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DIFFERENT TYPES OF DIFFUSION IN LIQUIDS
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A general expression for the inoherent quasi-elasti neutron sattering (QENS) ross setion

by a liquid is derived, taking into aount the ontinuous translational and rotational di�usion of

the so-alled Lagrange partiles (assoiations of atoms or moleules) as well as jumps of hydrogen

atoms inside these partiles. Both types of ontinuous motion are onsidered, starting from the

Langevin equations. Besides, we arried out a QENS experiment on spirits, whose results agree well

with our theory.

Key words: neutron sattering, liquid, di�usion, Lagrange partile, Langevin equation, Brown-

ian rotation.
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I. INTRODUCTION

For a long time there have been two opposite ap-

proahes to the dynamis of liquids. The di�usion of

their atoms (moleules) is desribed either as a ontin-

uous proess or as jumps between adjaent sites (see,

e. g., [1℄). The ontinuous di�usion is determined by the

di�usion or Langevin equations. However, simple di�u-

sion equation annot reprodue numerial experimental

data on quasi-elasti sattering (QENS) by liquids [2{20℄.

Namely, the broadening of the elasti neutron peak �",

aused by the di�usive motion in a liquid, shows typial

urved dependene on the squared transferred wave ve-

tor Q

2

(in partiular, this is illustrated by Figs. 2{4 given

below). At the same time the di�usion equation predits

linear funtion �"(Q

2

). Langevin equation, being more

exat than the di�usion one, gives the Van Hove self-

orrelation funtion G

s

(r; t) [21℄, whih di�ers at jtj ! 0

from the solution of the di�usion equation. Respetively,

it provides, in priniple, deviation of the funtion �"(Q

2

)

from a straight line. But this is the ase only for large

di�using moleules or liquids with high visosity.

Random jumps of atoms in a liquid our, like those in

a rystal, from time to time between neighbouring sites.

In simple liquids this results from their quasi-rystalline

struture [22{24℄. The funtion �"(Q

2

), provided only by

jump di�usion, represents nonlinear dependene [25,26℄,

but it is saturated at high Q

2

, when �" beomes on-

stant � 1=�

0

, where �

0

is the mean residene time of the

atom in a site between suessive jumps. But this ontra-

dits observations. Therefore, both ontinuous and jump

di�usion have to be taken into aount simultaneously.

A number of attempts have been made to unify

these limiting approahes to the dynamis. In partiu-

lar, Singvi and Sj�olander [25℄ supposed that the atom

vibrated for some time in any site, then it rawled to an-

other one. This proess is spei�ed by the mean residene

time �

0

and the mean time of the ontinuous motion be-

tween sites �

1

. For �

1

� �

0

the authors have been getting

pure ontinuous di�usion, and for �

1

� �

0

pure jumps.

However, it seems strange that vibrations alternate with

ontinuous motion.

A more satisfatory approah was advaned by Osot-

skii [27℄, who made the following assumption. The sites,

between whih the atoms are jumping, take part in a

ontinuous di�usion, whih proeeds simultaneouslywith

jumps. The equations for the QENS peak broadening, de-

rived in [27℄, beautifully explained the experimental data

of [17{20℄.

From our point of view, the assumption of Osotskii is

tightly bound to Fisher's idea [28℄ that interating atoms

(moleules) in a liquid form aggregates (Lagrange parti-

les), ontinuously di�using throughout the liquid (see

also [29℄). In partiular, suh a partile an be a single

moleule. Then the Lagrange partile may be treated as

a arrier of light atoms, whih make random jumps in-

side it between adjaent sites. Developing these ideas, we

shall onsider in this paper simultaneously the inuene

of both types of ontinuous motion of Lagrange partile

(translational and rotational) along with jumps of atoms

on the broadening of QENS peak.

II. THEORY

As usuall [2{20℄, we shall take into onsideration only

the inoherent sattering of neutrons by hydrogen atoms

in a liquid, sine the inoherent sattering ross setion

of neutrons by protons �

H

is muh larger than that for

other isotopes. Then the double di�erential inoherent

sattering ross setion of neutrons by a liquid is deter-

mined by [1,30℄

�

d

2

�

d
dE

0

�

in

= A

1

2�h

Z

1

�1

dt e

�i!t

F

s

(Q; t); (1)

where
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A = N

k

0

k

�

H

4�

2

; (2)

N is the number of hydrogen atoms in the liquid, k and

k

0

are the wave vetors of inident and sattered neutrons

respetively, E and E

0

are the orresponding kineti en-

ergies of the neutrons, Q = k� k

0

represents the wave

vetor transfer and �h! = E �E

0

is the energy transfer.

The intermediate sattering funtion

F

s

(Q; t) = he

�iQR(0)

e

iQR(t)

i (3)

is the Fourier transform of the Van Hove funtion G

s

(r; t)

for one of the hydrogen atoms, whose position is deter-

mined by the radius-vetor R. Its time-dependent value

in (3) stands for the operator in the Heisenberg represen-

tation. The brakets h: : :i denote the statistial as well

as quantum-mehanial averaging over the initial states

of the satterer.

Let the energy distribution of neutrons emitted by a

soure be approximated by the Lorentzian

w

s

(E) =

�

s

=2�

(E �E

0

)

2

+ (�

s

=2)

2

(4)

with E

0

= �h

2

k

2

0

=2m, where m is the neutron mass. Be-

sides, the energy resolution funtion of the neutron de-

tetor is assumed to be

w

d

(E

0

) =

�

d

=2�

(E

0

� E

0

0

)

2

+ (�

d

=2)

2

: (5)

The experimentally measured ross setion is determined

by the onvolution

�

s

(") =

Z

1

0

dEw

s

(E)

Z

1

0

dE

0

w

d

(E

0

)

�

d

2

�

d
dE

0

�

in

: (6)

Eor �

s

� E

0

and �

d

� E

0

0

it will be given by

�

s

(") = A

Z

1

0

dt

�h

os("t=�h)e

��

0

t=2�h

F

s

(Q; t); (7)

where

�

0

= �

s

+ �

d

; " = E

0

� E

0

0

; Q = k

0

� k

0

0

; (8)

and k

0

;k

0

0

are assoiated with mean energies E

0

; E

0

0

.

The integrand in (7) has signi�ant value in the time in-

terval 0 � t � t

0

, where t

0

= �h=�

0

may be treated as a

ollision time of the neutron with a target in the absene

of di�usion. It plays the same role as the nulear lifetime

in the theory of M�ossbauer e�et in Brownian partiles

[31{35℄.

Let us write the radius-vetor of the hydrogen atom

as

R = R

(0)

+ u; (9)

where R

(0)

determines the equilibrium position of the

atom in the laboratory oordinate frame and u is its dis-

plaement from this position due to vibrations. By as-

sumption, eah atom is a part of any Lagrange partile,

whose enter is determined by R

L

. Then it is useful to

write

R

(0)

= R

L

+ r; (10)

where r indiates the position of the proton in the en-

ter of mass system x; y; z with origin in the enter of

Lagrange partile and axis z direted along the vetor

Q.

The intermediate funtion for the spherial Lagrange

partile of the radius R takes the form

F

s

(Q; t) = F

(t)

s

(Q; t)F

(r;j)

s

(Q; t)F

(v)

s

(Q; t); (11)

where the fator F

(t)

s

desribes the translational motion,

F

(r;j)

s

is due to rotation and jumps, F

(v)

s

to vibrations

of the hydrogen in one of the sites. They are given by

Eq. (3) with R replaed by R

L

for F

(t)

or by r for F

(r;j)

and by u for F

(v)

.

The quantum vibrations are desribed by a standard

expression (see, e. g., [30℄):

F

(v)

s

(Q; t) = e

�2W (Q)

exp(hQ �u(0)Q � u(t)i); (12)

where exp (�2W (Q)) is the Debye{Waller fator. The

orrelator in (12) de�nes all possible proesses with re-

ation or annihilation of phonons. For quasi-elasti sat-

tering, being the phononless proess, F

(v)

s

= e

�2W (Q)

.

All other types of the hydrogen movement we shall treat

in lassial approximation.

The Langevin equation for the translational Brown-

ian motion gives at t > 0 the well known intermediate

sattering funtion [31℄

F

(t)

s

(Q; t) = exp

�

�a(�t � 1 + e

��t

)

	

; (13)

where

a =

Q

2

D

0

�

; D

0

=

k

B

T

6�R�

; � =

6�R�

M

; (14)

D

0

is the translational di�usion oeÆient of the sphere

in a liquid of visosity � and temperature T , k

B

stands

for the Boltzmann onstant, M is the mass of Lagrange

partile. When t� �

�1

(13) simpli�es to the funtion

F

(t)

s

(Q; t) = exp(�Q

2

Dt) ; (15)

resulting also from the di�usion equation. Therefore, �

�1
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means a harateristi time for the ontinuous transla-

tional di�usion in the liquid.

In lassial approah the funtion F

(r;j)

s

takes the form

F

(r;j)

s

(Q; t) = he

iQ(r(t)�r(0))

i; (16)

where the brakets denote only the statistial averaging.

For separation of the Brownian rotation and jumps we

introdue one more oordinate frame �; �; �, rotating to-

gether with the Lagrange partile. Its origin is plaed in

the partile's enter and axes are rigidly bound to it. The

unit vetors along the axes x; y; z and �; �; � are denoted

by e

1

; e

2

; e

3

and e

0

1

(t); e

0

2

(t); e

0

3

(t) respetively. Let in

the initial moment t = 0 they oinide, e

0

i

(0) = e

i

.

The position of the atom in the Lagrange partile r

may hange from time to time due to random jumps in

the neighbouring sites. When jumps are absent, at any

moment its oordinates �

�

(t) = f�; �; �g with respet

to the axes �; �; � do not hange, i. e., �

�

(t) = �

�

(0).

Jumps lead to the displaement spei�ed by oordinates

��

�

(t) = �

�

(t)� �

�

(0). The vetor r may be now repre-

sented as

r(t) = r

0

n

sin �

0

(os �

0

e

0

1

(t) + sin�

0

e

0

2

(t))

+ os �

0

e

0

3

(t)

o

+

3

X

�=1

��

�

(t)e

0

�

(t); (17)

where r

0

; �

0

; �

0

are the spherial oordinates of the ve-

tor r at t = 0. In general ase the rotation and jumps

are mixed proesses, but situation simpli�es in the ap-

proximation of small rotations [34,35℄. Really, the mean-

square angle h#

2

i

1=2

of the Brownian rotation during

time t is de�ned by

h#

2

i = 2D

r

t; (18)

where D

r

= k

B

T=8�R

3

� is the rotational di�usion o-

eÆient. In our experiment with t

0

� 1 ps, R � 3

�

A,

� � 0:01g/m�s one has h#

2

i � 0:01.

Any small rotation is a produt of three rotations to

angles #

1

; #

2

; #

3

about the axes x; y; z respetively. As a

onsequene, the unit vetors e

i

are related to e

0

i

by

e

0

1

� e

1

+ #

3

e

2

� #

2

e

3

; (19)

e

0

2

� �#

3

e

1

+ e

2

+ #

1

e

3

;

e

0

3

� #

2

e

1

� #

1

e

2

+ e

3

:

The ondition h#

2

i

1=2

� 1 allows us also to put the an-

gles #

�

to vary from �1 to +1. Estimations show that

��

�

(t

0

)=r

0

� h��

2

�

i

1=2

=R� 1, i. e., the displaement of

the atom, assoiated with jumps during the ollision time

t

0

, is muh less than R. Then, substituting (19) into (17)

and negleting terms of the seond order in parameters

# and ��=R, one gets

Q � (r(t) � r(0)) = Qr

0

sin �

0

(� os �

0

#

2

+ sin�

0

#

1

)

+ Q��(t): (20)

Inserting (20) into (16) one �nds F

(r;j)

s

(Q) as a produt

of F

(r)

s

(Q) and F

(j)

s

(Q).

In partiular, the rotational funtion beomes

F

(r)

s

(Q; t) =

Z

1

�1

d#

1

Z

1

�1

d#

2

Z

1

�1

d#

3

� exp [iQr

0

sin �

0

(� os'

0

#

2

+ sin'

0

#

1

)℄

� W (f#

�

g; t): (21)

Here W (f#

�

g; t) is the probability density that the ori-

entation of the axes �; �; � at the moment t is determined

by the angles f#

�

g, if at t = 0 all the angles #

�

= 0.

It satis�es the initial ondition

W (#

�

; 0) = Æ(#

1

)Æ(#

2

)Æ(#

3

): (22)

A stohasti Langevin-type equation for the rotational

di�usion may be written as

d!

dt

= ��

r

! +M(t)=J ; (23)

where !

�

=

_

#

�

are the omponents of the angular ve-

loity ! along the axes x; y; z; M(t) are momenta of

random fores ating on the partile, �

r

= 8�R

3

�=J ;

J = 0:4MR

2

is the moment of inertia of the sphere with

mass M and radius R. Eq. (23) is similar to Langevin

equation for the translational motion whose solution is

well known [36℄. Now J plays the role of the mass M

and f#

�

g are analogous to linear oordinates r. Then

the solution of Eq. (23) may be written in full analogy

with the well known solution of Langevin equation for

the translational motion [36℄:

W (f#

�

g; t) =

�

4�q

Z

t

0

 

2

r

(x)dx

�

�3=2

� exp

8

>

>

<

>

>

:

�

3

P

�=1

(#

�

� !

�

(0) 

r

(0))

2

4q

R

t

0

 

2

r

(x)dx

9

>

>

=

>

>

;

; (24)

where !(0) is the angular veloity at t = 0, and

q = �

r

k

B

T=J ;  

r

(0) =

1

�

r

�

1� e

��

r

t

�

; (25)

Z

t

0

 

2

r

(x)dx =

1

2�

3

r

�

2�

r

t� 3 + 4e

��

r

t

� e

�2�

r

t

�

:
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After substitution of (24) into (21) and averaging over

initial angular velosity distribution

P (!(0)) =

�

J

2�k

B

T

�

3=2

exp

�

�

J !

2

(0)

2k

B

T

�

; (26)

one gets immediately

F

(r)

s

(Q; t) = exp

�

�a

r

(�

r

t � 1 + e

��

r

t

)

	

; (27)

where

a

r

= Q

2

D

r

r

2

0

sin

2

�

0

=�

r

: (28)

By de�nition, �

�1

r

= 0:3�

�1

and

a

r

= 0:225 a (r

0

=R)

2

sin

2

�

0

� a: (29)

The intermediate funtion for the jump di�usion in the

limit �

1

! 0 is given by

F

(j)

s

(Q; t) = e

���

j

t=2�h

(30)

with the broadening [25℄

��

j

=

2�h

�

0

h

1� e

�2W (Q)

(1 + Q

2

D

1

�

0

)

�1

i

; (31)

where �

0

is the mean residene time of the proton in a

site between suessive jumps and the jump di�usion o-

eÆient D

1

is related to the mean-square jump length l

0

by

D

1

= l

2

0

=6�

0

: (32)

Multiplying (12), (13), (27) and (30) one has the fol-

lowing expression for the QENS ross setion:

�

s

(") = Ae

a

e

�2W

Re

Z

1

0

dt

�h

e

i"t=�h�(�

0

+��

j

)t=2�h�a�t�a

r

�

r

t

exp

�

�ae

��t

	

exp

�

a

r

�

1� e

��

r

t

�	

: (33)

The ross setion should be yet averaged over the initial positions of the hydrogen atoms inside the Lagrange parti-

le, i. e., over oordinates r

0

; �

0

. Using the ondition (29), we shall replae in (33) the exponent exp

�

a

r

�

1� e

��

r

t

�	

by unity. Expanding another exponent exp

�

�ae

��t

	

in power series and averaging (33) over uniform distribution of

hydrogen atoms one gets

��

s

(") =

4Ae

a

e

�2W

�hQ

2

D

0

1

X

n=0

(�1)

n

a

n

n!

Re

n

p

1 + 1=x

n

(")Arsh

p

x

n

(") � 1

o

; (34)

where

x

n

(") =

3

4

�hQ

2

D

0

(�

0

+��

j

)=2 + �hQ

2

D

0

+ n�h� + i"

: (35)

The e�etive width of this QENS peak may be de�ned

as [37℄

�

e�

=

2

���

s

(0)

Z

1

�1

d" ��

s

("): (36)

Substitution of (34) into (36) gives (see also [34℄)

�

e�

= �hQ

2

D

0

e

�a

(

2

1

X

n=0

a

n

n!

�(�1)

n

h

p

1 + 1=x

n

(0)Arsh

p

x

n

(0)� 1

i

)

�1

: (37)

Langevin's orretions to the di�usion theory beome

essential if a � 1. This ondition is equivalent to � � �h�.

In the opposite ase, when a� 1, expansion (34) redues

to single term with n = 0. If �hQ

2

D

0

� �

0

it simpli�es

to the Lorentzian funtion

��

s

(") = Ae

�2W

(�=2)

2

"

2

+ (�=2)

2

; (38)

where the width is

� = �

0

+�� ; �� = ��

oll

+��

j

;

��

oll

= 2:6 �hQ

2

D

0

: (39)
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III. EXPERIMENT

The QENS measurements were arried out at the re-

ator of the Institute for Nulear Researh in Kyiv using

multidetetor time-of-ight spetrometer. A shemati

layout of this spetrometer is displayed in Fig.1. The ux

density of old neutrons reeted from the monohromat-

ing rystal (Pb, Cu, Zn) amounts 2�10

8

n m

�2

s

�1

for the

average neutron energy E = 0:25 meV. This value of the

ux varies depending on the type of the monohromating

rystal and neutron energy. In our experiment we have

been using neutrons with E = 13:1 meV (the wavelength

� = 2:50

�

A). The monohromated neutrons pass through

the hopper, being a rotor spinning with high angular ve-

loity, to produe a pulsed neutron beam. The ux den-

sity of this pulsed beam is 4�10

3

n m

�2

s

�1

. The energies

of sattered neutrons are determined by measuring the

time of ight of sattered neutrons over 2:87m ight path

between the sample and detetors. Eight detetors �lled

with

3

He under the pressure 10 atm were installed at the

sattering angles �

1

= 25:1

Æ

; �

2

= 40:5

Æ

; �

3

= 55:7

Æ

; �

4

=

70:9

Æ

; �

5

= 86:1

Æ

; �

6

= 101:3

Æ

; �

7

= 116:5

Æ

; �

8

= �9:5

Æ

with respet to the inident neutron beam. We made

measurements using �rst �ve detetors. Even in this ase

the wave vetor transfer Q = (4�=�) sin(�=2) varies from

1.09

�

A

�1

to 3:43

�

A

�1

as � = 2.5

�

A.

Fig. 1. Sheme of the time-of-ight spetrometer. The

abbreviation R designates the reator, CM | the rystal

monohromating neutrons, C | the hopper, S | the sam-

ple, M | the monitor, D

i

| the detetors installed at the

angles �

1

= 25:1

Æ

, �

2

= 40:5

Æ

, �

3

= 55:7

Æ

, �

4

= 70:9

Æ

,

�

5

= 86:1

Æ

, �

6

= 101:3

Æ

, �

7

= 116:5

Æ

, �

8

= �9:5

Æ

with re-

spet to the transmitting neutron beam.

The energies of neutrons sattered to di�erent dire-

tions are measured simultaneously by means of the ele-

troni system of multi-dimensional analysis. The energy

resolution funtion was found by a standard vanadium

alibration run. Its full width at half maximum �

0

, de-

pending on Q, ranges from 0:78 meV at small Q to

1:00 meV at large Q.

The QENS spetra (see Figs. 2{4)were taken at room

temperature T = 293K for three types of spirit (ethanol:

C

2

H

5

OH; propanol: C

3

H

7

OH; n-nonanol: C

9

H

19

OH).

General tendeny of the observed spetra is that the

QENS peak broadens and its intensity falls with inreas-

ing of the sattering angle. At large angles the peak

is hardly separated from the bakground, therefore, the

limiting angle is taken �

max

= 86:1

Æ

.

IV. EXPERIMENTAL RESULTS

Fitting the intensities of the QENS peaks, whih

are proportional to the Debye{Waller fator e

�2W

, we

found the mean-square vibrational amplitudes of hydro-

gen atoms hu

2

x

i

1=2

. They are pratially the same for all

spirits, hu

2

x

i ' 0:2

�

A

2

. More exat values are displayed

in Table 1.

sample hu

2

x

i,

�

A

2

l

0

,

�

A �

0

; ps

ethanol 0.184 0.8 1.4

propanol 0.176 1.02 2.43

n-nonanol 0.172 1.05 2.38

Table 1. The �tting parameters.

sample D

0

D

1

D � R

ethanol 0.63 0.76 1.39 1.20 2.85

propanol 0.31 0.71 1.02 2.23 3.10

n-nonanol 0.08 0.77 0.85 6.32 4.10

Table 2. The di�usion oeÆients (in units of

10

�5

m

2

s

�1

) together with the visosities of spirits (in

units of 10

�2

g m

�1

s

�1

) and radii of moleules (in

�

A).

From data shown in Figs. 2{4 we determined the width

at half maximum of the QENS peaks for �ve points of

Q

2

. Extrating then the width of the energy resolution

funtion, the broadenings of the lines were found at half

maximum �", whih are represented in Fig. 5.

We assume the spirit moleules to di�use undepen-

dently of eah other, i. e., the Lagrange partile on-

sists only of single moleule. The moleular radius R

is then estimated with the aid of trivial relation M =

�

4�R

3

=3

�

�, where M is the mass of the moleule and �

is the density of the liquid. These values of radii together

with visosities ompletely de�ne the translational di�u-

sion oeÆients D

0

. The funtions �" manifest typial

nonlinear dependene on Q

2

. Sine in our experiment

a � 1, the urvature of the observed funtion �"(Q

2

)

may be explained by the ommon inuene of jumps

and ontinuous di�usion. At small Q both mehanisms

of di�usion give ontributions to �� linearly depending

on Q

2

, aording to Eqs. (31), (36). Although at high

Q the jump di�usion is \frosen", giving ��

j

= 2�h=�

0

as e

�2W (Q)

' 0, the ontribution of ontinuous motion

grows proportionally to Q

2

.
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Fig. 2. The QENS spetra of the ethanol. The numbers at

the urves i indiate the sattering angles �

i

.

Fig. 3. The QENS spetra of the propanol.

Our data were �tted with the aid of two parameters

(the residene time of the atom �

0

and the average jump

length l

0

). They are listed in Table 1. Using these pa-

rameters we alulated the jump di�usion oeÆients

D

1

= l

2

0

=6�

0

, whih are given in Table 2 together with

the translational di�usion oeÆients D

0

, total di�usion

oeÆients D = D

0

+D

1

, radii and visosities of liquids.

Fig. 4. QENS spetra of the normal nonanol.

Fig. 5. The broadening of the QENS peak versus the

square of the wave vetor transfer. The dots are the experi-

mental data, the solid line is the �tting urve by Eq. (38).

V. DISCUSSION

Thus, we analyzed the ombined inuene of di�erent

di�usion mehanisms on the QENS spetra. Previously
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their role has been onsidered separately. So, only Brow-

nian rotation without jumps was treated in [38℄, while

the translational di�usion + jumps were regarded in [27℄

but without rotation. It should be noted that these the-

ories were based on the di�usion equations, whereas we

start from the most orret Langevin equations. We seem

to be the �rst to develop suh an approah for the rota-

tional motion. It is done in the approximation of small

rotations, in whih the situation resembles the transla-

tional ase. Namely, the orresponding solutions (13) and

(27) are very similar. We derived general equation (33)

for the QENS ross setion, whih an be alulated nu-

merially. It is found that the Langevin orretions for

rotation are less essential than those for the translational

motion sine a

r

� a. Thanks to this enequality the ro-

tation an be treated on the basis of the di�usion equa-

tion only, while the Langevin equation is onserved for

the translational motion. It allowed us to get the anal-

ityal expression (34) for the QENS ross setion as an

expansion in powers of the parameter a. When a � 1

and the broadening of the line �� is small it redues to

the Lorentzian funtion (38), whih resembles the result

of Osotskii [27℄. However, our equation ontains addi-

tional ontribution to the broadening of the QENS peak

0:6 �hQ

2

D

0

due to rotation. Only in the same limiting

ase the separation of single-partile (jump) motion from

the olletive one beomes an easy task sine ��

j

and

��

oll

are haraterized by di�erent dependene on Q

2

(see also [29℄). All these alulations are well on�rmed

by our observations.

Authors are grateful to professors L. A. Bulavin and

A. V. Zatovsky for helpful disussions.
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VIVQENN� R�ZNIH TIP�V DIFUZ�Õ V R�DINAH ZA DOPOMOGO�

KVAZ�PRU�NOGO ROZS��NN� NE�TRON�V

O. �. Dz�blik, V. �. Sl�senko, O. A. Vasil~keviq

�nstitut �dernih dosl�d�en~ NAN UkraÝni

prosp. Nauki, 47, KiÝv, 03028, UkraÝna

e-mail: dzyublik�kinr.kiev.ua

Vivedeno zagal~n� r�vn�nn� dl� perer�zu nekogerentnogo kvaz�pru�nogo rozs��nn� ne�tron�v r�dino� z

urahuvann�m neperervnoÝ transl���noÝ ta obertal~noÝ difuz�Ý tak zvanih la�ran�evih qastinok (aso��-

�� atom�v qi molekul) ta stribk�v atom�v vodn� v ih qastinkah. Rozgl�nuto obidva tipi neperervnogo

ruhu na p�dstav� r�vn�n~ Lan�evena. Okr�m togo, provedeno eksperimenti z rozs��nn� ne�tron�v na spirtah,

rezul~tati �kih dobre uzgod�u�t~s� z naxo� teor��.
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