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The temperature gradient e�e
t on global drift waves in 
ylindri
al weakly ionized plasmas is

investigated. The important role of the temperature gradient in plasma os
illation properties, like

eigenfrequen
ies, instability thresholds and rates, mode lo
alization, is shown.
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I. INTRODUCTION

The important role of drift waves is well-known,

and they 
ontinue to be the subje
t of intense inves-

tigation (fusion plasma, astrophysi
al situations, iono-

sphere appli
ations, plasmas in laboratory devi
es, su
h

as Mirabelle in Fran
e, and KIWI in Germany [1{4℄).

The drift-wave frequen
ies are mu
h less than the ion


y
lotron frequen
y 


i

. Su
h waves make an example

of plasma motion similar to the motion of ordinary


uid, when turbulen
e and anomalous transport 
an o
-


ur. Therefore, the drift approximation [5℄ be
omes in-

evitable.

In this arti
le, we study the drift-wave instabilities in

the situations [1, 3{4℄ of low-pressure (argon) 
ylindri
al

plasma 
olumn immersed in the axial magneti
 �eld, and

in the presen
e of ma
ros
opi
 density and temperature

gradients. In this regard we extend and generalize pre-

vious studies [6{7℄, 
arried out in the approximation of


onstant plasma temperature. The latter is not usually

satis�ed under experimental 
onditions. We show the im-

portant role of the temperature gradient in plasma os
il-

lation properties (eigenfrequen
ies, instability thresholds

and rates, mode lo
alization). For arbitrary temperature

and density pro�les, general theoreti
al 
onsiderations

relying on quantum-me
hani
al analogies, integral 
on-

straints, and numeri
al methods 
an be applied.

The arti
le stru
ture and results are as follows. In Se
-

tion 2 the basi
 eigen-value problem is posed. In Se
-

tion 3 a quantum-me
hani
al analogy is used to estab-

lish a general dispersion equation for the low-frequen
y


ylindri
al waves, and to explain possible temperature-

gradient e�e
ts in the general 
ase of arbitrary temper-

ature pro�les. It is argued that the radial temperature

variation 
an govern the radial mode stru
ture and lo-


alization, as well as the eigenfrequen
y. The temper-

ature inhomogeneity 
an be more important than the

density one, sin
e the density inhomogeneity enters via

the logarithmi
 derivative only, whi
h has a weak spatial

variation. Normal temperature pro�les play the role of a

narrow \e�e
tive potential well" for the waves. For larger

temperature gradients, in the 
ase of normal equilibrium

pro�les, the plasma modes are lo
alized more and 
loser

to the plasma 
entre. Then the e�e
t of 
harge separa-

tion near the plasma edge be
omes less important. In

this way, the \lo
alization paradox" of previous studies


an be removed. On the other hand, in the presen
e of

temperature gradient, the eigenfrequen
y be
omes 
on-

siderably lower. In this 
ase, the validity 
onditions for

the low-frequen
y approximation be
ome less stringent.

In Se
tion 4, integral 
onstraints are derived in the gen-

eral 
ase of arbitrary density and temperature pro�les.

Su
h 
onstraints make it possible to evaluate, or to �nd

analyti
ally/numeri
ally the eigenfrequen
ies, the insta-

bility thresholds and rates for 
ompli
ated realisti
 
on-

ditions, and for various models of ele
tron density re-

sponse. In Se
tion 5, a parti
ular 
ase of Lorentzian tem-

perature pro�le is 
onsidered. The eigen-value problem is

redu
ed to the two-dimensional quantum os
illator with

the harmoni
 potential-well bottom. The latter problem

is solved analyti
ally, and the solution is related to the

one in the 
ase of homogeneous temperature, but with

renormalized parameters. The radial mode stru
ture of

the 
ylindri
al waves and the drift-wave eigenfrequen
y

are found. The limits of radially in�nite/�nite systems

are introdu
ed.

II. BASIC EQUATION

The basi
 eigen-value equation for the global drift

waves [8℄ is

(4

?

+ �

n0

� r

?

)

^

� = �

�

!

�

! + �

in

� ~�

e

�

^

�; (1)

in the quasi-neutral approximation (when 
harge sepa-

ration e�e
ts are negle
ted: Æn

e

= Z

i

Æn

i

), and when the

ion motion along the magneti
 �eld is disregarded. This

equation is derived within the 
ontext of plasma 
uid

des
ription [5, 9℄, for the perturbations of an equilibrium

without mean ele
tri
 �elds.

Here, the dimensionless variables are used, with the

s
ales 


i

= q

i

B=m

i


 for the frequen
y, �

s

= 


s

=


i

for the
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spa
e 
oordinates (


2

s

= Z

i

�

T=m

i

), �n for the density,

�

T

for the temperature, and the dimensionless ele
tri
 �eld

potential is � = e�=

�

T , q

i

= Z

i

e and m

i

are the ion


harge and mass, e is the absolute value of the ele
tron


harge, m

e

is the ele
tron mass, B is for a 
onstant mag-

neti
 �eld, 
 is the light velo
ity in the va
uum, �

in

is the

ion-neutral 
ollision frequen
y.

In 
ylindri
al geometry, with the magneti
 �eld along

z and the density and temperature gradients in the ra-

dial dire
tion, the potential perturbation is represented

as follows

� �

X

!

X

k

k

1

X

l=�1

exp

�

il� + ik

k

z � i!t

�

^

�

�

l; k

k

; !; r

�

; (2)

where

^

� is a 
ylindri
al wave amplitude, l is an az-

imuthal mode number, and the frequen
y summation is

over all the eigenfrequen
ies !

�

l; k

k

�

. Other wave quanti-

ties are represented in a similar manner.4

?

+�

n0

�r

?

�

1

r

d

dr

r

d

dr

�

l

2

r

2

+ �

n0

d

dr

, �

n0

= d lnn

e0

=dr.

The density gradient e�e
ts enter with a non-vanishing

logarithmi
 derivative, �

n0

6= 0. The Gaussian density

pro�le n

0

� exp

�

�r

2

=L

2

N

�

is a good approximation for

many experimental situations. The term �

n0

�r

?

^

� is the


ontribution from the ion polarization drift. It 
an be es-

sential for global/large-s
ale os
illations with �

n0

� r

?

.

The response fun
tion relates the density and potential

perturbations [8℄, Æn̂

e

=n

e0

= ~�

e

Æ

^

�,

~�

e

=

!

�

+ i�

k

=�

! � !

U

+ i�

k

; (3)

with the density-gradient-driven drift frequen
y !

�

=

�l�

n0

=r, the dimensionless temperature pro�le � =

T

e

=

�

T , the frequen
y shift in the presen
e of axial ele
-

tron 
ow !

U

=

�

Uk

k

p

M=Z

i

, where

�

U = U=S

e

is the ra-

tio of parallel drift velo
ity and parallel thermal velo
ity

for ele
trons, �

k

= D

e

k

2

k

is the rate of ele
tron di�usion

along the magneti
 �eld, D

e

= �M=Z

i

�

en

is a dimension-

less di�usion 
oeÆ
ient (D

e

= S

2

e

=�

en

, in dimensional

units), M = m

i

=m

e

, and �

en

is an ele
tron-neutral 
olli-

sion frequen
y. If the ele
tron inertia is important, then

�

en

in �

k

is repla
ed with �

en

� i (! � !

U

). The ele
tron

ele
tri
 sus
eptibility �

e

(k; !) in the lo
al theory is re-

lated to ~�

e

: �

e

(k; !) = ~�

e

=k

2

�

2

e

in dimensional units,

with �

2

e

= T

e

=4�e

2

�n

e0

.

When �

k

is mu
h larger than all other frequen
ies in

~�

e

, then the ele
tron density perturbation is governed

approximately by the linearized Boltzmann's law,

~�

e

=

1

�

(1 + iÆ) ; Æ =

1

�

k

(! � !

U

� �!

�

) : (4)

Small deviations from the Boltzmann's law, des
ribed

by Æ, determine possible me
hanisms of weak instability

[9℄.

The ele
tron-temperature gradient is taken into a
-


ount via the dimensionless temperature pro�le � (r

?

) =

T (r

?

) =

�

T 
ontained in ~�

e

.

III. QUANTUM-MECHANICAL ANALOGY

The substitution

^

� =

~

�=

p

n

e0

transforms the wave

equation into

�

�

1

2

4

?

+ V (r)

�

~

� =

1

2

K

2

~

�; (5)

with an e�e
tive potential V (r) =

1

4

�

r � �

n0

+

1

2

�

2

n0

�

+

1

2

�

�

�1

� 1

�

, and K

2

� !

�

=! � 1, in the ideal 
ase,

�

in

= 0, and for the adiabati
 ele
trons, ~�

e

= 1=� . In

the 
ase of Gaussian density pro�le, n

0

� exp

�

�r

2

=L

2

N

�

,

!

�

is 
onstant, and the wave equation redu
es to a two-

dimensional S
hr�odinger's equation

�

�

1

2

4

?

+

1

2

~r

2

+

1

2

L

2

N

�

�

�1

� 1

�

�

~

� = E

~

�: (6)

Here
~
r = r=L

N

is a new dimensionless spa
e variable,

and the \energy" eigen-value is related to the eigenfre-

quen
y:

E = 1 +

1

2

(L

N

K)

2

= 1 +

1

2

(!

�

=! � 1) � 1: (7)

The energy is greater than unity be
ause K

2

is real and

positive as an eigen-value of the hermitian Hamiltonian

with V

min

� 0 (one 
an always 
hoose the tempera-

ture s
ale

�

T to ensure the latter inequality), therefore

j!j � j!

�

j. The unity 
orresponds formally to the energy

of the \2-D harmoni
-os
illator va
uum state", and there

is a dis
rete energy spe
trum. The latter equation yields

the dispersion relation, similar to the one in the 
ase of

homogeneous temperature: ! =

!

�

1+K

2

.

The S
hr�odinger form of the eigen-value equation en-

ables one to understand possible temperature-gradient

e�e
ts in the general 
ase of arbitrary temperature pro-

�les. The density inhomogeneity enters via the logarith-

mi
 derivative only, whi
h has a weak spatial variation.

Therefore, the radial temperature variation 
an govern

the radial mode stru
ture and lo
alization, as well as

the eigenfrequen
y. For monotoni
 temperature depen-

den
e (with the maximal value � = 1 at the plasma


entre), a modulated well bottom be
omes deeper and

narrower when the temperature gradient in
reases, then

the energy levels rise higher. Therefore, for larger tem-

perature gradients, K

2

in
reases and the eigenfrequen
y

de
reases. This 
on
lusion explains one possible reason

why the low-frequen
y os
illations 
an dominate under

experimental 
onditions. With temperature inhomogene-

ity being taken into a

ount, the validity 
ondition for

the low-frequen
y approximation be
omes less stringent.
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The mode lo
alization is a�e
ted as well. For larger

temperature gradients, in the 
ase of normal equilibrium

pro�les, the plasma modes are lo
alized more and 
loser

to the plasma 
entre. Then the e�e
ts of 
harge separa-

tion near the plasma edge be
ome less important. An-

other interesting observation is that the temperature-

gradient e�e
ts are more pronoun
ed when the ratio

L

2

N

=�

2

s

is larger (i. e. for stronger magneti
 �elds, weaker

density gradients, smaller temperature, smaller ion mass,

and larger ion 
harge).

In 
ylindri
al geometry,

^

� / r

l

, when r ! 0, for ar-

bitrary density and temperature pro�les if the density

gradient is �nite at r = 0. In order to �nd the be-

haviour of the potential when r ! 1, we redu
e as

usual the eigen-value equation to the one-dimensional

S
hr�odinger's equation by 
hanging the unknown fun
-

tion

^

� = Y=

p

rn

e0

:

Y

00

=

�

l

2

�

1

4

r

2

+ 2V �K

2

�

Y: (8)

In the 
ase of Gaussian density pro�le with �

n0

=

�2r=L

2

N

, the interesting evanes
ent solution is

^

� = Y=

p

rn

e0

� exp

�

r

2

2L

2

N

�

Z

dr

s

r

2

L

4

N

+

1

�

� 1

!

; r !1: (9)

We stress that the solution evanes
ent at in�nity exists

if only the temperature inhomogeneity is retained.

In the limit of 1=� � r

2

=L

4

N

,

^

� � exp

�

�

R

dr

L

2

N

2r�

�

.

For example, if 1=� � r

a

, 0 < a < 2, then

^

� �

exp

�

�

L

2

N

2a�

�

.

In the opposite limit of 1=� � r

2

=L

4

N

, if 1=� � r

a

,

a > 2, then

^

� � exp

�

�

2r

p

�

�1

a+2

�

.

If 1=� � r

2

=L

2

T

, where L

T

is a 
hara
-

teristi
 temperature-gradient s
ale, then

^

� �

exp

h

r

2

2L

2

N

�

1�

p

1 + L

2

N

�

2

�i

, where � � L

N

=L

T

is

the ratio between the density and temperature gradient

s
ales. In the parti
ular 
ase of Lorentzian temperature

pro�le, an exa
t analyti
al solution 
an be found (see

below).

IV. INTEGRAL CONSTRAINTS

The eigen-value equation yields the following integral


onstraint

Z

n

0

�

�

�

r

^

�

�

�

�

2

dr =

Z

n

0

�

�

�

^

�

�

�

�

2

!

�

� !~�

e

! + i�

in

dr (10)

It is derived after multiplying the eigen-value equation

by n

0

^

�

�

and integrating by parts for zero boundary 
on-

ditions. In the ideal limit and in the 
ase of adiabati


ele
trons, ! =

1

W

R

n

0

!

�

�

�

�

^

�

�

�

�

2

dr, where W = W

K

+W

R

=

R

n

0

�

�

�

r

^

�

�

�

�

2

dr+

R

n

0

�

�

�

�

^

�

�

�

�

2

dr. The quantity W 
orresponds

to the total os
illation energy, while W

k

�

R

n

0

�

�

�

r

^

�

�

�

�

2

dr,

andW

R

�

R

n

0

�

�

�

�

^

�

�

�

�

2

dr 
an be asso
iated with the parti
le

kineti
 energy of ele
tri
-drift motion (the polarization-

drift 
ontribution is negligible), and the potential energy,

respe
tively. For monotoni
 density pro�les, ! has the

sign of the density-gradient drift frequen
y !

�

.

We use also the following notations for mean values

hQi �

R

n

0

Q

�

�

�

^

�

�

�

�

2

dr

R

n

0

�

�

�

^

�

�

�

�

2

dr

; (11)

k

2

�

R

n

0

�

�

�

r

^

�

�

�

�

2

dr

R

n

0

�

�

�

^

�

�

�

�

2

dr

(`mean squared gradient value').

Then the eigenfrequen
y is !

r

= h!

�

i =

�

k

2

+




�

�1

��

.

If the temperature s
ale

�

T is 
hosen as the maximal

temperature value, then




�

�1

�

> 1 by de�nition. When

� = 1, the mean squared gradient value is the ratio of

kineti
 and potential energies, k

2

=W

K

=W

R

.

If ion-neutral 
ollisions are taken into a

ount, the os-


illations appear to be damped:

! =

h!

�

i � i�

in

k

2

k

2

+ h�

�1

i

: (12)

In the general 
ase,

! =

h!

�

i � i�

in

k

2

k

2

+ h~�

e

i

: (13)

This expression 
an be simpli�ed in the 
ase of weak

ion-neutral 
ollisions, when �

in

� !, and weak devia-

tions from the adiabati
 ele
tron-density response, when

~�

e

=

1

�

(1 + iÆ), with jÆj � 1, when the imaginary part

!

i

of the frequen
y ! = !

r

+ i!

i

is small (transparen
y

domain),

j!

i

=!

r

j � 1; !

r

= h!

�

i =

�

k

2

+




�

�1

��

: (14)

One 
an �nd by iterations:

!

i

= ��

in

W

K

W

�

!

r

W

Z

Re Æ

n

0

�

�

�

�

^

�

�

�

�

2

dr: (15)

Then the ne
essary instability 
ondition is

!

r

R

Re Æ

n

0

�

�

�

�

^

�

�

�

�

2

dr < 0.
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As j!

i

=!

r

j � 1, one 
an 
ompute W

K

, W

R

and !

i

from the eigen-fun
tion and its gradient (

�

�

�

^

�

�

�

�

2

and

�

�

�

r

^

�

�

�

�

2

)

or from the eigen-fun
tion and !

r

obtained in the limit

Æ = 0. Experimentally observed temperature and density

pro�les 
an be taken into a

ount in su
h 
omputations.

In the 
uid model under 
onsideration, Re Æ =

1

�

k

(!

r

� !

U

� �!

�

). The imaginary part of the frequen
y

is represented as the sum !

i

= 


in

+ 


dis

+ 


U

, where




dis

=

!

2

r

�

�

k

h!

�

i

�


�

�1

!

�

�

� !

r




�

�2

��

(16)

is the drift-dissipative instability rate without axial drift,




U

=

!

2

r

!

U

�

�

k

h!

�

i




�

�2

�

(17)

is the axial-drift 
orre
tion to the instability rate,




in

= ��

in

 

1� !

r




�

�1

�

h!

�

i

!

(18)

is the dissapation rate owing to ion-neutral 
ollisions,

where

�

�

k

= D

e

k

2

k

=� is introdu
ed as a spa
e indepen-

dent quantity. In the 
ase of Gaussian density pro�le in


ylindri
al geometry, h!

�

i = !

�

= 
onst.

V. LORENTZIAN TEMPERATURE PROFILE

We take the Gaussian density pro�le, n

0

�

exp

�

�r

2

=L

2

N

�

, and the Lorentzian temperature pro�le

of s
ale L

T

: � =

�

1 + r

2

=L

2

T

�

�1

=

�

1 + �

2

~r

2

�

�1

,

where � � L

N

=L

T

is the ratio between the 
hara
ter-

isti
 density and temperature inhomogeneity s
ales, and

~r = r=L

N

. Then the S
hr�odinger's equation takes the

form

�

�

1

2

4

?

+

1

2

~r

2

�

1 + L

2

N

�

2

�

�

~

� = E

~

�: (19)

This is the two-dimensional harmoni
 os
illator with the

frequen
y !

0

=

p

1 + L

2

N

�

2

. The drift-wave eigenfre-

quen
y is

! =

!

�

1 + 2 (E � 1)L

2

N

; Æ = 0; �

in

= 0: (20)

The quantum-me
hani
al result for an in�nite sys-

tem is E

(1)

= (n

1

+ n

2

+ 1)

p

1 + L

2

N

�

2

(quan-

tization in re
tangular 
oordinates), or E

(1)

=

(l + 2n+ 1)

p

1 + L

2

N

�

2

(quantization in 
ylindri
al 
o-

ordinates). The \energy" levels rise as � in
reases, there-

fore the eigenfrequen
y de
reases when � in
reases:

! =

!

�

1 + 2

�

E

(1)

� 1

�

L

2

N

: (21)

In the limit, whi
h 
orresponds to 
at density regimes

in fusion situations,

! =

!

�

1 + 2 (l + 2n+ 1) =L

T

; when L

2

N

�

2

� 1 (22)

(orL

4

N

� �

2

s

L

2

T

in dimensional units).

The substitution

~

� =

^

�

�

exp

�

�~r

2

p

1 + L

2

N

�

2

=2

�

,
~
r =

^
r=

4

p

1 + L

2

N

�

2

gives the eigen-value equation in the form

without temperature gradient,

�

4

?

+

�

r ln

�

�~r

2

��

� r

?

�

^

�

�

= �K

2

�

L

2

N

^

�

�

,

where the temperature-gradient s
ale enters via the 
on-

stant

K

2

�

�

1

p

1 + L

2

N

�

2

 

!

�

!

� 1 + 2

1�

p

1 + L

2

N

�

2

L

2

N

!

: (23)

Therefore, the solution is

^

�

�

� r̂

l

e

il�

M

�

1

4

(2l �K

2

�

L

2

N

); l + 1; r̂

2

�

;

where M (a; b; z) is the 
on
uent hypergeometri
 fun
-

tion [10℄,

M (a; b; z) =

+1

X

n=0

�(a+ n)

�(a)

�(b)

�(b+ n)

z

n

n!

= 1 +

a

b

z +

a(a+ 1)

b(b+ 1)

z

2

2

+ : : : ; (24)


onvergent for any �nite z if b 6= 0;�1;�2;�3; : : : and

where � is the Euler fun
tion. The potential eigen-

fun
tions and eigenfrequen
ies follow

^

� / r

l

exp

 

r

2

1�

p

1 + L

2

N

�

2

2L

2

N

!

�M

 

1 + l �E

�

2

; l + 1; r

2

1�

p

1 + L

2

N

�

2

L

2

N

!

; (25)

E

�

�

E

p

1+L

2

N

�

2

, ! =

!

�

1+2(E�1)=L

2

N

=

l

L

2

N

=2+E�1

.

If � 6= 0, one 
an 
onsider the limit of in�nite

system. Then the 
on
uent hypergeometri
 fun
tion

M must be a �nite polynomial of r

2

in order to in-


rease slower than the exponential, when r ! 1. This

is a
hieved when

1+l�E

�

2

= �n ) E

�

= l + 2n+ 1.
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For a radially �nite system, the boundary 
ondition

of zero potential perturbation on the 
ondu
ting 
ylin-

der yields the dispersion equation M (a; l + 1; z) = 0,

E

�

= l + 1 � 2a

ln

(z

�

), z

�

�

R

2

0

L

2

N

p

1 + L

2

N

�

2

, where

a

ln

(z) < 0 is the real root number n+ 1 of the equation

M (a; l + 1; z) = 0. It is to be noted that the zero a

ln

(z)

is a monotoni
 in
reasing fun
tion of z [10, p. 187℄. The

eigenfrequen
y follows

! =

l

[l + 1� 2a

ln

(z

�

)℄

p

1 + L

2

N

�

2

+ L

2

N

=2� 1

: (26)

VI. LARGE RADIUS APPROXIMATION

In the approximation,

z

�

�

R

2

0

L

2

N

q

1 + L

2

N

�

2

� 1; (27)

and if l is not very large, then a

ln

� �n, and

^

� / r

l

exp

 

r

2

1�

p

1� L

2

N

�

2

2L

2

N

!

�M

 

�n; l + 1; r

2

1�

p

1� L

2

N

�

2

L

2

N

!

: (28)

and the eigenfrequen
ies are governed approximately by

expression (20) that 
orresponds to the limit of in�nite

system. In approximation (27), 
alled a large-radius ap-

proximation, the wave properties do not depend on the

plasma size.

Condition (27) is a generalization of the one ob-

tained earlier [8℄ in the 
ase of homogeneous tempera-

ture. Now, the large-radius approximation involves the

temperature-gradient s
ale L

T

, and 
an be satis�ed

easier. It implies also a less stringent validity 
ondi-

tion for the low-frequen
y approximation. For exam-

ple, when L

2

N

� 4 (experimental situations dis
ussed in

[8℄), the eigenfrequen
y 
al
ulated in the limit of homo-

geneous temperature approa
hes the ion-
y
lotron fre-

quen
y, ! � 0:5 � 0:8


i

, for l � 2, n = 0, R

2

0

=L

2

N

� 8,

and the usual low frequen
y approximation breaks down.

When the temperature gradient is taken into a

ount,

the theory predi
ts lower eigenfrequen
ies.

In laboratory appli
ations, the large-radius operation

regimes, with their weak dependen
e on the plasma size

R

0

, have advantages, as they 
an simulate various plas-

mas.

In the 
at density limit, when L

2

N

�

2

� 1, the 
ondi-

tion for the large-radius approximation does not 
ontain

the density-gradient s
ale L

N

:

R

2

0

=L

T

� 1 (R

2

0

� �

s

L

T

in dimensional units). (29)

Then the eigenfrequen
y is governed by expression (22).

Thus the large-radius approximation 
an be under-

stood within the 
ontext of a quantum me
hani
al anal-

ogy. The S
hr�odinger form of the eigen-value equation

shows expli
itly that there is a dis
rete spe
trum, and

suggest some analyti
al approximations, the large-radius

approximation in parti
ular. A

ording to the bound-

ary 
ondition usual in the quantum-me
hani
al treat-

ment, the wave fun
tion must tend to zero when the

radius tends to in�nity. Then M (a; b; z) must be a �nite

polynomial of z, whi
h in
reases slower than the expo-

nential, when r ! 1. Su
h a requirement is satis�ed

if (l + 1�E

�

) =2 is a negative integer, whi
h yields the

above result E

�

= l + 2n+ 1.

This requirement is not appli
able when the tempera-

ture is homogeneous. Then

~

� has no exponential asymp-

toti
 behaviour at the in�nity, and the 
ase of in�nite

plasma system with r ! 1 
annot be treated. This

seems to be strange. The in�nite system 
an be un-

derstood only as the limit R

0

! 1, when a large-

radius approximation is appropriate and the \quantum-

me
hani
al" result is re
overed formally.

For the same 
onditions, the eigen-fun
tions manifest

strong lo
alization of the ele
tron density and ele
tri


�eld os
illations near the devi
e boundary [8℄, where

the plasma density and density gradients are the small-

est (where there is almost no plasma in fa
t). Su
h an

expulsion of global os
illations from the plasma 
ore

towards the edge without plasma, like in surfa
e-like

modes, seems to be strange. It is in 
ontradi
tion with

experimental fa
ts. This observation for
es one to take

into a

ount some new important and realisti
 fa
tors

su
h as the radial variation of ele
tron temperature.

VII. NUMERICAL RESULTS:

EIGENFREQUENCIES AND GROWTH RATES

Figure 1 shows the eigenfrequen
y dependen
e on l,

z

0

� R

2

0

=L

2

N

, and �. With or without temperature gra-

dient, the eigenfrequen
ies are larger for larger z

0

. In

presen
e of temperature gradient, the eigenfrequen
y de-


reases when � grows. This de
rease is more pronoun
ed

for larger z

0

. Therefore, it is easier to observe the

temperature-gradient e�e
ts in the large-radius regimes

(large-size plasmas).

Figures 2{3 show a dependen
e of the drift-dissipative

instability rate 


dis

(without axial drift), and of the axial-

drift 
orre
tion 


U

on the instability rate, on l, and z

0

for some �xed value of �. Numeri
al 
al
ulations shows

that 


dis

de
reases when � grows. As a fun
tion of l,




dis

has a maximum that shifts to higher l and be
omes

smaller, as � grows. 


dis

is also a de
reasing fun
tion of

L

2

N

(this de
rease is stronger than in the 
ase of homoge-

neous temperature, sin
e � = L

N

=L

T

). The dependen
e

of the axial-drift 
orre
tion 


U

on � is not monotoni
. As

a fun
tion of l, 


U

has a maximum that shifts to higher

l as � grows.
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Fig. 1. The eigenfrequen
y dependen
e on l = 1 � 8,

z

0

= 1 � 4, and �, in the 
ase of Gaussian density pro�le

and Lorentzian temperature pro�le, for �xed n = 0, L

2

N

= 4;

� = 0 (line 
urves), and � = 1 (dotted 
urves).

Fig. 2. Weakly non-adiabati
 regime jÆj � 1, Gaussian

density pro�le and Lorentzian temperature pro�le: the de-

penden
e of the drift-dissipative instability rate 


dis

(without

axial drift) on l = 1�8 and z

0

= 1�4, for �xed n = 0, � = 1,

L

2

N

= 4, �

k

= 12. As a fun
tion of l, 


dis

has a maximum that

depends on z

0

. As z

0

grows, this maximum be
omes greater

and shifts to higher l.

Fig. 3. Weakly non-adiabati
 regime jÆj�1, Gaussian den-

sity pro�le and Lorentzian temperature pro�le: the depen-

den
e of the axial-drift 
orre
tion 


U

to the instability rate

on l = 1� 8 and z

0

= 1� 4, for �xed n = 0, � = 1, L

2

N

= 4,

�

k

= 12. As a fun
tion of l, 


U

has a maximum that depends

on z

0

. Its position is di�erent from that of 


dis

. As z

0

grows,

this maximum be
omes greater and shifts to higher l.

VIII. SUMMARY

In this study we analyzed the properties of global drift

waves in the weakly ionized plasma 
olumn with ma
ro-

s
opi
 density and temperature gradients. It is shown

that, in the 
ase of adiabati
 ele
trons and for a Gaus-

sian density pro�le, the problem 
an be redu
ed to a

S
hr�odinger's equation. In this regards, the e�e
t of the

density and temperature gradient on the \wave fun
-

tion" (i. e., the potential) and the \energy" (and then the

eigenfrequen
y) are explained with the usual quantum-

me
hani
al arguments. A de
reasing pro�le tends to lo-


alize the modes more towards the plasma 
ore and this

e�e
t 
an be a

ompanied by the eigenfrequen
y de-


rease. This e�e
t is enhan
ed for large size plasmas.
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