; k

z

). It will also prove use-

ful to reserve the symbols u

j

and v

k

for two- and three-


omponent unit ve
tors, respe
tively, and to mantain the

general one w

k

when both 
ases 
an be meant; moreover,

8k, let u

k

= 
os�

k

e

1

+ sin�

k

e

2

, i. e., all unit ve
tors u

k

are assumed to belong to the \horizontal" (x; y) plane,

and to be perpendi
ular to the \verti
al" dire
tion e

3

.

As for three-
omponent unit ve
tors, in some equations it

will prove useful to simplify notation by means of the the

symbolsC

j

= 
os �

j

, S

j

= sin �

j

, et
.. Here and in the fol-

lowing, intera
tion potentials will be restri
ted to near-

est neighbours (nn); for any pair of nearest-neighbouring

sites j and k, (and for two-
omponent unit ve
tors), we

also de�ne

s

jk

= (r

k

� r

j

); f

jk

= z

k

� z

j

= e

3

� s

jk

; (2)

�

jk

= u

j

� u

k

= 
os(�

k

� �

j

);

t

jk

= u

j

^ u

k

= sin(�

k

� �

j

)e

3

; (3)

noti
e that s

jk

is a unit ve
tor, 
oin
iding with one of

the e

�

. Consider the three-dimensional latti
eZ

d=3

. Let

� �Z

3

be a �nite prism of the form: � = �

xy

��

z

, where

�

xy

� Z

2

and �

z

� Z

1

. Let �

b

xy

= fhiji � �

xy

g be the

set of bonds in �

xy

, and the same: �

b

z

= fhsti � �

z

g in

z-dire
tion, i. e., �

b

= �

b

xy

� �

b

z

; the Hamiltonian of the

model [16{21℄ de�ned by the following nearest-neighbour

intera
tion between two mole
ules sitting on the bond

hjki:

U

jk

(u

j

;u

k

; s

jk

) = �J [2(u

j

�u

k

)

2

� 1℄�K(u

j

� u

k

)[s

jk

� (u

j

^ u

k

)℄; (4)

where J > 0 and K > 0 denote the 
oupling 
onstants (strength parameters). Eq. (4) 
an also be written in a more


ompa
t way:

U

jk

(u

j

;u

k

; s

jk

) = �J(2�

2

jk

� 1)�K[�

jk

(s

jk

� t

jk

)℄; (5)

On the other hand, one 
an make the angular dependen
e expli
it, i. e.,

U

jk

(u

j

;u

k

; s

jk

) =

�

�J 
os[2(�

k

� �

k

)℄ ; hor

�J 
os[2(�

k

� �

j

)℄�Kf

jk

sin[2(�

k

� �

j

)℄ ; ver

; (6)

where `hor' and `ver' denote horizontal (intralayer) and

verti
al (interlayer) intera
tions, respe
tively; in turn,

the verti
al term 
an be rewritten

�J 
os[2(�

k

� �

j

)℄�Kf

jk

sin[2(�

k

� �

j

)℄

= �P 
os[2(�

k

� �

j

� � )℄; (7)

P =

p

J

2

+K

2

; tan(2� ) =

K

J

: (8)

The Hamitonian of this saturated latti
e model is

H

�

(fu

j

g

j2�

) =

X

hjki2�

b

U (u

j

;u

k

; s

jk

): (9)

To make this model in better tou
h with the 
uid nature

of liquid 
rystals we propose its following modi�
ation.

Asso
iate with ea
h site j 2 � there is a random vari-

able (o

upation number) n

j

= 0; 1. Then we propose a

diluted (latti
e-gas) version of the model (4):
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H

�

(fu

j

g

j2�

; fn

j

g

j2�

) (10)

=

X

hjki2�

b

U (n

j

u

j

; n

k

u

k

; s

jk

)� �

X

j2�

n

j

:

Here � 2 R

1

is 
hemi
al potential of the latti
e gas

governing the Bernoulli measure for random variables

fn

j

= 0; 1g

j2�

.

In spite of the fa
t that both of these models are still

rather far from a 
ontinuous 
uid, the latti
e-gas gener-

alization has the advantage of allowing for the possible

density or pressure dependen
e of the 
riti
al behaviour

of liquid 
rystals.

The aim of the following se
tion is twofold:

{ �rst, we prove that the model (9) manifests a Long-

Range Order (LRO) parameter for low temperatures;

{ se
ond, we prove the same for our model (10) for low

temperatures and large 
hemi
al potentials, i. e., for high

densities of the latti
e-gas parti
les.

III. MAIN RESULTS AND THEIR PROOFS

In order to establish the existen
e of LRO in model

(4), we introdu
e the two-spin 
orrelation fun
tion

F

�;�

(k; l) = h
os[2(�

k

� �

l

)℄i

H

�

(�); k; l 2 �; (11)

where the right-hand site is the Gibbs expe
tation value

with Hamiltonian (9), for inverse temperature � = �

�1

.

Sin
e we are dealing with an O(2)-symmetri
 latti
e

model, we need Re
e
tion Positivity and Infrared Bound

te
hniques [30,31℄ for the proof of LRO; therefore, some

restri
tions will be implemented on the model (4), in

order to apply [30,31℄; possible generalizations will be

dis
ussed in Se
tion IV.

First, the intera
tion (4) itself must be quadrati
; it

is known [3{5℄ that for nemati
s, the appropriate set

of variables to express that are real symmetri
 matri
es

fQ

j

g

j2�

:

Q

�


j

= u

�

j

u




j

� (1=�)Æ

�


; �; 
 = 1; 2; : : :�; (12)

asso
iated with unit ve
tors fu

j

g

j2�

for � = 2, see [3℄.

Then

U

hor

(�

j

; �

k

) = �2J Tr(Q

j

�Q

k

); j

z

= k

z

; (13)

and

U

ver

(�

s

; �

t

) = �2P Tr(Q

s

R

t

z

�s

z

Q

t

R

�

t

z

�s

z

)

�2P Tr(R

s

z

Q

s

R

�

s

z

� R

t

z

Q

t

R

�

t

z

); (14)

for hsti � �

l

z

. Here the orthogonal transformations

fR

t

z

; t 2 �g are implemented by uniform relative ro-

tations of mole
ules in two adja
ent layers �

s

xy

; �

t

xy

,

jt

z

� s

z

j = 1, by the heli
al wave-ve
tor q, based on the

treatment in Ref. [10℄

u

t

= R

t

z

�s

z

u

s

= e

1


os[�

s

+ (t

z

� s

z

)q℄ (15)

+ e

2

sin[�

s

+ (t

z

� s

z

)q℄:

Upon 
hanging matrix variables to

~

Q

k

= R

k

z

Q

k

R

�

k

z

; k 2 �; (16)

we get for intera
tions (13) and (14)

~

U

hor

( 

j

;  

k

) = �2J Tr(

~

Q

j

~

Q

k

); j

z

= k

z

(17)

and

~

U

ver

( 

s

;  

t

) = �2P Tr(

~

Q

s

~

Q

t

); (18)

where  

k

= �

k

� k

z

q and hsti � �

l

z

. Therefore, after the

heli
al transformation (Eq. (15) and (16), the intera
tion

stays quadrati
 and purely nemati
.

The se
ond restri
tion appli
able [30,31℄ is to a

nearest-neigbhour intera
tion (or to long-ranged one of

appropriate type), and whi
h is attra
tive. Both aspe
ts

are present in the original intera
tion (4) as a

epted in

the literature, e. g., Refs. [11{14℄; we do not insist here

on these restri
tions, see Se
tion IV.

The third restri
tion 
on
erns periodi
 boundary 
on-

ditions on ��, and poses no problem in our 
ase.

After assemblying all the ne
essary elements [30℄, [31℄,

we are now able to state the �rst result.

Theorem 1

There exists a temperature

�

0

:= 8J(m� 1)=[m

2

(m + 1)D℄; m = 2; (19)

where

D := (2�)

�3

Z

B

d

3

p

"

k=3

X

k=1

(1� 
os p

k

)

#

�1

; (20)

B = [��;+�℄

3

;

and su
h that, for all � < �

0

, the model de�ned by Eq.

(9) manifests a non-zero translationally invariant LRO

in xy-planes, as well as heli
al LRO in the z-dire
tion:

hQ

j

i(� > �

0

) = R

�

j

z

h

~

Q

j=0

i(� > �

0

)R

j

z

; j 2Z

3

: (21)

Proof

Noti
e that TrQ

j

= 0, i. e., TrhQ

j

i

~

H

�

= 0, and by

the O(2) invarian
e of the system one gets h

~

Q

j

i

~

H

�

= 0.

Therefore, in oder to establish the existen
e of LRO one
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has to prove that

lim

jk�lj!1

lim

�"Z

3

~

F

�;�

(k; l)

= lim

jk�lj!1

lim

�"Z

3

h
os 2( 

k

�  

l

)i

~

H

�

(�) (22)

= lim

jk�lj!1

lim

�"Z

3

2Trh

~

Q

k

~

Q

l

i

~

H

�

(�) 6= 0

for low temperatures. This statement in due to the te
h-

niques of [30,31℄, as was demonstrated in [3℄. Sin
e the

intera
tion in

~

H

�

is anisotropi
, we get the estimate of

temperature �

0

(Eq. (19)) as developed and dis
ussed

in Refs. [5,32℄, with referen
e to the smallest 
oupling J .

The statement (21) is immediate from the heli
al trans-

formation (Eqns. (16) and (16)).

Next we state and prove a similar result for the diluted

(latti
e-gas) version of the model (10).

Theorem 2

There exists a 
hemi
al potential �

0

su
h that, for ev-

ery � > �

0

there is a �

0

(�), su
h that, for all � < �

0

(�)

the model (10) manifests a non-zero translation-invariant

LRO in the xy-planes, and heli
oidal LRO in the z-

dire
tion.

hn

j

Q

j

i(� > �

0

(�); � > �

0

)

= R

�

j

z

hn

j

~

Q

j

z

=0

i(� > �

0

(�); � > �

0

)R

j

z

; j 2Z

3

: (23)

Proof

Noti
e that, after 
arrying out the heli
al transforma-

tion (Eqns. (16) and (16)) the model (4) redu
es to a ne-

mati
 latti
e-gas model with a nearest-neighbour attra
-

tive (ferromagneti
) 
oupling, known sin
e [3℄; by virtue

of the reasoning in [5℄, one obtains that hn

j

~

Q

j

i(�; �) 6= 0

is ensured by

L(�; �) � I

d=3

(�) > 0 (24)

Here (for some � > 0 and 
 > 0)

L(�; �) = (1=2)f1� (1=�)

� exp[��(
(4J + 2P + �)℄g; (25)

and

I

d=3

(�) =

�

(2�)

3

Z

B

"

J

k=2

X

k=1

(1� 
os p

k

)

+ P (1� 
os p

3

)

#

�1

: (26)

From these equations it is 
lear that, for

� > �

0

:= �
(4J + 2

p

J

2

+K

2

); (27)

there exists a �

0

(�) su
h that

L(�

0

(�); �) = I

d=3

(�

0

(�)) (28)

and that the inequality (24) is ensured in the domain

f�;� : � > �

0

; � < (�

0

(�))

�1

g (29)

Finally, Eq. (23) follows from the heli
al transformation.

IV. COMMENTS

Subse
tion 4.1

We �rst 
omment on the 
onditions for the proof of

Theorem 1.

a) The model (9) manifests heli
al LRO at low tem-

peratures, with a temperature-independent wave ve
tor

q, and this does not seem to be very realisti
 from the

physi
al point of view. In order to make the heli
al wave-

ve
tor temperature-dependent, one has to perturb the

intera
tion U

hor

or U

ver

by some \anharmoni
" terms,

whi
h, a priori, does not allow to use the te
hniques from

Refs. [30,31℄.One possibility used in Mean-Field and sim-

ulation work (see, e. g., Ref. [18℄) is to add a quarti
 term

to U

hor

~

U

hor

(�

j

; �

k

) = U

hor

(�

j

; �

k

) � J

4

[
os(�

j

� �

k

)℄

4

: (30)

Corollary 1.1

For J

4

> 0 there exists a temperature

^

�

0

su
h that,

for all � <

^

�

0

a perturbed model with intera
tion

^

U

hor

+U

ver

manifests LRO similar to that in Theorem 1.

Proof

The quarti
 perturbation makes the intera
tion

^

U

hor

+

U

ver

non-quadrati
, and thus it harms the te
hnique

based on Refs. [30,31℄. On the other hand, sin
e J

4

� 0

(ferromagneti
 perturbation), one 
an use the Ginibre in-

equalities [24℄ for the ferromagneti
 plane-rotator model

with Hamiltonian

^

H

�

to estimate the 
orresponding two-

spin 
orrelation fun
tion from below:

h
os[2(�

k

� �

l

)℄i

^

H

�

(�) � F

�;�

(k; l): (31)

This inequality, together with the statement (21) in The-

orem 1, �nishes the proof.

Remark

One 
ould equally well 
onsider adding a similar quar-

ti
 term to U

ver

, or add quarti
 terms to both U

hor

and

U

ver

.
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b) Again, by Ginibre inequalities [24℄, we 
an relax the

nearest-neighbour intera
tion in (4) to any ferromagneti


(long-range) intera
tion U

hor

ferro

(�

j

; �

k

) or U

ver

ferro

(�

j

; �

k

). If

H

nn

�


orresponds to the nearest-neighbour restri
tion of

the longer-range intera
tions, then

h
os[2(�

j

� �

k

)℄i

H

ferro

�

� h
os[2(�

j

� �

k

)℄i

H

nn

�

: (32)

Now by Theorem 1 one gets LRO in the system with

H

ferro

�

for suÆ
iently low temperature.

Remark 3.1

In both previous 
ases a) and b), one proves the exis-

ten
e of LRO, but 
an not 
ontrol the value of the heli
al

wave ve
tor.


) The ferromagneti
 
hara
ter of the nearest-

neigbhbour intera
tion 
an be relaxed; a
tually one 
an

equally well 
onsider the antiferromagneti
 version of

this model (spin-
ip symmetry). Here �=2 rotations of

the internal frame systems on the odd (or even) sublat-

ti
es of Z

3

result in the 
hange of sign for the 
oupling


onstants, and this 
hange of variables maps the O(2) an-

tinemati
 model to the ferromagneti
 
hiral model (4),

so that Theorem 1 is again appli
able.

d) Instead of planar rotators fu

j

; j 2 Z

3

; u

j

2

S

1

g, let us now 
onsider three-
omponent unit ve
tors

fv

j

; j 2 Z

3

; v

j

2 S

2

g; We address �rst the extreme

anisotropi
 
ase where only x- and y-spin 
omponents

are involved in the intera
tion (xy model): more pre-


isely, we 
onsider here the model

V

hor

xy

(�

j

; �

j

; �

k

; �

k

) = �J(sin �

j

sin �

k

) 
os[2(�

j

� �

k

)℄; (33)

and

V

ver

xy

(�

j

; �

j

; �

k

; �

k

) = �

p

J

2

+K

2

(sin �

j

sin �

k

) 
os[2(�

j

� �

k

� q)℄: (34)

Then, upon applying Wells' inequality [25{29℄, one readily gets the estimate

h
os[2(�

k

� �

l

)℄i

H

�

(��) � h
os[2(�

k

� �

l

)℄i

H

xy

�

(�) � h
os[2(�

k

� �

l

)℄i

H

�

(�) (35)

where � < 1 is a positive 
onstant, independent of �.

Together with Theorem 1, this estimate entails that the

xy model exhibits LRO for � < ��

0

. In the Appendix

we show that a similar inequality holds for more general

intera
tions.

Subse
tion 4.2

We present here some remarks 
on
erning the latti
e-

gas model (4) and Theorem 2.

a) Due to the results in Ref. [33℄, we 
an tell some-

thing about how the nemati
/heli
al LRO appears, and

about its 
orrelation with the behaviour of the mean o
-


upation number (parti
le density) �(�; �) = hn

j

i(�; �).

{ We �rst note that, by the 
hiral transformation

(Eqns. (16) and (16)), the 
hiral nemati
 
an be mapped

to the non-
hiral one;

{ we next note that, by the simple 
hange of vari-

ables f2 

j

=

~

 

j

; j 2 Z

3

g, the nemati
 model be
omes

equivalent to a latti
e-gas model involving ferromagneti


O(2)-symmetri
 plane rotators, and for whi
h it has been

possible to prove that, for suÆ
iently large � > �

�

, there

exists a line �

t

(�), a
ross whi
h the system exhibits a

�rst-order transition, involving dis
ontinuities in both

magnetization hui(�; �) and density �(�; �); therefore,

the same behaviour ensues for the present model (4).
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APPENDIX

Equivalen
e of potential models

Consider the integrals

I

1

=

Z

2�

0

�

�


os t; sin t

�

dt;

I

m

=

Z

2�

0

�

�


osmt; sinmt

�

dt; (36)

where � is an arbitray integrable fun
tion, and m 6= 0

is an arbitrary integer; by a 
hange of variable (t to mt)

one obtains I

m

= I

1

; 8m [34,35℄; moreover [34,35℄, on

the basis of the trigonometri
 identity
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k=M

X

k=1

exp

�

�

2�k

M

i

�

= 0; M � 2; (37)

it easy to 
he
k that

Z

2�

0

exp(�iSt)�(
osmt; sinmt) dt = 0; (38)

when S 6= 0 is an integer number but not a multiple of

m; on the other hand, when S is a multiple of m, say

S = �m, one is again redu
ed to Eq. (36), so that the

value of the integral depends on � but not on m.

Now 
onsider two arbitrary real numbers a and b, and

the intera
tion potential(s)

U

m

= U

jk;m

=

�

a 
os[m(�

k

� �

k

)℄ ; hor

b 
os[m 
os(�

k

� �

j

)℄ ; ver

(39)

one 
an easily 
he
k that, for assigned values of a and

b, all potentials U

jk;m

lead to the same partition fun
-

tion (hen
e thermodynami
 properties), and essentially

to the same stru
tural properties; the 
hoi
e m = 1 de-

�nes magneti
 models, and the 
hoi
e m = 2 may lead to

nematogeni
 one. Moreover, let m = 1, and 
onsider the

four potential models de�ned by 
ommon values of jaj,

jbj, and only di�ering in the sign of the named param-

eters; sin
e the latti
e is bipartite, spin-
ip symmetry

entails that, in the absen
e of external �elds, the four

models again produ
e the same partition fun
tion, and

esentially the same stru
tural properties, i. e., potential

models only di�ering on the signs of the named parame-

ters produ
e 
orrelation fun
tions related by known sign

fa
tors. Noti
e that spin-
ip symmetry holds for three-


omponent spins as well, and in general, for a bipar-

tite latti
e and nearest-neighbour intera
tions de�ned

by an arbitrary odd fun
tion of spin 
omponents. Thus,

Eq. (39) 
an be redu
ed to the \generalized ferromag-

neti
" (GFM) 
ase

V

jk;m

=

�

�A 
os[m(�

k

� �

k

)℄ ; hor

�B 
os[m 
os(�

k

� �

j

)℄ ; ver

; (40)

A > 0; B > 0 (41)

where the 
hoi
e m = 1 de�nes the stri
t ferromagneti


(FM) interpretation, whereas the 
hoi
e m = 2 de�nes a

nematogeni
 latti
e model.

Next we 
onsider the potential model(s)

W

jk;m

=

�

a 
os[m(�

k

� �

k

)℄ ; hor

b 
os[m(�

k

� �

j

)℄ + 
f

jk

sin[m(�

k

� �

j

)℄ ; ver

; (42)

where the verti
al term 
an be rewritten

b 
os[m(�

k

� �

j

)℄ + 
f

jk

sin[m(�

k

� �

j

)℄ = � 
os[m(�

j

� �

k

� � )℄; (43)

� =

p

b

2

+ 


2

; tan(m� ) =




b

: (44)

By the same argument as above, one re
ognizes the

equivalen
e of potential models de�ned by the same val-

ues of a, b and 
, but di�erent values of m. In the follow-

ing, we shall be 
onsidering and 
omparing two potentail

models de�ned by

W

0

= a

0

�

jk

+ b

0

f

jk

(e

3

� t

jk

); (45)

W

00

= a

00

(2�

2

jk

� 1) + b

00

�

jk

(s

jk

� t

jk

): (46)

Upon expanding the formulae, and re
alling the previous

analysis (espe
ially Eqs. (36) to (38)), one 
an re
ognize

that the two potential models W

0

and W

00

produ
e the

same thermodynami
 and stru
tural properties provided

that

a

00

= a

0

; b

00

=2 = b

0

.

Let us now restri
t our attention to Eq. (42), and let

� denote an arbitrary number; ea
h polar angle �

k


an

be identi
ally de
omposed

�

k

= �z

k

+  

k

; (47)

so that


os(�

j

� �

k

) =

�


os( 

k

�  

j

) ; hor


os[(z

k

� z

j

)� + ( 

k

�  

j

)℄ ; ver

: (48)
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After allowing for Eqs. (43) and (44), and 
hoosing � = � , Eq. (42) be
omes

W

0

jk

=

�

a

0


os( 

k

�  

j

) ; hor

�

0


os( 

k

�  

j

) ; ver

; �

0

=

p

(a

0

)

2

+ (b

0

)

2

(49)

and a similar transformation 
an be applied on Eq. (46);

this approa
h is based on Ref. [10℄. With appropriate

signs of the parameters, Eqs. (42) produ
es a heli
al

ground state where ea
h layer is 
ompletely ordered fer-

romagneti
ally, and the 
ommon orientations of two 
on-

se
utive layers are rotated by an angle � ; on the other

hand, the previous dis
ussion shows how this twist 
an

be transformed away; sin
e the transformation is tem-

perature independent, the pit
h is also independent of

temperature, if order survives at �nite temperature (i. e.,

when d � 3).

The intera
tion term 
ontaining the ve
tor produ
t

t

jk

in Eq. (42) was proposed some thirty-�ve years ago

by Dzaloshinsky [6℄ and Moriya [7℄, as a model explain-

ing the phenomenon of weak ferromagnetism in systems

with predominant antiferromagneti
 intera
tions [8{10℄;

in mi
ros
opi
 terms, it originates from spin-orbit in-

tera
tions; extensions to three-
omponent spins are also

known, and there also the ground-state twist 
an be

transformed away. This model has been extensively in-

vestigated, both for 
lassi
al and quantum spins (see,

e. g., Refs. [36{40℄ for a few papers published after 1990);

exa
t solutions are known when d = 1 [41{43℄.

Some remarks on 
hiral nemati
 models

Nematogeni
 mole
ules are usually neither rigid nor


ylindri
ally symmetri
, and often possess appre
iable

dipole moments, yet the resulting thermotropi
 nemati


phases are apolar and usually possess uniaxial symmetry;

therefore, the simplifying assumption of uniaxial mole
u-

lar symmetry (C

1v

, or, more frequently D

1h

) has been

extensively used in theoreti
al treatments; moreover, to

a reasonable approximation, the existen
e or absen
e

of long-range orientational order marks the one di�er-

en
e between a nemati
 phase and the isotropi
 liquid

to whi
h it transits at higher temperature; this has sug-

gested the additional simpli�
ation of nematogeni
 lat-

ti
e models, also extensively studied in the literature.

In 
holesteri
 liquid 
rystals, there exists lo
ally nemati


orientational order, and this lo
ally preferred orientation

spirals in spa
e, around an axis perpendi
ular to it; the

pit
h of the helix is in general temperature-dependent,

and in some 
ases it 
an even 
hange sign with temper-

ature.

On the other hand, the 
orresponding term in Eq. (46)

was proposed and dis
ussed some twenty-�ve years ago,

espe
ially by van der Meer et al. [11{14℄; the intera
-

tion model is based on a perturbation treatment of in-

termole
ular intera
tions, and on further assumptions,

as dis
ussed in the original papers, for example:

{ on a multipolar expansion of Coulombian intera
-

tions between the two parti
les, and on the negle
t of

permanent multipolar terms; noti
e that short-range re-

pulsion between the two mole
ules is not expli
tly in-


luded, and is often allowed for by 
onstraining mole
ules

on a latti
e;

{ on the assumption of an e�e
tive 
ylindri
al symme-

try of the intera
ting mole
ules; After additional simpli-

�
ations, the following potential model is de�ned in the

named papers:

W

jk

= W (w

j

;w

k

;x

j

� x

k

) (50)

= �J�

2

jk

�K�

jk

(r

jk

� t

jk

)� L�

4

jk

�M�

3

jk

(r

jk

� t

jk

)

where w

j

and w

k

denote 2- or 3-
omponent unit ve
tors

de�ning mole
ular orientations, x

j

and x

k

denote their


ontinuous 
entre-of-mass 
oordinates,

R

jk

= x

j

� x

k

; r

jk

=

R

jk

jR

j

kj

; (51)

�

jk

= w

j

�w

k

; t

jk

= w

j

^w

k

:

In general the 
oeÆ
ients J ,K, L,M are fun
tions of the

distan
e between the two 
enters of mass [11{14℄; on the

other hand, when a latti
e model with nearest-neighbour

intera
tion is 
onsidered, the named 
oeÆ
ients just be-


ome adjustable parameters. Noti
e also that J > 0, and

that signs of K and M 
an be taken as positive with-

out loss of generality. The above equation was derived

for three-
omponent unit ve
tors [12{14℄; on the other

hand, a further simpli�
ations has often been proposed

and used, i. e., the unit ve
tors have been 
onstrained

to two 
omponents, on a plane orthogonal to the axis

of the helix. The resulting models have been studied by

Mean Field or Two-Site Cluster treatment, as well as by

Monte Carlo simulation [11,15{21℄. The Authors of some

re
ent papers have tried to expli
itly allow for mole
ular

biaxiality [44{47℄.

Let us �nally 
onsider the three-
omponent 
ounter-

part of W

00

, i. e.,

W

000

= �a[(3=2)(v

j

� v

k

)

2

� (1=2)℄ (52)

+b(v

j

� v

k

)(z

j

� z

k

)[e

3

� (v

j

^ v

k

)℄; a > 0

where the b term does not a
t among horizontal neigh-

bours, and the verti
al intera
tion reads:
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W

000

ver

= �a(3=2)[(C

j

C

k

)

2

+2S

j

C

j

S

k

C

k


os(�

k

� �

j

) + (S

j

S

K

)

2


os(�

k

� �

j

)

2

℄

+a=2 + b(z

k

� z

j

)(C

j

C

k

+ S

j

S

k


os(�

k

� �

j

))

�S

j

S

k

sin(�

k

� �

j

); (53)

i. e.,

W

000

= C

j

S

j

C

k

S

k

[3a 
os(�

k

� �

j

)

+b(z

k

� z

j

) sin(�

k

� �

j

)℄

�(S

j

S

k

)

2

f(3=2)a(1=2)[1+ 
os(2(�

k

� �

j

))℄

+(1=2)b(z

k

� z

j

) sin[2(�

k

� �

j

)℄g+ a=2; (54)

W

000

= �aP

2

(C

j

)P

2

(C

k

)

�

p

(3a)

2

+ b

2

C

j

S

j

C

k

S

k


os(�

k

� �

j

� � ) (55)

�

p

(3a=4)

2

+ (b=2)

2

(S

j

S

k

)

2


os[2(�

k

� �

j

� �

0

)℄;

where

tan � =

b

3a

; tan(2�

0

) = 2

b

3a

: (56)

There seems to be no general way of simplifying these

equations; on the other hand, in the limit 0 < jbj=a� 1,

one 
an approximate tan(2�

0

) = tan(2� ) so that the in-

tera
tion potential be
omes

W

000

= �aP

2

(C

j

)P

2

(C

k

)

�

p

(3a)

2

+ b

2

(C

j

S

j

)(C

k

S

k

) 
os(�

k

� �

j

� � ) (57)

�

p

(3a=4)

2

+ (b=2)

2

(S

j

S

k

)

2


os[2(�

k

� �

j

� � )℄;

one re
ognizes at this stage that the twisting term 
an

be transformed away, along the previous lines; more-

over, re
e
tion positivity in the intera
tion still holds,

and one 
an again 
on
lude the existen
e of an orien-

tational ordering transition at low but �nite temper-

ature; in the named limit, the 
hiral wave ve
tor be-


omes temperature-independent; this was also noted in

the Mean Field treatment of Ref. [12℄.

Bounds on transition temperatures

To be spe
i�
, let us 
onsider the layered FM model

de�ned by

V

jk;m

=

�

�A 
os(�

k

� �

j

) ; hor

�B 
os(�

k

� �

j

) ; ver

; (58)

A > 0; B > 0 (59)

extensively studied in the literature; the model de�ned

by A = B = 1 is rigorously known to possess an or-

dering transition, whose transition temperature may be


onservatively estimated to be �

PR

= 2:202�0:001 (see,

e. g., Ref. [48℄); one 
an use the Ginibre inequality [24℄

to 
on
lude that the model(s) de�ned by Eq. (58) pos-

sess an ordering transition, whose transition temperature

�

ord

(A;B) is bounded by

min(A;B)�

PR

� �

ord

(A;B) � max(A;B)�

PR

: (60)

On the other hand, when 0 < B � A, it is 
ommonly be-

lieved that, above �

ord

the system possess a disordered

phase with slow de
ay of 
orrelations and in�nite sus
ep-

tibility, i. e., a Berezinski��{Kosterlitz{Thouless (BKT)

phase, and, at higher temperature, a BKT transition

[49{54℄ (we do not know any rigorous proof nor refuta-

tion of the 
onje
ture); if this happens, then the following

bound 
an be obtained, again by 
orrelation inequalities

�

BKT

(A;B) � A�

BKT

(d = 2); (61)

where �

BKT

(d = 2) denotes the transition temperature

for the stri
t two-dimensional 
ounterpart, whose numer-

i
al value is �

BKT

(d = 2) = 0:89 � 0:01 [51℄. On the

other hand, a

ording to Renormalization-Group treat-

ments and in the same limit (see, e. g., Refs. [55,56℄)

�

BKT

(A;B) � A

h

�

BKT

(d = 2)

+ (�=2)

2

j log(B=A)j

�2

i

: (62)

Comparison inequalities

We 
onsider here 3-
omponent spins asso
iated with a

d-dimensional latti
e and intera
ting via a ferromagneti


pair potential restri
ted to nearest neighbours and of the

form

U = U

jk

= �(sin �

j

sin �

k

)

l


os(�

j

� �

k

); (63)

where l is an arbitrary positive integer; let H

�

denote

the resulting Hamiltonian,

H

�

= �

X

hiji

(sin �

j

sin �

k

)

l


os(�

i

� �

j

); (64)

let Z

�

denote the 
orresponding partition fun
tion, and

let

F

pq

= h(sin �

p

sin �

q

)

l


os(�

p

� �

q

)i

H

�

(�) (65)

denote the 
orrelation fun
tion. Owing to the fun
tional

form of the integrands, and sin
e sin � = sin(���), in the

de�nition of F

pq

, ea
h integral over a variable �

j

ranging
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from 0 to � is twi
e the integral of the same fun
tion of

�

j

over the range between 0 and �=2, and the powers of

two resulting in both denominator and numerator 
an
el

out identi
ally; over the named range, sin � and (sin �)

l

are monotoni
 in
reasing and invertible fun
tions of the

argument; thus, upon de�ning r

j

= (sin �

j

)

l

, single-site

variables have the probability distribution

dP

0

i

/ d�(r

i

)d�

i

;

d�(r

i

) = (1=l)

r

(2=l)

i

q

1� r

(2=l)

i

dr

i

; (66)

0 � r

i

� 1; 0 � �

i

� 2�;

where the measure d�(r

j

) is not 
on
entrated at 0; the

thermal ensemble average (Eq. (65)) 
an be rewritten as

as

F

pq

= hF (%; ')i

�

(67)

i. e., as expe
tation value with respe
t to the probability

measure

d� / exp(��H

�

)

Y

j

dP

0

j

: (68)

Moreover, let b denote a positive number, 0 < b � 1,

and let hF (%; ')i

b

denote the mean value obtained by


onstraining all r variables to the value b, and let Z

�;b

denote the 
orresponding partition fun
tion; a

ording

to Well's inequality and its generalizations to 
ontinuous

spins [25{29℄, there exists a positive number a su
h that

hF (%; ')i

1

� hF (%; ')i

�

� hF (%; ')i

a

: (69)

By s
aling, the potential model de�ned by Eq. (63) with

r

j

= a; 8j and at inverse temperature � is the same as

the one de�ned by r

j

= 1; 8j (i. e., planar rotators) at

the inverse temperature a

2

�.

Thus, when d = 2 and 8l, the potential model (63)

produ
es disorder at all �nite temperature and a BKT-

like transition at low temperature; on the other hand,

when d = 3, the potential model supports an ordering

transition at �nite temperature.

The previous result 
an be generalized as follows: let

now s denote an arbitrary positive integer, and let us


onsider the mean value

F

jk;ls

= h(sin �

j

sin �

k

)

ls


os(�

j

� �

k

)i

H

�

(�)

= (1=Z

�

)

Z

Y

x2�

d�

x

d�

x

(sin �) exp(��H

�

)(sin �

j

sin �

k

)

ls


os(�

j

� �

k

); (70)

(i) then it will be proven that 9a > 0 :

F

jk;ls

� F

jk;ls;a

= (1=Z

�;a

)

Z

Y

x2�

Æ(r

x

� a)dr

x

d�

x

exp

2

4

�

X

ij

(r

i

r

j

)
os(�

i

� �

j

)

3

5

(r

j

r

k

)

s


os(�

k

� �

l

); (71)

where the above transformation r

j

= (sin �

j

)

l

has been applied;

(ii) by the method of dupli
ated variables

F

jk;ls;a

=

Y

x2�

Z

1

0

d�(�

x

)

Z

1

0

dr

x

Æ(r

x

� a)

Z

2�

0

d�

x

Z

2�

0

d�

0

x

exp

8

<

:

�

X

hiji

[(�

i

�

j

) + (r

i

r

j

)℄ 
os(�

i

� �

j

)

9

=

;

� ((�

k

�

m

)

s

� (r

k

r

m

)

s

) 
os(�

k

� �

m

) � 0 ; (72)

moreover the trigonometri
 identity


os(�

k

� �

m

) = 
os �

k


os�

m

+ sin�

k

sin�

m

entails

Z

2�

0

d�

k


os�

k

Z

2�

0

d�

m


os�

m

� 0; (73)

161



S. ROMANO, V. ZAGREBNOV

morover, the de�ntions

�

k

= (1=2)[(�

k

+ r

k

) + (�

k

� r

k

)℄; r

k

= (1=2)[(�

k

+ r

k

)� (�

k

� r

k

)℄ (74)

imply

(�

k

� �

m

)

s

� (r

k

� r

m

)

s

=

X

p;q;p

0

;q

0

C

p;q;p

0

;q

0

(�

k

+ r

k

)

p

(�

k

� r

k

)

q

(�

m

+ r

m

)

p

0

(�

m

� r

m

)

q

0

(75)

where ea
h 
oeÆ
ient C

p;q;p

0

;q

0

is non-negative;

let us now 
onsider

Z

1

0

d�(�)

Z

1

0

drÆ(r� a)(� + r)

I

(� � r)

J

=

Z

1

0

d�(�)(� + a)

J

(�

a

)

J

(76)

where 0 < a < 1; if J is even the integral is also posi-

tive; Sin
e supp � 6= f0g, 9� > 0 : supp � \ [�; 1℄ 6= ;;

� is di�erentiable, and let � =

d�

d�

. Then f

IJ

(a) =

R

1

0

d� �(�)(� + a)

I

(� � a)

J

is a 
ontinuous fun
tion 2

C[0; 1℄, and f

IJ

(a = 0) =

R

1

0

d�(�) �

I+J

> 0; hen
e

9a

�

; 0 < a

�

< 1; 80 < a < a

�

: f

IJ

(a) > 0; 8I; J .

Therefore one obtains result (i) for a < a

�

and arbi-

trary non-negative l; s.
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PRO SP�NOV� MODEL� �RATKOVOGO GAZU Z K�RAL^NIMI VZA�MOD��MI

S. Romano

1

, V. Za�rebnov

2

1

Na
�onal~ni� �nstitut f�ziki mater��l�v � f�ziqni� fakul~tet,

Un�versitet m. Pav�� v�a A. Bass�, I{27100, Pav��, �tal��

romano�pv.infn.it

2

Un�versitet Seredzemnogo mor� � Centr teoretiqnoÝ f�ziki,

CNRS{L�m�n� 907, F{13288, Marsel~, Fran
��

zagrebnov�
pt.univ-mrs.fr

Na trivim�rn�� �rat
� vivqeno model� �ratkovogo gazu, wo sklada�t~s� z dvokomponentnih klasiqnih

sp�n�v (odiniqnih vektor�v), �k� vza
mod��t~ qerez parni� poten
��l, wo m�stit~ �k skal�rni� dobutok

dvoh sp�n�v, tak � k�ral~ni� dodanok. Takim model�m mo�na nadati �k magnetnoÝ, tak � holesteriqnoÝ

�nterpreta
�Ý. Dovedeno, wo vers�� model�, u �k�� us� vuzli zapovnen�, perehodit~ u vpor�dkovani� stan

pri sk�nqenn�� temperatur�. Dal� mi rozgl�da
mo rozvedenu vers�� model� � dovodimo �snuvann� poroga

hem�qnogo poten
��lu, ponad �kim model~ da
 daleki� or�
nta
��ni� por�dok pri dostatn~o niz~kih tem-

peraturah. Tako� obgovoreno poxirenn� 
ih strogih rezul~tat�v na trikomponentn� sp�ni.
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