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We consider a reformulation of various models in QFT in which field equations are used to express
the mediating fields in terms of matter fields. Scalar QED and SU(2) gauge fields are considered
in particular. We show that for these cases the interaction term of the reformulated Lagrangian

can be expressed in a series of terms, which contain matter fields and the Green functions of the

mediating fields only.
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I. INTRODUCTION

The description of relativistic bound states in QFT
continues to be a challenging problem, particularly for
strongly coupled systems. The traditional method of
treating relativistic bound states within QFT is by means
of the Bethe-Salpeter (BS) equation [1]. However, this
approach has its limitations, among them the existence
of relative-time coordinates, difficulty of implementation
for systems of more than two bodies, and the (in prac-
tice) perturbative treatment of interactions.

Among various alternatives to the BS equation, such
as the quasi-potential approach [2] or infinite-component
wave equations [3], the approach which incorporates the
ideas of direct interaction theory [4] into QFT commends
itself as an effective and comparatively simple method
for treating bound state problems [5]. This approach in-
volves the following steps:

1. Elimination of the degrees of freedom of the medi-
ating fields and the consequent construction of an
equivalent non-local Lagrangian for the system.

il. Construction of the corresponding Hamiltonian of
the QFT and its quantization.

1ii. Derivation and solution of the resulting few-body
equations.

This approach was applied to the two-scalar [6], two-
fermion [7] and scalar-fermion [8] problems in models
with scalar mediating fields (Yukawa coupling), as well as
to the two-fermion problem in quantum electrodynamics
(QED) [9].

The starting point of this approach is the Lagrangian
function for the “matter” fields (scalar or fermionic) and
the massless (or massive) “mediating” fields. The corre-
sponding classical (Euler-Lagrange) field equations are

used to express the mediating fields in terms of the mat-
ter fields by means of Green’s functions. This solution
1s then used to construct an effective reduced Lagrangian
which is non-local but depends on matter fields only. The
structure of the effective action is similar to the Fokker-
type action integrals in relativistic direct interaction the-
ory [4].

The construction of the reduced Lagrangians is eas-
ily realizable in a few cases, such as those listed above
[6-9]. But, in general, the elimination of mediating fields
cannot be done exactly in closed form. One example is
scalar electrodynamics, in which spinless particles rep-
resented by scalar “matter fields” ¢, (¢ = 1,2) inter-
act via electromagnetic (massless vector) fields A#. The
mediating-field equations are just the Maxwell equations

0y F¥F = 0,0" AP — 9"(0" A,) = J*, (1.1)

with the source current

2
JH = —Z [ie (Spaﬁﬂgoz _ @Zausﬁa) +26280280a14“] .

a=1

(1.2)

Since the source current contains both matter and me-
diating fields, we cannot solve these equations for the
mediating electromagnetic field in terms of the matter
fields using traditional Green function methods.
Therefore, we need to generalize the approach used
for the solvable cases described above [6-9], but in a
way that will avoid approximations as much as possible,
since the subsequent steps (such as the construction of
the Hamiltonian, quantization, etc.) may depend on the
approximation scheme, which, in turn, may undermine
the rigorous nature of the method. Thus, it is important
to have a reformulation of the theory, which is free of
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approximation schemes, at least at the classical level.

In the present paper we construct an implicit form
of the reduced Lagrangian, which can be used for some
physically interesting cases in either the canonical Hamil-
tonian or path-integral formulation. In this way approx-
imations can be avoided at the classical level, and can
be applied as necessary at the quantized level. We shall
construct the implicit form of the reduced Lagrangian
for the following cases:

1. Complex scalar matter fields interacting via a
massless scalar field (scalar coupling);

2. Complex scalar matter fields interacting via the
electromagnetic field (vector coupling);

3. Scalar iso-triplet matter fields interacting via

SU(2)-gauge field (SU(2)-gauge coupling).

For case 1 the scalar coupling is of the “minimal” type
(see [10]), not of the Yukawa-type (as in Ref. [6]). This
model will illustrate how the difficulty in applying the
simple elimination procedure used for the Yukawa-type
coupling can be circumvented.

II. SCALAR COUPLING
A. Lagrangian density and field equations

The Lagrangian density of two complex scalar fields
@q(x) with masses mq (@ = 1,2) interacting via a scalar
real massless field x(z), with scalar coupling, is

L= [0up50 00 — (M4 + ax)*¢hea]

2
:1

a

1
+ 53;0(3“)(, (2.1)

where « is a dimensionless coupling constant. The cor-
responding Euler-Lagrange equations are

(O + (ma + ax)?) ¢a = 0,
Ox = —a(po + p1X),

where O = 9,0, and

2 2
po=23 Mafipa,  pL=203 @iga.  (24)
a=1

a=1

Equation (2.3) for the x field, but with p; = 0 on the
r.h.s., is the same as that for the scalar Yukawa model [6].
In that case one can find the solution using the standard
Green function method, namely

X = Xxo — (D * pg), (2.5)
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where o 18 a solution of the homogeneous equation,
Oy =0, and

(Dxpoy=0"1py = /da:/D(x —2') po(2'), (2.6)

where dz’ = dt'dy’, and D(x — ') is a covariant Green
function (or chion propagator, in the language of QFT):

OD(z —2') = 54(1‘ — ). (2.7)

However, in the present case, with p1 # 0, this simple
procedure does not work.

From now on we shall put yo = 0, i.e., we will neglect
the free y-field. This means that we shall not consider
phenomena that involve annihilation or decay with the
emission of free chions, but only stable bound states (or
elastic scattering). We seek a solution for the y-field in
the form

v= (D), (2.8)

where p is a functional of the matter fields ¢,, ¢} . Sub-
stitution of (2.8) into (2.3) gives the integral equation

p=—alpo+p(Dxp)), (2.9)

which specifies the functional p. Let us write the solution

of (2.9) in the form

p=—a(l4+ap{Dx...%) po. (2.10)

This formula contains the expression (1 +a(D*...))7,

which is to be understood as an operator inverse. We note
that this construction looks like the fraction 1/(1+4#) and
can be treated as an algebraic expression but in terms of
operator algebra. We recall that 1/(1 + ) can be repre-
sented by convergent series for the two cases, z < 1 and
x> 1

1 r<l - k
= —x)", 2.11
FARD I (2.11)
%] k
1 o1 1
= — —— 2.12
1+ kZ::l ( x) ( )

Analogously, we can express the functional p (2.10) as
follows:

P2 = (—ap(Dx )" po, (2.13)
k=0
¢S] k
o 1_1
52 a (-- —) 0 (2.14)
k=1 > n
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The notation *=' (or Ogl) indicates that the representa-

tion (2.13) (or (2.14)) is appropriate for the case of the
weak (or strong) coupling, i.e. for o < 1 (or o > 1).
Both these representations are well-defined in terms of

oQ

_a<l k
P —ad [—ap(Dx.. ) po =
k=0

operator algebra. Moreover, 1t is easy to demonstrate
that both of these formally constructed solutions satisfy

Eq. (2.9):

oQ

—apy — @ Z [—ap1 (D * .. >]k £0
k=1

= —apo+ OzZapl <D * [—ap (D * .. .>]k_1p0> = —apo + a?p;

k=1

[eS] k
11 _
X g <_ED_) po — apy = —apy — api(D * p),

where we have used the identity

(_lgi)_l — ap(Dx ).

a0 (2.17)
Thus, we have indeed constructed representations for the
functional p (2.8).

Expressions (2.13) and (2.14), together with Eq. (2.8),
allow us to express the mediating field y in terms of the
particle fields and the Green function for the mediating
field, but in the form of a series. In particular, repre-
sentation (2.11) corresponds to a perturbative solution
X = ax1 +a?xz + a3+ ... of the field equation (2.3),
where

x1=—(D*po), x2={(D*pi(Dxpg)),

Xz = —(D*xp1(Dxp1(D#*po))), .... (2.18)

B. Reduced Lagrangian

In this subsection we shall consider a reformulation of
the theory which will be termed the reduced Lagrangian
description. The word reduced, we recall, means that the
reformulated Lagrangian will not contain the mediating
field y explicitly.

(2.15)

(2.16)

Let us substitute the formal solution (2.8) into the La-
grangian density (2.1). We are interested in the Hamil-
tonian least action principle, therefore we shall discard
surface terms in the Lagrangian density, since they have
no influence on the equations of motion. Accordingly, we
shall use the notation “=” to represent equality mod-
ulo surface terms. For example, the last term in the La-
grangian density (2.1) can be presented as follows:

1 1 1
53;0(3“)( = 5%(){3“){) — 5)(3“3“)(

1l

1 1
—§X3N3NXZ—§ﬁ<D*ﬁ>. (2.19)

Using this result and Eq. (2.9), the Lagrangian density
(2.1) can be written in the form

L=

2
a=

* * o _
[8ug0a3“gpa - migoagoa] — §p0<D * p>. (220)
1

We show next that the Lagrangian density (2.20) gives
the field equations (2.2), where the expression for the me-
diating field x is given by (2.8). To do so we need only
the functional for g, defined by equation (2.9). Variation
of Eq. (2.9) gives the result
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5p = —a(dpo +dp1(D x p) + pr(Dx6p)). (2.21)

Then the variation of the action with the Lagrangian density (2.20) gives

2
6S = 6Skee + St = /dx §L = /dx (Z Sop [-0—mi] b + (c.c.) + 6Lmt) , (2.22)
b=1
where (c.c.) denotes complex conjugate terms, and

0Sint = /dxéLmt = —%/dm (6p0<D * 0) + po(D * 6ﬁ>)

t / di ((Dxp) (07 + adpy(Dxp) + apy (D#3p) + (Dxbp) (5 + api(Ds7)))

2
- /dx (D * p) (5p n %mw %) + api(D 6p>) - —/dx (D * p) (a5p0 n %(5p1<D * p>) . (2.23)

We have here used equations (2.9) and (2.21), and the fact that we have chosen the Green function to be symmetric:
D(xz — ') = D(«¢' — z). Taking into account Eqgs. (2.22), (2.23) and the definitions (2.4) we obtain the field equations

(O + (ma +(D* p))?) pa = 0, (2.24)

and the corresponding complex conjugate equations.

III. SCALAR QED AND VECTOR COUPLING

The Lagrangian density of two complex scalar fields, ¢1(#) and ¢2(2), interacting electromagnetically, is

L=

a

* * 1 v
[(Dupa) (D pa) — miehpa] — T s (3.1)

2
:1

or

* * 1 1% 1%
[(Dupa)™ (DFeq) — miehea] + FA(g B =870 A,

h
R
]

1
-

a

2
0 1
D [0upn0" 0a — miphpa] + €A T, + %pAuA“ + 5 A (g7 0 = 90") Ay, (3.2)

a=

—_

where ¢g”# is the Minkowski metric tensor, and

(Due)* =0y —ieAy)e*, Duyp= (0, +ieA,)e, Fu =0.4, — A, (3.3)
o 2 2
Ju =1y (pa0¢h = 20pa), p=2ey pupr (3.4)
a=1 a=1
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The corresponding Euler-Lagrange equations are the
coupled Klein-Gordon-Maxwell equations:

(D D" +m2)p = 0 (35)
and Eq. (1.1) with the conserved current

duJ* =0, (3.6)

JE = —e(J" 4 pAR), (3.7)

c.f. Eq. (1.2). The operator ¢"#0 — 0¥ 9" is degenerate
and therefore has no inverse. Thus, we have to choose
some gauge. It is convenient to use the Lorentz gauge:

9 A" = 0. (3.8)

We can now use the approach of Section II to eliminate
the electromagnetic field. Let us put
AR = (D * JH), (3.9)
where D is a symmetric Green function (c.f. Eq. (2.7))
and J# is a functional of the matter fields ¢,, ¢} . Sub-
stitution of (3.9) into (1.1) (in Lorentz gauge) gives

Tt = —e (J* + p(D % J9) | (3.10)

which is the defining equation for J,. It is evident from
(3.10) and (3.9) that J# is equal to the current (3.7) (or
(1.2)), except that it is expressed in terms of the matter
fields only. The formal solution of (3.10) can be expressed
as

_ e 0
Jy=————J, 3.11
g 1+ep<D*...>J“ (8.11)

Again, we can represent the functional ju in the form

/ dx 6Lint

/d (m (D* J"y + JN<D*6J“>]

/dx D*J

l\DICb

l\DICb

of series. In full analogy with the case of scalar coupling
(see Eqgs. (2.11), (2.12) and (2.13), (2.14)) we have two

representations for J,:

_ . i ko
J, <! _eZ(—6p<D* >) T, (3.12)
k=0
= e>1 > 1 1 k 0
J,Z ey (--0=) J, (3.13)
k=1 € P

Representation (3.12) corresponds to the perturbative
solution of (1.1),

1 5 2 33
Ay =eAy+e Ay + e’ Ay + (3.14)
where
1 0 2 0
AN:_<D*JN>’ ANI<D*p<D*JN>>’
3 0
Ay = (D oD (D s ), (3.15)

Substitution of (3.9) into (3.2) leads to the following re-
duced Lagrangian density

2
e 0 _
L= (04050 pa = mighpa] + 5 u(D % "), (3.16)
a=1

which is the basis of the variational principle in our ap-
proach.

To deduce the field equations we vary both sides of
Eq. (3.10),

§IH = —e (8" + 8p(D % ") + p(D * 6J%)),  (3.17)

and thence calculate the variation of the interaction part
of the action:

6j“ — e (6p(DxJ"y + p(D*j“>)) - <D*6ju>(j“ + ep(D*j“>)}

_ _/dx (D j,»(aju + 50p(D I} + ep(D + 5.74)) = e/dx (D * J@(afﬂ + %6p<D )

2

=~ e/dx lz 57 (—i (260, (D % JY + 2D % T4 00) + epp(D * ju>2) + (c.c.)} .

b=1

As a result we obtain the following equations:

(DNDN + mi)

(3.18)

SD(I = 0; (319)
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and the complex conjugate

(DuD*)" + mg)ey =0, (3.20)
where
Dy =0, +ie(DxJ,). (3.21)
It is easy to verify that
Oud* =0 (3.22)

follows from equations (3.19) and (3.20). This current
conservation law, in turn, implies the Lorentz gauge:
OpAF = 9,(D x J"y = 0. (3.23)
Thus, we have transformed the original “local” descrip-
tion, based on the Lagrangian density (3.1) with its ex-
plicit dependence on the mediating electromagnetic field,
into an equivalent “non-local” description, based on the
Lagrangian density (3.16), which has no explicit depen-
dence on the electromagnetic degrees of freedom.
Note that we did not need an explicit form of the func-
tional ju to construct the non-local Lagrangian density
(3.16). We used only the integral equation (3.10) for J,.

Therefore, we expect that the same method will work in
the case of non-Abelian gauge fields.

IV. SU(2)-GAUGE FIELDS
A. Lagrangian density and field equations

In this section we construct the reduced Lagrangian for
the case of “matter” fields interacting via non-Abelian
gauge fields. We start with the simple model defined by
the SU(2) gauge-invariant Lagrangian density

2

1
L= Z(Dusoa Do, —mip, - soa)
a=1
1 "
Fu F", (4.1)

where each field ¢, (¢ = 1,2) has three components
@ = (p1, Y2, ©3), i.e., it belongs to the vector repre-
sentation of SU(2) and describes particles with isospin
and masses m4. The symbol D, denotes the covariant
derivative:

Dyp=0,p+9AL X @, (4.2)
and
Fo =0,A, —0,A, +gA, x A, (4.3)
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The corresponding equations for the gauge fields are

2
DuF™ =g D", X @q.

a=1

(4.4)

We rewrite them in a form more convenient for further
use:

OA” — 019" A, + g0, (A" x A”) +gA,
x (0" A” — 0" A") + g* A, x (A" x A”)

2

0

—4? Z(A” X ,) X @, =gd", (4.5)

a=1

0 2
T'=>"0"0, x ¢, (4.6)
a=1

To find a solution

A, =A(p) (4.7)

of Eq. (4.5), we must choose a gauge. Let us choose the
covariant gauge,

D'A, =8 A, =0, (4.8)

and suppose that we know the solution (4.7) in this
gauge. Then A will satisfy the following equation

OA” +gA, x (20"A" — ¥ A") + 4?4, x (A" x A")

2
- 0
0" (A x @) xp,=gJ".

a=1

(4.9)

The corresponding equations for the matter fields ¢,
have the form

(DVD” + mg)cpa = 0. (4.10)

B. Reduced Lagrangian

Substituting the formal solution (4.7) into the La-
grangian density (4.1), and using equation (4.9), we ob-
tain the reduced Lagrangian density

~ 1 9
L=35 Z(ﬁu%ﬁ“% - ma<pa~<pa)

Q
—_

~ 0 ~ ~ ~v ~v
- 24, (77 + A, (%A“xA +94"))
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Z(aucpa -0, — mi(pa ’ ‘pa) + [N’int' (4'11)

a=1

1
2

To show that this Lagrangian density gives the field equa-
tions (4.10) we proceed as follows. Using (4.9) we obtain

- 0 - - - - - -
A, 67" =5A" . (DAV +29(0,A, — 20,A,) x A" +342°A" x (A, x A,)

— Ppu % (a < Ay)) = 20700, (A x (A7 x @,). (4.12)
Moreover,
_ 97z 0, A 0, A A M red A red v oA H
SLins = — §{Ay 5TV + A, - (J +2A, x (A" x A) + A, x (20" A" — 9" A ))} (4.13)
Substitution of (4.9), (4.12) into (4.13) gives
2 -~ -~ -~ -~
L = =g 0p, - (Al, X &g, + 0" (A, x @) +gA”" x (A, x %)) . (4.14)
a=1

As a result we obtain the following equations

(DVD” + mg)cpa =0, (4.15)

where

Dy =0d,04 gA, x . (4.16)

After vector multiplication of (4.15) by ¢, on the right
we obtaln a covarlant conservation law for the matter
current:

2
> Du(D"p, x p,) =0 (4.17)
a=1

(in the original description of the system this equation
is a direct consequence of the mediator-field equations

(4.4)).

We have thus obtained a self-consistent (non-local) La-

0

grangian description, which, in view of (4.7), does not
contain the non-Abelian fields explicitly, and which is
equivalent to the description based on Lagrangian den-
sity (4.1). To derive this result we have used only the
property that the functional A is a solution of Eq. (4.9).
However, for the practical calculations it is necessary
to find an explicit form of the functional A. This cannot
be obtained in closed form, given the non-linear nature
of Eq. (4.9). Therefore, we propose an approximate per-
turbative method for obtaining such a representation.

C. Approximate solution

Letting

A=Y gAY (4.18)
i=1

and substituting into (4.9) we arrive at the following
chain of equations:

OAY =0, (4.19)
1 0] 0] 0]

OAY = JV — A, x f", (4.20)
2 1 0 0 1 0 0 0 2 0

OA” = — A, x ' — Ay x ' — Ay x (A" < A) + ), x (g, x AY), (4.21)

a=1
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3 2 0 0 2 1 1 1 0 0
OA4"= — A, X f" — A, x f'"" — A, x f" — A, x (A" x AY)

0 1 0 0 0 1 1
— Ay x (AF X AY) = Ay x (AP AY) 4D g, X (g x AY), (4.22)

4 3 0 0 3 1 2 2 1 2 0 0
OA4"= —A, X f" —A, x f'" — A, x f" — A, x f" — A, x (A" x A")

0 0 2 1 1 0 0 1
—A, x (A" x A")— A, x (A" x A") — A, x (A" x AY + A" x AY)

0

— A, x (AP X AY) 4D g, X (p, x AY), (4.23)
4 0 0 4 1 3 3 1 2 2

OA" = — A, x f" — A, x f'" — A, x f" — A, x f'" — A, x f*

3 0 0 0 3 0 0 3
—A, x (A" x A”) — A, x (A" x AY + A" x AY)

2 0 0 2 1 1 2 3
— Ay x (AF X A4 AF X AV + A X AY) 1Y e, X (i, x AY), (4.24)
a=1
etc., where

fluu = 28;11421/ - auAu~ (425)

We assume that there is no radiation corresponding to the free gauge field, that is

2%
A,=0, k=012 .. (4.26)
As a result we obtaln
- 0 2k+1
A, =g g% A, (4.27)
k=0
with
1 0
AV = (D% J"), (4.28)
3 1 . 2 iy
A :—<D*(Auxf“ —Zgoax(goaxA))>, (4.29)
a=1
5 1 3 1 1 31 2 3
AY = — <D * (Aux(f’“’ + AP XAY) 4 Ayx f1 - Zgoax(goaxAl’))>, (4.30)

a=1

etc., and (D x...) = O~ Using Eqgs. (4.28)-(4.30) in (4.27) we obtain the reduced Lagrangian to arbitrary order in
¢ (and, similarly, in (4.11) or (4.16) and (4.15) for the field equations).
The generalization of these results to the case of arbitrary gauge groups is straightforward.

V. CONCLUDING REMARKS in terms of the corresponding Green functions (propaga-
tors) and the matter fields. Such a reformulation, which
is convenient for describing relativistic bound states in

We have studied the description of interacting “mat- ~ QFT, can be done simply and explicitly for a few models,
ter” fields within the “reduced Lagrangian formalism”  such as the Yukawa model [6] and QED [9]. In this paper,
[5]. In this formalism, the mediating fields are expressed =~ we have extended the method to models, such as those
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mediated by non-Abelian gauge fields, for which a sim-
ple, explicit solution cannot be obtained. In such cases
we show that the reduced Lagrangian and correspond-
ing field equations can be constructed in an exact, but
implicit, form in terms of functional equations.

In the case of scalar particle fields with scalar and/or
vector coupling, the solutions are given semi-explicitly
in terms of series; which follow from an integral operator
fraction of the form (1 + a{D * ...))~*. Two different

operator series are obtained, applicable for strong and
weak coupling, respectively. In the case of non-Abelian
mediating gauge fields, the effective interaction is shown
to have an expansion in odd powers of the coupling con-
stant. Explicit expressions for the first few terms of this
series are presented.

*A brief sketch of scientific interests and research ac-
tivity of the untimely-deceased Dr. V. Shpytko is given
in Ref. [11].

[1] E. E. Salpeter, H. A. Bethe, Phys. Rev. 84, 1232 (1951);
H. A. Bethe, E. E. Salpeter, Quantum mechanics of One-
and Two-Electron Atoms (Springer Verlag, Berlin, 1957).

[2] E. Brezin, C. Itzykson, J. Zinn—Justin, Phys. Rev. D 1,
2349 (1970); I. T. Todorov, Phys. Rev. D 3, 2351 (1971);
C. Fronsdal, R. W. Huff, Phys. Rev. D 3, 933 (1971).

[3] A. O. Barut, W. Rasmussen, J. Phys. B6, 1695 and 1713
(1973); A. O. Barut, in Groups, Systems and Many-Body
Physics, P. Kramer, M. D. Cin, eds., (Braunschweig,
Wiesbaden: Vieweg, 1980), p. 285.

[4] P. Havas, in Problems in the Foundations of Physics,
M. Bunge, ed., (Springer, Berlin, 1971), p. 31; P. Ra-
mond, Phys. Rev. D 7, 449 (1973).

[5] J. W. Darewych, Annales F. Louis de Broglie (Paris)
23, 15 (1998); J. W. Darewych, in Causality and Lo-
cality in Modern Physics Proceedings of a Symposium
in honour of Jean-Pierre Vigier, G. Hunter, S. Jeffers,

J. -P. Vigier, eds., (Kluwer Academic Publishers, Dor-

drecht, 1998), p. 333.
[6] J. W. Darewych, Can. J. Phys. 76, 523 (1998),
M. Barham, J. Darewych, J. Phys. A 31, 3481 (1998);
B. Ding, J. Darewych, J. Phys. G 26, 907 (2000) and
Nucl. Phys. B (Proc. Suppl.) 90, 136 (2000).
[7] J. Darewych, Condens. Matter Phys. 1, 593 (1998).
[8] V. Shpytko, J. Darewych, Phys. Rev. D 64, 045012
(2001).
[9] J. Darewych, A. Duviryak, Phys. Rev. A 66, 032102
(2002).
[10] H. C. von Baeyer, Phys. Rev. D 12, 3086 (1975).
[11] A. Duviryak, V. Tretyak, Yu. Yaremko, “Volodymyr Sh-
pytko (1966-2001): The creative way”, in Collected Phys-
tcal Papers of Schevchenko Scientific Society, V. 4, Lviv,
2001, pp. 513-516 [A. Hysipak, B. Tperak, [O. fpemxo,
“Bosomumup IMmurko (1966-2001): teopumii maax”, B
Gizunnut 36prux HTHI, T. 4, JIssBis, 2001, cc. 513~
516].

PEJIYKOBAHI JIATPAHKISTHH [JI5I IOJILOBUX TEOPIN
3 HEJIIHIMHUM 3B’SI3KOM

B. €. Ulnurko', 0. B. Hapepnq?
Y nemumym disuru xondercosarnux cucmem HAH Yipainu,
ey.s. Ceenuiuyvroeo, 1, Jlveis, 79011, Yxpaina,

2 Qaxyavmem Pisuxu ma acmporomii, Hoprevxudi yrnisepcumem,
Topormo, Onmapio, M3J 1P3, Kanada

Busdeno nmepedopmysatoBaiis pisHUX Mozesell KBAaHTOBOI Teopil MoJisd, ¥ AKOMY I0JIbOBl PIBHAHHA BHUKOPMC-

TaHO JJId BUPaXKEHHA OB — HOCIIB B3aeMomll B TepMIHAX IOJIB Marepil. 30KpeMa po3rIdaHyTo cKaaapHy KE]T

ra SU(2)-kani6pyBaJsHi moss. [TokasaHo, 1Mo AJIs IUX BUNAIKIB YIeHH B3ae€MOIl epedOpMyJIOBAHOIO JlarDaH-

KifgHa MOMXKHA 300DasUTH AK pAl, WIEHH sSIKOLO MICTATH JIHIle mmosia MaTepil Ta ¢yHkiil IpiHa mosis — Hociis

B3a€MOIIl.
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