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The temperature gradient e�et on global drift waves in ylindrial weakly ionized plasmas is

investigated. The important role of the temperature gradient in plasma osillation properties, like

eigenfrequenies, instability thresholds and rates, mode loalization, is shown.
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I. INTRODUCTION

The important role of drift waves is well-known,

and they ontinue to be the subjet of intense inves-

tigation (fusion plasma, astrophysial situations, iono-

sphere appliations, plasmas in laboratory devies, suh

as Mirabelle in Frane, and KIWI in Germany [1{4℄).

The drift-wave frequenies are muh less than the ion

ylotron frequeny 


i

. Suh waves make an example

of plasma motion similar to the motion of ordinary

uid, when turbulene and anomalous transport an o-

ur. Therefore, the drift approximation [5℄ beomes in-

evitable.

In this artile, we study the drift-wave instabilities in

the situations [1, 3{4℄ of low-pressure (argon) ylindrial

plasma olumn immersed in the axial magneti �eld, and

in the presene of marosopi density and temperature

gradients. In this regard we extend and generalize pre-

vious studies [6{7℄, arried out in the approximation of

onstant plasma temperature. The latter is not usually

satis�ed under experimental onditions. We show the im-

portant role of the temperature gradient in plasma osil-

lation properties (eigenfrequenies, instability thresholds

and rates, mode loalization). For arbitrary temperature

and density pro�les, general theoretial onsiderations

relying on quantum-mehanial analogies, integral on-

straints, and numerial methods an be applied.

The artile struture and results are as follows. In Se-

tion 2 the basi eigen-value problem is posed. In Se-

tion 3 a quantum-mehanial analogy is used to estab-

lish a general dispersion equation for the low-frequeny

ylindrial waves, and to explain possible temperature-

gradient e�ets in the general ase of arbitrary temper-

ature pro�les. It is argued that the radial temperature

variation an govern the radial mode struture and lo-

alization, as well as the eigenfrequeny. The temper-

ature inhomogeneity an be more important than the

density one, sine the density inhomogeneity enters via

the logarithmi derivative only, whih has a weak spatial

variation. Normal temperature pro�les play the role of a

narrow \e�etive potential well" for the waves. For larger

temperature gradients, in the ase of normal equilibrium

pro�les, the plasma modes are loalized more and loser

to the plasma entre. Then the e�et of harge separa-

tion near the plasma edge beomes less important. In

this way, the \loalization paradox" of previous studies

an be removed. On the other hand, in the presene of

temperature gradient, the eigenfrequeny beomes on-

siderably lower. In this ase, the validity onditions for

the low-frequeny approximation beome less stringent.

In Setion 4, integral onstraints are derived in the gen-

eral ase of arbitrary density and temperature pro�les.

Suh onstraints make it possible to evaluate, or to �nd

analytially/numerially the eigenfrequenies, the insta-

bility thresholds and rates for ompliated realisti on-

ditions, and for various models of eletron density re-

sponse. In Setion 5, a partiular ase of Lorentzian tem-

perature pro�le is onsidered. The eigen-value problem is

redued to the two-dimensional quantum osillator with

the harmoni potential-well bottom. The latter problem

is solved analytially, and the solution is related to the

one in the ase of homogeneous temperature, but with

renormalized parameters. The radial mode struture of

the ylindrial waves and the drift-wave eigenfrequeny

are found. The limits of radially in�nite/�nite systems

are introdued.

II. BASIC EQUATION

The basi eigen-value equation for the global drift

waves [8℄ is

(4

?

+ �

n0

� r

?

)

^

� = �

�

!

�

! + �

in

� ~�

e

�

^

�; (1)

in the quasi-neutral approximation (when harge sepa-

ration e�ets are negleted: Æn

e

= Z

i

Æn

i

), and when the

ion motion along the magneti �eld is disregarded. This

equation is derived within the ontext of plasma uid

desription [5, 9℄, for the perturbations of an equilibrium

without mean eletri �elds.

Here, the dimensionless variables are used, with the

sales 
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= q
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 for the frequeny, �

s

= 

s

=


i

for the
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spae oordinates (

2

s

= Z

i

�

T=m

i

), �n for the density,

�

T

for the temperature, and the dimensionless eletri �eld

potential is � = e�=

�

T , q

i

= Z

i

e and m

i

are the ion

harge and mass, e is the absolute value of the eletron

harge, m

e

is the eletron mass, B is for a onstant mag-

neti �eld,  is the light veloity in the vauum, �

in

is the

ion-neutral ollision frequeny.

In ylindrial geometry, with the magneti �eld along

z and the density and temperature gradients in the ra-

dial diretion, the potential perturbation is represented

as follows

� �

X

!

X

k

k

1

X

l=�1

exp

�

il� + ik

k

z � i!t

�

^

�

�

l; k

k

; !; r

�

; (2)

where

^

� is a ylindrial wave amplitude, l is an az-

imuthal mode number, and the frequeny summation is

over all the eigenfrequenies !

�

l; k

k

�

. Other wave quanti-

ties are represented in a similar manner.4
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�

l

2

r

2
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n0
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, �

n0

= d lnn

e0

=dr.

The density gradient e�ets enter with a non-vanishing

logarithmi derivative, �

n0

6= 0. The Gaussian density

pro�le n

0

� exp

�

�r

2

=L

2

N

�

is a good approximation for

many experimental situations. The term �

n0

�r

?

^

� is the

ontribution from the ion polarization drift. It an be es-

sential for global/large-sale osillations with �

n0

� r

?

.

The response funtion relates the density and potential

perturbations [8℄, Æn̂

e

=n

e0

= ~�

e

Æ

^

�,

~�

e

=

!

�

+ i�

k

=�

! � !

U

+ i�

k

; (3)

with the density-gradient-driven drift frequeny !

�

=

�l�

n0

=r, the dimensionless temperature pro�le � =

T

e

=

�

T , the frequeny shift in the presene of axial ele-

tron ow !

U

=

�

Uk

k

p

M=Z

i

, where

�

U = U=S

e

is the ra-

tio of parallel drift veloity and parallel thermal veloity

for eletrons, �

k

= D

e

k

2

k

is the rate of eletron di�usion

along the magneti �eld, D

e

= �M=Z

i

�

en

is a dimension-

less di�usion oeÆient (D

e

= S

2

e

=�

en

, in dimensional

units), M = m

i

=m

e

, and �

en

is an eletron-neutral olli-

sion frequeny. If the eletron inertia is important, then

�

en

in �

k

is replaed with �

en

� i (! � !

U

). The eletron

eletri suseptibility �

e

(k; !) in the loal theory is re-

lated to ~�

e

: �

e

(k; !) = ~�

e

=k

2

�

2

e

in dimensional units,

with �

2

e

= T

e

=4�e

2

�n

e0

.

When �

k

is muh larger than all other frequenies in

~�

e

, then the eletron density perturbation is governed

approximately by the linearized Boltzmann's law,

~�

e

=

1

�

(1 + iÆ) ; Æ =

1

�

k

(! � !

U

� �!

�

) : (4)

Small deviations from the Boltzmann's law, desribed

by Æ, determine possible mehanisms of weak instability

[9℄.

The eletron-temperature gradient is taken into a-

ount via the dimensionless temperature pro�le � (r

?

) =

T (r

?

) =

�

T ontained in ~�

e

.

III. QUANTUM-MECHANICAL ANALOGY

The substitution

^

� =

~

�=

p

n

e0

transforms the wave

equation into

�

�

1

2

4

?
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�

~
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1

2

K

2

~

�; (5)

with an e�etive potential V (r) =

1

4

�
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2

� !

�

=! � 1, in the ideal ase,

�

in

= 0, and for the adiabati eletrons, ~�

e

= 1=� . In

the ase of Gaussian density pro�le, n

0

� exp

�

�r

2

=L

2

N

�

,

!

�

is onstant, and the wave equation redues to a two-

dimensional Shr�odinger's equation
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Here
~
r = r=L

N

is a new dimensionless spae variable,

and the \energy" eigen-value is related to the eigenfre-

queny:

E = 1 +

1

2

(L

N

K)

2

= 1 +

1

2

(!

�

=! � 1) � 1: (7)

The energy is greater than unity beause K

2

is real and

positive as an eigen-value of the hermitian Hamiltonian

with V

min

� 0 (one an always hoose the tempera-

ture sale

�

T to ensure the latter inequality), therefore

j!j � j!

�

j. The unity orresponds formally to the energy

of the \2-D harmoni-osillator vauum state", and there

is a disrete energy spetrum. The latter equation yields

the dispersion relation, similar to the one in the ase of

homogeneous temperature: ! =

!

�

1+K

2

.

The Shr�odinger form of the eigen-value equation en-

ables one to understand possible temperature-gradient

e�ets in the general ase of arbitrary temperature pro-

�les. The density inhomogeneity enters via the logarith-

mi derivative only, whih has a weak spatial variation.

Therefore, the radial temperature variation an govern

the radial mode struture and loalization, as well as

the eigenfrequeny. For monotoni temperature depen-

dene (with the maximal value � = 1 at the plasma

entre), a modulated well bottom beomes deeper and

narrower when the temperature gradient inreases, then

the energy levels rise higher. Therefore, for larger tem-

perature gradients, K

2

inreases and the eigenfrequeny

dereases. This onlusion explains one possible reason

why the low-frequeny osillations an dominate under

experimental onditions. With temperature inhomogene-

ity being taken into aount, the validity ondition for

the low-frequeny approximation beomes less stringent.

311



P. P. SOSENKO, M. POLENI

The mode loalization is a�eted as well. For larger

temperature gradients, in the ase of normal equilibrium

pro�les, the plasma modes are loalized more and loser

to the plasma entre. Then the e�ets of harge separa-

tion near the plasma edge beome less important. An-

other interesting observation is that the temperature-

gradient e�ets are more pronouned when the ratio

L

2

N

=�

2

s

is larger (i. e. for stronger magneti �elds, weaker

density gradients, smaller temperature, smaller ion mass,

and larger ion harge).

In ylindrial geometry,

^

� / r

l

, when r ! 0, for ar-

bitrary density and temperature pro�les if the density

gradient is �nite at r = 0. In order to �nd the be-

haviour of the potential when r ! 1, we redue as

usual the eigen-value equation to the one-dimensional

Shr�odinger's equation by hanging the unknown fun-

tion

^

� = Y=

p

rn

e0

:

Y

00

=

�

l

2

�

1

4

r

2

+ 2V �K

2

�

Y: (8)

In the ase of Gaussian density pro�le with �

n0

=

�2r=L

2

N

, the interesting evanesent solution is

^

� = Y=

p

rn

e0

� exp

�

r

2

2L

2

N

�

Z

dr

s

r

2

L

4

N

+

1

�

� 1

!

; r !1: (9)

We stress that the solution evanesent at in�nity exists

if only the temperature inhomogeneity is retained.

In the limit of 1=� � r

2

=L

4

N

,

^

� � exp

�

�

R

dr

L

2

N

2r�

�

.

For example, if 1=� � r

a

, 0 < a < 2, then

^

� �

exp

�

�

L

2

N

2a�

�

.

In the opposite limit of 1=� � r

2

=L

4

N

, if 1=� � r

a

,

a > 2, then

^

� � exp

�

�

2r

p

�

�1

a+2

�

.

If 1=� � r

2

=L

2

T

, where L

T

is a hara-

teristi temperature-gradient sale, then

^

� �

exp

h

r

2

2L

2

N

�

1�

p

1 + L

2

N

�

2

�i

, where � � L

N

=L

T

is

the ratio between the density and temperature gradient

sales. In the partiular ase of Lorentzian temperature

pro�le, an exat analytial solution an be found (see

below).

IV. INTEGRAL CONSTRAINTS

The eigen-value equation yields the following integral

onstraint

Z

n

0

�

�

�

r

^

�

�

�

�

2

dr =

Z

n

0

�

�

�

^

�

�

�

�

2

!

�

� !~�

e

! + i�

in

dr (10)

It is derived after multiplying the eigen-value equation

by n

0

^

�

�

and integrating by parts for zero boundary on-

ditions. In the ideal limit and in the ase of adiabati

eletrons, ! =

1

W

R

n

0

!

�

�

�

�

^

�

�

�

�

2

dr, where W = W

K

+W

R

=

R

n

0

�

�

�

r

^

�

�

�

�

2

dr+

R

n

0

�

�

�

�

^

�

�

�

�

2

dr. The quantity W orresponds

to the total osillation energy, while W

k

�

R

n

0

�

�

�

r

^

�

�

�

�

2

dr,

andW

R

�

R

n

0

�

�

�

�

^

�

�

�

�

2

dr an be assoiated with the partile

kineti energy of eletri-drift motion (the polarization-

drift ontribution is negligible), and the potential energy,

respetively. For monotoni density pro�les, ! has the

sign of the density-gradient drift frequeny !

�

.

We use also the following notations for mean values

hQi �

R

n

0

Q

�

�

�

^

�

�

�

�

2

dr

R

n

0

�

�

�

^

�

�

�

�

2

dr

; (11)

k

2

�

R

n

0

�

�

�

r

^

�

�

�

�

2

dr

R

n

0

�

�

�

^

�

�

�

�

2

dr

(`mean squared gradient value').

Then the eigenfrequeny is !

r

= h!

�

i =

�

k

2

+




�

�1

��

.

If the temperature sale

�

T is hosen as the maximal

temperature value, then




�

�1

�

> 1 by de�nition. When

� = 1, the mean squared gradient value is the ratio of

kineti and potential energies, k

2

=W

K

=W

R

.

If ion-neutral ollisions are taken into aount, the os-

illations appear to be damped:

! =

h!

�

i � i�

in

k

2

k

2

+ h�

�1

i

: (12)

In the general ase,

! =

h!

�

i � i�

in

k

2

k

2

+ h~�

e

i

: (13)

This expression an be simpli�ed in the ase of weak

ion-neutral ollisions, when �

in

� !, and weak devia-

tions from the adiabati eletron-density response, when

~�

e

=

1

�

(1 + iÆ), with jÆj � 1, when the imaginary part

!

i

of the frequeny ! = !

r

+ i!

i

is small (transpareny

domain),

j!

i

=!

r

j � 1; !

r

= h!

�

i =

�

k

2

+




�

�1

��

: (14)

One an �nd by iterations:

!

i

= ��

in

W

K

W

�

!

r

W

Z

Re Æ

n

0

�

�

�

�

^

�

�

�

�

2

dr: (15)

Then the neessary instability ondition is

!

r

R

Re Æ

n

0

�

�

�

�

^

�

�

�

�

2

dr < 0.
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As j!

i

=!

r

j � 1, one an ompute W

K

, W

R

and !

i

from the eigen-funtion and its gradient (

�

�

�

^

�

�

�

�

2

and

�

�

�

r

^

�

�

�

�

2

)

or from the eigen-funtion and !

r

obtained in the limit

Æ = 0. Experimentally observed temperature and density

pro�les an be taken into aount in suh omputations.

In the uid model under onsideration, Re Æ =

1

�

k

(!

r

� !

U

� �!

�

). The imaginary part of the frequeny

is represented as the sum !

i

= 

in

+ 
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+ 

U

, where
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!

2

r

�

�

k

h!

�

i
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�
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!

�

�

� !
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�

�2
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(16)

is the drift-dissipative instability rate without axial drift,



U

=

!

2

r

!

U

�

�

k

h!

�

i




�

�2

�

(17)

is the axial-drift orretion to the instability rate,



in

= ��

in

 

1� !

r




�

�1

�

h!

�

i

!

(18)

is the dissapation rate owing to ion-neutral ollisions,

where

�

�

k

= D

e

k

2

k

=� is introdued as a spae indepen-

dent quantity. In the ase of Gaussian density pro�le in

ylindrial geometry, h!

�

i = !

�

= onst.

V. LORENTZIAN TEMPERATURE PROFILE

We take the Gaussian density pro�le, n

0

�

exp

�

�r

2

=L

2

N

�

, and the Lorentzian temperature pro�le

of sale L

T

: � =

�

1 + r

2

=L

2

T

�

�1

=

�

1 + �

2

~r

2

�

�1

,

where � � L

N

=L

T

is the ratio between the harater-

isti density and temperature inhomogeneity sales, and

~r = r=L

N

. Then the Shr�odinger's equation takes the

form

�

�

1

2

4

?

+

1

2

~r

2

�

1 + L

2

N

�

2

�

�

~

� = E

~

�: (19)

This is the two-dimensional harmoni osillator with the

frequeny !

0

=

p

1 + L

2

N

�

2

. The drift-wave eigenfre-

queny is

! =

!

�

1 + 2 (E � 1)L

2

N

; Æ = 0; �

in

= 0: (20)

The quantum-mehanial result for an in�nite sys-

tem is E

(1)

= (n

1

+ n

2

+ 1)

p

1 + L

2

N

�

2

(quan-

tization in retangular oordinates), or E

(1)

=

(l + 2n+ 1)

p

1 + L

2

N

�

2

(quantization in ylindrial o-

ordinates). The \energy" levels rise as � inreases, there-

fore the eigenfrequeny dereases when � inreases:

! =

!

�

1 + 2

�

E

(1)

� 1

�

L

2

N

: (21)

In the limit, whih orresponds to at density regimes

in fusion situations,

! =

!

�

1 + 2 (l + 2n+ 1) =L

T

; when L

2

N

�

2

� 1 (22)
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4

N
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2

s

L

2

T

in dimensional units).

The substitution
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^
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�
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^
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4

p

1 + L
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N

�

2

gives the eigen-value equation in the form

without temperature gradient,
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�

,

where the temperature-gradient sale enters via the on-

stant
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2
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p
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1�

p

1 + L
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Therefore, the solution is
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�

1

4

(2l �K

2

�

L

2

N

); l + 1; r̂

2

�

;

where M (a; b; z) is the onuent hypergeometri fun-

tion [10℄,

M (a; b; z) =

+1

X

n=0

�(a+ n)

�(a)

�(b)

�(b+ n)

z

n

n!

= 1 +

a

b

z +

a(a+ 1)

b(b+ 1)

z

2

2

+ : : : ; (24)

onvergent for any �nite z if b 6= 0;�1;�2;�3; : : : and

where � is the Euler funtion. The potential eigen-

funtions and eigenfrequenies follow

^

� / r

l

exp

 

r

2

1�

p

1 + L

2

N

�

2

2L

2

N

!

�M

 

1 + l �E

�

2

; l + 1; r

2

1�

p

1 + L

2

N

�

2

L

2

N

!

; (25)

E

�

�

E

p

1+L

2

N

�

2

, ! =

!

�

1+2(E�1)=L

2

N

=

l

L

2

N

=2+E�1

.

If � 6= 0, one an onsider the limit of in�nite

system. Then the onuent hypergeometri funtion

M must be a �nite polynomial of r

2

in order to in-

rease slower than the exponential, when r ! 1. This

is ahieved when

1+l�E

�

2

= �n ) E

�

= l + 2n+ 1.
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For a radially �nite system, the boundary ondition

of zero potential perturbation on the onduting ylin-

der yields the dispersion equation M (a; l + 1; z) = 0,

E

�

= l + 1 � 2a

ln

(z

�

), z

�

�

R

2

0

L

2

N

p

1 + L

2

N

�

2

, where

a

ln

(z) < 0 is the real root number n+ 1 of the equation

M (a; l + 1; z) = 0. It is to be noted that the zero a

ln

(z)

is a monotoni inreasing funtion of z [10, p. 187℄. The

eigenfrequeny follows

! =

l

[l + 1� 2a

ln

(z

�

)℄

p

1 + L

2

N

�

2

+ L

2

N

=2� 1

: (26)

VI. LARGE RADIUS APPROXIMATION

In the approximation,

z

�

�

R

2

0

L

2

N

q

1 + L

2

N

�

2

� 1; (27)

and if l is not very large, then a

ln

� �n, and

^

� / r

l

exp

 

r

2

1�

p

1� L

2

N

�

2

2L

2

N

!

�M

 

�n; l + 1; r

2

1�

p

1� L

2

N

�

2

L

2

N

!

: (28)

and the eigenfrequenies are governed approximately by

expression (20) that orresponds to the limit of in�nite

system. In approximation (27), alled a large-radius ap-

proximation, the wave properties do not depend on the

plasma size.

Condition (27) is a generalization of the one ob-

tained earlier [8℄ in the ase of homogeneous tempera-

ture. Now, the large-radius approximation involves the

temperature-gradient sale L

T

, and an be satis�ed

easier. It implies also a less stringent validity ondi-

tion for the low-frequeny approximation. For exam-

ple, when L

2

N

� 4 (experimental situations disussed in

[8℄), the eigenfrequeny alulated in the limit of homo-

geneous temperature approahes the ion-ylotron fre-

queny, ! � 0:5 � 0:8


i

, for l � 2, n = 0, R

2

0

=L

2

N

� 8,

and the usual low frequeny approximation breaks down.

When the temperature gradient is taken into aount,

the theory predits lower eigenfrequenies.

In laboratory appliations, the large-radius operation

regimes, with their weak dependene on the plasma size

R

0

, have advantages, as they an simulate various plas-

mas.

In the at density limit, when L

2

N

�

2

� 1, the ondi-

tion for the large-radius approximation does not ontain

the density-gradient sale L

N

:

R

2

0

=L

T

� 1 (R

2

0

� �

s

L

T

in dimensional units). (29)

Then the eigenfrequeny is governed by expression (22).

Thus the large-radius approximation an be under-

stood within the ontext of a quantum mehanial anal-

ogy. The Shr�odinger form of the eigen-value equation

shows expliitly that there is a disrete spetrum, and

suggest some analytial approximations, the large-radius

approximation in partiular. Aording to the bound-

ary ondition usual in the quantum-mehanial treat-

ment, the wave funtion must tend to zero when the

radius tends to in�nity. Then M (a; b; z) must be a �nite

polynomial of z, whih inreases slower than the expo-

nential, when r ! 1. Suh a requirement is satis�ed

if (l + 1�E

�

) =2 is a negative integer, whih yields the

above result E

�

= l + 2n+ 1.

This requirement is not appliable when the tempera-

ture is homogeneous. Then

~

� has no exponential asymp-

toti behaviour at the in�nity, and the ase of in�nite

plasma system with r ! 1 annot be treated. This

seems to be strange. The in�nite system an be un-

derstood only as the limit R

0

! 1, when a large-

radius approximation is appropriate and the \quantum-

mehanial" result is reovered formally.

For the same onditions, the eigen-funtions manifest

strong loalization of the eletron density and eletri

�eld osillations near the devie boundary [8℄, where

the plasma density and density gradients are the small-

est (where there is almost no plasma in fat). Suh an

expulsion of global osillations from the plasma ore

towards the edge without plasma, like in surfae-like

modes, seems to be strange. It is in ontradition with

experimental fats. This observation fores one to take

into aount some new important and realisti fators

suh as the radial variation of eletron temperature.

VII. NUMERICAL RESULTS:

EIGENFREQUENCIES AND GROWTH RATES

Figure 1 shows the eigenfrequeny dependene on l,

z

0

� R

2

0

=L

2

N

, and �. With or without temperature gra-

dient, the eigenfrequenies are larger for larger z

0

. In

presene of temperature gradient, the eigenfrequeny de-

reases when � grows. This derease is more pronouned

for larger z

0

. Therefore, it is easier to observe the

temperature-gradient e�ets in the large-radius regimes

(large-size plasmas).

Figures 2{3 show a dependene of the drift-dissipative

instability rate 

dis

(without axial drift), and of the axial-

drift orretion 

U

on the instability rate, on l, and z

0

for some �xed value of �. Numerial alulations shows

that 

dis

dereases when � grows. As a funtion of l,



dis

has a maximum that shifts to higher l and beomes

smaller, as � grows. 

dis

is also a dereasing funtion of

L

2

N

(this derease is stronger than in the ase of homoge-

neous temperature, sine � = L

N

=L

T

). The dependene

of the axial-drift orretion 

U

on � is not monotoni. As

a funtion of l, 

U

has a maximum that shifts to higher

l as � grows.

314



GLOBAL DRIFT WAVES IN WEAKLY IONIZED PLASMA COLUMN

Fig. 1. The eigenfrequeny dependene on l = 1 � 8,

z

0

= 1 � 4, and �, in the ase of Gaussian density pro�le

and Lorentzian temperature pro�le, for �xed n = 0, L

2

N

= 4;

� = 0 (line urves), and � = 1 (dotted urves).

Fig. 2. Weakly non-adiabati regime jÆj � 1, Gaussian

density pro�le and Lorentzian temperature pro�le: the de-

pendene of the drift-dissipative instability rate 

dis

(without

axial drift) on l = 1�8 and z

0

= 1�4, for �xed n = 0, � = 1,

L

2

N

= 4, �

k

= 12. As a funtion of l, 

dis

has a maximum that

depends on z

0

. As z

0

grows, this maximum beomes greater

and shifts to higher l.

Fig. 3. Weakly non-adiabati regime jÆj�1, Gaussian den-

sity pro�le and Lorentzian temperature pro�le: the depen-

dene of the axial-drift orretion 

U

to the instability rate

on l = 1� 8 and z

0

= 1� 4, for �xed n = 0, � = 1, L

2

N

= 4,

�

k

= 12. As a funtion of l, 

U

has a maximum that depends

on z

0

. Its position is di�erent from that of 

dis

. As z

0

grows,

this maximum beomes greater and shifts to higher l.

VIII. SUMMARY

In this study we analyzed the properties of global drift

waves in the weakly ionized plasma olumn with maro-

sopi density and temperature gradients. It is shown

that, in the ase of adiabati eletrons and for a Gaus-

sian density pro�le, the problem an be redued to a

Shr�odinger's equation. In this regards, the e�et of the

density and temperature gradient on the \wave fun-

tion" (i. e., the potential) and the \energy" (and then the

eigenfrequeny) are explained with the usual quantum-

mehanial arguments. A dereasing pro�le tends to lo-

alize the modes more towards the plasma ore and this

e�et an be aompanied by the eigenfrequeny de-

rease. This e�et is enhaned for large size plasmas.
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