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A general expression for the incoherent quasi-elastic neutron scattering (QENS) cross section
by a liquid is derived, taking into account the continuous translational and rotational diffusion of
the so-called Lagrange particles (associations of atoms or molecules) as well as jumps of hydrogen
atoms inside these particles. Both types of continuous motion are considered, starting from the
Langevin equations. Besides, we carried out a QENS experiment on spirits, whose results agree well

with our theory.
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I. INTRODUCTION

For a long time there have been two opposite ap-
proaches to the dynamics of liquids. The diffusion of
their atoms (molecules) is described either as a contin-
uous process or as jumps between adjacent sites (see,
e.g., [1]). The continuous diffusion is determined by the
diffusion or Langevin equations. However, simple diffu-
sion equation cannot reproduce numerical experimental
data on quasi-elastic scattering (QENS) by liquids [2-20].
Namely, the broadening of the elastic neutron peak Ae,
caused by the diffusive motion in a liquid, shows typical
curved dependence on the squared transferred wave vec-
tor @? (in particular, this is illustrated by Figs. 2-4 given
below). At the same time the diffusion equation predicts
linear function Ae(Q?). Langevin equation, being more
exact than the diffusion one, gives the Van Hove self-
correlation function Gy (r,t) [21], which differs at |¢| — 0
from the solution of the diffusion equation. Respectively,
it provides, in principle, deviation of the function Ae(Q?)
from a straight line. But this is the case only for large
diffusing molecules or liquids with high viscosity.

Random jumps of atoms in a liquid occur, like those in
a crystal, from time to time between neighbouring sites.
In simple liquids this results from their quasi-crystalline
structure [22-24]. The function Ae(Q?), provided only by
jump diffusion, represents nonlinear dependence [25,26],
but it is saturated at high @2, when Ae becomes con-
stant ~ 1/m, where 7 is the mean residence time of the
atom in a site between successive jumps. But this contra-
dicts observations. Therefore, both continuous and jump
diffusion have to be taken into account simultaneously.

A number of attempts have been made to unify
these limiting approaches to the dynamics. In particu-
lar, Singvi and Sj6lander [25] supposed that the atom
vibrated for some time in any site, then it crawled to an-
other one. This process is specified by the mean residence
time 75 and the mean time of the continuous motion be-
tween sites 7. For 71 3> 1y the authors have been getting
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pure continuous diffusion, and for 7 < 79 pure jumps.
However, it seems strange that vibrations alternate with
continuous motion.

A more satisfactory approach was advanced by Oscot-
skii [27], who made the following assumption. The sites,
between which the atoms are jumping, take part in a
continuous diffusion, which proceeds simultaneously with
jumps. The equations for the QENS peak broadening, de-
rived in [27], beautifully explained the experimental data
of [17-20].

From our point of view, the assumption of Oscotskii is
tightly bound to Fisher’s idea [28] that interacting atoms
(molecules) in a liquid form aggregates (Lagrange parti-
cles), continuously diffusing throughout the liquid (see
also [29]). In particular, such a particle can be a single
molecule. Then the Lagrange particle may be treated as
a carrier of light atoms, which make random jumps in-
side it between adjacent sites. Developing these ideas, we
shall consider in this paper simultaneously the influence
of both types of continuous motion of Lagrange particle
(translational and rotational) along with jumps of atoms
on the broadening of QENS peak.

II. THEORY

As usuall [2-20], we shall take into consideration only
the incoherent scattering of neutrons by hydrogen atoms
in a liquid, since the incoherent scattering cross section
of neutrons by protons oy is much larger than that for
other isotopes. Then the double differential incoherent
scattering cross section of neutrons by a liquid is deter-

mined by [1,30]

dzo- 1 - —fwt
(m)inc—Aﬁ . dte FS(Q,t), (1)

where
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k/UH
A= k 4m2’ )
N is the number of hydrogen atoms in the liquid, k and
k' are the wave vectors of incident and scattered neutrons
respectively, F and E’ are the corresponding kinetic en-
ergies of the neutrons, Q = k — k' represents the wave
vector transfer and hw = F — E’ is the energy transfer.
The intermediate scattering function

F(Q,t) = <e—iQR(0)eiQR(f)> (3)

is the Fourier transform of the Van Hove function G,(r, )
for one of the hydrogen atoms, whose position is deter-
mined by the radius-vector R.. Its time-dependent value
in (3) stands for the operator in the Heisenberg represen-
tation. The brackets (...) denote the statistical as well
as quantum-mechanical averaging over the initial states
of the scatterer.

Let the energy distribution of neutrons emitted by a
source be approximated by the Lorentzian

I/2n
(E — Bo)2 + (I, /2)? (4)

ws (B) =

with Ey = h*k2/2m, where m is the neutron mass. Be-
sides,; the energy resolution function of the neutron de-
tector is assumed to be

Fd/Qﬂ

) = Ey e

(5)

The experimentally measured cross section is determined
by the convolution

oel(e) = /0 "B, (B) /0 A v (B (%)mc. (6)

Eor T'y « Fy and T'y < E} it will be given by
< dt —Tot/2h
Osc(e) = A %cos(gt/h)e ot F(QL 1), (7)
0

where

g =Ts+T4, e=E—Fj Q=ko—kj, (8)

and kg, k’y are associated with mean energies FEy, Ej.
The integrand in (7) has significant value in the time in-
terval 0 <t ~ tp, where to = h/Ty may be treated as a
collision time of the neutron with a target in the absence
of diffusion. It plays the same role as the nuclear lifetime
in the theory of Mossbauer effect in Brownian particles
[31-35].

Let us write the radius-vector of the hydrogen atom
as

R =R +u, (9)

where R(®) determines the equilibrium position of the
atom in the laboratory coordinate frame and u is its dis-
placement from this position due to vibrations. By as-
sumption, each atom is a part of any Lagrange particle,
whose center is determined by Ry . Then it is useful to
write

R” =Ry +r, (10)

where r indicates the position of the proton in the cen-
ter of mass system z,y,z with origin in the center of
Lagrange particle and axis z directed along the vector

The intermediate function for the spherical Lagrange
particle of the radius R takes the form

F(Q, 1) = FOQ, ) Fr(Q, ) FI(Q, 1), (11)

where the factor Fs(t) describes the translational motion,
Fs(r’]) is due to rotation and jumps, Fs(v) to vibrations
of the hydrogen in one of the sites. They are given by
Eq. (3) with R replaced by Ry, for F(*) or by r for F("J)
and by u for F().

The quantum vibrations are described by a standard
expression (see, e.g., [30]):

FI(Q,1) = e @ exp((Q -u(0)Q - u(t),  (12)

where exp (—2W(Q)) is the Debye-Waller factor. The
correlator in (12) defines all possible processes with cre-
ation or annihilation of phonons. For quasi-elastic scat-
tering, being the phononless process, Fs(v) = ¢72W(Q),
All other types of the hydrogen movement we shall treat
in classical approximation.

The Langevin equation for the translational Brown-
ian motion gives at { > 0 the well known intermediate
scattering function [31]

FO(Q,t) = exp {—a(ft — 1+ e}, (13)
where
_ QDo _ kpT _ 67mRy
a = 6 ) 0 — 67TR7] ) 6 - M 3 (14)

Dy 1s the translational diffusion coefficient of the sphere
in a liquid of viscosity 7 and temperature T, kg stands
for the Boltzmann constant, M is the mass of Lagrange
particle. When ¢ > 871 (13) simplifies to the function

FI(Q,1) = exp(—Q*Dt) | (15)
resulting also from the diffusion equation. Therefore, 37!
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means a characteristic time for the continuous transla-
tional diffusion in the liquid.

In classical approach the function Fs(r’j) takes the form
Fs(’“’j)(Q,t) - <eiQ(r(t)—r(0))>’ (16)

where the brackets denote only the statistical averaging.
For separation of the Brownian rotation and jumps we
introduce one more coordinate frame &, 5, {, rotating to-
gether with the Lagrange particle. Its origin 1s placed in
the particle’s center and axes are rigidly bound to it. The
unit vectors along the axes z,y, z and &, i, { are denoted
by e1,es,e5 and €'1(t), e2(t), €'3(t) respectively. Let in
the initial moment ¢ = 0 they coincide, €/;(0) = e;.

The position of the atom in the Lagrange particle r
may change from time to time due to random jumps in
the neighbouring sites. When jumps are absent, at any
moment its coordinates &,(t) = {&,n,{} with respect
to the axes &,7,¢ do not change, i.e., £,(t) = £4(0).
Jumps lead to the displacement specified by coordinates
A&, (1) = €a(t) — £4(0). The vector r may be now repre-
sented as

r(t) = ro{ sin 0y (cos ¢pe’1 (t) + sin goe’s (1))
+ cos Hoelg(t)} + 3 Ada(t)el (t), (17)

where 7q, 0y, ¢g are the spherical coordinates of the vec-
tor r at ¢ = 0. In general case the rotation and jumps
are mixed processes, but situation simplifies in the ap-
proximation of small rotations [34,35]. Really, the mean-
square angle (92)!/2 of the Brownian rotation during
time ¢ is defined by

(9?) = 2D,t, (18)

where D, = k’BT/Sﬂ'RSU 1s the rotational diffusion co-
efficient. In our experiment with tg ~ 1ps, R ~ 3A,
n ~ 0.01g/cm-s one has (¥?) ~ 0.01.

Any small rotation is a product of three rotations to
angles ¥, U5, Y3 about the axes z,y, z respectively. As a
consequence, the unit vectors e; are related to e’; by

e’l ~ e+ 79382 — 79283, (19)
€'y & —Use; + ey + Vies,

e/3 ~ 79281 — 79182 + es.

The condition (92)1/? < 1 allows us also to put the an-
gles 9, to vary from —oo to +00. Estimations show that
A&, (to) )10 ~ (AE2)? /R <« 1, i.e., the displacement of
the atom, associated with jumps during the collision time
tg, is much less than R. Then, substituting (19) into (17)
and neglecting terms of the second order in parameters

¢ and AE/R, one gets
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Q- (r(t) —r(0)) = Qrosinby(— cos ¢ + sin ¢o?))
+ QAL(t). (20)
Inserting (20) into '(16) one finds Fs(r’j)(Q) as a product

of F{"(Q) and FY)(Q).

In particular, the rotational function becomes

Fs(’“)(Q,t):/ dﬁl/ dﬁz/ dvs

exp [1Qrg sin Oy (— cos poVa + sin ppd )]

X

< W({0atit). (21)

Here W ({¥,};?) is the probability density that the ori-
entation of the axes &, i, ( at the moment ¢ is determined

by the angles {4}, if at ¢ = 0 all the angles ¥, = 0.

It satisfies the initial condition

W (.30 = 6(01)3(02)5 (V). (22)

A stochastic Langevin-type equation for the rotational
diffusion may be written as

dw
a = —Brw+ M(t)/j’ (23)

where w, = ﬁa are the components of the angular ve-
locity w along the axes z,y,z; M(¢) are momenta of
random forces acting on the particle, 8, = 87R33/J;
J = 0.4M R? is the moment of inertia of the sphere with
mass M and radius R. Eq. (23) is similar to Langevin
equation for the translational motion whose solution is
well known [36]. Now J plays the role of the mass M
and {J,} are analogous to linear coordinates r. Then
the solution of Eq.(23) may be written in full analogy
with the well known solution of Langevin equation for
the translational motion [36]:

2 (Vo —wa(0):(0))°
X exp { — pp fot 2 () . (24)

where w(0) is the angular velocity at t = 0, and

¢ = BkpT) T, wr(O):ﬁiu—e—W), (25)

r

1

t
/0 oy (2)de = 2 (28, — 3 4e™Prt — 7200
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After substitution of (24) into (21) and averaging over The intermediate function for the jump diffusion in the
initial angular velosity distribution limit 74 — 0 is given by
3/2 2 ) _ —ALt/2h
0 Q.1 e 30
Plo() = (L) e {~ LD (o) @0 )
27T]€BT QkBT
with the broadening [25]
one gets immediately 9k
ATj = = [1— e 4+ Q?Dymy) 7, (31)
FIOUQ, 1) = exp {—a, (Bt — 1477} (27) 0
where 75 1s the mean residence time of the proton in a
where site between successive jumps and the jump diffusion co-
efficient Dy 1s related to the mean-square jump length g
a, = Q*D,risin® s/ 5, . (28) by
Dy =12/67. (32)

By definition, 87! = 0.337! and
Multiplying (12), (13), (27) and (30) one has the fol-

a, = 0.225a (7°0/R)2 sin? 0y < a. (29)  lowing expression for the QENS cross section:
|
©dt .
Oscle) = Aeae_sze/ Ee“t/h_(F”+Arj)t/2h_am_arﬁrt exp {—ae_ﬁt} exp {ar (1 - e_ﬁrt)} . (33)
0

The cross section should be yet averaged over the initial positions of the hydrogen atoms inside the Lagrange parti-
cle, i.e., over coordinates rg, 6. Using the condition (29), we shall replace in (33) the exponent exp {ar (1 — e‘ﬁrt)}

by unity. Expanding another exponent exp {—ae‘ﬁt} in power series and averaging (33) over uniform distribution of
hydrogen atoms one gets

Fec() = % 2(-1)71%% (VI /2@ A a5 - 1}, (34)

x(—1)" [\/1  1/2,(0)Arshy/z, (0) — 1] } NE
3 hQ? Dy
(€)= 7 (To + AT;)/2 + hQ?Do + nhfB + ic’ (35)

Langevin’s corrections to the diffusion theory become
essential if a ~ 1. This condition 1s equivalent to I' ~ hj5.
In the opposite case, when ¢ < 1, expansion (34) reduces

to single term with n = 0. If RQ?Dy < T it simplifies
The effective width of this QENS peak may be defined  {¢ the Lorentzian function

as [37]
Feff = L /Oo de a'sc([f). (36) — (6) A —2W (F/Q)Z (38)
o Osc = A€ YIS
m0sc(0) J oo 2 + (I'/2)?
where the width is
Substitution of (34) into (36) gives (see also [34])
o I =Tq+ AT, AFIAFCOH—I—AF]',
a
T = hQ?*Dpe™ {2 Y —
’ nZ::O n! ATeon = 2.6 hQ?Dy. (39)
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III. EXPERIMENT

The QENS measurements were carried out at the re-
actor of the Institute for Nuclear Research in Kyiv using
multidetector time-of-flight spectrometer. A schematic
layout of this spectrometer is displayed in Fig. 1. The flux
density of cold neutrons reflected from the monochromat-
ing crystal (Pb, Cu, Zn) amounts 2-10% n cm~%s~1 for the
average neutron energy F = 0.25 meV. This value of the
flux varies depending on the type of the monochromating
crystal and neutron energy. In our experiment we have
been using neutrons with Z = 13.1 meV (the wavelength
A =250 A) The monochromated neutrons pass through
the chopper, being a rotor spinning with high angular ve-
locity, to produce a pulsed neutron beam. The flux den-
sity of this pulsed beam is 4-103 n cm™2s~!. The energies
of scattered neutrons are determined by measuring the
time of flight of scattered neutrons over 2.87 m flight path
between the sample and detectors. Eight detectors filled
with 3He under the pressure 10 atm were installed at the
scattering angles 81 = 25.1°, 8, = 40.5°, 85 = 55.7°, 604 =
70.9° 05 = 86.1°,0s = 101.3°,87 = 116.5°,0g = —9.5°
with respect to the incident neutron beam. We made
measurements using first five detectors. Even in this case
the wave vector transfer ) = (4m/A)sin(0/2) varies from

1.09A 10343 A LasA=25A.

Ds | Ds
D,
Dy
D;
shilding
D
R D,
Sl C M
— — - @ \’\

| S I\ Dy

Fig. 1. Scheme of the time-of-flight spectrometer. The
abbreviation R designates the reactor, CM — the crystal
monochromating neutrons, C — the chopper, S — the sam-
ple, M — the monitor, I); — the detectors installed at the
angles §; = 25.1°, 62 = 40.5°, 85 = 55.7°, 6, = 70.9°,
s = 86.1°, § = 101.3°, 6 = 116.5°, s = —9.5° with re-
spect to the transmitting neutron beam.

The energies of neutrons scattered to different direc-
tions are measured simultaneously by means of the elec-
tronic system of multi-dimensional analysis. The energy
resolution function was found by a standard vanadium
calibration run. Its full width at half maximum I'y, de-
pending on ), ranges from 0.78 meV at small @ to
1.00 meV at large Q.

The QENS spectra (see Figs. 2-4)were taken at room
temperature 7' = 293 K for three types of spirit (ethanol:
CyHsOH; propanol: CsH7OH; n-nonanol: CgH;oOH).
General tendency of the observed spectra is that the
QENS peak broadens and its intensity falls with increas-
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ing of the scattering angle. At large angles the peak
is hardly separated from the background, therefore, the
limiting angle 1s taken 6, = 86.1°.

IV. EXPERIMENTAL RESULTS

Fitting the intensities of the QENS peaks, which
are proportional to the Debye-Waller factor e™?"  we
found the mean-square vibrational amplitudes of hydro-
gen atoms <ui>1/2. They are practically the same for all
spirits, (u2) ~ 0.2 A%, More exact values are displayed

in Table 1.

o

sample  [(u2), A2y, Alm, ps
ethanol {0.184 0.8 (1.4
propanol |0.176 1.02 |2.43
n-nonanol|0.172 1.05 |2.38

Table 1. The fitting parameters.

sample |Dy |D; |D |n |R

ethanol |0.63]0.76/1.39|1.20(2.85
propanol |0.31]0.71(1.02{2.23|3.10
n-nonanol|0.08|0.77|0.85|6.32{4.10

Table 2. The diffusion coefficients (in units of
107 em?s™1) together with the viscosities of spirits (in
units of 1072 g em ™! s71) and radii of molecules (in A).

From data shown in Figs. 2-4 we determined the width
at half maximum of the QENS peaks for five points of
Q?. Extracting then the width of the energy resolution
function, the broadenings of the lines were found at half
maximum Ag, which are represented in Fig.5.

We assume the spirit molecules to diffuse undepen-
dently of each other, i.e.; the Lagrange particle con-
sists only of single molecule. The molecular radius R
is then estimated with the aid of trivial relation M =
(47TR3/3) p, where M 1s the mass of the molecule and p
is the density of the liquid. These values of radii together
with viscosities completely define the translational diffu-
sion coefficients Dy. The functions Ae manifest typical
nonlinear dependence on @?. Since in our experiment
a < 1, the curvature of the observed function Ae(Q?)
may be explained by the common influence of jumps
and continuous diffusion. At small ) both mechanisms
of diffusion give contributions to AT linearly depending
on @? according to Egs.(31), (36). Although at high
@ the jump diffusion is “frosen”, giving AT'; = 2A/m
as e 2W(Q) ~ 0, the contribution of continuous motion
grows proportionally to Q2.
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Fig. 2. The QENS spectra of the ethanol. The numbers at
the curves 1 indicate the scattering angles 6;.
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Fig. 3. The QENS spectra of the propanol.

Our data were fitted with the aid of two parameters
(the residence time of the atom 7y and the average jump
length {y). They are listed in Table 1. Using these pa-
rameters we calculated the jump diffusion coefficients
Dy = [2/67, which are given in Table 2 together with
the translational diffusion coefficients Dy, total diffusion
coefficients D = Dy + Dy, radii and viscosities of liquids.
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Fig. 4. QENS spectra of the normal nonanol.
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V. DISCUSSION

The broadening of the QENS peak versus the
square of the wave vector transfer. The dots are the experi-
mental data, the solid line is the fitting curve by Eq. (38).

Thus, we analyzed the combined influence of different
diffusion mechanisms on the QENS spectra. Previously
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their role has been considered separately. So, only Brow-
nian rotation without jumps was treated in [38], while
the translational diffusion 4+ jumps were regarded in [27]
but without rotation. It should be noted that these the-
ories were based on the diffusion equations, whereas we
start from the most correct Langevin equations. We seem
to be the first to develop such an approach for the rota-
tional motion. It is done in the approximation of small
rotations, in which the situation resembles the transla-
tional case. Namely, the corresponding solutions (13) and
(27) are very similar. We derived general equation (33)
for the QENS cross section, which can be calculated nu-
merically. It is found that the Langevin corrections for
rotation are less essential than those for the translational
motion since a, <€ a. Thanks to this enequality the ro-
tation can be treated on the basis of the diffusion equa-

tion only, while the Langevin equation is conserved for
the translational motion. It allowed us to get the anal-
itycal expression (34) for the QENS cross section as an
expansion in powers of the parameter a. When a <« 1
and the broadening of the line AT is small it reduces to
the Lorentzian function (38), which resembles the result
of Oscotskii [27]. However, our equation contains addi-
tional contribution to the broadening of the QENS peak
0.6 h@Q?Dy due to rotation. Only in the same limiting
case the separation of single-particle (jump) motion from
the collective one becomes an easy task since AI'; and
ATon are characterized by different dependence on Q2
(see also [29]). All these calculations are well confirmed
by our observations.

Authors are grateful to professors L. A. Bulavin and
A. V. Zatovsky for helpful discussions.
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BUBYEHHS PI3BHUX THUIIIB JU®Y3Ii B PIIMHAX 3A JOIIOMOTOIO
KBA3IINIPYKHOI'O PO3CISSHHSI HEUTPOHIB
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Buseneno 3arasibHi pIBHAHHA 1A [epepi3y HEKOTepeHTHOTO KBA3IIPYKHOTO PO3CIAHHA HEHTPOHIB PIAMHOIO 3
yPaXyBaHHAM HeIlepepBHOI TpaHCIANiAHOI Ta 0beprasbHOl mudysii Tak 3BaHUX Jlar'DaHKEBUX JaCTHHOK (acoris-
il aToMIB YM MoJeKyJl) Ta CTpUOKIB aTOMIB BOHHIO B IIMX YaCTUHKaX. PO3IIsAHYTO o6UIBa THUIN HEEPEPBHOTO
pPyXy Ha macrasl piBHAHB J]amkeBeHa. OKpiM TOTO, IIPOBEIEHO eKCIIEPUMEHTH 3 PO3CIAHHA HEMTPOHIB Ha CIIMPTaX,

pe3yIbTaTy AKUX H0Ope y3TOMKYIOTHCA 3 HAIIOK TEOPIEIO.
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