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We onsider a reformulation of various models in QFT in whih �eld equations are used to express

the mediating �elds in terms of matter �elds. Salar QED and SU(2) gauge �elds are onsidered

in partiular. We show that for these ases the interation term of the reformulated Lagrangian

an be expressed in a series of terms, whih ontain matter �elds and the Green funtions of the

mediating �elds only.
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I. INTRODUCTION

The desription of relativisti bound states in QFT

ontinues to be a hallenging problem, partiularly for

strongly oupled systems. The traditional method of

treating relativisti bound states within QFT is by means

of the Bethe{Salpeter (BS) equation [1℄. However, this

approah has its limitations, among them the existene

of relative-time oordinates, diÆulty of implementation

for systems of more than two bodies, and the (in pra-

tie) perturbative treatment of interations.

Among various alternatives to the BS equation, suh

as the quasi-potential approah [2℄ or in�nite-omponent

wave equations [3℄, the approah whih inorporates the

ideas of diret interation theory [4℄ into QFT ommends

itself as an e�etive and omparatively simple method

for treating bound state problems [5℄. This approah in-

volves the following steps:

i. Elimination of the degrees of freedom of the medi-

ating �elds and the onsequent onstrution of an

equivalent non-loal Lagrangian for the system.

ii. Constrution of the orresponding Hamiltonian of

the QFT and its quantization.

iii. Derivation and solution of the resulting few-body

equations.

This approah was applied to the two-salar [6℄, two-

fermion [7℄ and salar-fermion [8℄ problems in models

with salar mediating �elds (Yukawa oupling), as well as

to the two-fermion problem in quantum eletrodynamis

(QED) [9℄.

The starting point of this approah is the Lagrangian

funtion for the \matter" �elds (salar or fermioni) and

the massless (or massive) \mediating" �elds. The orre-

sponding lassial (Euler{Lagrange) �eld equations are

used to express the mediating �elds in terms of the mat-

ter �elds by means of Green's funtions. This solution

is then used to onstrut an e�etive redued Lagrangian

whih is non-loal but depends on matter �elds only. The

struture of the e�etive ation is similar to the Fokker-

type ation integrals in relativisti diret interation the-

ory [4℄.

The onstrution of the redued Lagrangians is eas-

ily realizable in a few ases, suh as those listed above

[6{9℄. But, in general, the elimination of mediating �elds

annot be done exatly in losed form. One example is

salar eletrodynamis, in whih spinless partiles rep-

resented by salar \matter �elds" '

a

(a = 1; 2) inter-

at via eletromagneti (massless vetor) �elds A

�

. The

mediating-�eld equations are just the Maxwell equations

�

�

F

��

= �

�

�

�
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�

� �
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(�

�

A

�

) = J

�

; (1.1)
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ie ('
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) + 2e
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'

�
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'

a

A

�

�

:

(1.2)

Sine the soure urrent ontains both matter and me-

diating �elds, we annot solve these equations for the

mediating eletromagneti �eld in terms of the matter

�elds using traditional Green funtion methods.

Therefore, we need to generalize the approah used

for the solvable ases desribed above [6{9℄, but in a

way that will avoid approximations as muh as possible,

sine the subsequent steps (suh as the onstrution of

the Hamiltonian, quantization, et.) may depend on the

approximation sheme, whih, in turn, may undermine

the rigorous nature of the method. Thus, it is important

to have a reformulation of the theory, whih is free of
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approximation shemes, at least at the lassial level.

In the present paper we onstrut an impliit form

of the redued Lagrangian, whih an be used for some

physially interesting ases in either the anonial Hamil-

tonian or path-integral formulation. In this way approx-

imations an be avoided at the lassial level, and an

be applied as neessary at the quantized level. We shall

onstrut the impliit form of the redued Lagrangian

for the following ases:

1. Complex salar matter �elds interating via a

massless salar �eld (salar oupling);

2. Complex salar matter �elds interating via the

eletromagneti �eld (vetor oupling);

3. Salar iso-triplet matter �elds interating via

SU(2)-gauge �eld (SU(2)-gauge oupling).

For ase 1 the salar oupling is of the \minimal" type

(see [10℄), not of the Yukawa-type (as in Ref. [6℄). This

model will illustrate how the diÆulty in applying the

simple elimination proedure used for the Yukawa-type

oupling an be irumvented.

II. SCALAR COUPLING

A. Lagrangian density and �eld equations

The Lagrangian density of two omplex salar �elds

'

a

(x) with masses m

a

(a = 1; 2) interating via a salar

real massless �eld �(x), with salar oupling, is

L =

2

X

a=1

�

�

�

'

�

a

�

�

'

a

� (m

a

+ ��)

2

'

�

a

'

a

�

+

1

2

�

�

��

�

�; (2.1)

where � is a dimensionless oupling onstant. The or-

responding Euler{Lagrange equations are

�

� + (m

a

+ ��)

2

�

'

a

= 0; (2.2)

�� = ��(�

0

+ �

1

�); (2.3)

where � = �

�

�

�

, and

�
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= 2
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X
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1

= 2�
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X

a=1
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�
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'
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: (2.4)

Equation (2.3) for the � �eld, but with �

1

= 0 on the

r.h.s., is the same as that for the salar Yukawamodel [6℄.

In that ase one an �nd the solution using the standard

Green funtion method, namely

� = �

0

� �hD � �

0

i; (2.5)

where �

0

is a solution of the homogeneous equation,

��

0

= 0, and

hD � �

0

i = �

�1

�

0

=

Z

dx

0

D(x� x

0

) �

0

(x

0

); (2.6)

where dx

0

= dt

0

dr

0

, and D(x � x

0

) is a ovariant Green

funtion (or hion propagator, in the language of QFT):

�D(x � x

0

) = Æ

4

(x� x

0

): (2.7)

However, in the present ase, with �

1

6= 0, this simple

proedure does not work.

From now on we shall put �

0

= 0, i. e., we will neglet

the free �-�eld. This means that we shall not onsider

phenomena that involve annihilation or deay with the

emission of free hions, but only stable bound states (or

elasti sattering). We seek a solution for the �-�eld in

the form

� = hD � ��i; (2.8)

where �� is a funtional of the matter �elds '

a

; '

�

a

. Sub-

stitution of (2.8) into (2.3) gives the integral equation

�� = ��(�

0

+ �

1

hD � ��i); (2.9)

whih spei�es the funtional ��. Let us write the solution

of (2.9) in the form

�� = ��(1 + ��

1

hD � : : : i)

�1

�

0

: (2.10)

This formula ontains the expression (1+�hD � : : : i)

�1

,

whih is to be understood as an operator inverse. We note

that this onstrution looks like the fration 1=(1+x) and

an be treated as an algebrai expression but in terms of

operator algebra. We reall that 1=(1 + x) an be repre-

sented by onvergent series for the two ases, x < 1 and

x > 1:

1

1 + x

x<1

=

1

X

k=0

(�x)

k

; (2.11)

1

1 + x

x>1

= �

1

X

k=1

�

�

1

x

�

k

: (2.12)

Analogously, we an express the funtional �� (2.10) as

follows:

��

�<1

= ��

1

X

k=0

(���

1

hD � : : : i)

k

�

0

; (2.13)
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: (2.14)
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The notation

�<1

= (or

�>1

= ) indiates that the representa-

tion (2.13) (or (2.14)) is appropriate for the ase of the

weak (or strong) oupling, i. e. for � � 1 (or � � 1).

Both these representations are well-de�ned in terms of

operator algebra. Moreover, it is easy to demonstrate

that both of these formally onstruted solutions satisfy

Eq. (2.9):
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1
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�
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where we have used the identity

�

�
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1

�

1

�

�1

= ���

1

hD � : : : i: (2.17)

Thus, we have indeed onstruted representations for the

funtional �� (2.8).

Expressions (2.13) and (2.14), together with Eq. (2.8),

allow us to express the mediating �eld � in terms of the

partile �elds and the Green funtion for the mediating

�eld, but in the form of a series. In partiular, repre-

sentation (2.11) orresponds to a perturbative solution

� = ��

1

+�
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+ �

3
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+ : : : of the �eld equation (2.3),
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iii; : : : : (2.18)

B. Redued Lagrangian

In this subsetion we shall onsider a reformulation of

the theory whih will be termed the redued Lagrangian

desription. The word redued, we reall, means that the

reformulated Lagrangian will not ontain the mediating

�eld � expliitly.

Let us substitute the formal solution (2.8) into the La-

grangian density (2.1). We are interested in the Hamil-

tonian least ation priniple, therefore we shall disard

surfae terms in the Lagrangian density, sine they have

no inuene on the equations of motion. Aordingly, we

shall use the notation \

�

=

" to represent equality mod-

ulo surfae terms. For example, the last term in the La-

grangian density (2.1) an be presented as follows:

1

2

�

�

��

�
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1

2

�
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(��

�

�)�

1
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�

�
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�
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�

1

2
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�

�

�

� = �

1

2

��hD � ��i: (2.19)

Using this result and Eq. (2.9), the Lagrangian density

(2.1) an be written in the form

L =

2

X

a=1

�

�

�

'

�

a

�

�

'

a

�m

2

a

'

�

a

'

a

�

�

�

2

�

0

hD � ��i: (2.20)

We show next that the Lagrangian density (2.20) gives

the �eld equations (2.2), where the expression for the me-

diating �eld � is given by (2.8). To do so we need only

the funtional for ��, de�ned by equation (2.9). Variation

of Eq. (2.9) gives the result
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Æ�� = ��(Æ�

0

+ Æ�

1

hD � ��i+ �

1

hD � Æ��i): (2.21)

Then the variation of the ation with the Lagrangian density (2.20) gives

ÆS = ÆS

free

+ ÆS
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Z
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�

=

Z

dx

 

2

X

b=1

Æ'

�

b

�

�� �m

2

b

�

'

b

+ (::) + ÆL

int

!

; (2.22)

where (..) denotes omplex onjugate terms, and
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�
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We have here used equations (2.9) and (2.21), and the fat that we have hosen the Green funtion to be symmetri:

D(x�x

0

) = D(x

0

�x). Taking into aount Eqs. (2.22), (2.23) and the de�nitions (2.4) we obtain the �eld equations

�

�+ (m

a

+ hD � ��i)

2

�

'

a

= 0; (2.24)

and the orresponding omplex onjugate equations.

III. SCALAR QED AND VECTOR COUPLING

The Lagrangian density of two omplex salar �elds, '

1

(x) and '

2

(x), interating eletromagnetially, is
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where g

��

is the Minkowski metri tensor, and

(D

�
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�
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� ieA

�
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�
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The orresponding Euler{Lagrange equations are the

oupled Klein{Gordon{Maxwell equations:

(D

�

D

�

+m

2

a

)'

a

= 0 (3.5)

and Eq. (1.1) with the onserved urrent

�

�

J

�

= 0; (3.6)

J

�

= �e(

0

J

�

+ �A

�

); (3.7)

.f. Eq. (1.2). The operator g

��

� � �

�

�

�

is degenerate

and therefore has no inverse. Thus, we have to hoose

some gauge. It is onvenient to use the Lorentz gauge:

�

�

A

�

= 0: (3.8)

We an now use the approah of Setion II to eliminate

the eletromagneti �eld. Let us put

A

�

= hD �

�

J

�

i; (3.9)

where D is a symmetri Green funtion (.f. Eq. (2.7))

and

�

J

�

is a funtional of the matter �elds '

a

; '

�

a

. Sub-

stitution of (3.9) into (1.1) (in Lorentz gauge) gives

�

J
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= �e

� 0

J

�

+ �hD �

�
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�

i

�

; (3.10)

whih is the de�ning equation for

�

J

�

. It is evident from

(3.10) and (3.9) that

�

J

�

is equal to the urrent (3.7) (or

(1.2)), exept that it is expressed in terms of the matter

�elds only. The formal solution of (3.10) an be expressed

as

�

J

�

= �

e

1 + e�hD � : : : i

0

J

�

: (3.11)

Again, we an represent the funtional

�

J

�

in the form

of series. In full analogy with the ase of salar oupling

(see Eqs. (2.11), (2.12) and (2.13), (2.14)) we have two

representations for

�

J

�

:

�
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Representation (3.12) orresponds to the perturbative

solution of (1.1),
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Substitution of (3.9) into (3.2) leads to the following re-

dued Lagrangian density

L =

2

X
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whih is the basis of the variational priniple in our ap-

proah.

To dedue the �eld equations we vary both sides of

Eq. (3.10),
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and thene alulate the variation of the interation part

of the ation:
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Æ

0

J

�

+

1

2

Æ�hD �

�

J

�

i

�

�

=

e

Z

dx

"

2

X

b=1

Æ'

�

b

�

�i

�

'

b

�

�

hD �

�

J

�

i+ 2hD �

�

J

�

i�

�

'

b

�

+ e'

b

hD �

�

J

�

i

2

�

+ (::)

i

: (3.18)

As a result we obtain the following equations:

(

�

D

�

�

D

�

+m

2

a

)'

a

= 0; (3.19)
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and the omplex onjugate

((

�

D

�

�

D

�

)

�

+m

2

a

)'

�

a

= 0; (3.20)

where

�

D

�

= �

�

+ iehD �

�

J

�

i: (3.21)

It is easy to verify that

�

�

�

J

�

= 0 (3.22)

follows from equations (3.19) and (3.20). This urrent

onservation law, in turn, implies the Lorentz gauge:

�

�

A

�

= �

�

hD �

�

J

�

i = 0: (3.23)

Thus, we have transformed the original \loal" desrip-

tion, based on the Lagrangian density (3.1) with its ex-

pliit dependene on the mediating eletromagneti �eld,

into an equivalent \non-loal" desription, based on the

Lagrangian density (3.16), whih has no expliit depen-

dene on the eletromagneti degrees of freedom.

Note that we did not need an expliit form of the fun-

tional

�

J

�

to onstrut the non-loal Lagrangian density

(3.16). We used only the integral equation (3.10) for

�

J

�

.

Therefore, we expet that the same method will work in

the ase of non-Abelian gauge �elds.

IV. SU(2)-GAUGE FIELDS

A. Lagrangian density and �eld equations

In this setion we onstrut the redued Lagrangian for

the ase of \matter" �elds interating via non-Abelian

gauge �elds. We start with the simple model de�ned by

the SU(2) gauge-invariant Lagrangian density

L =

1

2

2

X

a=1

�

D

�

'

a

�D

�

'

a

�m

2

a

'

a

�'

a

�

�

1

4

F

��

� F

��

; (4.1)

where eah �eld '

a

(a = 1; 2) has three omponents

' = ('

1

; '

2

; '

3

), i. e., it belongs to the vetor repre-

sentation of SU(2) and desribes partiles with isospin

and masses m

a

. The symbol D

�

denotes the ovariant

derivative:

D

�

' = �

�

'+ gA

�

� '; (4.2)

and

F

��

= �

�

A

�

� �

�

A

�

+ gA

�

�A

�

: (4.3)

The orresponding equations for the gauge �elds are

D

�

F

��

= g

2

X

a=1

D

�

'

a

�'

a

: (4.4)

We rewrite them in a form more onvenient for further

use:

�A

�

� �

�

�

�

A

�

+ g�

�

(A

�

�A

�

) + gA

�

� (�

�

A

�

� �

�

A

�

) + g

2

A

�

� (A

�

�A

�

)

� g

2

2

X

a=1

(A

�

� '

a

)� '

a

= g

0

J

�

; (4.5)

0

J

�

=

2

X

a=1

�

�

'

a

� '

a

: (4.6)

To �nd a solution

~

A

�

= A

�

(') (4.7)

of Eq. (4.5), we must hoose a gauge. Let us hoose the

ovariant gauge,

D

�

A

�

= �

�

A

�

= 0; (4.8)

and suppose that we know the solution (4.7) in this

gauge. Then

~

A will satisfy the following equation

�

~

A

�

+ g

~

A

�

� (2�

�

~

A

�

� �

�

~

A

�

) + g

2

~

A

�

� (

~

A

�

�

~

A

�

)

� g

2

2

X

a=1

(

~

A

�

� '

a

)� '

a

= g

0

J

�

: (4.9)

The orresponding equations for the matter �elds '

a

have the form

�

D

�

D

�

+m

2

a

�

'

a

= 0: (4.10)

B. Redued Lagrangian

Substituting the formal solution (4.7) into the La-

grangian density (4.1), and using equation (4.9), we ob-

tain the redued Lagrangian density

~

L =

1

2

2

X

a=1

�

�

�

'

a

��

�

'

a

�m

2

a

'

a

�'

a

�

�

g

2

~

A

�

�

�

0

J

�

+

~

A

�

�

�

g

2

~

A

�

�

~

A

�

+ �

�

~

A

�

��
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=

1

2

2

X

a=1

�

�

�

'

a

� �

�

'

a

�m

2

a

'

a

� '

a

�

+

~

L

int

: (4.11)

To show that this Lagrangian density gives the �eld equa-

tions (4.10) we proeed as follows. Using (4.9) we obtain

~

A

�

� Æ

0

J

�

= Æ

~

A

�

�

�

�

~

A

�

+ 2g(�

�

~

A

�

� 2�

�

~

A

�

)�

~

A

�

+ 3g

2

~

A

�

� (

~

A

�

�

~

A

�

)

� g

2

'

a

� ('

a

�

~

A

�

)

�

� 2g

2

Æ'

a

� (

~

A

�

� (

~

A

�

� '

a

)): (4.12)

Moreover,

ÆL

int

= �

g

2

h

~

A

�

� Æ

0

J

�

+ Æ

~

A

�

�

�

0

J

�

+ 2g

~

A

�

� (

~

A

�

�

~

A

�

) +

~

A

�

� (2 �

�

~

A

�

� �

�

~

A

�

)

�i

: (4.13)

Substitution of (4.9), (4.12) into (4.13) gives

ÆL

int

= �g

2

X

a=1

Æ'

a

�

�

~

A

�

� �

�

'

a

+ �

�

(

~

A

�

�'

a

) + g

~

A

�

� (

~

A

�

� '

a

)

�

: (4.14)

As a result we obtain the following equations

�

~

D

�

~

D

�

+m

2

a

�

'

a

= 0; (4.15)

where

~

D

�

' = �

�

'+ g

~

A

�

�': (4.16)

After vetor multipliation of (4.15) by '

a

on the right

we obtain a ovariant onservation law for the matter

urrent:

2

X

a=1

~

D

�

(

~

D

�

'

a

� '

a

) = 0 (4.17)

(in the original desription of the system this equation

is a diret onsequene of the mediator-�eld equations

(4.4)).

We have thus obtained a self-onsistent (non-loal) La-

grangian desription, whih, in view of (4.7), does not

ontain the non-Abelian �elds expliitly, and whih is

equivalent to the desription based on Lagrangian den-

sity (4.1). To derive this result we have used only the

property that the funtional

~

A is a solution of Eq. (4.9).

However, for the pratial alulations it is neessary

to �nd an expliit form of the funtional

~

A. This annot

be obtained in losed form, given the non-linear nature

of Eq. (4.9). Therefore, we propose an approximate per-

turbative method for obtaining suh a representation.

C. Approximate solution

Letting

~

A

�

=

1

X

i=1

g

i

i

A

�

(4.18)

and substituting into (4.9) we arrive at the following

hain of equations:

�

0

A

�

= 0; (4.19)

�

1

A

�

=

0

J

�

�

0

A

�

�

0

f

��

; (4.20)

�

2

A

�

= �

1

A

�

�

0

f

��

�

0

A

�

�

1

f

��

�

0

A

�

� (

0

A

�

�

0

A

�

) +

2

X

a=1

'

a

� ('

a

�

0

A

�

); (4.21)
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�

3

A

�

= �

2

A

�

�

0

f

��

�

0

A

�

�

2

f

��

�

1

A

�

�

1

f

��

�

1

A

�

� (

0

A

�

�

0

A

�

)

�

0

A

�

� (

1

A

�

�

0

A

�

)�

0

A

�

� (

0

A

�

�

1

A

�

) +

2

X

a=1

'

a

� ('

a

�

1

A

�

); (4.22)

�

4

A

�

= �

3

A

�

�

0

f

��

�

0

A

�

�

3

f

��

�

1

A

�

�

2

f

��

�

2

A

�

�

1

f

��

�

2

A

�

� (

0

A

�

�

0

A

�

)

�

0

A

�

� (

2

A

�

�

0

A

�

)�

0

A

�

� (

0

A

�

�

2

A

�

) �

1

A

�

� (

1

A

�

�

0

A

�

+

0

A

�

�

1

A

�

)

�

0

A

�

� (

1

A

�

�

1

A

�

) +

2

X

a=1

'

a

� ('

a

�

2

A

�

); (4.23)

�

5

A

�

= �

4

A

�

�

0

f

��

�

0

A

�

�

4

f

��

�

1

A

�

�

3

f

��

�

3

A

�

�

1

f

��

�

2

A

�

�

2

f

��

�

3

A

�

� (

0

A

�

�

0

A

�

)�

0

A

�

� (

3

A

�

�

0

A

�

+

0

A

�

�

3

A

�

)

�

1

A

�

� (

2

A

�

�

0

A

�

+

0

A

�

�

2

A

�

+

1

A

�

�

1

A

�

) +

2

X

a=1

'

a

� ('

a

�

3

A

�

); (4.24)

et., where

i

f

��

= 2 �

�

i

A

�

� �

�

i

A

�

: (4.25)

We assume that there is no radiation orresponding to the free gauge �eld, that is

2k

A

�

= 0; k = 0; 1; 2; : : : : (4.26)

As a result we obtain

~

A

�

= g

1

X

k=0

g

2k

2k+1

A

�

(4.27)

with

1

A

�

= hD �

0

J

�

i; (4.28)

3

A

�

= �

D

D �

�

1

A

�

�

1

f

��

�

2

X

a=1

'

a

� ('

a

�

1

A

�

)

�E

; (4.29)

5

A

�

= �

D

D �

�

1

A

�

�(

3

f

��

+

1

A

�

�

1

A

�

) +

3

A

�

�

1

f

��

�

2

X

a=1

'

a

�('

a

�

3

A

�

)

�E

; (4.30)

et., and hD � : : : i = �

�1

. Using Eqs. (4.28)-(4.30) in (4.27) we obtain the redued Lagrangian to arbitrary order in

g (and, similarly, in (4.11) or (4.16) and (4.15) for the �eld equations).

The generalization of these results to the ase of arbitrary gauge groups is straightforward.

V. CONCLUDING REMARKS

We have studied the desription of interating \mat-

ter" �elds within the \redued Lagrangian formalism"

[5℄. In this formalism, the mediating �elds are expressed

in terms of the orresponding Green funtions (propaga-

tors) and the matter �elds. Suh a reformulation, whih

is onvenient for desribing relativisti bound states in

QFT, an be done simply and expliitly for a few models,

suh as the Yukawa model [6℄ and QED [9℄. In this paper,

we have extended the method to models, suh as those
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mediated by non-Abelian gauge �elds, for whih a sim-

ple, expliit solution annot be obtained. In suh ases

we show that the redued Lagrangian and orrespond-

ing �eld equations an be onstruted in an exat, but

impliit, form in terms of funtional equations.

In the ase of salar partile �elds with salar and/or

vetor oupling, the solutions are given semi-expliitly

in terms of series, whih follow from an integral operator

fration of the form (1 + �hD � : : : i)

�1

. Two di�erent

operator series are obtained, appliable for strong and

weak oupling, respetively. In the ase of non-Abelian

mediating gauge �elds, the e�etive interation is shown

to have an expansion in odd powers of the oupling on-

stant. Expliit expressions for the �rst few terms of this

series are presented.
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REDUKOVAN� LA�RAN���NI DL� POL^OVIH TEOR��

Z NEL�N��NIM ZV'�ZKOM

V. �. Xpitko

1

, �. V. Dareviq

2

1

�nstitut f�ziki kondensovanih sistem NAN UkraÝni,

vul. Svn�~kogo, 1, L~v�v, 79011, UkraÝna,

2

Fakul~tet f�ziki ta astronom�Ý, �orks~ki� un�versitet,

Toronto, Ontar�o, M3J 1P3, Kanada

Vivqeno pereformul�vann� r�znih modele� kvantovoÝ teor�Ý pol�, u �komu pol~ov� r�vn�nn� vikoris-

tano dl� vira�enn� pol�v | nos�Ýv vzamod�Ý v term�nah pol�v mater�Ý. Zokrema rozgl�nuto skal�rnu KED

ta SU(2)-kal�bruval~n� pol�. Pokazano, wo dl� ih vipadk�v qleni vzamod�Ý pereformul~ovanogo la�ran-

���na mo�na zobraziti �k r�d, qleni �kogo m�st�t~ lixe pol� mater�Ý ta funk�Ý �r�na pol�v | nos�Ýv

vzamod�Ý.
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