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We 
onsider a reformulation of various models in QFT in whi
h �eld equations are used to express

the mediating �elds in terms of matter �elds. S
alar QED and SU(2) gauge �elds are 
onsidered

in parti
ular. We show that for these 
ases the intera
tion term of the reformulated Lagrangian


an be expressed in a series of terms, whi
h 
ontain matter �elds and the Green fun
tions of the

mediating �elds only.
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I. INTRODUCTION

The des
ription of relativisti
 bound states in QFT


ontinues to be a 
hallenging problem, parti
ularly for

strongly 
oupled systems. The traditional method of

treating relativisti
 bound states within QFT is by means

of the Bethe{Salpeter (BS) equation [1℄. However, this

approa
h has its limitations, among them the existen
e

of relative-time 
oordinates, diÆ
ulty of implementation

for systems of more than two bodies, and the (in pra
-

ti
e) perturbative treatment of intera
tions.

Among various alternatives to the BS equation, su
h

as the quasi-potential approa
h [2℄ or in�nite-
omponent

wave equations [3℄, the approa
h whi
h in
orporates the

ideas of dire
t intera
tion theory [4℄ into QFT 
ommends

itself as an e�e
tive and 
omparatively simple method

for treating bound state problems [5℄. This approa
h in-

volves the following steps:

i. Elimination of the degrees of freedom of the medi-

ating �elds and the 
onsequent 
onstru
tion of an

equivalent non-lo
al Lagrangian for the system.

ii. Constru
tion of the 
orresponding Hamiltonian of

the QFT and its quantization.

iii. Derivation and solution of the resulting few-body

equations.

This approa
h was applied to the two-s
alar [6℄, two-

fermion [7℄ and s
alar-fermion [8℄ problems in models

with s
alar mediating �elds (Yukawa 
oupling), as well as

to the two-fermion problem in quantum ele
trodynami
s

(QED) [9℄.

The starting point of this approa
h is the Lagrangian

fun
tion for the \matter" �elds (s
alar or fermioni
) and

the massless (or massive) \mediating" �elds. The 
orre-

sponding 
lassi
al (Euler{Lagrange) �eld equations are

used to express the mediating �elds in terms of the mat-

ter �elds by means of Green's fun
tions. This solution

is then used to 
onstru
t an e�e
tive redu
ed Lagrangian

whi
h is non-lo
al but depends on matter �elds only. The

stru
ture of the e�e
tive a
tion is similar to the Fokker-

type a
tion integrals in relativisti
 dire
t intera
tion the-

ory [4℄.

The 
onstru
tion of the redu
ed Lagrangians is eas-

ily realizable in a few 
ases, su
h as those listed above

[6{9℄. But, in general, the elimination of mediating �elds


annot be done exa
tly in 
losed form. One example is

s
alar ele
trodynami
s, in whi
h spinless parti
les rep-

resented by s
alar \matter �elds" '

a

(a = 1; 2) inter-

a
t via ele
tromagneti
 (massless ve
tor) �elds A

�

. The

mediating-�eld equations are just the Maxwell equations

�

�

F

��

= �

�

�

�

A

�

� �

�

(�

�

A

�

) = J

�

; (1.1)

with the sour
e 
urrent

J

�

= �

2

X

a=1

�

ie ('

a

�

�

'

�

a

� '

�

a

�

�

'

a

) + 2e

2

'

�

a

'

a

A

�

�

:

(1.2)

Sin
e the sour
e 
urrent 
ontains both matter and me-

diating �elds, we 
annot solve these equations for the

mediating ele
tromagneti
 �eld in terms of the matter

�elds using traditional Green fun
tion methods.

Therefore, we need to generalize the approa
h used

for the solvable 
ases des
ribed above [6{9℄, but in a

way that will avoid approximations as mu
h as possible,

sin
e the subsequent steps (su
h as the 
onstru
tion of

the Hamiltonian, quantization, et
.) may depend on the

approximation s
heme, whi
h, in turn, may undermine

the rigorous nature of the method. Thus, it is important

to have a reformulation of the theory, whi
h is free of
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approximation s
hemes, at least at the 
lassi
al level.

In the present paper we 
onstru
t an impli
it form

of the redu
ed Lagrangian, whi
h 
an be used for some

physi
ally interesting 
ases in either the 
anoni
al Hamil-

tonian or path-integral formulation. In this way approx-

imations 
an be avoided at the 
lassi
al level, and 
an

be applied as ne
essary at the quantized level. We shall


onstru
t the impli
it form of the redu
ed Lagrangian

for the following 
ases:

1. Complex s
alar matter �elds intera
ting via a

massless s
alar �eld (s
alar 
oupling);

2. Complex s
alar matter �elds intera
ting via the

ele
tromagneti
 �eld (ve
tor 
oupling);

3. S
alar iso-triplet matter �elds intera
ting via

SU(2)-gauge �eld (SU(2)-gauge 
oupling).

For 
ase 1 the s
alar 
oupling is of the \minimal" type

(see [10℄), not of the Yukawa-type (as in Ref. [6℄). This

model will illustrate how the diÆ
ulty in applying the

simple elimination pro
edure used for the Yukawa-type


oupling 
an be 
ir
umvented.

II. SCALAR COUPLING

A. Lagrangian density and �eld equations

The Lagrangian density of two 
omplex s
alar �elds

'

a

(x) with masses m

a

(a = 1; 2) intera
ting via a s
alar

real massless �eld �(x), with s
alar 
oupling, is

L =

2

X

a=1

�

�

�

'

�

a

�

�

'

a

� (m

a

+ ��)

2

'

�

a

'

a

�

+

1

2

�

�

��

�

�; (2.1)

where � is a dimensionless 
oupling 
onstant. The 
or-

responding Euler{Lagrange equations are

�

� + (m

a

+ ��)

2

�

'

a

= 0; (2.2)

�� = ��(�

0

+ �

1

�); (2.3)

where � = �

�

�

�

, and

�

0

= 2

2

X

a=1

m

a

'

�

a

'

a

; �

1

= 2�

2

X

a=1

'

�

a

'

a

: (2.4)

Equation (2.3) for the � �eld, but with �

1

= 0 on the

r.h.s., is the same as that for the s
alar Yukawamodel [6℄.

In that 
ase one 
an �nd the solution using the standard

Green fun
tion method, namely

� = �

0

� �hD � �

0

i; (2.5)

where �

0

is a solution of the homogeneous equation,

��

0

= 0, and

hD � �

0

i = �

�1

�

0

=

Z

dx

0

D(x� x

0

) �

0

(x

0

); (2.6)

where dx

0

= dt

0

dr

0

, and D(x � x

0

) is a 
ovariant Green

fun
tion (or 
hion propagator, in the language of QFT):

�D(x � x

0

) = Æ

4

(x� x

0

): (2.7)

However, in the present 
ase, with �

1

6= 0, this simple

pro
edure does not work.

From now on we shall put �

0

= 0, i. e., we will negle
t

the free �-�eld. This means that we shall not 
onsider

phenomena that involve annihilation or de
ay with the

emission of free 
hions, but only stable bound states (or

elasti
 s
attering). We seek a solution for the �-�eld in

the form

� = hD � ��i; (2.8)

where �� is a fun
tional of the matter �elds '

a

; '

�

a

. Sub-

stitution of (2.8) into (2.3) gives the integral equation

�� = ��(�

0

+ �

1

hD � ��i); (2.9)

whi
h spe
i�es the fun
tional ��. Let us write the solution

of (2.9) in the form

�� = ��(1 + ��

1

hD � : : : i)

�1

�

0

: (2.10)

This formula 
ontains the expression (1+�hD � : : : i)

�1

,

whi
h is to be understood as an operator inverse. We note

that this 
onstru
tion looks like the fra
tion 1=(1+x) and


an be treated as an algebrai
 expression but in terms of

operator algebra. We re
all that 1=(1 + x) 
an be repre-

sented by 
onvergent series for the two 
ases, x < 1 and

x > 1:

1

1 + x

x<1

=

1

X

k=0

(�x)

k

; (2.11)

1

1 + x

x>1

= �

1

X

k=1

�

�

1

x

�

k

: (2.12)

Analogously, we 
an express the fun
tional �� (2.10) as

follows:

��

�<1

= ��

1

X

k=0

(���

1

hD � : : : i)

k

�

0

; (2.13)

��

�>1

= �

1

X

k=1

�

�

1

�

�

1

�

1

�

k

�

0

: (2.14)
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The notation

�<1

= (or

�>1

= ) indi
ates that the representa-

tion (2.13) (or (2.14)) is appropriate for the 
ase of the

weak (or strong) 
oupling, i. e. for � � 1 (or � � 1).

Both these representations are well-de�ned in terms of

operator algebra. Moreover, it is easy to demonstrate

that both of these formally 
onstru
ted solutions satisfy

Eq. (2.9):

��

�<1

= ��

1

X

k=0

[���

1

hD � : : : i℄

k

�

0

= ���

0

� �

1

X

k=1

[���

1

hD � : : : i℄

k

�

0

= ���

0

+ �

1

X

k=1

��

1

D

D � [���

1

hD � : : : i℄

k�1

�

0

E

= ���

0

+ �

2

�

1

�

*

D �

1

X

k=0

[���

1

hD � : : : i℄

k

�

0

+

= ���

0

� ��

1

hD � ��i; (2.15)

��

�>1

= �

1

X

k=1

�

�

1

�

�

1

�

1

�

k

�

0

= �

 

1

X

k=0

�

�

1

�

�

1

�

1

�

k

� 1

!

�

0

= �

 

1

X

k=1

�

�

1

�

�

1

�

1

�

k�1

� 1

!

�

0

=

�

�

1

�

�

1

�

1

�

�1

� �

1

X

k=1

�

�

1

�

�

1

�

1

�

k

�

0

� ��

0

= ���

0

� ��

1

hD � ��i; (2.16)

where we have used the identity

�

�

1

�

�

1

�

1

�

�1

= ���

1

hD � : : : i: (2.17)

Thus, we have indeed 
onstru
ted representations for the

fun
tional �� (2.8).

Expressions (2.13) and (2.14), together with Eq. (2.8),

allow us to express the mediating �eld � in terms of the

parti
le �elds and the Green fun
tion for the mediating

�eld, but in the form of a series. In parti
ular, repre-

sentation (2.11) 
orresponds to a perturbative solution

� = ��

1

+�

2

�

2

+ �

3

�

3

+ : : : of the �eld equation (2.3),

where

�

1

= �hD � �

0

i; �

2

= hD � �

1

hD � �

0

ii;

�

3

= �hD � �

1

hD � �

1

hD � �

0

iii; : : : : (2.18)

B. Redu
ed Lagrangian

In this subse
tion we shall 
onsider a reformulation of

the theory whi
h will be termed the redu
ed Lagrangian

des
ription. The word redu
ed, we re
all, means that the

reformulated Lagrangian will not 
ontain the mediating

�eld � expli
itly.

Let us substitute the formal solution (2.8) into the La-

grangian density (2.1). We are interested in the Hamil-

tonian least a
tion prin
iple, therefore we shall dis
ard

surfa
e terms in the Lagrangian density, sin
e they have

no in
uen
e on the equations of motion. A

ordingly, we

shall use the notation \

�

=

" to represent equality mod-

ulo surfa
e terms. For example, the last term in the La-

grangian density (2.1) 
an be presented as follows:

1

2

�

�

��

�

� =

1

2

�

�

(��

�

�)�

1

2

��

�

�

�

�

�

=

�

1

2

��

�

�

�

� = �

1

2

��hD � ��i: (2.19)

Using this result and Eq. (2.9), the Lagrangian density

(2.1) 
an be written in the form

L =

2

X

a=1

�

�

�

'

�

a

�

�

'

a

�m

2

a

'

�

a

'

a

�

�

�

2

�

0

hD � ��i: (2.20)

We show next that the Lagrangian density (2.20) gives

the �eld equations (2.2), where the expression for the me-

diating �eld � is given by (2.8). To do so we need only

the fun
tional for ��, de�ned by equation (2.9). Variation

of Eq. (2.9) gives the result

291



V. YE. SHPYTKO, J. W. DAREWYCH

Æ�� = ��(Æ�

0

+ Æ�

1

hD � ��i+ �

1

hD � Æ��i): (2.21)

Then the variation of the a
tion with the Lagrangian density (2.20) gives

ÆS = ÆS

free

+ ÆS

int

=

Z

dx ÆL

�

=

Z

dx

 

2

X

b=1

Æ'

�

b

�

�� �m

2

b

�

'

b

+ (
:
:) + ÆL

int

!

; (2.22)

where (
.
.) denotes 
omplex 
onjugate terms, and

ÆS

int

=

Z

dx ÆL

int

= �

�

2

Z

dx

�

Æ�

0

hD � ��i+ �

0

hD � Æ��i

�

=

1

2

Z

dx

�

hD���i (Æ�� + �Æ�

1

hD���i + ��

1

hD�Æ��i) + hD�Æ��i (�� + ��

1

hD���i)

�

=

Z

dx hD � ��i

�

Æ�� +

�

2

Æ�

1

hD � ��i + ��

1

hD � Æ��i

�

= �

Z

dx hD � ��i

�

�Æ�

0

+

�

2

Æ�

1

hD � ��i

�

: (2.23)

We have here used equations (2.9) and (2.21), and the fa
t that we have 
hosen the Green fun
tion to be symmetri
:

D(x�x

0

) = D(x

0

�x). Taking into a

ount Eqs. (2.22), (2.23) and the de�nitions (2.4) we obtain the �eld equations

�

�+ (m

a

+ hD � ��i)

2

�

'

a

= 0; (2.24)

and the 
orresponding 
omplex 
onjugate equations.

III. SCALAR QED AND VECTOR COUPLING

The Lagrangian density of two 
omplex s
alar �elds, '

1

(x) and '

2

(x), intera
ting ele
tromagneti
ally, is

L =

2

X

a=1

�

(D

�

'

a

)

�

(D

�

'

a

) �m

2

a

'

�

a

'

a

�

�

1

4

F

��

F

��

; (3.1)

or

L

�

=

2

X

a=1

�

(D

�

'

a

)

�

(D

�

'

a

)�m

2

a

'

�

a

'

a

�

+

1

2

A

�

(g

��

�� �

�

�

�

)A

�

=

2

X

a=1

�

�

�

'

�

a

�

�

'

a

�m

2

a

'

�

a

'

a

�

+ eA

�

0

J

�

+

e

2

�A

�

A

�

+

1

2

A

�

(g

��

� � �

�

�

�

)A

�

; (3.2)

where g

��

is the Minkowski metri
 tensor, and

(D

�

')

�

= (�

�

� ieA

�

)'

�

; D

�

' = (�

�

+ ieA

�

)'; F

��

= �

�

A

�

� �

�

A

�

; (3.3)

0

J

�

= i

2

X

a=1

('

a

�'

�

a

� '

�

a

�'

a

); � = 2e

2

X

a=1

'

a

'

�

a

: (3.4)
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The 
orresponding Euler{Lagrange equations are the


oupled Klein{Gordon{Maxwell equations:

(D

�

D

�

+m

2

a

)'

a

= 0 (3.5)

and Eq. (1.1) with the 
onserved 
urrent

�

�

J

�

= 0; (3.6)

J

�

= �e(

0

J

�

+ �A

�

); (3.7)


.f. Eq. (1.2). The operator g

��

� � �

�

�

�

is degenerate

and therefore has no inverse. Thus, we have to 
hoose

some gauge. It is 
onvenient to use the Lorentz gauge:

�

�

A

�

= 0: (3.8)

We 
an now use the approa
h of Se
tion II to eliminate

the ele
tromagneti
 �eld. Let us put

A

�

= hD �

�

J

�

i; (3.9)

where D is a symmetri
 Green fun
tion (
.f. Eq. (2.7))

and

�

J

�

is a fun
tional of the matter �elds '

a

; '

�

a

. Sub-

stitution of (3.9) into (1.1) (in Lorentz gauge) gives

�

J

�

= �e

� 0

J

�

+ �hD �

�

J

�

i

�

; (3.10)

whi
h is the de�ning equation for

�

J

�

. It is evident from

(3.10) and (3.9) that

�

J

�

is equal to the 
urrent (3.7) (or

(1.2)), ex
ept that it is expressed in terms of the matter

�elds only. The formal solution of (3.10) 
an be expressed

as

�

J

�

= �

e

1 + e�hD � : : : i

0

J

�

: (3.11)

Again, we 
an represent the fun
tional

�

J

�

in the form

of series. In full analogy with the 
ase of s
alar 
oupling

(see Eqs. (2.11), (2.12) and (2.13), (2.14)) we have two

representations for

�

J

�

:

�

J

�

e<1

= �e

1

X

k=0

�

�e�hD � : : : i

�

k

0

J

�

; (3.12)

�

J

�

e>1

= e

1

X

k=1

�

�

1

e

�

1

�

�

k

0

J

�

: (3.13)

Representation (3.12) 
orresponds to the perturbative

solution of (1.1),

A

�

= e

1

A

�

+ e

2

2

A

�

+ e

3

3

A

�

+ : : : ; (3.14)

where

1

A

�

= �hD �

0

J

�

i;

2

A

�

= hD � �hD �

0

J

�

ii;

3

A

�

= �hD � �hD � �hD �

0

J

�

iii; : : : (3.15)

Substitution of (3.9) into (3.2) leads to the following re-

du
ed Lagrangian density

L =

2

X

a=1

�

�

�

'

�

a

�

�

'

a

�m

2

a

'

�

a

'

a

�

+

e

2

0

J

�

hD �

�

J

�

i; (3.16)

whi
h is the basis of the variational prin
iple in our ap-

proa
h.

To dedu
e the �eld equations we vary both sides of

Eq. (3.10),

Æ

�

J

�

= �e

�

Æ

0

J

�

+ Æ�hD �

�

J

�

i+ �hD � Æ

�

J

�

i

�

; (3.17)

and then
e 
al
ulate the variation of the intera
tion part

of the a
tion:

Z

dx ÆL

int

=

e

2

Z

dx

�

Æ

0

J

�

hD �

�

J

�

i +

0

J

�

hD � Æ

�

J

�

i

�

=

e

2

Z

dx

h

hD�

�

J

�

i

�

�Æ

�

J

�

� e

�

Æ�hD�

�

J

�

i + �hD�

�

J

�

i

�

�

� hD�Æ

�

J

�

i

�

�

J

�

+ e�hD�

�

J

�

i

�i

= �

Z

dx hD �

�

J

�

i

�

Æ

�

J

�

+

e

2

Æ�hD �

�

J

�

i + e�hD � Æ

�

J

�

i

�

= e

Z

dx hD �

�

J

�

i

�

Æ

0

J

�

+

1

2

Æ�hD �

�

J

�

i

�

�

=

e

Z

dx

"

2

X

b=1

Æ'

�

b

�

�i

�

'

b

�

�

hD �

�

J

�

i+ 2hD �

�

J

�

i�

�

'

b

�

+ e'

b

hD �

�

J

�

i

2

�

+ (
:
:)

i

: (3.18)

As a result we obtain the following equations:

(

�

D

�

�

D

�

+m

2

a

)'

a

= 0; (3.19)
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and the 
omplex 
onjugate

((

�

D

�

�

D

�

)

�

+m

2

a

)'

�

a

= 0; (3.20)

where

�

D

�

= �

�

+ iehD �

�

J

�

i: (3.21)

It is easy to verify that

�

�

�

J

�

= 0 (3.22)

follows from equations (3.19) and (3.20). This 
urrent


onservation law, in turn, implies the Lorentz gauge:

�

�

A

�

= �

�

hD �

�

J

�

i = 0: (3.23)

Thus, we have transformed the original \lo
al" des
rip-

tion, based on the Lagrangian density (3.1) with its ex-

pli
it dependen
e on the mediating ele
tromagneti
 �eld,

into an equivalent \non-lo
al" des
ription, based on the

Lagrangian density (3.16), whi
h has no expli
it depen-

den
e on the ele
tromagneti
 degrees of freedom.

Note that we did not need an expli
it form of the fun
-

tional

�

J

�

to 
onstru
t the non-lo
al Lagrangian density

(3.16). We used only the integral equation (3.10) for

�

J

�

.

Therefore, we expe
t that the same method will work in

the 
ase of non-Abelian gauge �elds.

IV. SU(2)-GAUGE FIELDS

A. Lagrangian density and �eld equations

In this se
tion we 
onstru
t the redu
ed Lagrangian for

the 
ase of \matter" �elds intera
ting via non-Abelian

gauge �elds. We start with the simple model de�ned by

the SU(2) gauge-invariant Lagrangian density

L =

1

2

2

X

a=1

�

D

�

'

a

�D

�

'

a

�m

2

a

'

a

�'

a

�

�

1

4

F

��

� F

��

; (4.1)

where ea
h �eld '

a

(a = 1; 2) has three 
omponents

' = ('

1

; '

2

; '

3

), i. e., it belongs to the ve
tor repre-

sentation of SU(2) and des
ribes parti
les with isospin

and masses m

a

. The symbol D

�

denotes the 
ovariant

derivative:

D

�

' = �

�

'+ gA

�

� '; (4.2)

and

F

��

= �

�

A

�

� �

�

A

�

+ gA

�

�A

�

: (4.3)

The 
orresponding equations for the gauge �elds are

D

�

F

��

= g

2

X

a=1

D

�

'

a

�'

a

: (4.4)

We rewrite them in a form more 
onvenient for further

use:

�A

�

� �

�

�

�

A

�

+ g�

�

(A

�

�A

�

) + gA

�

� (�

�

A

�

� �

�

A

�

) + g

2

A

�

� (A

�

�A

�

)

� g

2

2

X

a=1

(A

�

� '

a

)� '

a

= g

0

J

�

; (4.5)

0

J

�

=

2

X

a=1

�

�

'

a

� '

a

: (4.6)

To �nd a solution

~

A

�

= A

�

(') (4.7)

of Eq. (4.5), we must 
hoose a gauge. Let us 
hoose the


ovariant gauge,

D

�

A

�

= �

�

A

�

= 0; (4.8)

and suppose that we know the solution (4.7) in this

gauge. Then

~

A will satisfy the following equation

�

~

A

�

+ g

~

A

�

� (2�

�

~

A

�

� �

�

~

A

�

) + g

2

~

A

�

� (

~

A

�

�

~

A

�

)

� g

2

2

X

a=1

(

~

A

�

� '

a

)� '

a

= g

0

J

�

: (4.9)

The 
orresponding equations for the matter �elds '

a

have the form

�

D

�

D

�

+m

2

a

�

'

a

= 0: (4.10)

B. Redu
ed Lagrangian

Substituting the formal solution (4.7) into the La-

grangian density (4.1), and using equation (4.9), we ob-

tain the redu
ed Lagrangian density

~

L =

1

2

2

X

a=1

�

�

�

'

a

��

�

'

a

�m

2

a

'

a

�'

a

�

�

g

2

~

A

�

�

�

0

J

�

+

~

A

�

�

�

g

2

~

A

�

�

~

A

�

+ �

�

~

A

�

��
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=

1

2

2

X

a=1

�

�

�

'

a

� �

�

'

a

�m

2

a

'

a

� '

a

�

+

~

L

int

: (4.11)

To show that this Lagrangian density gives the �eld equa-

tions (4.10) we pro
eed as follows. Using (4.9) we obtain

~

A

�

� Æ

0

J

�

= Æ

~

A

�

�

�

�

~

A

�

+ 2g(�

�

~

A

�

� 2�

�

~

A

�

)�

~

A

�

+ 3g

2

~

A

�

� (

~

A

�

�

~

A

�

)

� g

2

'

a

� ('

a

�

~

A

�

)

�

� 2g

2

Æ'

a

� (

~

A

�

� (

~

A

�

� '

a

)): (4.12)

Moreover,

ÆL

int

= �

g

2

h

~

A

�

� Æ

0

J

�

+ Æ

~

A

�

�

�

0

J

�

+ 2g

~

A

�

� (

~

A

�

�

~

A

�

) +

~

A

�

� (2 �

�

~

A

�

� �

�

~

A

�

)

�i

: (4.13)

Substitution of (4.9), (4.12) into (4.13) gives

ÆL

int

= �g

2

X

a=1

Æ'

a

�

�

~

A

�

� �

�

'

a

+ �

�

(

~

A

�

�'

a

) + g

~

A

�

� (

~

A

�

� '

a

)

�

: (4.14)

As a result we obtain the following equations

�

~

D

�

~

D

�

+m

2

a

�

'

a

= 0; (4.15)

where

~

D

�

' = �

�

'+ g

~

A

�

�': (4.16)

After ve
tor multipli
ation of (4.15) by '

a

on the right

we obtain a 
ovariant 
onservation law for the matter


urrent:

2

X

a=1

~

D

�

(

~

D

�

'

a

� '

a

) = 0 (4.17)

(in the original des
ription of the system this equation

is a dire
t 
onsequen
e of the mediator-�eld equations

(4.4)).

We have thus obtained a self-
onsistent (non-lo
al) La-

grangian des
ription, whi
h, in view of (4.7), does not


ontain the non-Abelian �elds expli
itly, and whi
h is

equivalent to the des
ription based on Lagrangian den-

sity (4.1). To derive this result we have used only the

property that the fun
tional

~

A is a solution of Eq. (4.9).

However, for the pra
ti
al 
al
ulations it is ne
essary

to �nd an expli
it form of the fun
tional

~

A. This 
annot

be obtained in 
losed form, given the non-linear nature

of Eq. (4.9). Therefore, we propose an approximate per-

turbative method for obtaining su
h a representation.

C. Approximate solution

Letting

~

A

�

=

1

X

i=1

g

i

i

A

�

(4.18)

and substituting into (4.9) we arrive at the following


hain of equations:

�

0

A

�

= 0; (4.19)

�

1

A

�

=

0

J

�

�

0

A

�

�

0

f

��

; (4.20)

�

2

A

�

= �

1

A

�

�

0

f

��

�

0

A

�

�

1

f

��

�

0

A

�

� (

0

A

�

�

0

A

�

) +

2

X

a=1

'

a

� ('

a

�

0

A

�

); (4.21)
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�

3

A

�

= �

2

A

�

�

0

f

��

�

0

A

�

�

2

f

��

�

1

A

�

�

1

f

��

�

1

A

�

� (

0

A

�

�

0

A

�

)

�

0

A

�

� (

1

A

�

�

0

A

�

)�

0

A

�

� (

0

A

�

�

1

A

�

) +

2

X

a=1

'

a

� ('

a

�

1

A

�

); (4.22)

�

4

A

�

= �

3

A

�

�

0

f

��

�

0

A

�

�

3

f

��

�

1

A

�

�

2

f

��

�

2

A

�

�

1

f

��

�

2

A

�

� (

0

A

�

�

0

A

�

)

�

0

A

�

� (

2

A

�

�

0

A

�

)�

0

A

�

� (

0

A

�

�

2

A

�

) �

1

A

�

� (

1

A

�

�

0

A

�

+

0

A

�

�

1

A

�

)

�

0

A

�

� (

1

A

�

�

1

A

�

) +

2

X

a=1

'

a

� ('

a

�

2

A

�

); (4.23)

�

5

A

�

= �

4

A

�

�

0

f

��

�

0

A

�

�

4

f

��

�

1

A

�

�

3

f

��

�

3

A

�

�

1

f

��

�

2

A

�

�

2

f

��

�

3

A

�

� (

0

A

�

�

0

A

�

)�

0

A

�

� (

3

A

�

�

0

A

�

+

0

A

�

�

3

A

�

)

�

1

A

�

� (

2

A

�

�

0

A

�

+

0

A

�

�

2

A

�

+

1

A

�

�

1

A

�

) +

2

X

a=1

'

a

� ('

a

�

3

A

�

); (4.24)

et
., where

i

f

��

= 2 �

�

i

A

�

� �

�

i

A

�

: (4.25)

We assume that there is no radiation 
orresponding to the free gauge �eld, that is

2k

A

�

= 0; k = 0; 1; 2; : : : : (4.26)

As a result we obtain

~

A

�

= g

1

X

k=0

g

2k

2k+1

A

�

(4.27)

with

1

A

�

= hD �

0

J

�

i; (4.28)

3

A

�

= �

D

D �

�

1

A

�

�

1

f

��

�

2

X

a=1

'

a

� ('

a

�

1

A

�

)

�E

; (4.29)

5

A

�

= �

D

D �

�

1

A

�

�(

3

f

��

+

1

A

�

�

1

A

�

) +

3

A

�

�

1

f

��

�

2

X

a=1

'

a

�('

a

�

3

A

�

)

�E

; (4.30)

et
., and hD � : : : i = �

�1

. Using Eqs. (4.28)-(4.30) in (4.27) we obtain the redu
ed Lagrangian to arbitrary order in

g (and, similarly, in (4.11) or (4.16) and (4.15) for the �eld equations).

The generalization of these results to the 
ase of arbitrary gauge groups is straightforward.

V. CONCLUDING REMARKS

We have studied the des
ription of intera
ting \mat-

ter" �elds within the \redu
ed Lagrangian formalism"

[5℄. In this formalism, the mediating �elds are expressed

in terms of the 
orresponding Green fun
tions (propaga-

tors) and the matter �elds. Su
h a reformulation, whi
h

is 
onvenient for des
ribing relativisti
 bound states in

QFT, 
an be done simply and expli
itly for a few models,

su
h as the Yukawa model [6℄ and QED [9℄. In this paper,

we have extended the method to models, su
h as those
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mediated by non-Abelian gauge �elds, for whi
h a sim-

ple, expli
it solution 
annot be obtained. In su
h 
ases

we show that the redu
ed Lagrangian and 
orrespond-

ing �eld equations 
an be 
onstru
ted in an exa
t, but

impli
it, form in terms of fun
tional equations.

In the 
ase of s
alar parti
le �elds with s
alar and/or

ve
tor 
oupling, the solutions are given semi-expli
itly

in terms of series, whi
h follow from an integral operator

fra
tion of the form (1 + �hD � : : : i)

�1

. Two di�erent

operator series are obtained, appli
able for strong and

weak 
oupling, respe
tively. In the 
ase of non-Abelian

mediating gauge �elds, the e�e
tive intera
tion is shown

to have an expansion in odd powers of the 
oupling 
on-

stant. Expli
it expressions for the �rst few terms of this

series are presented.

�

A brief sket
h of s
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 interests and resear
h a
-

tivity of the untimely-de
eased Dr. V. Shpytko is given
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REDUKOVAN� LA�RAN���NI DL� POL^OVIH TEOR��

Z NEL�N��NIM ZV'�ZKOM

V. �. Xpitko

1

, �. V. Dareviq

2

1

�nstitut f�ziki kondensovanih sistem NAN UkraÝni,

vul. Sv
n
�
~kogo, 1, L~v�v, 79011, UkraÝna,

2

Fakul~tet f�ziki ta astronom�Ý, �orks~ki� un�versitet,

Toronto, Ontar�o, M3J 1P3, Kanada

Vivqeno pereformul�vann� r�znih modele� kvantovoÝ teor�Ý pol�, u �komu pol~ov� r�vn�nn� vikoris-

tano dl� vira�enn� pol�v | nos�Ýv vza
mod�Ý v term�nah pol�v mater�Ý. Zokrema rozgl�nuto skal�rnu KED

ta SU(2)-kal�bruval~n� pol�. Pokazano, wo dl� 
ih vipadk�v qleni vza
mod�Ý pereformul~ovanogo la�ran-

���na mo�na zobraziti �k r�d, qleni �kogo m�st�t~ lixe pol� mater�Ý ta funk
�Ý �r�na pol�v | nos�Ýv

vza
mod�Ý.
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