KYPHAJT ®I3UYHUX JOCIIIZKEHD
1. 6, N 3 (2002) c. 310-316

JOURNAL OF PHYSICAL STUDIES
v. 6, No. 3 (2002) p. 310-316

GLOBAL DRIFT WAVES IN WEAKLY IONIZED PLASMA COLUMN

P. P. Sosenko'?, M. Poleni'
Y Université Henri Poincaré — Nancy I, LPMIA,
BP 239, 54506 Vandoeuvre les Nancy, Cedex, France
2 International Centre of Physics & M. M. Bogoliubov Institute for Theoretical Physics
of the National Acad. Sci. of Ukraine,
14b Metrolohichna Str., Kyw, 03143, Ukraine
(Received June 18, 2002)

The temperature gradient effect on global drift waves in cylindrical weakly ionized plasmas is
investigated. The important role of the temperature gradient in plasma oscillation properties, like
eigenfrequencies, instability thresholds and rates, mode localization, is shown.
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I. INTRODUCTION

The important role of drift waves is well-known,
and they continue to be the subject of intense inves-
tigation (fusion plasma, astrophysical situations, iono-
sphere applications, plasmas in laboratory devices, such
as Mirabelle in France, and KIWT in Germany [1-4]).
The drift-wave frequencies are much less than the ion
cyclotron frequency €. Such waves make an example
of plasma motion similar to the motion of ordinary
fluid, when turbulence and anomalous transport can oc-
cur. Therefore, the drift approximation [5] becomes in-
evitable.

In this article, we study the drift-wave instabilities in
the situations [1, 3-4] of low-pressure (argon) cylindrical
plasma column immersed in the axial magnetic field, and
in the presence of macroscopic density and temperature
gradients. In this regard we extend and generalize pre-
vious studies [6-7], carried out in the approximation of
constant plasma temperature. The latter 1s not usually
satisfied under experimental conditions. We show the im-
portant role of the temperature gradient in plasma oscil-
lation properties (eigenfrequencies, instability thresholds
and rates, mode localization). For arbitrary temperature
and density profiles, general theoretical considerations
relying on quantum-mechanical analogies, integral con-
straints, and numerical methods can be applied.

The article structure and results are as follows. In Sec-
tion 2 the basic eigen-value problem is posed. In Sec-
tion 3 a quantum-mechanical analogy is used to estab-
lish a general dispersion equation for the low-frequency
cylindrical waves, and to explain possible temperature-
gradient effects in the general case of arbitrary temper-
ature profiles. It is argued that the radial temperature
variation can govern the radial mode structure and lo-
calization, as well as the eigenfrequency. The temper-
ature inhomogeneity can be more important than the
density one, since the density inhomogeneity enters via
the logarithmic derivative only, which has a weak spatial
variation. Normal temperature profiles play the role of a
narrow “effective potential well” for the waves. For larger
temperature gradients, in the case of normal equilibrium
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profiles, the plasma modes are localized more and closer
to the plasma centre. Then the effect of charge separa-
tion near the plasma edge becomes less important. In
this way, the “localization paradox” of previous studies
can be removed. On the other hand, in the presence of
temperature gradient, the eigenfrequency becomes con-
siderably lower. In this case, the validity conditions for
the low-frequency approximation become less stringent.
In Section 4, integral constraints are derived in the gen-
eral case of arbitrary density and temperature profiles.
Such constraints make it possible to evaluate, or to find
analytically /numerically the eigenfrequencies, the insta-
bility thresholds and rates for complicated realistic con-
ditions, and for various models of electron density re-
sponse. In Section 5, a particular case of Lorentzian tem-
perature profile is considered. The eigen-value problem is
reduced to the two-dimensional quantum oscillator with
the harmonic potential-well bottom. The latter problem
is solved analytically, and the solution is related to the
one 1n the case of homogeneous temperature, but with
renormalized parameters. The radial mode structure of
the cylindrical waves and the drift-wave eigenfrequency
are found. The limits of radially infinite/finite systems
are introduced.

I1I. BASIC EQUATION

The basic eigen-value equation for the global drift
waves [8] is

(AHMOVL)&:—( - —xe)q@, (1)

W+ Vin

in the quasi-neutral approximation (when charge sepa-
ration effects are neglected: dne = Zidn;), and when the
ion motion along the magnetic field is disregarded. This
equation is derived within the context of plasma fluid
description [5, 9], for the perturbations of an equilibrium
without mean electric fields.

Here, the dimensionless variables are used, with the
scales 2 = ¢;B/mjc for the frequency, ps = ¢/ for the
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space coordinates (2 = ZT/m;), n for the density, T
for the temperature, and the dimensionless electric field
potential is ¢ = e®/T, ¢; = Zie and m; are the ion
charge and mass, e is the absolute value of the electron
charge, m, is the electron mass, B is for a constant mag-
netic field, ¢ is the light velocity in the vacuum, v, is the
ion-neutral collision frequency.

In cylindrical geometry, with the magnetic field along
z and the density and temperature gradients in the ra-
dial direction, the potential perturbation is represented
as follows

f/)EZZ Z exp (i19+ik||z—iwt)q[;(l,k”,w,r), (2)

w k“ l=—c0

where q/; is a cylindrical wave amplitude, [ is an az
imuthal mode number, and the frequency summation is
over all the eigenfrequencies w (l, k”). Other wave quanti-

ties are represented in a similar manner. A | +k,9-V 1 =
2
%%r% - i—Q + K?no%, Kno = dInngg/dr.

The density gradient effects enter with a non-vanishing
logarithmic derivative, kn,q # 0. The Gaussian density
profile ng ~ exp (—rz/LJZV) is a good approximation for
many experimental situations. The term £, - VJ_¢; is the
contribution from the ion polarization drift. It can be es-
sential for global/large-scale oscillations with k0 ~ V..
The response function relates the density and potential

perturbations [8], 87 /neo = Xed,

N ws + 2ty /7
Xezill/ (3)

w—wU—l—iF”’

with the density-gradient-driven drift frequency w, =
—lkpo/r, the dimensionless temperature profile 7 =
T./T, the frequency shift in the presence of axial elec-
tron flow wy = Uk”\/M/Zi, where U = U/S. is the ra-
tio of parallel drift velocity and parallel thermal velocity
for electrons, I'j = Dekﬁ is the rate of electron diffusion
along the magnetic field, De = 7M/Zivey, is a dimension-
less diffusion coefficient (De = S2/Ven, in dimensional
units), M = m;/me, and ve, is an electron-neutral colli-
sion frequency. If the electron inertia is important, then
Ven in I') is replaced with ven, — i (w — wrr). The electron
electric susceptibility x. (k,w) in the local theory is re-
lated to Ye: Ye (k,w) = Xe/k*A2 in dimensional units,
with A2 = T, /4me?nep.

When T is much larger than all other frequencies in
Xe, then the electron density perturbation is governed
approximately by the linearized Boltzmann’s law,

- 1 . 1
Xe_;(l—i—zé),(5_F—”(w—wU—Tw*). (4)

Small deviations from the Boltzmann’s law, described
by 4, determine possible mechanisms of weak instability
[9].

The electron-temperature gradient i1s taken into ac-

count via the dimensionless temperature profile 7 (r1 ) =
T (ry) /T contained in Ye.

III. QUANTUM-MECHANICAL ANALOGY

The substitution q/; = q;/«/neo transforms the wave
equation into

3004V |- gr, )

with an effective potential V (r) = (V- Kpo + $K20) +
%(T_l — 1), and K? = w,/w — 1, in the ideal case,
Vin = 0, and for the adiabatic electrons, Y. = 1/7. In
the case of Gaussian density profile, ng ~ exp (—rz/LJZ\,),
w, 1s constant, and the wave equation reduces to a two-
dimensional Schrodinger’s equation

1 1 1 . -

Here ¥ = v/Ly is a new dimensionless space variable,
and the “energy” eigen-value is related to the eigenfre-
quency:

1 1
E=1+ 5(LNK)2 =145 (we/w—

N>l
The energy is greater than unity because K? is real and
positive as an eigen-value of the hermitian Hamiltonian
with Vipin > 0 (one can always choose the tempera-
ture scale T' to ensure the latter inequality), therefore
|w| < |w«|. The unity corresponds formally to the energy
of the “2-D harmonic-oscillator vacuum state” | and there
is a discrete energy spectrum. The latter equation yields
the dispersion relation, similar to the one in the case of
homogeneous temperature: w = 1:_"#

The Schrodinger form of the eigen-value equation en-
ables one to understand possible temperature-gradient
effects in the general case of arbitrary temperature pro-
files. The density inhomogeneity enters via the logarith-
mic derivative only, which has a weak spatial variation.
Therefore, the radial temperature variation can govern
the radial mode structure and localization, as well as
the eigenfrequency. For monotonic temperature depen-
dence (with the maximal value 7 = 1 at the plasma
centre), a modulated well bottom becomes deeper and
narrower when the temperature gradient increases, then
the energy levels rise higher. Therefore, for larger tem-
perature gradients, K? increases and the eigenfrequency
decreases. This conclusion explains one possible reason
why the low-frequency oscillations can dominate under
experimental conditions. With temperature inhomogene-
ity being taken into account, the validity condition for
the low-frequency approximation becomes less stringent.
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The mode localization is affected as well. For larger
temperature gradients, in the case of normal equilibrium
profiles, the plasma modes are localized more and closer
to the plasma centre. Then the effects of charge separa-
tion near the plasma edge become less important. An-
other interesting observation is that the temperature-
gradient effects are more pronounced when the ratio
L% /p? is larger (i.e. for stronger magnetic fields, weaker
density gradients, smaller temperature, smaller ion mass,
and larger ion charge).

In cylindrical geometry, ¢  #', when r — 0, for ar-
bitrary density and temperature profiles if the density
gradient is finite at » = 0. In order to find the be-
haviour of the potential when r — oo, we reduce as
usual the eigen-value equation to the one-dimensional
Schrodinger’s equation by changing the unknown func-

tion ¢ =Y/ /rneg :

-1
Y = ( 42V - 1{2) Y. (8)

r2

In the case of Gaussian density profile with x,; =
—2r/ L%, the interesting evanescent solution is

7“2

6= Y/\/rheo ~ exp | =5
913

/d L — 9)
T L;lv - , r 0.

We stress that the solution evanescent at infinity exists
if only the temperature inhomogeneity is retained.

In the limit of 1/7 < r?/ L%, ¢ ~ exp (—fdri).

2rT
For example, if 1/7 ~ 7% 0 < a < 2, then ¢ ~
()
€XpP ~3ar |-
In the opposite limit of 1/7 > r?/L%, if 1/7 ~ ¢,
a > 2, then ¢ ~ exp (—2“ T_l).

a+2
If 1/ ~ ¢?/L3, where Lr is a charac-
teristic temperature-gradient scale, then ¢ ~
exp [% (1—\/1—|—L12\,772)}, where n = Lyx/Lp is

the ratio between the density and temperature gradient
scales. In the particular case of Lorentzian temperature
profile, an exact analytical solution can be found (see

below).

IV. INTEGRAL CONSTRAINTS

The eigen-value equation yields the following integral
constraint

2 2w — Wy
/no‘Vq/)‘ dr:/no‘qb‘ Ye T OXe gy (10)

w + iy
It is derived after multiplying the eigen-value equation
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by noqg* and integrating by parts for zero boundary con-
ditions. In the ideal limit and in the case of adiabatic

electrons, w = % fnow*‘q/;‘ dr, where W = Wi +Wp =
12
fno‘V(b‘ dr—i—f"T—”

12
to the total oscillation energy, while Wy = [ no‘qu‘ dr,

12
(b‘ dr. The quantity W corresponds

12
and Wp = [ oo ‘q/)‘ dr can be associated with the particle

kinetic energy of electric-drift motion (the polarization-
drift contribution is negligible), and the potential energy,
respectively. For monotonic density profiles, w has the
sign of the density-gradient drift frequency ws.

We use also the following notations for mean values

fnoQ‘qg‘zdr
fno‘(b‘ dr

12
2 fno‘V(b‘ dr

(‘mean squared gradient value’).

2
fno‘(b‘ dr

Then the eigenfrequency is w, = {w.)/ (k2 + <7'_1>).
If the temperature scale T is chosen as the maximal
temperature value, then <7'_1> > 1 by definition. When
7 = 1, the mean squared gradient value is the ratio of
kinetic and potential energies, k? = Wi /Wp.

If ion-neutral collisions are taken into account, the os-
cillations appear to be damped:

_ {wa) — i k?
W= E Ty = (12)

In the general case,

 (wa) — ivink?
VS e TRy AN (13)

This expression can be simplified in the case of weak
ion-neutral collisions, when vy, € w, and weak devia-
tions from the adiabatic electron-density response, when
Xe = %(1 +14d), with |d] < 1, when the imaginary part
w; of the frequency w = w, + dw; is small (transparency
domain),

wifwy | € 1, wr = (wi) / (K24 (r71)) . (14)

One can find by iterations:

Wk  wy ng | ~|2
AL S 5—‘ ‘ dr. |
w Vin g T Re ~ ¢| dr (15)
Then the necessary instability condition 1s
12
wy [ Red no ¢>‘ dr < 0.
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As |wi/w,| < 1, one can compute Wi, Wp and w;

12
vo| )
or from the eigen-function and w, obtained in the limit
4 = 0. Experimentally observed temperature and density
profiles can be taken into account in such computations.

In the fluid model under consideration, Red =
1

Ty (wy —wy — Twy). The imaginary part of the frequency

is represented as the sum w; = iy + Ydis + YU, Where

12
from the eigen-function and its gradient (‘qb and

Ydis = T, <;*> [(T7 we) —w, (77%)] (16)

o= = <7'_2> (17)

is the axial-drift correction to the instability rate,

Yin = —Vin (1 — Wr <<Tw_*>>) (18)

is the dissapation rate owing to ion-neutral collisions,
where ') = Dekﬁ/r 1s introduced as a space indepen-

dent quantity. In the case of Gaussian density profile in
cylindrical geometry, (w.) = w. = const.

V. LORENTZIAN TEMPERATURE PROFILE

We take the Gaussian density profile, ng ~
exp (—rz/LJZV), and the Lorentzian temperature profile
of scale Ly : 7 = (1—1—7“2/L%)_1 = (1—1—772772)_1,
where n = Ly /Ly is the ratio between the character-
istic density and temperature inhomogeneity scales, and
7 = r/Ln. Then the Schrédinger’s equation takes the
form

L (14 L) | 6 = B4, (19)

1
_IA 4=
gLt T

This 1s the two-dimensional harmonic oscillator with the

frequency wy = /1 + L%7n?. The drift-wave eigenfre-

quency 1s

W

YT Ir2(E-1) 1%

0=0, vin =0. (20)

The quantum-mechanical result for an infinite sys-

tem is E{®) = (n1+ne+1)/1+ L3n* (quan-
tization in rectangular coordinates), or Bl =

(I+2n+1)\/1+ L%n? (quantization in cylindrical co-
ordinates). The “energy” levels rise as ) increases, there-
fore the eigenfrequency decreases when 7 increases:

W

YT I2(E ) LR

(21)

In the limit, which corresponds to flat density regimes
in fusion situations,

W

T 1t2(+2n+1) /Ly’

w when L3 5° > 1 (22)

(orL% > p?L% in dimensional units).
The substitution ¢ = (/;77 exp (—772\/ 14 L12V7]2/2), r=
v/ /14 L3n? gives the eigen-value equation in the form

without temperature gradient,

(AL + (VIn(=72)) - V1] éy = —K2L36y,

where the temperature-gradient scale enters via the con-
stant

K

S S Y VA 1/ BT
TV LE g \ @ L3 '

Therefore, the solution is
; Al il6 1 272 2
Gy ~ e M Z(QZ—AULN),Z—I—I,T ,

where M (a,b,z) is the confluent hypergeometric func-
tion [10],

B T(a+n) T() ="
M(a’b’z)_; [(a) T(b+n)nl
:1—1—%,2—1—%%—1—..., (24)

convergent for any finite z if 6 # 0,—1,—-2,-3,... and
where ' is the Euler function. The potential eigen-
functions and eigenfrequencies follow

N 1—+/1+ L3 n?
¢o<rlexp(r2—+ Nn)

203,

2 L3

1+1l-F 1— /14 L%n?
« M (Q,l—l— Lﬂ#) ’ (25)

l

E. = E W _
" 1+2(E-1)/L3, — LL/2+E-1'

= itz YT

If » # 0, one can consider the limit of infinite
system. Then the confluent hypergeometric function
M must be a finite polynomial of 72 in order to in-
crease slower than the exponential, when r — oo. This

%:—niffn:l—l-?n—l-l.

1s achieved when
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For a radially finite system, the boundary condition
of zero potential perturbation on the conducting cylin-
der yields the dispersion equation M (a,l+1,z) = 0,

E, = 1+ 1—=2a5,(2), 2, = f—ng/l—l—LJZ\,nz, where
N

amn, (z) < 0 is the real root number n 4+ 1 of the equation

M (a,l 4+ 1,2z) = 0. It is to be noted that the zero a;y, (2)

is a monotonic increasing function of z [10, p. 187]. The

eigenfrequency follows

l
. (26
L+1—2a, ()] / 1+ Lin* + L% /2 -1 (26)

VI. LARGE RADIUS APPROXIMATION

In the approximation,

RZ
Zy = ﬁ«/l + Lin? > 1, (27)

and if [ is not very large, then a;, & —n, and

N 1—+/1—=1IL%n?
(bocrlexp (rz—NU )

207,

1— /1= L1277
M (—n,1+1,r2—N77). (28)

L%

and the eigenfrequencies are governed approximately by
expression (20) that corresponds to the limit of infinite
system. In approximation (27), called a large-radius ap-
proximation, the wave properties do not depend on the
plasma size.

Condition (27) is a generalization of the one ob-
tained earlier [8] in the case of homogeneous tempera-
ture. Now, the large-radius approximation involves the
temperature-gradient scale Lp, and can be satisfied
easier. It implies also a less stringent validity condi-
tion for the low-frequency approximation. For exam-
ple, when L% ~ 4 (experimental situations discussed in
[8]), the eigenfrequency calculated in the limit of homo-
geneous temperature approaches the ion-cyclotron fre-
quency, w ~ 0.5 +0.8Q;, for [ > 2, n = 0, R3/L% > 8,
and the usual low frequency approximation breaks down.
When the temperature gradient is taken into account,
the theory predicts lower eigenfrequencies.

In laboratory applications, the large-radius operation
regimes, with their weak dependence on the plasma size
Ry, have advantages, as they can simulate various plas-
mas.

In the flat density limit, when L37* > 1, the condi-
tion for the large-radius approximation does not contain
the density-gradient scale Ly:

R%/Lr > 1 (R2>> psLr in dimensional units).  (29)

314

Then the eigenfrequency is governed by expression (22).

Thus the large-radius approximation can be under-
stood within the context of a quantum mechanical anal-
ogy. The Schrodinger form of the eigen-value equation
shows explicitly that there is a discrete spectrum, and
suggest some analytical approximations, the large-radius
approximation in particular. According to the bound-
ary condition usual in the quantum-mechanical treat-
ment, the wave function must tend to zero when the
radius tends to infinity. Then M (a, b, z) must be a finite
polynomial of z, which increases slower than the expo-
nential, when r — oo. Such a requirement is satisfied
if {4+ 1— E,)/2 is a negative integer, which yields the
above result £, =1+ 2n+ 1.

This requirement is not applicable when the tempera-
ture is homogeneous. Then ¢ has no exponential asymp-
totic behaviour at the infinity, and the case of infinite
plasma system with r — oo cannot be treated. This
seems to be strange. The infinite system can be un-
derstood only as the limit Ry — oo, when a large-
radius approximation is appropriate and the “quantum-
mechanical” result is recovered formally.

For the same conditions, the eigen-functions manifest
strong localization of the electron density and electric
field oscillations near the device boundary [8], where
the plasma density and density gradients are the small-
est (where there is almost no plasma in fact). Such an
expulsion of global oscillations from the plasma core
towards the edge without plasma, like in surface-like
modes, seems to be strange. It is in contradiction with
experimental facts. This observation forces one to take
into account some new important and realistic factors
such as the radial variation of electron temperature.

VII. NUMERICAL RESULTS:
EIGENFREQUENCIES AND GROWTH RATES

Figure 1 shows the eigenfrequency dependence on I,
z0 = R3/L%, and 1. With or without temperature gra-
dient, the eigenfrequencies are larger for larger zy. In
presence of temperature gradient, the eigenfrequency de-
creases when 7 grows. This decrease is more pronounced
for larger zy. Therefore, it is easier to observe the
temperature-gradient effects in the large-radius regimes
(large-size plasmas).

Figures 2-3 show a dependence of the drift-dissipative
instability rate y4;s (without axial drift), and of the axial-
drift correction 4y on the instability rate, on [, and zg
for some fixed value of 5. Numerical calculations shows
that ~4is decreases when 5 grows. As a function of [,
~dis has a maximum that shifts to higher ! and becomes
smaller, as 1 grows. 7gis 18 also a decreasing function of
L% (this decrease is stronger than in the case of homoge-
neous temperature, since § = Ly /Lr). The dependence
of the axial-drift correction vy on 7 is not monotonic. As
a function of [, vy has a maximum that shifts to higher
l as n grows.
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Fig. 1. The eigenfrequency dependence on I = 1 + 8,
zo = 1+ 4, and n, in the case of Gaussian density profile
and Lorentzian temperature profile, for fixed n = 0, L3; = 4;
n =0 (line curves), and n =1 (dotted curves).

Yﬁ H
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23
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0.004 22
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z=1

1 2 3 4,5 6 1 8

Fig. 2. Weakly non-adiabatic regime |§| <« 1, Gaussian
density profile and Lorentzian temperature profile: the de-
pendence of the drift-dissipative instability rate vais (without
axial drift) onl = 1+8and zo = 1+4, for fixedn =0, n =1,
L?\; =4, F” = 12. As a function of I, 44is has a maximum that
depends on zp. As zp grows, this maximum becomes greater
and shifts to higher (.

0.008 1

0.006 1

0.004 1

0.002 1

1 2 3 4,5 6 1 8
Fig. 3. Weakly non-adiabatic regime || < 1, Gaussian den-
sity profile and Lorentzian temperature profile: the depen-
dence of the axial-drift correction vy to the instability rate
onl=1+8and z =1=+4, for fixed n =0, n=1, L4 = 4,
I’y = 12. As a function of /, vy has a maximum that depends

on zg. Its position is different from that of vais. As zo grows,
this maximum becomes greater and shifts to higher I.

VIII. SUMMARY

In this study we analyzed the properties of global drift
waves in the weakly ionized plasma column with macro-
scopic density and temperature gradients. It is shown
that, in the case of adiabatic electrons and for a Gaus-
sian density profile, the problem can be reduced to a
Schrodinger’s equation. In this regards, the effect of the
density and temperature gradient on the “wave func-
tion” (i.e., the potential) and the “energy” (and then the
eigenfrequency) are explained with the usual quantum-
mechanical arguments. A decreasing profile tends to lo-
calize the modes more towards the plasma core and this
effect can be accompanied by the eigenfrequency de-
crease. This effect is enhanced for large size plasmas.
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