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A general expression for the in
oherent quasi-elasti
 neutron s
attering (QENS) 
ross se
tion

by a liquid is derived, taking into a

ount the 
ontinuous translational and rotational di�usion of

the so-
alled Lagrange parti
les (asso
iations of atoms or mole
ules) as well as jumps of hydrogen

atoms inside these parti
les. Both types of 
ontinuous motion are 
onsidered, starting from the

Langevin equations. Besides, we 
arried out a QENS experiment on spirits, whose results agree well

with our theory.
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I. INTRODUCTION

For a long time there have been two opposite ap-

proa
hes to the dynami
s of liquids. The di�usion of

their atoms (mole
ules) is des
ribed either as a 
ontin-

uous pro
ess or as jumps between adja
ent sites (see,

e. g., [1℄). The 
ontinuous di�usion is determined by the

di�usion or Langevin equations. However, simple di�u-

sion equation 
annot reprodu
e numeri
al experimental

data on quasi-elasti
 s
attering (QENS) by liquids [2{20℄.

Namely, the broadening of the elasti
 neutron peak �",


aused by the di�usive motion in a liquid, shows typi
al


urved dependen
e on the squared transferred wave ve
-

tor Q

2

(in parti
ular, this is illustrated by Figs. 2{4 given

below). At the same time the di�usion equation predi
ts

linear fun
tion �"(Q

2

). Langevin equation, being more

exa
t than the di�usion one, gives the Van Hove self-


orrelation fun
tion G

s

(r; t) [21℄, whi
h di�ers at jtj ! 0

from the solution of the di�usion equation. Respe
tively,

it provides, in prin
iple, deviation of the fun
tion �"(Q

2

)

from a straight line. But this is the 
ase only for large

di�using mole
ules or liquids with high vis
osity.

Random jumps of atoms in a liquid o

ur, like those in

a 
rystal, from time to time between neighbouring sites.

In simple liquids this results from their quasi-
rystalline

stru
ture [22{24℄. The fun
tion �"(Q

2

), provided only by

jump di�usion, represents nonlinear dependen
e [25,26℄,

but it is saturated at high Q

2

, when �" be
omes 
on-

stant � 1=�

0

, where �

0

is the mean residen
e time of the

atom in a site between su

essive jumps. But this 
ontra-

di
ts observations. Therefore, both 
ontinuous and jump

di�usion have to be taken into a

ount simultaneously.

A number of attempts have been made to unify

these limiting approa
hes to the dynami
s. In parti
u-

lar, Singvi and Sj�olander [25℄ supposed that the atom

vibrated for some time in any site, then it 
rawled to an-

other one. This pro
ess is spe
i�ed by the mean residen
e

time �

0

and the mean time of the 
ontinuous motion be-

tween sites �

1

. For �

1

� �

0

the authors have been getting

pure 
ontinuous di�usion, and for �

1

� �

0

pure jumps.

However, it seems strange that vibrations alternate with


ontinuous motion.

A more satisfa
tory approa
h was advan
ed by Os
ot-

skii [27℄, who made the following assumption. The sites,

between whi
h the atoms are jumping, take part in a


ontinuous di�usion, whi
h pro
eeds simultaneouslywith

jumps. The equations for the QENS peak broadening, de-

rived in [27℄, beautifully explained the experimental data

of [17{20℄.

From our point of view, the assumption of Os
otskii is

tightly bound to Fisher's idea [28℄ that intera
ting atoms

(mole
ules) in a liquid form aggregates (Lagrange parti-


les), 
ontinuously di�using throughout the liquid (see

also [29℄). In parti
ular, su
h a parti
le 
an be a single

mole
ule. Then the Lagrange parti
le may be treated as

a 
arrier of light atoms, whi
h make random jumps in-

side it between adja
ent sites. Developing these ideas, we

shall 
onsider in this paper simultaneously the in
uen
e

of both types of 
ontinuous motion of Lagrange parti
le

(translational and rotational) along with jumps of atoms

on the broadening of QENS peak.

II. THEORY

As usuall [2{20℄, we shall take into 
onsideration only

the in
oherent s
attering of neutrons by hydrogen atoms

in a liquid, sin
e the in
oherent s
attering 
ross se
tion

of neutrons by protons �

H

is mu
h larger than that for

other isotopes. Then the double di�erential in
oherent

s
attering 
ross se
tion of neutrons by a liquid is deter-

mined by [1,30℄

�

d

2

�

d
dE

0

�

in


= A

1

2�h

Z

1

�1

dt e

�i!t

F

s

(Q; t); (1)

where
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A = N

k

0

k

�

H

4�

2

; (2)

N is the number of hydrogen atoms in the liquid, k and

k

0

are the wave ve
tors of in
ident and s
attered neutrons

respe
tively, E and E

0

are the 
orresponding kineti
 en-

ergies of the neutrons, Q = k� k

0

represents the wave

ve
tor transfer and �h! = E �E

0

is the energy transfer.

The intermediate s
attering fun
tion

F

s

(Q; t) = he

�iQR(0)

e

iQR(t)

i (3)

is the Fourier transform of the Van Hove fun
tion G

s

(r; t)

for one of the hydrogen atoms, whose position is deter-

mined by the radius-ve
tor R. Its time-dependent value

in (3) stands for the operator in the Heisenberg represen-

tation. The bra
kets h: : :i denote the statisti
al as well

as quantum-me
hani
al averaging over the initial states

of the s
atterer.

Let the energy distribution of neutrons emitted by a

sour
e be approximated by the Lorentzian

w

s

(E) =

�

s

=2�

(E �E

0

)

2

+ (�

s

=2)

2

(4)

with E

0

= �h

2

k

2

0

=2m, where m is the neutron mass. Be-

sides, the energy resolution fun
tion of the neutron de-

te
tor is assumed to be

w

d

(E

0

) =

�

d

=2�

(E

0

� E

0

0

)

2

+ (�

d

=2)

2

: (5)

The experimentally measured 
ross se
tion is determined

by the 
onvolution

�

s


(") =

Z

1

0

dEw

s

(E)

Z

1

0

dE

0

w

d

(E

0

)

�

d

2

�

d
dE

0

�

in


: (6)

Eor �

s

� E

0

and �

d

� E

0

0

it will be given by

�

s


(") = A

Z

1

0

dt

�h


os("t=�h)e

��

0

t=2�h

F

s

(Q; t); (7)

where

�

0

= �

s

+ �

d

; " = E

0

� E

0

0

; Q = k

0

� k

0

0

; (8)

and k

0

;k

0

0

are asso
iated with mean energies E

0

; E

0

0

.

The integrand in (7) has signi�
ant value in the time in-

terval 0 � t � t

0

, where t

0

= �h=�

0

may be treated as a


ollision time of the neutron with a target in the absen
e

of di�usion. It plays the same role as the nu
lear lifetime

in the theory of M�ossbauer e�e
t in Brownian parti
les

[31{35℄.

Let us write the radius-ve
tor of the hydrogen atom

as

R = R

(0)

+ u; (9)

where R

(0)

determines the equilibrium position of the

atom in the laboratory 
oordinate frame and u is its dis-

pla
ement from this position due to vibrations. By as-

sumption, ea
h atom is a part of any Lagrange parti
le,

whose 
enter is determined by R

L

. Then it is useful to

write

R

(0)

= R

L

+ r; (10)

where r indi
ates the position of the proton in the 
en-

ter of mass system x; y; z with origin in the 
enter of

Lagrange parti
le and axis z dire
ted along the ve
tor

Q.

The intermediate fun
tion for the spheri
al Lagrange

parti
le of the radius R takes the form

F

s

(Q; t) = F

(t)

s

(Q; t)F

(r;j)

s

(Q; t)F

(v)

s

(Q; t); (11)

where the fa
tor F

(t)

s

des
ribes the translational motion,

F

(r;j)

s

is due to rotation and jumps, F

(v)

s

to vibrations

of the hydrogen in one of the sites. They are given by

Eq. (3) with R repla
ed by R

L

for F

(t)

or by r for F

(r;j)

and by u for F

(v)

.

The quantum vibrations are des
ribed by a standard

expression (see, e. g., [30℄):

F

(v)

s

(Q; t) = e

�2W (Q)

exp(hQ �u(0)Q � u(t)i); (12)

where exp (�2W (Q)) is the Debye{Waller fa
tor. The


orrelator in (12) de�nes all possible pro
esses with 
re-

ation or annihilation of phonons. For quasi-elasti
 s
at-

tering, being the phononless pro
ess, F

(v)

s

= e

�2W (Q)

.

All other types of the hydrogen movement we shall treat

in 
lassi
al approximation.

The Langevin equation for the translational Brown-

ian motion gives at t > 0 the well known intermediate

s
attering fun
tion [31℄

F

(t)

s

(Q; t) = exp

�

�a(�t � 1 + e

��t

)

	

; (13)

where

a =

Q

2

D

0

�

; D

0

=

k

B

T

6�R�

; � =

6�R�

M

; (14)

D

0

is the translational di�usion 
oeÆ
ient of the sphere

in a liquid of vis
osity � and temperature T , k

B

stands

for the Boltzmann 
onstant, M is the mass of Lagrange

parti
le. When t� �

�1

(13) simpli�es to the fun
tion

F

(t)

s

(Q; t) = exp(�Q

2

Dt) ; (15)

resulting also from the di�usion equation. Therefore, �

�1
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means a 
hara
teristi
 time for the 
ontinuous transla-

tional di�usion in the liquid.

In 
lassi
al approa
h the fun
tion F

(r;j)

s

takes the form

F

(r;j)

s

(Q; t) = he

iQ(r(t)�r(0))

i; (16)

where the bra
kets denote only the statisti
al averaging.

For separation of the Brownian rotation and jumps we

introdu
e one more 
oordinate frame �; �; �, rotating to-

gether with the Lagrange parti
le. Its origin is pla
ed in

the parti
le's 
enter and axes are rigidly bound to it. The

unit ve
tors along the axes x; y; z and �; �; � are denoted

by e

1

; e

2

; e

3

and e

0

1

(t); e

0

2

(t); e

0

3

(t) respe
tively. Let in

the initial moment t = 0 they 
oin
ide, e

0

i

(0) = e

i

.

The position of the atom in the Lagrange parti
le r

may 
hange from time to time due to random jumps in

the neighbouring sites. When jumps are absent, at any

moment its 
oordinates �

�

(t) = f�; �; �g with respe
t

to the axes �; �; � do not 
hange, i. e., �

�

(t) = �

�

(0).

Jumps lead to the displa
ement spe
i�ed by 
oordinates

��

�

(t) = �

�

(t)� �

�

(0). The ve
tor r may be now repre-

sented as

r(t) = r

0

n

sin �

0

(
os �

0

e

0

1

(t) + sin�

0

e

0

2

(t))

+ 
os �

0

e

0

3

(t)

o

+

3

X

�=1

��

�

(t)e

0

�

(t); (17)

where r

0

; �

0

; �

0

are the spheri
al 
oordinates of the ve
-

tor r at t = 0. In general 
ase the rotation and jumps

are mixed pro
esses, but situation simpli�es in the ap-

proximation of small rotations [34,35℄. Really, the mean-

square angle h#

2

i

1=2

of the Brownian rotation during

time t is de�ned by

h#

2

i = 2D

r

t; (18)

where D

r

= k

B

T=8�R

3

� is the rotational di�usion 
o-

eÆ
ient. In our experiment with t

0

� 1 ps, R � 3

�

A,

� � 0:01g/
m�s one has h#

2

i � 0:01.

Any small rotation is a produ
t of three rotations to

angles #

1

; #

2

; #

3

about the axes x; y; z respe
tively. As a


onsequen
e, the unit ve
tors e

i

are related to e

0

i

by

e

0

1

� e

1

+ #

3

e

2

� #

2

e

3

; (19)

e

0

2

� �#

3

e

1

+ e

2

+ #

1

e

3

;

e

0

3

� #

2

e

1

� #

1

e

2

+ e

3

:

The 
ondition h#

2

i

1=2

� 1 allows us also to put the an-

gles #

�

to vary from �1 to +1. Estimations show that

��

�

(t

0

)=r

0

� h��

2

�

i

1=2

=R� 1, i. e., the displa
ement of

the atom, asso
iated with jumps during the 
ollision time

t

0

, is mu
h less than R. Then, substituting (19) into (17)

and negle
ting terms of the se
ond order in parameters

# and ��=R, one gets

Q � (r(t) � r(0)) = Qr

0

sin �

0

(� 
os �

0

#

2

+ sin�

0

#

1

)

+ Q��(t): (20)

Inserting (20) into (16) one �nds F

(r;j)

s

(Q) as a produ
t

of F

(r)

s

(Q) and F

(j)

s

(Q).

In parti
ular, the rotational fun
tion be
omes

F

(r)

s

(Q; t) =

Z

1

�1

d#

1

Z

1

�1

d#

2

Z

1

�1

d#

3

� exp [iQr

0

sin �

0

(� 
os'

0

#

2

+ sin'

0

#

1

)℄

� W (f#

�

g; t): (21)

Here W (f#

�

g; t) is the probability density that the ori-

entation of the axes �; �; � at the moment t is determined

by the angles f#

�

g, if at t = 0 all the angles #

�

= 0.

It satis�es the initial 
ondition

W (#

�

; 0) = Æ(#

1

)Æ(#

2

)Æ(#

3

): (22)

A sto
hasti
 Langevin-type equation for the rotational

di�usion may be written as

d!

dt

= ��

r

! +M(t)=J ; (23)

where !

�

=

_

#

�

are the 
omponents of the angular ve-

lo
ity ! along the axes x; y; z; M(t) are momenta of

random for
es a
ting on the parti
le, �

r

= 8�R

3

�=J ;

J = 0:4MR

2

is the moment of inertia of the sphere with

mass M and radius R. Eq. (23) is similar to Langevin

equation for the translational motion whose solution is

well known [36℄. Now J plays the role of the mass M

and f#

�

g are analogous to linear 
oordinates r. Then

the solution of Eq. (23) may be written in full analogy

with the well known solution of Langevin equation for

the translational motion [36℄:

W (f#

�

g; t) =

�

4�q

Z

t

0

 

2

r

(x)dx

�

�3=2

� exp

8

>

>

<

>

>

:

�

3

P

�=1

(#

�

� !

�

(0) 

r

(0))

2

4q

R

t

0

 

2

r

(x)dx

9

>

>

=

>

>

;

; (24)

where !(0) is the angular velo
ity at t = 0, and

q = �

r

k

B

T=J ;  

r

(0) =

1

�

r

�

1� e

��

r

t

�

; (25)

Z

t

0

 

2

r

(x)dx =

1

2�

3

r

�

2�

r

t� 3 + 4e

��

r

t

� e

�2�

r

t

�

:
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After substitution of (24) into (21) and averaging over

initial angular velosity distribution

P (!(0)) =

�

J

2�k

B

T

�

3=2

exp

�

�

J !

2

(0)

2k

B

T

�

; (26)

one gets immediately

F

(r)

s

(Q; t) = exp

�

�a

r

(�

r

t � 1 + e

��

r

t

)

	

; (27)

where

a

r

= Q

2

D

r

r

2

0

sin

2

�

0

=�

r

: (28)

By de�nition, �

�1

r

= 0:3�

�1

and

a

r

= 0:225 a (r

0

=R)

2

sin

2

�

0

� a: (29)

The intermediate fun
tion for the jump di�usion in the

limit �

1

! 0 is given by

F

(j)

s

(Q; t) = e

���

j

t=2�h

(30)

with the broadening [25℄

��

j

=

2�h

�

0

h

1� e

�2W (Q)

(1 + Q

2

D

1

�

0

)

�1

i

; (31)

where �

0

is the mean residen
e time of the proton in a

site between su

essive jumps and the jump di�usion 
o-

eÆ
ient D

1

is related to the mean-square jump length l

0

by

D

1

= l

2

0

=6�

0

: (32)

Multiplying (12), (13), (27) and (30) one has the fol-

lowing expression for the QENS 
ross se
tion:

�

s


(") = Ae

a

e

�2W

Re

Z

1

0

dt

�h

e

i"t=�h�(�

0

+��

j

)t=2�h�a�t�a

r

�

r

t

exp

�

�ae

��t

	

exp

�

a

r

�

1� e

��

r

t

�	

: (33)

The 
ross se
tion should be yet averaged over the initial positions of the hydrogen atoms inside the Lagrange parti-


le, i. e., over 
oordinates r

0

; �

0

. Using the 
ondition (29), we shall repla
e in (33) the exponent exp

�

a

r

�

1� e

��

r

t

�	

by unity. Expanding another exponent exp

�

�ae

��t

	

in power series and averaging (33) over uniform distribution of

hydrogen atoms one gets

��

s


(") =

4Ae

a

e

�2W

�hQ

2

D

0

1

X

n=0

(�1)

n

a

n

n!

Re

n

p

1 + 1=x

n

(")Arsh

p

x

n

(") � 1

o

; (34)

where

x

n

(") =

3

4

�hQ

2

D

0

(�

0

+��

j

)=2 + �hQ

2

D

0

+ n�h� + i"

: (35)

The e�e
tive width of this QENS peak may be de�ned

as [37℄

�

e�

=

2

���

s


(0)

Z

1

�1

d" ��

s


("): (36)

Substitution of (34) into (36) gives (see also [34℄)

�

e�

= �hQ

2

D

0

e

�a

(

2

1

X

n=0

a

n

n!

�(�1)

n

h

p

1 + 1=x

n

(0)Arsh

p

x

n

(0)� 1

i

)

�1

: (37)

Langevin's 
orre
tions to the di�usion theory be
ome

essential if a � 1. This 
ondition is equivalent to � � �h�.

In the opposite 
ase, when a� 1, expansion (34) redu
es

to single term with n = 0. If �hQ

2

D

0

� �

0

it simpli�es

to the Lorentzian fun
tion

��

s


(") = Ae

�2W

(�=2)

2

"

2

+ (�=2)

2

; (38)

where the width is

� = �

0

+�� ; �� = ��


oll

+��

j

;

��


oll

= 2:6 �hQ

2

D

0

: (39)
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III. EXPERIMENT

The QENS measurements were 
arried out at the re-

a
tor of the Institute for Nu
lear Resear
h in Kyiv using

multidete
tor time-of-
ight spe
trometer. A s
hemati


layout of this spe
trometer is displayed in Fig.1. The 
ux

density of 
old neutrons re
e
ted from the mono
hromat-

ing 
rystal (Pb, Cu, Zn) amounts 2�10

8

n 
m

�2

s

�1

for the

average neutron energy E = 0:25 meV. This value of the


ux varies depending on the type of the mono
hromating


rystal and neutron energy. In our experiment we have

been using neutrons with E = 13:1 meV (the wavelength

� = 2:50

�

A). The mono
hromated neutrons pass through

the 
hopper, being a rotor spinning with high angular ve-

lo
ity, to produ
e a pulsed neutron beam. The 
ux den-

sity of this pulsed beam is 4�10

3

n 
m

�2

s

�1

. The energies

of s
attered neutrons are determined by measuring the

time of 
ight of s
attered neutrons over 2:87m 
ight path

between the sample and dete
tors. Eight dete
tors �lled

with

3

He under the pressure 10 atm were installed at the

s
attering angles �

1

= 25:1

Æ

; �

2

= 40:5

Æ

; �

3

= 55:7

Æ

; �

4

=

70:9

Æ

; �

5

= 86:1

Æ

; �

6

= 101:3

Æ

; �

7

= 116:5

Æ

; �

8

= �9:5

Æ

with respe
t to the in
ident neutron beam. We made

measurements using �rst �ve dete
tors. Even in this 
ase

the wave ve
tor transfer Q = (4�=�) sin(�=2) varies from

1.09

�

A

�1

to 3:43

�

A

�1

as � = 2.5

�

A.

Fig. 1. S
heme of the time-of-
ight spe
trometer. The

abbreviation R designates the rea
tor, CM | the 
rystal

mono
hromating neutrons, C | the 
hopper, S | the sam-

ple, M | the monitor, D

i

| the dete
tors installed at the

angles �

1

= 25:1

Æ

, �

2

= 40:5

Æ

, �

3

= 55:7

Æ

, �

4

= 70:9

Æ

,

�

5

= 86:1

Æ

, �

6

= 101:3

Æ

, �

7

= 116:5

Æ

, �

8

= �9:5

Æ

with re-

spe
t to the transmitting neutron beam.

The energies of neutrons s
attered to di�erent dire
-

tions are measured simultaneously by means of the ele
-

troni
 system of multi-dimensional analysis. The energy

resolution fun
tion was found by a standard vanadium


alibration run. Its full width at half maximum �

0

, de-

pending on Q, ranges from 0:78 meV at small Q to

1:00 meV at large Q.

The QENS spe
tra (see Figs. 2{4)were taken at room

temperature T = 293K for three types of spirit (ethanol:

C

2

H

5

OH; propanol: C

3

H

7

OH; n-nonanol: C

9

H

19

OH).

General tenden
y of the observed spe
tra is that the

QENS peak broadens and its intensity falls with in
reas-

ing of the s
attering angle. At large angles the peak

is hardly separated from the ba
kground, therefore, the

limiting angle is taken �

max

= 86:1

Æ

.

IV. EXPERIMENTAL RESULTS

Fitting the intensities of the QENS peaks, whi
h

are proportional to the Debye{Waller fa
tor e

�2W

, we

found the mean-square vibrational amplitudes of hydro-

gen atoms hu

2

x

i

1=2

. They are pra
ti
ally the same for all

spirits, hu

2

x

i ' 0:2

�

A

2

. More exa
t values are displayed

in Table 1.

sample hu

2

x

i,

�

A

2

l

0

,

�

A �

0

; ps

ethanol 0.184 0.8 1.4

propanol 0.176 1.02 2.43

n-nonanol 0.172 1.05 2.38

Table 1. The �tting parameters.

sample D

0

D

1

D � R

ethanol 0.63 0.76 1.39 1.20 2.85

propanol 0.31 0.71 1.02 2.23 3.10

n-nonanol 0.08 0.77 0.85 6.32 4.10

Table 2. The di�usion 
oeÆ
ients (in units of

10

�5


m

2

s

�1

) together with the vis
osities of spirits (in

units of 10

�2

g 
m

�1

s

�1

) and radii of mole
ules (in

�

A).

From data shown in Figs. 2{4 we determined the width

at half maximum of the QENS peaks for �ve points of

Q

2

. Extra
ting then the width of the energy resolution

fun
tion, the broadenings of the lines were found at half

maximum �", whi
h are represented in Fig. 5.

We assume the spirit mole
ules to di�use undepen-

dently of ea
h other, i. e., the Lagrange parti
le 
on-

sists only of single mole
ule. The mole
ular radius R

is then estimated with the aid of trivial relation M =

�

4�R

3

=3

�

�, where M is the mass of the mole
ule and �

is the density of the liquid. These values of radii together

with vis
osities 
ompletely de�ne the translational di�u-

sion 
oeÆ
ients D

0

. The fun
tions �" manifest typi
al

nonlinear dependen
e on Q

2

. Sin
e in our experiment

a � 1, the 
urvature of the observed fun
tion �"(Q

2

)

may be explained by the 
ommon in
uen
e of jumps

and 
ontinuous di�usion. At small Q both me
hanisms

of di�usion give 
ontributions to �� linearly depending

on Q

2

, a

ording to Eqs. (31), (36). Although at high

Q the jump di�usion is \frosen", giving ��

j

= 2�h=�

0

as e

�2W (Q)

' 0, the 
ontribution of 
ontinuous motion

grows proportionally to Q

2

.
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Fig. 2. The QENS spe
tra of the ethanol. The numbers at

the 
urves i indi
ate the s
attering angles �

i

.

Fig. 3. The QENS spe
tra of the propanol.

Our data were �tted with the aid of two parameters

(the residen
e time of the atom �

0

and the average jump

length l

0

). They are listed in Table 1. Using these pa-

rameters we 
al
ulated the jump di�usion 
oeÆ
ients

D

1

= l

2

0

=6�

0

, whi
h are given in Table 2 together with

the translational di�usion 
oeÆ
ients D

0

, total di�usion


oeÆ
ients D = D

0

+D

1

, radii and vis
osities of liquids.

Fig. 4. QENS spe
tra of the normal nonanol.

Fig. 5. The broadening of the QENS peak versus the

square of the wave ve
tor transfer. The dots are the experi-

mental data, the solid line is the �tting 
urve by Eq. (38).

V. DISCUSSION

Thus, we analyzed the 
ombined in
uen
e of di�erent

di�usion me
hanisms on the QENS spe
tra. Previously
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their role has been 
onsidered separately. So, only Brow-

nian rotation without jumps was treated in [38℄, while

the translational di�usion + jumps were regarded in [27℄

but without rotation. It should be noted that these the-

ories were based on the di�usion equations, whereas we

start from the most 
orre
t Langevin equations. We seem

to be the �rst to develop su
h an approa
h for the rota-

tional motion. It is done in the approximation of small

rotations, in whi
h the situation resembles the transla-

tional 
ase. Namely, the 
orresponding solutions (13) and

(27) are very similar. We derived general equation (33)

for the QENS 
ross se
tion, whi
h 
an be 
al
ulated nu-

meri
ally. It is found that the Langevin 
orre
tions for

rotation are less essential than those for the translational

motion sin
e a

r

� a. Thanks to this enequality the ro-

tation 
an be treated on the basis of the di�usion equa-

tion only, while the Langevin equation is 
onserved for

the translational motion. It allowed us to get the anal-

ity
al expression (34) for the QENS 
ross se
tion as an

expansion in powers of the parameter a. When a � 1

and the broadening of the line �� is small it redu
es to

the Lorentzian fun
tion (38), whi
h resembles the result

of Os
otskii [27℄. However, our equation 
ontains addi-

tional 
ontribution to the broadening of the QENS peak

0:6 �hQ

2

D

0

due to rotation. Only in the same limiting


ase the separation of single-parti
le (jump) motion from

the 
olle
tive one be
omes an easy task sin
e ��

j

and

��


oll

are 
hara
terized by di�erent dependen
e on Q

2

(see also [29℄). All these 
al
ulations are well 
on�rmed

by our observations.
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VIVQENN� R�ZNIH TIP�V DIFUZ�Õ V R�DINAH ZA DOPOMOGO�

KVAZ�PRU�NOGO ROZS��NN� NE�TRON�V

O. �. Dz�blik, V. �. Sl�senko, O. A. Vasil~keviq

�nstitut �dernih dosl�d�en~ NAN UkraÝni

prosp. Nauki, 47, KiÝv, 03028, UkraÝna

e-mail: dzyublik�kinr.kiev.ua

Vivedeno zagal~n� r�vn�nn� dl� perer�zu nekogerentnogo kvaz�pru�nogo rozs��nn� ne�tron�v r�dino� z

urahuvann�m neperervnoÝ transl�
��noÝ ta obertal~noÝ difuz�Ý tak zvanih la�ran�evih qastinok (aso
��-


�� atom�v qi molekul) ta stribk�v atom�v vodn� v 
ih qastinkah. Rozgl�nuto obidva tipi neperervnogo

ruhu na p�dstav� r�vn�n~ Lan�evena. Okr�m togo, provedeno eksperimenti z rozs��nn� ne�tron�v na spirtah,

rezul~tati �kih dobre uzgod�u�t~s� z naxo� teor�
�.
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