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The simulation of the observational process has been made with the purpose of evaluating
efficiency of stereoscopic measurements of the Solar system body’s positions with the application
of the Interplanetary Solar Stereoscopic Observatory (ISSO) instruments in the stereoscopic mode.
Pluto is adopted as the model object. The orbit obtained by integrating equations of motion using
a series of nine observations with a one day interval allows to predict the object’s position up to
the period of five years with an error not exceeding 20”.
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I. THE INTRODUCTION

Triangulation measurements of the positions within
the limits of a Solar system and determination of the
nearest stars parallaxes from synchronous observations
in the stereoscopic mode with instruments of the Inter-
planetary Solar Stereoscopic Observatory (ISSO) [1-3]
is a part of the scientific program of the project. The
medium size astrographs are designed for observation
from both spacecraft the direct exposures of star fields.
The required minimum aperture is 50-70 cm, attainable
observable magnitude Wiy, is approximately 217, An ad-
ditional small astrometric instrument is planned as the
star sensor for the purposes of autonomous navigation
and for making auxiliary observations (the aperture up
to 30 cm, limiting stellar magnitude is ~ 17™). Further
modelling estimations of the expected accuracy are pre-
sented. It is supposed that the measurements are made
in the coordinate system of a high-precision astrometric
catalogue and the following software is placed onboard
the both spacecraft, working in the autonomous mode:

1) The software package for calculation of the ephe-
meris positions of the Earth, Moon, major planets and
their satellites, asteroids having orbits in a system of the
theories DE200/LE200 or one of the later versions;

2) Catalogue and software for calculation of the astro-
graphic positions of star and their brightness over the
whole sky;

3) The numerical theory of the motion of zero mass
bodies (both space vehicles are considered as the third
body in the three body problem of Celestial Mechanics)
in the vicinity of the triangular libration centers in the
system “Sun — barycenter of Earth+Moon”;

4) An onboard processor with conforming operating
system and timing system.

Components (1) and (2) define the onboard ephemeris
as the basis of the project coordinate system. It is known
that the navigation of space vehicles in the far space is
possible only relatively to the Solar system bodies’ di-
rections projected onto celestial sphere, and defined by
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a high-precision catalogue. Evidently, the application of
the CCD-registration will demand a modern catalogue
with the star density of about 1 star per 4 square min-
utes.

II. GENERAL ESTIMATION OF THE
STEREOSCOPIC METHOD ACCURACY

In Fig. 1 the simple stereoscope scheme is shown as
designed to evaluate the accuracy estimation of the mea-
sured distance to a planet using the stereoscopic base B.

Fig. 1. To the estimation of the triangulation measure-
ments accuracy.

The observations are made simultaneously aboard the
spacecrafts set in the vicinity of the Lagrange circular
libration centres in the system “the Sun (S) — Earth
— Moon barycenter (7). The base vector B = LslL,
lies exactly in the plane of the ecliptic SXY, and it is
monitored by the on-board equipment [3] by measuring
the directions of the vectors SLs, SL4, LsT, L4T in the
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barycentric frame of reference SXYZ. The position vec-
tor of the barycenter T' at any required moment is calcu-
lated on the basis of theories of motion derived in the Jet
Propulsion Laboratory [4], thus its value (the modulus)
and direction are known. Obviously, when the vector ST
1s known, the moduli of the vectors SLs, SLa, LsT, LaT
become known, as well as the vector R, of the position
of the planet in question, through a simple triangulation
solution.

Let Sz be the line of crossing of the plane of ecliptic
with a plane perpendicular to the base vector B. Then
other two planes, which are also perpendicular to B and
go through its ends Ls and L4, respectively, would form
the boundaries of the area, where the stereoscopic mea-
surement is carried out with optimum precision.

Let us suppose, that the planet P is observed stereo-
scopically, so that the perpendicular from its center on
the base vector B is Lz P. We have the rectangular tri-
angle PLs L4, where the side B is known and the angle
P = « has been measured, and the angle Ls is the right
one.

We have the elementary formula fitting the sides and
the angle « in this triangle (the reduction for the aber-
ration and the light-time has yet to be made):

B
. _B 1
sina = —, (1)
where D 1s the length of hypotenuse or the distance of a
planet from point L.
Differentiation of right-hand and left-hand members of
equation (1) gives

D-dB—-B-dD
e e

cos o -da =

The equation for the increment dD as a function of
increments do and dB and of the measured distance D
becomes

D D?
dD_§~dB—§cosa~doz, (3)

which may be represented by the equivalent dispersion
variations of the measured values (neglecting the high
order terms):

(6D)* = (%)2 - (6B)” + (%Zcosa)z S(6a)? . (4)

From equation (4) it is evident, that the contribution
to the error of the unknown distance D, made by an
error of determination of the base B, is proportionate
to the first power of D/B. The contribution to this er-
ror made by the inaccuracy of angular measurements, is
proportionate to D?/B. Hence the increase of the angu-
lar measurements accuracy is essentially significant for

increase of the accuracy of triangulation measurements.
Evidently, the error decreases with increase of base B.
At the same time it’s monitoring must be performed.

III. DEFINITION OF THE POSITIONAL
VECTOR OF THE SOLAR SYSTEM OBJECT

Let us measure now in the mode of the stereoscope
the position of the planet P. In Fig. 2 the orbit of the
planet N Py Ps Ps is shown together with its projection to
ecliptic plane N P{ P4. The vector of base B = L4Ls and
two angles o« and [ at the base in the triangle L4LsP;

OLs,OLs, 0T
are known. The vectors OLs, OL4, OTs, L4153, LT3 are
known as well. The directions of the vectors Rap, =

—
LaPi, Rsp, = Ls Py are measured also. The formulas for
calculation of moduli of these vectors are simply derived
as the solution of the plane triangle LsLs P .

Fig. 2. A model of triangulation measurements of the po-
sitional vector of the object P in Solar system used for sim-
ulation.

The final formulas for calculation of vector moduli

Ry4,, and Rj,, are:
|R4p1| = |B|% (5)
|Rs,.| = BISS [
P

Here « is the angle Py L4Ls, 3 is the angle LyLs Py,
p 1s parallax angle at the vertex Py, B is the vector of
base.

The proper barycentric position vector of the planet
at the moment ¢; 1s calculated as the sum of vectors:

R (t1) = pa(t1) + Ra,, = ps5 (1) + Rs,,,, (6)

where p4 (t1), ps(t1) are the radius-vectors of space
vehicles at the moment ¢;. Thus

pa(ti) —ps (t1) =B (). (7)
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The repeated observation of the same planet at an-
other (near) moment ¢ is followed by the determination
of barycentric radius-vector R (¢2) and determination of
the vectors difference

AR (tl+%) “R(t)-R(t). (8

If the object has been observed for the first time, then,
in order to find it again in the future, it is necessary
to construct its orbit; this 1s possible at least from two
barycentric observations [5].

To increase the accuracy of such measurements it is
proposed to determine more precisely the velocity vector
of the body observed for the first time. For this pur-
pose it is proposed to perform a series of observations of
this body with approximately diurnal interval between
observations which can be easy realized in orbital condi-
tions. Further, the series of barycentric position vectors
{R(t), ¢=0,1,2,...,n} is representable as the sum of
a smooth vector function and a random vector-function
of noises. The statistical smoothing allows to receive a
mean weighted barycentric position vector (the filtered
value of a smooth vector function at the mean moment of
a series) and the velocity vector of a planet. The accuracy
of a mean weighted values from the series of observations
will be approximately y/n times higher than the accuracy
of a single observation. The orbit as constructed on the
basis of the results of the series observations will be more
precise and veritable.

IV. OUTCOME OF SIMULATION

To show the correctness of the previous statement and
to evaluate the efficiency of such series we make a simu-
lation of the problem making some simplifications.

Pluto is taken as a model object. Its orbit in the sys-
tem DE200/LE200 has been taken as the accurate one.

It 1s supposed that the observation of a series was made
near the plane perpendicular to the base of the stereo-
scope with the symmetrical distribution of the time mo-
ments relatively to the time moment of intersection of
this plane by Pluto. The modelled orbit will have this
time moment as the time moment of osculation. The gen-
eral arrangement of the simulation is shown in Fig. 2. In
Fig. 3 the position of Pluto in the orbit is given at the
epoch 2005, May, 19, 0h UT. The ephemeris positions
of Pluto and the ephemeris positions of the “observers”
(the spacecraft in points Ly and Ls) have been calcu-
lated for 9 moments of modelled observations with an
interval of 1 day, — all in the vertices of the triangle
LyT5L5. The directions Ryp, and Rs,, for each of the
time moments, considered in the presented simulation as
the true ones, have been computed. To receive their “ob-
served” analogues, “the true” values have been noised
by the random error of the angular observations, chosen
with the help of the generator of the random numbers,
in the supposition of the plane distribution of probabil-
ity in a circle of radius 3¢, where ¢ = £0”.03 — the
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expected error of a single direction determination from
one exposure with the CCD-micrometer.

Fig. 3. The scheme of the positions of a modelled object
on the example of Pluto’s orbit.

Further “observations” have been smoothed as it was
said above. The values of the radius-vector and the ve-
locity are obtained at the epoch of oscilation. The orbit
for the “observed” planet has been computed after the
Everhart’s method. The estimation of accuracy is made
in terms of “observation minus calculation”. The results
are shown 1n Fig. 4.
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Fig. 4. The prediction of errors of the model orbit ob-
tainned from a 9-point series of observations. Time zero point
is 2005, January, 0, Oh UT.
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V. CONCLUSION

The model orbit obtained from a 9-point series of
stereoscopic observations performed in 8-10 days, allows
to predict the position of a new (unknown) object with
the accuracy of 20 arc seconds within the interval of 5—6
years. The repetition observations next year when the
planet will again appear near the plane perpendicular to
the stereoscope base vector should essentially improve
the orbit.

It is very essential to supply the highest angular mea-
surements accuracy in the on-board navigational instru-

mental complex of the project. Continuous monitoring
of each spacecraft location is possible with using the an-
gular observation of the planets and must be performed.
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OIITHKA TOYHOCTH TPIAHI VJISIINHNX BUMIPIOBAHD ¥V IIPO€EKTI
“MIXKIIJIAHETHA COHSIYHA CTEPEOCKOIITYHA OBCEPBATOPIA”

M. C. Uybeii

Hyaxiecora acmpornomivna obcepsamopis,

Canxm-Ilemepbype, Pocia

3miliCHEHO MOIETFOBAHHSA TIPOIIECY CIIOCTEPEKEHD 3 METOIO OINHKH €(PeKTUBHOCTH CTEPEOCKOINYHNX BUMIPIO-

BaHb po3TalnyBaHHA TiJA COHAYHOI CHCTEMHU 3a JOIOMOIOI0 CTEPEOCKOIMYHOrO PEeXUMY poboTH IHCTPYMEHTIB

MixraameTHOl COHAYHOI cTepeocKom4vHoi obcepBaropil. Ak MomenbHuit 06’ckT Bukopmcrano Ilayron. Opbira,

OTpUMaHa IHTETPYBAHHAM PIBHAHB PYXY 3 BUKODHUCTAHHAM DALY 3 I€B’ATH CIIOCTEPEKEHD 3 OMHOIEHHNM IHTEPBa-

JIOM, Ja€ 3MOTY IMepeadadnT MoJI0KeHHA 00’ eKTa Ha Mepiofl 9acy 10 II'dTH POKIB 3 MOXUOKOI0, siIKa He IePEBUIILYE
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