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A lot of modern eletroni devies are operating with optial signals generated due to the in-

teration of a working substane like rystal with an external laser radiation. As in most of these

devies the interation is nonlinear and proesses making them stable are quantum, it is important

to devise suitable approahes to studying their equilibrium radiative states subjet to the external

onditions imposed on a system. We sueded in �nding a losed system of relationships on exter-

nal rystal-light parameters yielding the quasi-equilibrium signal and idler intensity states radiated

inside a rystal. This is the main aim of the presented work developing the modern quantum �eld

theory methods for the analysis of radiative states in a nonlinear quantum-optial system having

important appliations in eletronis.
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I. INTRODUCTION

A great deal of studies was done onerning the prob-

lems of stability, bifuration behaviour [1,2℄ and dynam-

ial properties [3-5℄ of atomi and moleular systems

having appliations in optial bi-stability of a laser av-

ity with a nonlinear rystal medium, in some miroele-

tronis and other devies based on nonlinear interation

proesses with radiation. Subjet to multi-photon exi-

tations of poly-atomi moleules undergoing also a self-

interation via the Kerr e�et the related proesses an

be modeled [5,6℄ by means of the following quantum-

optial approximated Hamiltonian operator
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ating in a Fok spae �, where �

0

2 R
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and � 2 R

+

are oupling onstant parameters, a; a

+

: �! � are de-

strution and reation signal Bose-operators and ; 

+

:

�! � are these of an external radiation interating with

an ative nonlinear media of a devie onsidered.

If the oupling parameter � = 0, then the nonper-

turbed Hamiltonian
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is not quadrati in (a; a

+

)-operator terms, but is suh

in the (a

+

a)-terms:
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The latter obviously suggests a way for �nding its spe-

trum in exat form based on that of the partile number

operators
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where j


m;n

i 2 �; m; n 2 Z

+

, via the standard Dira

bra-ket notation, and
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as a

+

aj
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i = mj
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i and 

+
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i for

all m;n 2Z

+

, an be easily onstruted as follows:
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m

p

m!

p

n!

j0i; (1.6)

where j0i 2 � is the standard vauum state of the Fok

spae �. Thereby, we are now in a position to desribe

the ground state j
i 2 � of our dynamial system (1.1)

under nonzero interation. Sine the Hamiltonian oper-

ator desribes a oherent absorption of an external ra-

diation of frequeny !

1

and formation of signal photon

states of frequeny !

0

the total radiative energy is not

onserved, meaning thereby that the proess desribed

by the Hamiltonian (1.1) should be onsidered as dissi-

pative.

Nevertheless, the task of �nding the equilibrium

ground state of the model Hamiltonian (1.1) is still in

fore owing to the non-onservation both of signal and

337



N. N. BOGOLIUBOV, U. TANERI, A. K. PRYKARPATSKY

radiation photons generated by laser. Thus, we an on-

sider our Hamiltonian (1.1) in the hemial potential ex-

panded form
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where �

0

; �

1

2 R

1

is a hemial potential of our sys-

tem at the equilibrium ground state j


�

i 2 �. It an be

determined from the following harateristi equilibrium

onditions imposed on the system:
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where N

0

2 Z

+

is the equilibrium number of ativated

with signal photons moleular states in a rystal and N

1

2Z

+

is the equilibriumnumber of external laser radiated

photon states inside a rystal due to interation. One an

easily observe now from (1.8) that the total number
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; (1.9)

is onstant, being equal to a total number of radiated

photons by laser. This equality is evidently true only

in the ase when the total amount

�
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0

of ative mole-

ular states inside a rystal is greater than the amount

�

N

1

of photons radiated by laser. Anyway, the inequality

�

N

1

�

�

N

0

is satis�eg in general by most of quantum-

optial eletronis devies. The ondition (1.9) in the

form
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(1.10)

should be augmented still by another important physial

ondition

�E
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=�N

0

= 0; (1.11)

meaning evidently, that the ground state j


�

i 2 � must

be spei�ed by the least energy E

�

2 R subjet to the

amount of emitted signal photons N

0

2Z

+

owing to the

interation of a rystal with laser radiation. Two ondi-

tions (1.10) and (1.11) onstitute obviously a omplete

set of onstraints imposed on our ground state j


�

i 2 �

to be determined uniquely. For the above onstraints to

be implemented analytially we need to develop a teh-

nique for �nding the quantities (1.8) in the funtional

form suitable for the analysis. This an be done based

on the Feynman diagrammati approah [7,8℄ to inter-

ating quantum �elds.

II. THE FEYNMAN DIAGRAM APPROACH:

GREEN'S FUNCTIONS

As is well known [7,8℄, the most e�etive method of

�nding the ground state harateristis of the Hamilto-

nian (1.1) under onstraints (1.10) and (1.11) is making

use of Feynman diagrammati approah subjet to the

interation Hamiltonian
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in the inter-

ation representation. Espeially it proved to be of use

for alulating the standard Green's funtions [7℄ in the

Heisenberg representation:
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and the so-alled anomalous Green's funtion
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where the operation "T" denotes the standard hrono-

logial operator ordering, giving rise to the following ex-

pression for the ground state energy E
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Owing to the following simply veri�ed general expression
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where j


�

(�)i 2 � is the ground state orresponding to

the saled interation Hamiltonian �
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: � ! �, and
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2 R is the ground state energy of the nonperturbed

Hamiltonian
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due to the anomalous Green's funtion (2.2) rede�ned as
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where � 2 (0; 1℄ is a saling parameter. Namely, from (2.4) and (2.5) it follows that
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where the energy E

0;�

is found easily owing to the expression (1.6):
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Whene we arrived at the need to alulate just the

anomalous Green's funtion (2.5) subjet to the saled

interation Hamiltonian �

^

H

int

: �! � for all � 2 (0; 1℄:

This problem we shall disuss in detail below.

III. THE FEYNMAN DIAGRAM APPROACH:

PERTURBATION SERIES EXPANSION

Subjet to the Green's funtions (2.1) and (2.2) we

need to de�ne the nonperturbed ground state j
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i 2 �;

satisfying the equation
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the fat that photons are Bose-partiles, we are fored
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where operators ~a and ~ satisfy the following no-partile

vauum state onditions:
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Subjet to transformations (3.2) our interation Hamil-
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This means that the nonperturbed Hamiltonian
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Thus, the saled modi�ed interation Hamiltonian be-
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where � 2 (0; 1℄ .

Consider now the modi�ed ground state j
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Sine transformation (3.2) is linear the spetrum of op-

erator (3.5) oinides with that of the operator
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and we arrived at the starting point of formula (2.4):
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where the term �
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is given by (3.6). For the matrix

element in (3.9) to be alulated in an analytial form, it

is neessary to �nd all Green's funtions modifying (2.1)

and (2.2):
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Owing to general Feynman rules of �nding Green's fun-

tions (3.10) and (3.11) it is neessary �rst to alulate all

nonperturbed Green's funtions at � = 0; that is fun-

tions
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for all times t; t

0

2 R

1

: Due to the result (3.8) the Green's

funtions an be found expliitly after some simple but

a bit umbersome alulations as follows: for photon

reation-annihilation Green's funtion one gets
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and for the anomalous Green's funtion one gets
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Thereby, we an express now Green's funtions (2.1) via Feynman diagram series making use of the Dyson equations
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insertions (or mass operators) [7℄ and expressed in the

following diagram form:
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where we denoted by \*" the onvolution operation be-

tween Green's funtions, and
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) =

,

~

G

(0)

1

(t; t

0

) = (3:19)

.

Thereby, we an now use of the onstraints (1.10) and

(1.11) for determining the hemial potentials �

0

and�

1

:
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Based on expressions (3.17) and (3.18) one arrives at

the following integral relationships for Green's funtions

(3.10):
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An expression similar to the above-given ones an be

written also for the Green's funtion (3.13) on what we

shall not dwell here.

IV. THE EQUILIBRIUM STATE ANALYSIS

As was mentioned before, for the equilibrium state

j

~




�

i 2 � to be spei�ed ompletely, we need to imple-
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~
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(3.8) of this energy is already

determined, we need only alulate the integral part of

(3.9):
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where we de�ned for any t 2 R
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The anomalous funtions (4.2) an be easily alulated

making use of the Feynman diagram expansions:
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where by de�nition, the sign \� " means a fator
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the sign \�" means a fator

p

N
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; an internal dot \�" or-

responds to a fator (i�=~), with the following Dyson's

type relationships having to be satis�ed:
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Having solved equations (4.4) and (4.5) we arrive due

to expressions (4.3) and (4.1) at the energy shift �

~

E

�

whih makes it possible to satisfy onstraints (1.10) and

(1.11), where E

�

should be replaed by

~

E

�

:

E

�

:=)

~

E

�

=

~

E

0;�

+�

~

E

�

(4.4)

and

~

E

0;�

is given by expression (3.8). In the ase when

the suseptibility parameter � 2 R

+

is too small, equa-

tions (4.4) and (4.5) an be easily solved, where by mak-

ing it possible to implement the onstraints (1.10) and

(1.11) into the analysis of the ground state energy E

�

2 R .

Thereby, we sueded in �nding a losed system of re-

lationships on light and rystal parameters giving rise to

the signal and idler intensities of radiated states inside a

rystal. An analysis of this system relative to nonequilib-

rium dynamial properities of the model will be a subjet

of next Part 2 of this work under preparation.
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R�VNOVA�N� RAD��C��N� STANI ODN��Õ NEL�N��NOÕ

KVANTOVO-OPTIQNOÕ SISTEMI

M. M. Bogol�bov

1

, U. Taner�

2

, A. K. Prikarpats~ki�

3

1

Matematiqni� �nstitut �men� V. A. Steklova RAN, V�dd�l statistiqnoÝ mehan�ki

Moskva, Ros��s~ka federa��

2

Sh�dno-Seredzemnomors~ki� un�versitet, fakul~tet matematiki, Fama�usta, K�pr

3

G�rniqo-metalurg��na akadem��, fakul~tet prikladnoÝ matematiki, Krak�v, 30059, Pol~wa

ta Sh�dno-Seredzemnomors~ki� un�versitet, fakul~tet f�ziki, Famagusta, K�pr.

Bagato suqasnih elektronnih prilad�v funk�onu�t~ za dopomogo� optiqnih si�nal�v, �enerovanih

zavd�ki vzamod�Ý roboqogo seredoviwa tipu kristala z� zovn�xn�m lazernim viprom�n�vann�m. Osk�l~ki

v b�l~xost� ih prilad�v vzamod��  nel�n��no�, a proesi, wo Ýh stab�l�zu�t~, kvantov�, to va�liva

rozrobka v�dpov�dnih p�dhod�v do vivqenn� Ýhn�h r�vnova�nih rad����nih stan�v stosovno do zovn�xn�h

umov, nakladenih na sistemu. Nam vdalos� zna�ti zamkneni� nab�r sp�vv�dnoxen~ na zovn�xn� parametri

sistemi kristal{sv�tlo, wo privodit~ do kvaz�r�vnova�nih si�nalu ta �ntensivnosti stan�v, viprom�n�-

vanih useredinu kristala. Ce �  osnovno� meto� zaproponovanoÝ pra�, u �k�� rozvinuto suqasn� kvantov�

teoretiko-pol~ov� metodi anal�zu rad����nih stan�v stosovno odn�Ý nel�n��noÝ kvantovo-optiqnoÝ sistemi,

wo ma va�liv� zastosuvann� v elektron��.
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