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A lot of modern electronic devices are operating with optical signals generated due to the in-
teraction of a working substance like crystal with an external laser radiation. As in most of these

devices the interaction is nonlinear and processes making them stable are quantum, it is important
to devise suitable approaches to studying their equilibrium radiative states subject to the external
conditions imposed on a system. We succeded in finding a closed system of relationships on exter-
nal crystal-light parameters yielding the quasi-equilibrium signal and idler intensity states radiated
inside a crystal. This is the main aim of the presented work developing the modern quantum field
theory methods for the analysis of radiative states in a nonlinear quantum-optical system having

important applications in electronics.
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I. INTRODUCTION

A great deal of studies was done concerning the prob-
lems of stability, bifurcation behaviour [1,2] and dynam-
ical properties [3-5] of atomic and molecular systems
having applications in optical bi-stability of a laser cav-
ity with a nonlinear crystal medium, in some microelec-
tronics and other devices based on nonlinear interaction
processes with radiation. Subject to multi-photon exci-
tations of poly-atomic molecules undergoing also a self-
interaction via the Kerr effect the related processes can
be modeled [5,6] by means of the following quantum-
optical approximated Hamiltonian operator

H= hwoata — hX0a+a2a+

+ x(ate+ act) + hwicte,

(1.1)

acting in a Fock space ®, where xyo € R} and x € R4
are coupling constant parameters, a,at : ® — ® are de-
struction and creation signal Bose-operators and ¢, ¢t :
® — @ are these of an external radiation interacting with
an active nonlinear media of a device considered.

If the coupling parameter xy = 0, then the nonper-
turbed Hamiltonian

Hy = hwoata — hiyoata®at + hwicte (1.2)

is not quadratic in (a,a™)-operator terms, but is such
in the (a*a)-terms:

Hy = h(wo — xo)ata — hXo(a+a)2 + hwieTe. (1.3)

The latter obviously suggests a way for finding its spec-
trum in exact form based on that of the particle number
operators Ng = ata, Ny =cte:

H0|Qm,n> = Em,n|Qm,n>a (14)

where |Q,,,) € ®, m,n € Z4, via the standard Dirac
brac-ket notation, and

Eppn = h(wo — xo)m — hxom? 4+ hwin (1.5)

as ata|Qp, ) = m[Qy, ») and cte|Q, ) = n|Q ) for
all m,n € Z4, can be easily constructed as follows:

|Qm n> :: (C-I-)n(a-l-)m

: WIO% (1.6)

where [0) € ® is the standard vacuum state of the Fock
space ®. Thereby, we are now in a position to describe
the ground state |2) € ® of our dynamical system (1.1)
under nonzero interaction. Since the Hamiltonian oper-
ator describes a coherent absorption of an external ra-
diation of frequency w; and formation of signal photon
states of frequency wg the total radiative energy is not
conserved, meaning thereby that the process described
by the Hamiltonian (1.1) should be considered as dissi-
pative.

Nevertheless, the task of finding the equilibrium
ground state of the model Hamiltonian (1.1) is still in
force owing to the non-conservation both of signal and
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radiation photons generated by laser. Thus, we can con-
sider our Hamiltonian (1.1) in the chemical potential ex-
panded form

f]u = hwoata — xoata?at + x(atc+ cta)

+ hwicte — poata— pycte, (1.7)

where po, 17 € R’ is a chemical potential of our sys-
tem at the equilibrium ground state |©2,) € ®. It can be
determined from the following characteristic equilibrium
conditions imposed on the system:

—OE, /0 =< QulatalQ) = No, (1.8)

—OE, )0 =< QuletelQ,) = Ny,

where Ny € Z is the equilibrium number of activated
with signal photons molecular states in a crystal and Ny
€ Zy is the equilibrium number of external laser radiated
photon states inside a crystal due to interaction. One can
easily observe now from (1.8) that the total number

No+ Ny = Ny, (1.9)

is constant, being equal to a total number of radiated
photons by laser. This equality is evidently true only
in the case when the total amount Ny of active molec-
ular states inside a crystal i1s greater than the amount
N of photons radiated by laser. Anyway, the inequality
N; < Ny is satisfieg in general by most of quantum-
optical electronics devices. The condition (1.9) in the
form

—(9E, /0o + 0, )0p1) = Ny (1.10)

should be augmented still by another important physical
condition

OB, /Ny = 0, (1.11)

meaning evidently, that the ground state [Q2,) € ® must
be specified by the least energy F, € R subject to the
amount of emitted signal photons Ny € Z 4 owing to the
interaction of a crystal with laser radiation. Two condi-
tions (1.10) and (1.11) constitute obviously a complete
set of constraints imposed on our ground state |Q,) € ®

iGor (1) = (QuNIT (e, o0 () ) ()12 V),

to be determined uniquely. For the above constraints to
be implemented analytically we need to develop a tech-
nique for finding the quantities (1.8) in the functional
form suitable for the analysis. This can be done based
on the Feynman diagrammatic approach [7,8] to inter-
acting quantum fields.

II. THE FEYNMAN DIAGRAM APPROACH:
GREEN’S FUNCTIONS

As is well known [7,8], the most effective method of
finding the ground state characteristics of the Hamilto-
nian (1.1) under constraints (1.10) and (1.11) is making
use of Feynman diagrammatic approach subject to the
interaction Hamiltonian Hi,, = H, — Hy , in the inter-
action representation. Especially it proved to be of use
for calculating the standard Green’s functions [7] in the
Heisenberg representation:

iGo(t,1") = (Qu|T (an, (t)afy, (t')Q), (2.1)
iGy(,1) = (T (cn, (t)cfy, (1) |),

and the so-called anomalous Green’s function
Gt 1) = (QuIT(em, (Vah, ()R, (22

where the operation ”7T” denotes the standard chrono-
logical operator ordering, giving rise to the following ex-
pression for the ground state energy £, € R :

Byt = (QulHalQ) = (Qul Ho |2

— ix(Gor(t,17) + GG (8,17)) 0. (2.3)

Owing to the following simply verified general expression
1 ~
Bu=Eout [ AN (), (24
0

where |Q,(A)) € ® is the ground state corresponding to
the scaled interaction Hamiltonian /\Hmt :® — &, and
Fo,u € R is the ground state energy of the nonperturbed

Hamiltonian Ho,u :® — &, one can determine (2.3) only
due to the anomalous Green’s function (2.2) redefined as

where A € (0,1] is a scaling parameter. Namely, from (2.4) and (2.5) it follows that

1
By = B = ix [ dA(Gua(t:t) + Gy a6 ) _
0
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where the energy Ej , is found easily owing to the expression (1.6):

EO,M = h(wo — Xo —/,Lo/h)No — hXONOZ —|—hw1(N1 —/,Ll/h)

Whence we arrived at the need to calculate just the
anomalous Green’s function (2.5) subject to the scaled

interaction Hamiltonian AHipy, : @ — ® for all A € (0,1].
This problem we shall discuss in detail below.

III. THE FEYNMAN DIAGRAM APPROACH:
PERTURBATION SERIES EXPANSION

Subject to the Green’s functions (2.1) and (2.2) we
need to define the nonperturbed ground state | ,) € @,
satisfying the equation

Ho,ulQ0,4) = Eo,ul0,5), (3.1)
where Ej , is given by the expression (2.7). Owing to
the fact that photons are Bose-particles, we are forced
to make shifts in (a,a™) and (c, ct)-operators produc-
ing so called Bose condensates [9] subject to constraints

(1.8):

a:=a++\/No, a":=at+/No, (3.2)

¢ =>é+/Ni, ¢t :=¢et+/N,

where operators @ and ¢ satisfy the following no-particle
vacuum state conditions:

@lQ0,) =0, Q) =0. (3.3)

Subject to transformations (3.2) our interaction Hamil-
tonian Hint : ® — ® becomes like

Hine = x [(a* + Vo) (¢4 V)
(64D e V)
= x [(@*e+act) + (ev/No + av/)
+ (FFVNo + @t V)] + 20/ Vol

(3.4)

This means that the nonperturbed Hamiltonian ﬁo,u
should be modified by the constant term 2x+/No N1 giv-

ing rise to the expression:

Hou = fi(wo = po/h) (&% +/No)

(2.7)

x (a+¢N_0)+h(w1_m/h)
X (5++\/N_1) (5-1- N1) + Xo (El++ No)
x (a+\/N_0)2 (a++ No) + 20V NoNy.  (3.5)

Thus, the scaled modified interaction Hamiltonian be-
comes like

M = Ax [(at é+a &h)

+ (F+e) VNo+ @ +a) VN, (36)
where A € (0,1] .

Consider now the modified ground state |Q,) € ®,
satisfying the equation like (3.1):

HO,M|QO,M> = Eo,u|f~20,u>~ (3.7)
Since transformation (3.2) is linear the spectrum of op-

erator (3.5) coincides with that of the operator Ho,u up
to the constant shift 2x+/NoNy. Thus,

Eo = (hwo — xo0 — po/B)No — hxo N& (3.8)

+ Awq (N1 — pa/h) + 2x/ No N1,
and we arrived at the starting point of formula (2.4):

1
By = Fo, +/ dIn M, (VA2 (N),  (3.9)
0

where the term AHiy; is given by (3.6). For the matrix
element in (3.9) to be calculated in an analytical form, it
is necessary to find all Green’s functions modifying (2.1)

and (2.2):

iGoa(t,t) = (uN)[T(ag, (0@}, @)90), (3.10)
iGio (1) = (T (g, (0 (1)[9,(N),
and

iGor A(1,7) = (QuIT @ ()N (3.11)
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Owing to general Feynman rules of finding Green’s func-
tions (3.10) and (3.11) it is necessary first to calculate all
nonperturbed Green’s functions at xy = 0, that is func-
tions

Gy (1) = (o, T (g, , Ok, (@)[Q0,),  (3.12)

iGE (1,1) = (Qo,ulT(Cg, , (O, ()]0,

and

iGoy (1.1') = (0l T, , (OdF, () Q0,)  (3.13)

for all times ¢, € RL. Due to the result (3.8) the Green’s
functions can be found explicitly after some simple but
a bit cumbersome calculations as follows: for photon
creation-annihilation Green’s function one gets

G (t, 1) = Nyexpli(t — ') (wo — xo — o/ — 2x0No/h)] + 9(t — t') + No{explit(wo — xo — po/h — 2x0No/h)] — 1}

x {exp[—it'(wo — x0 — pro/h — 2xoNo /)] — 1},

GO (4, ') = Ny expli(t —t') (w1 — pn /)] — ') + Ny{explit(wr — pu /R)] — LHexp[—it’ (w1 — p1 /B)] — 1},

and for the anomalous Green’s function one gets

Gty =o.

(3.14)

(3.15)

(3.16)

Thereby, we can express now Green’s functions (2.1) via Feynman diagram series making use of the Dyson equations

[7]:

S ) = GOy N RO )
Goalt, ') = Gy (t,t)—i—/]Rdr /Rdr G (T

Gt 1) :G(lo)(t,t’)—|—/Rdr’/ﬂgdr”(~}éo)(t,r)2“

—~% —~
with kernels >, and >, , called proper self-energy
insertions (or mass operators) [7] and expressed in the
following diagram form:

*

—iZO )\(T, ) =

)

- emN et e en e
HET N e e
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(r,7)Go(, ), (3.17)

)

(r, 7)Gia(7, 1), (3.18)

)

AV eV e VAVRLY
OO

Ax
h

| o
- (X PG GO G, )
(3.18)

where we denoted by the convolution operation be-
tween Green’s functions, and

R CEORN

Wk

GOty =

(3.19)

Thereby, we can now use of the constraints (1.10) and
(1.11) for determining the chemical potentials pg andy .
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Based on expressions (3.17) and (3.18) one arrives at
the following integral relationships for Green’s functions

(3.10):

N N Av) 2oL .
Goalt,t') = GY(t, 1) + (%) Gy« Ry (1,1,

M) - - ~
—|—<?X) G(lo)*Géo)*RaA;

(3.20)

An expression similar to the above-given ones can be
written also for the Green’s function (3.13) on what we
shall not dwell here.

IV. THE EQUILIBRIUM STATE ANALYSIS

_As was mentioned before, for the equilibrium state
[€2,) € ® to be specified completely, we need to imple-
ment constraints (1.10) and (1.11) on the energy value
Eu subject to chemical potentials po andp;. Since the

nonperturbed part Eo,u (3.8) of this energy is already
determined, we need only calculate the integral part of

(3.9):

AEN:/O d1n A, (N A Hine |2, (V)

1
:X/ d/\<Qu
0

+ /Ny (at

(4.1)

(M[a* é+a &)

+ @) + V/No (&t + )], (N)
:iX/OldA[Gm(o,o )+ G5y 2(0,07)]
/I [ s + Aoy
v/ [ G0 + o)

where we defined for any ¢ € R!

The anomalous functions (4.2) can be easily calculated
making use of the Feynman diagram expansions:

A\ - v\ - -
= N0<Z X) GO 0+ (ﬂ) GO ()G

A - - ~
b (hx) GO G GO0+
= Co(t) + Cr (),

where by definition, the sign “® ” means a factor /Ny,
the sign “x” means a factor v/N7, an internal dot “.” cor-
responds to a factor (ix/h), with the following Dyson’s
type relationships having to be satisfied:

Aoa) = VA (5) 6000
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(4.3)
i\ -~ - N
! (%) Ciax G x G (1),

Having solved equations (4.4) and (4.5) we arrive due
to expressions (4.3) and (4.1) at the energy shift AEH
which makes it possible to satisfy constraints (1.10) and
(1.11), where E, should be replaced by Eu :

E,:= E, = FEy,+AE, (4.4)

and Eo,u is given by expression (3.8). In the case when
the susceptibility parameter y € R is too small, equa-
tions (4.4) and (4.5) can be easily solved, where by mak-
ing it possible to implement the constraints (1.10) and
(1.11) into the analysis of the ground state energy E,
eR.

Thereby, we succeded in finding a closed system of re-
lationships on light and crystal parameters giving rise to
the signal and idler intensities of radiated states inside a
crystal. An analysis of this system relative to nonequilib-
rium dynamical properities of the model will be a subject
of next Part 2 of this work under preparation.

ACKNOWLEDGEMENTS

The authors are grateful to Profs. M. Halilsoy and E.
Aydiroglu for interesting discussions. One of the authors
(A. P.) is cordially indebted to the Physics Dept. at the
EMU of Famagusta for a visiting position at this Depart-
ment owing to what completed this work was finished.

[1] U. Taneri, K. Huseyin, P. Yu, Dynamics and Stability of
Systems, 10, 145 (1995).

[2] J. M. Yuan, G. C. Lie, Molecular bistability and
chaos. Modern Nonlinear Optics. Part 3, (John Wiley &
Sons.Publ., 1994).

[3] A. K. Prykarpatsky, 1. V. Mykytyuk, Algebraic integrabil-
ity of nonlinear dynamical systems on manifolds: classical
and quantum aspects (Kluwer Academic Publ., Dordrecht—
Boston—London, the Netherlands, 1998).

[4] V. I. Yukalov, A. S. Shumovsky, Lectures on Phase Tran-
sitions (World Scientific Publ., Singapore, 1990).

[5] D. F. Walls, G. J. Milburn, Quantum Optics (Springer-

Verlag, 1994).

[6] N. N. Bogoliubov, N. N. Bogoliubov (Jr), Introduction
to Quantum Statistical Mechanics, (World Scientific Publ.,
1984).

[7] A. Abrikosov, L. Gor’kov, I. Dzyaloshinski, Methods of
quantum field theory in statistical physics (Dover Public.
Inc., New York, 1975).

[8] N. N. Bogoliubov, D. V. Shirkov, Introduction to quantum
field theory (Prentice Hall, NJ, 1970).

[9] N. N. Bogoliubov, Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 77
(1947).

PIBHOBA XKHI PANISIIINHI CTAHU OJHIET HEJIHINHOT
KBAHTOBO-OIITUYHOI CUCTEMHU

M. M. Boromro6os!, V. Tanepi?, A. K. IIpukapnarcekuii’
! Mamemamuvnuti incrmumym imeni B. A. Cmexaosa PAH, Bi0dia crnamucmuunol Mexaninu
Mocxsa, Pociticoxa dedeparia

2 Cwidno- Cepedzemromopetrud ynisepcumem, gaxysvmem mamemamury, Pamarycma, Kinp
S Nipruno-Mmemanypeiting axademia, gaxyaivmem npuxaadnoi mamemamury, Kpaxis, 30059, Hoavwa

ma Cxidno-Cepedzemromopcoruti ynicepcumem, daxyavmem dizuxu, Pamaeycma, Kinp.

Barato cyvacHux eneKTpOHHUX TPMIAmB (bYHKINOHYIOTH 3a [IOMOMOTOI0 ONTUYHUX CHUTHAJIB, TEHEPOBAHUX

3aBIAKHN B3aeMOIll poboYoro cepeloBulla THUILY KPUCTaJia 31 30BHINIHIM JIa3epHUM BUIIPOMiHIOBaHHAM. OCKIJIbKI

B OLIBIIOCTI IMX TPHUJIAIIB B3a€MOIiA € HeJNHIAHOI0, a IPOIeCH, Mo 1X cTablIsyioTh, KBAHTOBI, TO BaXKJIMBA

po3pobKa BIANOBIAHMX IMAXOIIB A0 BHBYEHHs 1XHIX PIBHOBAXKHUX PATiANIAHUX CTaHIB CTOCOBHO 10 30BHIIIHIX

YMOB, HaKJaJeHnX Ha cucreMy. Ham Boasocs sHaliTi 3aMKHeHHMI Hablp CIIBBIIHOIIEHb Ha 30BHIIIHI ITapaMeTpu

CHCTeMU KPHUCTAJI—CBITJIO0, 10 TMPHUBOANTE T0 KBa3IPIBHOBAXKHUX CHUTHAJY Ta IHTEHCUBHOCTH CTAaHIB, BUIIPOMIHIO-

BaHUX ycepeauHy Kpucrasa. Lle 1 € 0CHOBHOIO MeTOr0 3aIllpOIIOHOBAHOI Mpalll, y sAKI po3BHHYTO CydacCHI KBaHTOBI

TEOPETUKO-IIOIBOBI METOIN aHAJI3y PaMidiilHX CTaHIB CTOCOBHO OMHIE] HeJIHIIHOI KBAHTOBO-OIITHYHOI CUCTEMH,

O Ma€ BAXKJIMBI 3aCTOCYBAHHSA B €JIEKTPOHILI].
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