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The review is devoted to the critical behaviour of the systems with Coulombic interactions.
The importance of polarizational effects near the critical point in such systems is emphasized. It is
shown that polarizational interactions essentially renormalize the initial effective Landau—Ginzburg
Hamiltonian of the systems. The dipole fluid model as the basic one for the criticality of ionic liquids
(molten salts like NaCl) is considered. It is shown that taking into account the internal degrees of
freedom, namely the rotational ones of an ionic pair allows to formulate the new approach to the
problem about the physical size of a pair. The estimates for the critical parameters within dipole
fluid model are given. Possible scenarios for the criticality of the system with Coulombic interaction
are proposed. The possibility of formation of inhomogeneous states in the critical region is discussed.
Some specific effects caused by the polarizational induced interaction between order parameter and
the charge density fluctuation characteristic for the system with the direct Coulombic interactions
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are discussed. Some new problems connected with the Coulombic criticality are outlined.
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There are suspicions that some systems show tricriti-
cal behaviour [16,15]. In fact, it means that 1) Ginzburg
number for many systems with Coulombic interaction
(CI) is abnormally small or 2) for some systems the
Coulombic interactions lead to the quantitative change
of the critical behaviour at all 7. On the other hand the
nature of low values for the dimensionless critical densi-
ties and the temperature for molten salts like NaCl needs
clarification. In particular, the question about the degree
of ionization of the system near the critical point remains
open. The clear answer to these questions is one of the
main problem for the modern theory of critical phenom-
ena.

Here we should note that in fact there is another type
of the systems with Coulombic interaction — liquid met-
als (alkali metals and mercury). It is well grounded ex-
perimentally that liquid metals belong to the Ising model
universality class of the critical behaviour [14]. More-
over their critical behaviour is characterized by the same
Ginzburg number value as that in molecular liquids like
Ar, Ne, etc. The difference in interparticle interaction
causes the difference in nonuniversal critical amplitudes.
The asymmetry of a coexistence curve here serves as the
characteristic example. In monovalent alkali metals with
lowest T, (Cs, Rb) a strong asymmetry takes place. In
contrast to it the liquid—vapor equilibrium curve for di-
valent Hg looks nearly symmetrical. This difference is
connected with existence of metal-insulator transition
(MIT), which leads to a significant difference in inter-
particle potential for vapour and liquid phases in alkali
metals. Alkali metals in liquid phase near critical point
are indeed metals with nearly free electron transport
properties, while for Hg MIT happens at higher density
pM1 > pe. Thus, with respect to the conductivity values,
liquid mercury near critical region is treated as slightly
ionized fluid rather than liquid metal [14].

From the thermodynamic point of view the position
of the vapour—liquid critical point is determined by the
conditions:

@), @, o

where p, v, T are the pressure, the specific volume and the
temperature correspondingly. These conditions do not
depend on the specific character of interparticle interac-
tions. Within the Landau approach for the free energy:

F=Fo+V[A2¢”* + As¢® + Asg® + .. ] (2)

from (1) it follows that only A; and Ag can vanish at the
critical point.

The fluctuations of the order parameter ¢ and the
charge density change the initial values of coefficients A;.
For the non-ionic liquids these variations are not drastic
in the sense that A4 remains positive. However, for the IL
a new possibility may be realized. Due to the association-
dissociation process near the critical point the appear-
ance of spatially inhomogeneous state 1s possible. More
exactly, the drops of fully dissociated liquid can appear in
dipole fluid and vise versa. Such a possibility will change
essentially the type of the critical behaviour.

For the systems with CI there is one more important
cause which influences the character of the phase transi-
tion. Due to strong fluctuations of the order parameter
the fluctuations of the dielectric permittivity also abnor-
mally grow. As a result the interaction energy Uc of
the charge fluctuations dp is not described by the simple

formula:
Sp(r)dp(r’)
!
260//d dr v — v/| (3)

characteristic for the systems with quasiconstant values
€o of the dielectric permittivity. In the considered case
the interaction energy will be more complex functional
of type:

1 1
= 5/ /drdr’ép(r)ép(r’);a/[(n (r,v'|qu,...,qs) d€(r1) ... d€e(qn)dq .. . day, (4)

o 1
where [XO = m

. The explicit form for the kernels K, should be determined from the Poisson equation for a

medium with inhomogeneous dielectric permittivity. The interactions, generated by the functions K, ,n > 1, we will
name as polarizational ones. As a consequence of direct connection between de and ¢ the polarizational terms to Uy
renormalize also the corresponding coefficients of the Landau—Ginzburg Hamiltonian (LGH):

1

el = [V [JV806)7 + ar6'() + ass'(e) + . 5)
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It is very essential to note that the renormalization may
be effectively amplified by the relatively small value of
a4, which, as it appears, takes place in IL in comparison
with molecular ones [6]. The role of the polarizational
effects in the critical phenomena and construction of the
Landau—Ginzburg Hamiltonian for the solutions of elec-
trolytes and ionic liquids were investigated in [17] and
[18].

In this review we present the main results of investiga-
tions of critical phenomena in systems with Coulombic
interactions with special accent on the role of the po-
larizational effects. Our attention will be focused on the
following main questions:

1. the nature of the critical point in molten salts like

Na(Cl,

2. the definition and discussion of the main proper-
ties of polarizational interactions in electrolyte so-
lutions and IL;

3. the concentration dependence of the Ginzburg
number for electrolytes near their vapour-liquid
critical points;

4. the estimate of the Ginzburg number for IL like
Na(Cl,

5. the nontrivial fluctuational shift of the critical
point locus for the electrolytes;

6. the new phase which appearance is possible near
the critical point;

7. dielectric properties of ionic fluids.
The material is arranged in the following way:

1. Chapter I is devoted to the general facts on the crit-
ical behaviour of different systems with CI. Here we
present also the alternative basic models for the
description of the Coulombic criticality in molen

salts: the RPM and dipole fluid (DF).

2. The definition and general discussion of the polar-
izational interactions are in Chapter II. Our con-
sideration will be restricted by the discussion of
the polarizational effects mostly on the mean field
level. The explicit form of the LGH for the systems
of interest 1s proposed.

3. The dependence of the Ginzburg number on the
relevant parameters of the system with CI is dis-
cussed in Chapter III.

4. In Chapter IV such important characteristics as
conductivity and the asymmetry of the binodal are
analyzed.
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I. CRITICAL BEHAVIOUR OF THE SYSTEMS
WITH COULOMBIC INTERACTIONS

A. Types of systems with Coulombic interactions
and experimental facts

Critical phenomena in fluids with nondispersive
Coulombic interactions have attracted much attention
in the last ten years owing to a diversity of experimental
results. Early experimental results of [2,13,19]) favored
mean-field type of the critical behaviour while recent
studies [20,21] confirmed Ising-like asymptotics for the
systems under investigation.

The variety of systems studied experimentally can be
divided into two groups. Below we will name them as
Type I and Type II systems.

The systems of Type I are those where as is suggested
the Coulombic criticality takes place. The latter is char-
acterized by a pronounced narrowing of the fluctuation
region with probable mean field or the tricritical point
variants for critical behaviour. At least the apparent
crossover from classical to Ising-like critical behaviour
is expected. This group includes pure ionic fluids with
liquid-gas phase separation such as molten alkali halides
NaCl, KCl, etc. [3,5]. The liquid—vapor critical point
of these systems is located at very high temperatures
(T, ~ 10® K). This makes the experiments very difficult.
In addition for such systems the number of thermody-
namic degrees of freedom allows tricriticality as rather
degenerated but not generic case.

It is expedient to introduce common dimensionless
density and temperature [9]:

Ek’BT
9*/a

* 3

pf=na’, T"=

(6)

where a is the 1onic diameter, n = % is the total number
density, ¢ is the absolute value of the charge.

Typical values of p near the critical point is less than
0.1, and usually it is connected with small association
taken into account with the help of thermodynamic per-
turbation theory. However, the reliability of such type
estimates is not quite clear. Therefore the development
of the alternative approach grounded on the dipole fluid
model seems to be expedient. In the present paper we es-
timate the critical characteristics of the ionic molten in
the framework of the dipole fluid approach. We will also
show that the change of molecular parameters due to ro-
tations influences essentially the location of the critical
point.

From this point of view the ionic (quasi)binary mix-
tures with “room” critical temperatures (7, ~ 300 K) of
decomposition used in the experiments by Pitzer and co-
workers are more suitable [2,19,22,23] and widely used.
Tricritical variant of the critical behaviour for multicom-
ponent systems cannot by excluded a priory. The ex-
perimental results are interpreted in [16,15] within this
point of view. The possibility of tricritical nature of ob-
served peculiarities was also discussed in [6,7]. For such
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a conjecture to be valid the additional scale competitive
with correlation length of an order parameter must exist
[6]. For example, in polymer blends the apparent second
scale is the size of a molecule [24], which may lead to the
crossover. The physical meaning of its analogue, if there
exists one, for 1onic melts and electrolyte solution is not
clear [16].

Analogous problems arise for the second group, which
includes dilute solutions of electrolytes, such as aqueous
electrolytes (HoO+NaCl etc.) [25,26], and quasibinary
solutions [16]. Here the admixture of ions changes the
parameters of the critical point of pure solvent. Thus
the critical behaviour of a pure solvent is perturbed by
the Coulombic subsystem of 1ons. The critical behaviour
of these systems may exhibit a crossover from mean-field
to Ising-like asymptotics within the temperature inter-
val of an experiment. In particular, experimental data
for some solutions were fitted with mean-field exponen-
tial law up to 7~ 107* [13], i.e., the fluctuation region
1s much less in comparison with that for simple liquids
(Gt~ 0.1+1). This is in apparent contrast to the results
of [27] where (i decreases insignificantly if the ionicity
parameter grows.

2
_ ¢*/a
I = kBTC(O) (7)

Here TC(O) is the critical temperature of the solvent, pro-
vided that the critical behaviour belongs to Ising-model
universality class. The ionicity parameter (7) obviously
shows the relative strength of Coulombic and solvopho-
bic, short range forces. The last forms Ising like critical
behaviour of neutral system. Though the account of di-
rect Coulombic interaction in [27] was performed pertu-
batively without accounting the pair formation. It is clear
that in such a way there is no substantial interaction be-
tween Coulombic and molecular subsystems. Thus due to
simple screening of the Coulombic interaction no drastic
changes would be expected for 7 in such an approach.

To process such data, different assumptions in [28,29]
and [30] were considered. These affected the conclu-
sions about the existence of the crossover in such sys-
tems. The results of [30] show the nonclassical behaviour
through the temperature interval without any crossover.
In [28,29] the experimental data were fitted by a classical
EOS.

The basic model for these systems is the restricted
primitive model (RPM). The RPM is the system of equal
number of positive and negative charges ¢ of the diam-
eter a, immersed in a homogeneous medium of dielectric
permittivity €. It can be expected that such model is ade-
quate for ionic molten salts. Various theoretical approx-
imations and numerical simulations predict the liquid-
vapour critical point at very low dimensionless tempera-
tures and densities [6,31,12]. The nature of critical fluc-
tuations in this model are much less studied. The main
difficulty here is the interaction between number density

and charge fluctuations.

B. Mean-field theories of RPM

The consideration of the critical behaviour in such is
based on the so called Primitive Model, which 1s defined
by the classical potential:

iq5 +o-
Ulr) = (8)
o0, 7“2']'<0'

Note that due to classical character of the model, the
masses of the charges plays no role. If the symmetry be-
tween charges is ‘broken’; one gets the extended, ‘un-
restricted” version of the model (see [11] and references
therein). The restricted version of this model deals with
specific case of equisized ions with the same absolute
value of charge. The mean field theory for the critical be-
haviour of such a system is mainly constructed in three
ways: 1) thermodynamic perturbation theory [6]; 2) pair
correlation function analysis [7]; 3) computer simulation
of EOS [32,33]. The location of the critical point for RPM
varies in dependence of the interactions included into free
energy. Typical values of critical point locus are:

P~ 0.02=0.035 TF ~0.04=0.06. (9)

The MC simulations give to some extent contradic-
tory results for the position of the critical point as well
as for the type of the critical behaviour. For the lasts the
careful analysis of the finite size scaling effects is needed.
This probably the main cause for the differences between
the results based on the Gibbs ensemble [34] which lo-
cate the critical density at almost the same value as in
(9). Others based on the extrapolation of the dependence
of the cell size L suggest significantly higher densities
pr & 0.07+0.08 [32].

There have been proposed many approaches to investi-
gate the criticality of the RPM. The first approach is the
thermodynamic perturbation theory. The main goal of it
1s to incorporate as much physically relevant effective in-
teractions into thermodynamic potential (free energy) as
possible. In particular, it is based on the generalization of
classical Debye-Hiickel (DH) theory [35] for electrolytes.
It is assumed that the free energy of the system per unit
volume has the form:

Fp. ) =" F1 Y (pi, T) + &N T, pen, pa)  (10)

where f09(p; T) is the ideal gas term for neutral
molecules or ions, p; is the number density of the charges
if ¢+ = +, — and dipole pairs at ¢ = d. The second term
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Flex) (T, pen, pa) is the exchange part of the free energy
which can be represented in the form:

)(T, Pehs Pd)
(11)

FENT, pen, pa) = FONT, pens pa) + 1

where f)(T, pen, pa) is the part including hard core ef-
fects and all dispersive interactions of neutral molecules
and ions. In particular () (T pen, pa) can be taken in a
form leading to Carnahan—Starling EOS [36].

Direct Coulombic interactions are take into account
by the second term fM(T, pay, pa). Tt explicitly de-
pends on the charges ¢; via characteristic length scale
— screening length. The simplest form of this term is
given by the classical Debye-Hiuckel theory, where for
small charge densities:

3

—F—+o(r )

~ BN T) = - -

BT, pen, pa)

(12)

where § = . The parameter I is the inverse screening
length, and ?or the RPM it equals to:

I? = dmg? Lt 13

T T (13)

The classical Debye-Hiickel (DH) model was improved
[9,37] and extended to higher dimensions of space [38].
The generalizations of the expression (12) for the free
energy includes the finite size of the ions:

BFPU(T, pe, pa) = _iﬂ (ln(l ta)-es %xz) (14

and ion-dipole interaction

: r2
f(dl) — Taalpdw(azf) (15)

where

and
w(z) = % [ln (1—1—1‘—1—%1‘2) —x—i—éxz] :
The values of po, and py are determined according to :
peh = Ap”, pdz(l—A)g, (16)
where A is the degree of ionization. The mass action law
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relates A with the pair association constant K(77) [39]:

1—A

—— = o K exp (8 + 8 5uY) (1)

(ex) _ ) (id)

where p; ' = p; — pt;  1s the excess chemical potential
for ions (i = +, —) or dipole pair (i = d). The expressions
for the chemical potentials are obtained in standard way
[39]. As a result they are the functions of A. Therefore
equation (17) is one for A. Also note that for the RPM
Hiy = H—.

The formation of associated pairs of the ions is taken
into account within the Bjerrum’s concept [40]. The Bjer-
rum criterion of the pair i1s based in the simplest mod-
eling K(T) as the classical partition function of dipole
configuration, characterized by the only parameter —
the distance between 1ons:

K(T*) = / exp (ﬁ%) dr

a<lr<R

*

1
= 4dwad® / 22 exp (xT*) dx. (18)

1

The upper limit of integration is the Bjerrum length
which corresponds to the minimum of the integrand and
is given by the Bjerrum energetic condition:

2

QE = %UpT,
so that:
L=<t
R*:{ZT*? L1, = R/a. (19)
1 lfj1 > 3

A more sophisticated approach to modeling the associa-
tion constant (18) was elaborated in [41]. It was based on
the consistency of mass action law with virial expansions
for EOS of ionic system up to piéz order. But the differ-
ence between association constant (18) and that obtained
in [41] for the interval of densities and temperatures of
interest (7™ < 0.1,p* < 0.1) appeared to be less than
1%. The coordinates of the critical point obtained in such
an approach are
Tr = 0.055,

pr=0026, Pr=36-10"% (20)

For the reviews of the results see [6,12].

The second approach is based on construction of
pair the correlation functions. The closure of Ornstein—
Zernike relation for pair correlation function and subse-
quent construction of the thermodynamic potential and
EOS are used. The above mentioned Debye—Hiuckel ap-
proximation can be obtained within this framework too.
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This is a classical result of statistical physics (see, e.g.,
[39]).

In this approach the Mean Spherical Approximation
(MSA) [42] for pair correlation functions is widely used.
Within the latter the equation for the pair correlation
function in some cases [43] can be solved exactly. The
ion contribution to the free energy in this approximation
is:

Je = - (24624327 — 2014 20)/7) . (21)

The association effects are taken into account as has been
outlined above with the help of the chemical association
theory [44,45]. The coordinates of the critical point for
MSA-based models with the inclusion of association [46]
typically are:

Tr =0.07,

pr=0.022, Pr=20-10"% (22)

The results obtained within this approach can be found
in [7].

The main difficulty of this approach as well as any
other connected with using approximations for lower cor-
relation functions is the necessity to satisfy many ther-
modynamical identities. For Coulomb systems there are
additional identities known as sum rules [47]. Usually
only the relations for the first (local electroneutrality
conditon) and second moments (Stillinger-Lovett sum
rule) are fulfilled (e. g., for DH or MSA). The absence of
reliable mechanism within this approach which explicitly
takes into account all thermodynamic identities results
in violation of some exact inequalities as was shown in
[48].

Despite obvious progress in matching the coordinates
of the critical point obtained in such mean-field ther-
modynamic approach with those of MC calculations the
modified DH theory still confronts the difficulty in the
explanation of small values of 7. Indeed, once the proper
mean field theory is given, the corresponding LGH can be
constructed, thus providing the satisfactory estimates for
both critical point locus and the width of fluctuational
region.

C. Renormalization group analysis
and Kosterlitz—Thouless transition

The nature of critical fluctuations in the RPM which
is directly connected with Coulombic criticality has not
been thoroughly studied. The main difficulty here is the
interaction between the number density fluctuations and
the ones of charge. For the Coulomb gas of point particles
the coefficients as,, of the effective LGH are:

r— (_1)n+1

with a4 < 0. This model is 1somorphic to the so-called
sine-Gordon field theory [49].

The RPM differs from gas model since: 1) the ions
have finite sizes 2) there is nonzero association in the
system. Therefore, to derive the proper LGH these fea-
tures should be included.

The renormalization group (RG) analysis of critical
fluctuations in Coulomb gas was done in [50]. The hard
core effects were included and treated with the help of
Hubbard-Scofield method [51] (see also [36]). Note that
the inclusion of hard core effects leads to the density
dependence of the coefficients of the effective LGH. To
consider the possibility of vanishing a4 the effective LGH
in the “¢% approximation was used, where ¢ is the field
variable conjugated to the charge density. It was shown
that the investigated model may exhibit either a first-
order transition or Ising-like critical behaviour depending
on the starting values of the LGH coefficients. Two types
of the critical behaviour mentioned above are formed due
to the existence of a tricritical surface in the space of the
coefficients of the Hamiltonian. The behaviour depends
on the starting value of ag > 0. The LGH moves either
to the sector where a4 < 0 or to Ising fixed point with
a4 > 0 in the space of the LGH coefficients. The estimate
for the width of the fluctuational region was not given.
In addition the value of the coefficient ag was consid-
ered as an arbitrary parameter of the theory (as > 0).
Though for lower densities (0.01 < p < 0.07) all the coef-
ficients at ¢”,n < 22 in the LGH obtained are negative.
It should be noted that in this approach the importance
of association effects is ignored.

The unique theory where it appeared possible to
consider the formation of bound states is 2D classical
Coulomb gas of point particles. It also can be represented
by 2D XY -model on the square lattice [52,53] (see also
[54]) with the Hamiltonian:

H = —chos (fn — Onta) .
n,A

In the continual limit it is mapped onto sin-Gordon field
model [49]. Here the conductor-insulator transition oc-
curs at small densities. The existence of the Kosterlitz—
Thouless (KT) transition [52,53] may affect the 3D be-
haviour in the view of (2 + ¢)-renormalization. Some nu-
merical MC results have been interpreted from this point
of view [33]. The key points of KT theory of diluted 2D
Coulomb gas are: 1) the consideration of influence of the
associated dipole pairs on the interaction energy of two
charges through the dielectric permittivity; 2) the last
is connected with the dielectric susceptibility x; 3) in
its turn y is determined in a self-consistent way with
the polarizability of an ionic pair. Thus the equation for
the dielectric permittivity is derived. This is the main
point of KT-theory [55]. In such model the dissociation-
association transition (metal-insulator) takes place. The
renormgroup consideration of the model [56] gives the
equation for the T.:

2
femd — 2 —exp <_766J) =0.
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In this point the correlation length & which is propor-
tional to the size of a pair has singular behaviour:

¢ = exp (ar_%) , T > 1T,
0, T<T,

The infinite value of correlation length in insulating
phase implies the algebraic behaviour of the charge—
charge correlation function:

It leads to the singularity in the susceptibility:

_fen, T>T.
X = oo, T<T, "’

with n = 1/4 [57].

There are different views on the nature of the end point
of KT line. The analysis of [58] claims this point to be
of usual critical type, while the extended DH model de-
veloped in [38] predicts it to be a tricritical one.

It 1s not quite clear also how to extend KT analy-
sis to higher densities. It is well known that the case of
two dimensions is very specific for critical phenomena
because of an infinite dimension of the conformal sym-
metry group. Indeed, as we can see the Poisson equation
(PE) for inhomogeneous isotropic dielectric media

9 d/2
Si= ——  (23)

9 (e(r)dp(r)) = —Sap(r), I(d/2)

can be interpreted as the PE for homogeneous media, in
conformally equivalent metric:

ds® = e(r)dl?, (24)

where dI*> = dz’dx; usual Euclidean metric. Indeed, the
Laplace or Laplace—Beltrami operator for arbitrary met-
ric ds? = g;pdzidz* is (see, e.g., [59])

Arp = %@' (v/ag™ o) (25)

where
g = det ||gix]|

Comparing (25) with (23) and taking into account that
the density of any quantity includes the 1/,/g factor we
get that inhomogeneous PE (23) takes the form:

Appg(r) = —Sap(r), (26)

G= L
N
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which is nothing but the PE for curved D-dimensional
space with the metric tensor:

gix = (e(r)) T2 e, d#£2. (27)

The spaces with metric tensor g;z = f(r)d;r are called
conformally flat, i.e. their metric tensors are propor-
tional (the 2D case is the exception because any curved
surface is conformally equivalent to the 2-plane). So if
there exists the change of coordinates (conformal trans-
formation) so that the Euclidean metric transforms into
gir = f(r)d;r the Green’s function for such metrics can
be obtained with the help of the Green’s function for
flat geometry by the change of variables. In dimensions
D > 3 the conformal transformations (the so-called con-
formal group) are rotations, dilatations and inversions.
The only inhomogeneous transformations are inversions
but they lead to singular e(r) = # In two dimen-

sions any complex analytical transformation of coordi-
nates z = (z,y) = w = f(z) leads to conformally flat
metric.

As i1s known the absence of the characteristic length
scale is the reflection of the conformal invariance of the
system. For two dimensional systems with the behaviour
similar to the KT model (insulator—conductor) the con-
formal symmetry apparently forbids the spatial inhomo-
geneous phases. Apart from this in a 3D case we can
expect the appearance of such phases. A typical exam-
ple of such a phase is the excitonic drop phase in solid

state [60].

D. Qualitative analysis of the critical behaviour
of the dipole liquid

NaCl is the simplest example of ionic liquid. In the
solid state it is 1onic crystal. Above the melting point the
positions of ions become unfixed, but this liquid remains
strongly dissociated. Due to thermal expansion at in-
creasing temperature the dissociation degree diminishes
and the molten salt passes to a dipole liquid. At further
increasing temperature and decreasing the molten den-
sity the dissociation degree grows again and the molten
salt becomes a completely 1onized system. Thus, at some
temperature (71,7%) and density (ni,ns) intervals the
molten NaCl can be considered as a dipole liquid. The
question about the degree of ionization of I near their
critical points has been discussinged for a long time [14].
The studies of this problem were done in the early 19701es
in [61]. The van der Waals model with hard core inter-
action for the fluid of diatomic molecules was used. The
estimations were obtained by the linear extrapolation of
the density data available [62] assuming the validity of
the law of rectilinear diameter. The comparison of these
results with those obtained for completely 1onized state
near the critical point favoured the assumption about
a low degree of ionization at the critical point. Further
additional arguments for this assumption will be given.
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Let us consider general properties of this liquid and, in
particular, its main critical parameters: the critical tem-
perature and density. The interparticle interaction in a
dipole system takes the form:

U(1,2) = Uy (1,2) + Uga(1,2), (28)

where the first term describes the van der Waals inter-
action between molecules and

1 d d
Uds = — <d1d2—3w) (29)
€Ty "o
the proper dipole—dipole interaction, 112 = |ry — ra] is

the interparticle spacing, ¢ = r;, d;, d; = dony, ¢ = 1,2,
€ 1s dielectric permittivity. Because the dipole-dipole in-
teractions are relatively weak the angular distribution of
dipole moments d; is close to the isotropic one. More ex-
actly we assume that the two particle distribution func-
tion g(dy, d2) can be approximated by the first two terms
in the expansion:

g(dy, do) = 1 — BUaa(1,2) + ... . (30)

The approximation of such a kind allows us to exclude
the orientational degrees of freedom in the configura-
tional integral with the help of the perturbation theory.
In fact this procedure is equivalent to the usage of the
isotropic potential

Ulriz) = (U(1L,2) = Va2~ Ua () 4
Ua = %5<<d2>>2

€206

Here 0 =~ a4 +a_ ~ 2a, a; and a_ are the diameters of
ions Na and Cl correspondingly and for simplicity we put
ay = a_ and neglect the difference in masses of the ions,
<& ...> denotes the average with the internal partition
function of a pair. It is easy to check that the inequality

6
|Uw(r12)| < Uy (%) takes place at all ry5. Therefore

further the contribution |Uy,| will be ignored.

It is essential, that the averaging procedure restricts
the applicability region of the potential (31) by interpar-
ticle spacings o < 713 which gives the size of the “av-
eraged” dipole of the order 2a. Though the value of o
may be slightly less than 2a since rotating dipoles are
not the same as hard spheres of diameter 2a. It is quite
clear in view of scattering cross section for the hard ro-
tating dumbells. At this level ¢ should be considered as
the parameter (in general temperature dependent) of the
dipole—dipole potential. The procedure of its fixing in the
critical point will be discussed further.

To describe the properties of the molten NaCl within
the interval, where it can be considered as a dipole liquid,
we can use the potential with hard wall:

, e <o

Ul(ri2) = { iOUd (L)6 o<y (32)

12

Such a potential leads to the van der Waals equation
of state

ndkBT 9
= — A(T
Ty — AT}, (33)

where

%]
3

2
A(T) = —71'/ U(r, T)r’dr = %Ud . b= ?”03 (34)

g

and ng 1s the pair number density. Therefore the overall
density is n = 2n4. In dimensionless form (33) and (34)
read as:

pTe AT L

P = - - 35
s yad (35)
and
ATy = 2T <03 s? (36)
T 9T d

Here all spatial parameters are given in units of a. The
value of the parameter < ry >> depends on the internal
structure of the pair. Though by the order of magni-
tude <« rq > = 1, nevertheless from [63] it follows that
the characteristic values of dipole moments correspond
to L rg > < 1.

Since o is connected with the size of the pair we model
its temperature dependence via relation:

o= r>»4 (37)

where 4 is the fitting parameter.

Note that o is temperature dependent which 1s as-
sumed to be the same as that for < r . The functions
<& r" > will be determined below. Note that the vapour
phase, which contacts the liquid one, is the gas of dipole
molecules. The van der Waals EOS is appropriate ap-
proximation for EOS for such vapour phase. Thus we
can get the critical parameters of this system using the
van der Waals theory of the critical point.

Equation (33) leads to the following equations for the
critical temperature and density (note that ng = n/2,
where n is the total number density):

2¢/2
T*—\/_

¢ 903

1
L rd>, pe = (38)

ro3’

The estimates for these parameters are straightforward
if we put ¢ = 2, and take into account that due to small
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dipole moment of NaCl < 72 > =1 (in units of a):

\/§ *

1
T = Y2 ~0.04 = — ~0.04
© = 36 » P T gy ’
V2 4
P* = ~ 3 10" 39
¢~ 15367 ’ (39)
e = i = i =~ 0.19
Ty 16

which are in satisfactory agreement with the values

Tr =0.055,  p=0026, Pr=36-10"% (40)

Z,=0.25

obtained within extended Debye—Hiuckel-Bjerrum theory
[64] augmented with ion—dipole interaction. Our value of
the critical density is greater due to neglecting the dis-
sociation of the dipole pairs.

Now we need to consider the dipole pair as itself since
the parameters of potential (32) actually are the aver-
ages over the internal partition function of a pair and
therefore are the temperature dependent functions.

E. The dissociation of the rotating dipole liquid

In the previous section the model of completely asso-
ciated ionic liquid consisting of rotating dipoles has been
introduced. Here we investigate the internal structure of
the bound pair of ions. We take into account the fact
that the energy of interaction of a pair should include
centrifugal energy together with Coulombic potential as
in standard problem of two bodies interacting via central
field.

The dissociation temperature for NaCl-molten is de-
termined by the effective potential of an ion within a
rotating dipole which includes the centrifugal energy:

2 2

q L
KTym —Uge= L - 22 41
‘ Y] (41)

where I = pr? is the moment of inertia of the charge with
reduced mass p = % = m/2. At such high temper-
atures all degrees of freedom are all in equilibrium and

we can use the estimate

LZ
Erot = <§> = k’T (42)

Note that the equilibrium distance between ions in a pair,
which i1s determined by the minimum of effective poten-

tial (41) with the help of (42), is
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1

eq = arme 4
Clq QT* (3)

which is exactly the Bjerrum size of the pair RP7 [40] (see
also [64]). The choice of (43) as the size of the ionic pair
is inappropriate from the physical point of view at low
temperatures 7% < 1 [64]. Tt is natural that with lower-
ing T the size of a pair should become smaller tending
to @ at T'— 0. That is why it was suggested to use it for
1/T* > 2 only.

Let us consider this question within the picture for-
mulated above. To be more correct, we will include the
rotational energy into association constant, which is pro-
portional to the internal partition function of the pair

[12,64]:

R
K(T*,R) = 4w / exp(—pBUes)rdr. (44)

a

In 2D case one can put R = oo because of the logarithmic
growth of the electrostatic potential and get the estima-
tion of Berezinskii-Kosterlitz—Thouless (KT) tempera-
ture of dissociation [53]. In 3D case there is the problem
with upper cutoff in such an approach where the associa-
tion constant is identified with internal partition function
of the 1onic pair.

To define the size of a pair following Bjerrum we in-
vestigate the extremal points of the integrand in (44).
Doing so we get two solutions:

1—+/1—=16T*X

R(17) =
Ry(r7) = LY (49
where
\ L2/21, I = pa.

q*/a

Here R, is a solution of the Bjerrum type (minimum of
the integrand in (44)), which as has been said above is
inappropriate. R_ is another solution corresponding to
the maximum of the integrand, which has quite reason-
able values and correct behaviour at low T™. It is easy
to check that asymptotically for low values of the tem-
perature T* the value of K(7™) is formed mainly by the
maximum of the integrand. In addition the appropriate
limiting behaviour to the hard-core contact at formal
limit 7% — 0 is hold provided that A = % This value of
A is in full accordance with the virial theorem [39]. All
these facts confirm that we can treat the quantity R_ as
the size of the pair even at ‘high’ temperatures 7% < 0.1.
In addition R_ never exceeds 2, i.e., the interparticle the
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distance when the influence of other pairs and charges on
the effective potential can be neglected (see Fig. 1).

1.8 |
16 |
1.4 | yd

1.2

" 0.02 - 0.04 - ‘0.06_[_* 0.08 01 0.12

Fig. 1. The temperature dependence of R_.

So we put R_ as the physical cutoff for (44). The
existence of such length scale was noted in [64] bas-
ing on the the numerical analysis of the function
K(T*,R)/K(T*, R®), though only Coulomb potential
was included in Boltzmann factor. It gives the rate at
which K (7™, R) rises very rapidly to its plateau value.
In our case we find the same behaviour of K (7%, R) at
small temperatures, 7% < 0.04 (see Fig. 2).

Fig. 2. The ratio K = K (T*, Ry )/K(T*,6-R_) as a func-
tion of § and T™.

Finally we see that there is the natural temperature
interval for dipole fluid which is bound from above by
the temperature

%
Tupper S

. (46)

0| =

Therefore for 7" < 177 .. the dipole is stable in 1itself.
Note that the existence of the temperature (46) reminds
Kosterlitz—Thouless (KT) transition in a 2D case. In par-
ticular, the centrifugal energy introduced above plays the

role analogous to the chemical potential “ .. required to

create a pair of particles of equal and opposite charge at
a distance ro apart ...” in Kosterlitz—Thouless model
[53]. However, in contrast to 2D case in 3D case there is
no any divergence in the size of the pair and therefore in
its polarizability, but its derivative on the temperature
has singular behaviour. In other words, the temperature
derivative of the polarizability is singular but not the
polarizability itself. This inference might seem as mere
an artifact of introducing the upper cutoff in (44). But
it should be noted that taking dielectric permittivity e
as the order parameter, which is directly connected with
polarizability, we get exactly the divergence of its tem-
perature derivative even in mean field approximation.
This may serve as additional support for the conjecture
of intensive breaking of the dipole pairs at the critical
point observed in some numerical experiments [33]. Note
that our estimate (46) of 17 ., perfectly corresponds to
the temperature 77, at which the maximum of the spe-
cific heat was observed in MC simulation study of the

RPM performed in [33].

The existence of the interaction between dipoles and
the free charges provides additional instability mecha-
nism for their dissociation thus reducing the temperature
of ‘ideal’ dissociation (46) because of the polarization of
the dipole in the external field of dipole—dipole potential
(32) and Coulombic field of free charges. The considera-
tion given above states that there are two characteristic
transition in the dipole-dipole fluid: 1) ‘dipole liquid-
dipole gas’ critical point of van der Waals type; 2) the
smeared dissociation ‘transition’ from associated state to
almost completely dissociated one. This smeared tran-
sition can be characterized by the temperature on the

binodal at which the degree of dissociation is %

The interaction between translational degrees of free-
dom of the 1ons is characterized by the critical temper-
ature of the liquid-gas transition, while internal, rota-
tional degrees of freedom are involved into dissociation of
such dipole fluid. These degrees of freedom will strongly
interact if the corresponding potentials will be of the
same magnitude, i.e., T, & Ty. The additional confirma-
tion of coincidence of such transitions is the high degree
of dissociation above the critical point observed in nu-
merical experiments [33,65] and theoretical models [12],
which incorporate dielectric permittivity resulting from
the existence of the dipole pairs. This means that Ty can-
not be less than 7.. All said above means that in such a
situation we cannot rely on (33) since appropriate EOS
should incorporate all relevant interactions which lead
to phase separation. In particular, the critical tempera-
ture 1s sensitive to the temperature dependence of the
parameter A(T).

The condition for the dissociation of a pair in external
electrostatic field is:

(d-E)=— < Ut >, (47)

where
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d = do + dina (48)

1s the dipole moment, which consists of proper and in-
duced dipole moments. Obviously,

(do - E)=0, (dina-E)=x(E?). (49)
Here x is the polarizability of a pair. The averaging over
the thermal equilibrium gives:

2> _ 3kgT
- %Vph’

(E (50)

where 3¢ 1s the dielectric susceptibility of the medium and
Vpn 1s the characteristic volume . It is connected with the
polarizability of the cavity. According to the definition:

e—1 1
= = Zyp~. 51
==X (51)

So we get the equation for the temperature in a dimen-
sionless form:

6
P*Von

T =— < Ust > . (52)

Within the proposed approach we put Vp, = %”13 where
l. 18 the radius of first coordination sphere. This is the
minimal volume for which the conception of continuity of
the medium can be applied. By the order of magnitude
lc =~ 1.5a. The solution of (52) gives the dependence
T*(6). In order to fix the value of ¢ in the critical point
which determine the size of the pair we should equate
T*(6) and T (6) obtained above. This way we get:

77 =0.048 |

pr=0054, Pr=48-107"

c=18, Z.=0.19, (53)

which are close to those obtained above (39). In nota-
tions of [64], ¢ = 2as. In this work the estimate for the
parameter as from simple geometric considerations was
given: 0.825 < as < 1.565. Thus our estimate is in this
interval. From the results obtained above we can infer
that the dipole fluid of rotating dipoles in the vicinity of
its liquid—gas critical point is about to dissociate. Sure
our consideration is incomplete since 1t does not take into
account the existence of free charges.

Finally we estimate the Ginzburg number by the for-
mula used for the molecular liquids [39]:

Gi= (g—z) 6 (54)

where ryp =& r 3> a is the interparticle spacing within
ionic pair and & 1s the amplitude of the correlation
length for density fluctuations. Since the density fluc-
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tuations are connected with the ones for dipole pairs we
put it to be equal ¢ > . Using the parameters of the
critical point found in (53) we get the estimate:

Gi < 0.04. (55)

Remarks

The 1onic and dipole liquids form two natural approxi-
mations to describe the critical properties of the systems
similar to the molten NaCl. In our paper we have esti-
mated the main critical parameters for liquid with hard
dipole as well as consider the influence of the effects aris-
ing due to softness of a dipole molecule. In particular the
latter 1s very important to describe the dielectric prop-
erties of a system mnear the critical point. Besides, the
variation of molecule parameters due to the rotations al-
lows us to determine the equilibrium size of a ionic pair.

It is not excluded that the quantum corrections to in-
ternal states of the dipole pairs will also slightly change
the estimates. In particular the temperature dependence
of the vibrational contributions to the heat capacity can
also be studied. The following step is to construct the
equation of state for small ‘soft’ dipole molecules and to
take into account the dissociation process with the help
of perturbation theory. The combination of such an ap-
proach with that developed in [17] on the basis of ionic
liquid allows to narrow the region of the most probable
values for the critical parameters.

Our estimate for the critical temperature correlates
with the known analytical results. Note that most of
the analytical approaches based on EOS for low density
Coulombic system (DH, MSA, etc.), where the dissocia-
tion is taken into account perturbatively.

Within the dipole liquid approach we have obtained
the estimate for the Ginzburg temperature and have
shown that it less than the one for a simple liquid by
the factor 1072 = 10~!. The approximation of the dipole
liquid allows us to analyze in the evident form the con-
tribution of the polarizational effects [17]. One can show
that the latter lead to a further considerable decrease of
the Ginzburg temperature.

Note also the possibility for the appearance of new in-
homogeneous phase near the critical point of IL. Since
the dissociation temperature Ty is near 1., the system
can desintegrate on the regions with the essentially dif-
ferent values of the degree of ionization A: the drops
of ionic and dipole liquids. As a consequence the region
with the Ising-like behaviour cannot be reached. This
scenario calls for a very careful investigation. These and
other questions will be studied further.

II. POLARIZATIONAL INTERACTIONS

The definitive role for the critical behaviour of systems
with CI belongs to the charge-order parameter interac-
tions. This question was discussed in [66] concerned to
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the structure of electrolyte solutions near their critical
point and super-ionic crystals [67,68]. So in [66] it was
assumed that the Hamiltonian of an electrolyte has the
structure:

H=Hig+ Hn + Hing, (56)
where Hp,q 18 the standard LGH,

Ina(r)dns (r')

Ing(
’ oc
Hoy = & 2:/dr/d T (57)

the Hamiltonian of interionic interaction, and

Higy, Zga/

Jng(r)dr (58)

the Hamiltonian of charge-order parameter interaction.
In fact, the last takes into account only the short-range
interaction between the order parameter and ions in a
system and does not describe the electrostatic effects.
On the basis of the Hamiltonian (56) in [66] the new
inhomogeneous phase in the vicinity of the critical point
was predicted. However, its existence was not confirmed
in further experiments. It shows explicitly the incorrect-
ness of the assumptions about 1) contact character of
charge-order parameter interaction and 2) interionic in-

teraction in the form (58) corresponding to constant
value of the dielectric permittivity.

The analogous contact character of the charge-
deformation tensor interaction is postulated in works
[67,68], devoted to the phase transitions in super-ionic
crystals. Here we note that the dielectric permittivity
of crystal changes due to its deformation. Therefore the
electric potential ¢ inside system will be definitive func-
tional of the deformation tensor. As the result the energy
of Coulombic interaction:

fo=j [poav

includes the charge-deformation tensor interaction by it-

self.

A. General theory of polarizational interactions

The free energy of the system with the charge fluctu-
ations near its critical point can be represented in the
form:

Fn(r), ¢(r)] = Freg + Fra [n(r] + Ca [n(r), 6(x)], (59)

where F, is the regular part, Frg is the Landau—
Ginzburg functional:

Falie) = [av (5070097 + aune) + e + Fce)?) (60)

depending on the order parameter n(r) and

Calyfe), o)) = 5 [ aVolwel

is the contribution of the charged subsystem, where
Gry,r2|de(r’)] is the Green’s functional for the inhomo-
geneous medium. In fact the characteristic time for the
charge fluctuations is essentially less then that for the
order parameter. Therefore, to describe the critical be-
haviour of the system we should average expression (61)
over the charge fluctuations. Then the fluctuational de-
viations of the free energy from its regular part takes the
form:

0F = FLG[U(I‘)] + Fpol[n(r)]’ (62)

where

//dI‘dI‘Gl‘l,I‘2| (r)]dp(r1)dp(r2), (61)

Fpaln(r)] = (Caln(r), ¢(r)]).

Here we assume that the fluctuations of the dielectric
permittivity caused mainly the fluctuations of the total
number density of the particles. In the local approxima-
tion we can write:

e(r) = e (1 + () + dan?(x) + .. ) (63)

where ¢, is the value of the dielectric permittivity in the
critical point and

k ok
ne 0%¢

M= T oE

(64)

n=nc
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By the definition we will call F,; the polarizational
contribution to the free energy of the system.

The deviation of free energy for weakly nonequilibrium
state near the critical point from (59) is:

GF [n(r), ¢(x)] = 6Ca[n(r), (x)] + 0 Fre [n(x)].  (65)

Therefore,

6Cer [n(r), o(r)] = —
+ / dVép(r)6(r). (66)

We also use the global electroneutrality condition

_ / Sp(x)dV = 0. (67)

To get simpler form of the equations we use the linear
approximation for the deviation of the dielectric permit-
tivity:

de = by(r) (68)

where b = Aje. is some function of temperature and
chemical potential. Its specific form depends on the
choice of an order parameter 7.

In this case (68) can be derived as the linear approx-
imation using any model for density dependence of di-
electric permittivity. In the case when the density fluc-
tuations include elastic component, e.g., for solid elec-
trolytes [67,68], (68) should include the deformation field

component of the density:

de = —uVe — ng—; divu. (69)

Next step we make is to connect the density of the
order parameter field n(r) with the charge density dp(r).
Assuming that the linear approximation is valid we can
write:

p(r) = bpn +yn(x). (70)

where dpy, is the charge fluctuations for the homogeneous

state. Substituting (68) and (70) in (66) for (65) we get:

SF [n(r), ¢(r)] = 6 Fra (71)

—5 [ avut (b(vf) T 29(r ) [omstiav

Now the basic relation between the fields n(r) and ¢(r)
can be derived by standard minimization procedure for
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the functional (59) with condition (67). Here the vari-
ations of the fields ¢(r) and n(r) are independent and
therefore:

— AQ[dp(r), ¢(r)]) =0
— AQ[dp(r), ¢(r)]) =0.

(72)

It yields

—cAn(r) + azn(r) + asn’ (x)

YL

T0(r >) 0, (73)
bV (n(x)Ve) + 4myn(r) + 4mdpn = 0

where we put Ay = —a; because of asymptotic condi-
tions

é(r),n(r) = 0, if r = 0.

It is clear that for large scales v is very small. Thus
the Green’s function satisfies the inhomogeneous Poisson
equation:

V((ec +de(r))VG(r,x")) = —4md(r —1'). (74)
In local approaximation the Green’s function is:

1 1
cc(1+de(r —v") [r— 1’|

G(r,r') = (75)

Substituting (75) to (65) we obtain

Foaln / /d / 6fc|r6—p1‘ |)> (1‘1‘(155(1') - 1)

(76)

The polarizational energy for the spatially homogeneous
state is equal to:

A )

and is excluded from (65).
Debye—Huckel approximation:

In the simplest limiting

e 1
BRY = —mrf (78)

where
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is the inverse screening length amplitude. The inclusion
of hard core effects leads to

Fj, — Fig = —i(ln(l—l—F) — I +17?/2) (79)

in DH model. Other approach based on the mean spher-
ical approximation for the correlation function gives:

1
Fi = Fa = =~ (2461 4317 — 201+ 20)%/2) . (80)

Therefore we get:

Foaln] = F /dv (ﬁk(r) — 1) : (81)

Thus (81) can be represented in the form:

SN |
Fool = / e gagpolw(r), (82)

n=1

where
afP = )y, ai’™™ = = 27,
angI) = —/\3 + 2/\1/\2 - A?a (83)
aP) = Xg+ 22h + A - 3ATEAL, L (84)

In fact after neglecting the terms of order n > 4 this
gives an addition to the initial LGH of the system (60).

Note that as far as expression (81) which accounts for
polarizational effects used the polarizational contribution
to a4 is negative. It follows from the facts that: a) the
dielectrical permittivity is monotonic function of the den-
sity and b) the Coulombic potential is convex function
of the dielectric permittivity c) the excess free energy
for 1onic system is negative. It becomes quite clear if we
choose n = E;:“ as the order parameter. The including
of (81) to the effective LGH leads to the diminishing of
the value of a4 thus reducing the Ginzburg number.

The results obtained above serve as the background
for analysis the Ginzburg number in molten salt.

B. Effective Landau—Ginzburg Hamiltonian for ionic
liquids

According to [18] the effective LGH of molten salt
NaCl takes the structure:

ﬁHﬁWﬂFi/@(%WWHV+§:%%m®),

m=1
(85)
where
am = al? + P (86)
and
by = b\ (87)

The explicit expressions for aﬁ}fOl) follow from the consid-

eration of polarizational interactions described in previ-
ous section.

The coefficients a(zo) and aﬁf) are connected with the
derivatives of pressure with respect to density by the re-

lations:

(0) _ 0P 0y _ &P

= ol T Gy (88)

in which P includes the contributions of both short-range
repulsive and Coulombic interactions. Almost all equa-
tions of state for the RPM lead to very small values of
the coefficients al(»o) compared with those for molecular
fluids at least by an order of magnitude [69,70].

o (RPM) o (RPM)
2 _ ) 4 _ )
T 0.01+0.1, T 0.001+0.01. (89)
asy ay

The only exception is Debye-Hiickel-Bjerrum (DHB;j)
model where the values of these coefficients are of the
same order as for molecular fluid. To calculate ag,IfOl) we
use the formulas (83), (84) with coefficients Ag, deter-
mined with the help of the canonical form for dielectric

permittivity:

e—1
€+ 2

= A(1+7) (90)

where

4
A= gaeﬂpz (91)

and p* = na’. Here n is the overall number density. In
accordance with (90) the parameter A satisfies the in-
equality A < 1. The value of ¢ does not exceed 1.2 (in
vapour phase) [12,64].

The effective polarizability aeg i1s mainly formed by
the associated ionic pairs:

1—A, 1
aeH_T6 F, (92)
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where

A= ny -1 Ndim
ng ng

(93)

is the degree of dissociation of the system defined above
(16), ng is the number density of the ions of particular
type, 1.e., n = 2ng, T™ i1s the dimensionless tempera-
ture 7™ = SQBVTG and § = l/a is the dimensionless size of

an ionic pair (dy = el being its dipole moment) and we
put Zy = Z_ =1 for simplicity. The condition A < 1

holds for all cases since p:* sufficiently small. In addition

B ‘
if 2182 pk
critical point:

*

< 1 we can get the low estimate for A at the

9T
_ c A,
2782 p* < S

(94)

This estimate is natural for 3D Coulombic systems which
apparently cannot undergo Kosterlitz—Thouless (KT)
transition [33], where A = 0 with r; divergence. Thus the
model (90) is acceptable from this point of view even for
the critical point located at ‘high density’ (p%/TF > 1).
Note that as § grows the degree of dissociation A, at the
critical point becomes closer to 1, which is pretty natural
from the physical point of view.

Further analysis of the polarizational induced terms
into LGH-coefficients is sensible with respect to the coor-
dinates (p%,T7) of the critical point. To estimate p. and
T different models for the EOS: DH, MSA | DH with ac-
count of dimerization (Bjerrum approach) and hard core
interactions etc. were used (see [6,69,70]). There are also
the computer simulations of the phase diagram [32,33].

The values of parameter 5;* obtained with the help of

analytical methods are small,

pe
T

c

0.5 < <1

(‘low critical density’ case). Unlike these analytical es-
timates recent computer calculations give the values

1< 7/:2* < 2 [32]. Basing on the estimate (94) one can
see that both these cases are consistent (A < 1) with the
model. Note that model EOS like MSA with different

corrections [12] and numerical MC calculations [33,32]
also show high degree of dissociation near critical point.

C. The effective Landau—Ginzburg Hamiltonian for
electrolyte solutions

The electrolyte solution near its vapour—liquid critical
point is characterized by two independent scales: a) the
screening length r,.,, which in Debye approximation is:

1
Tser R T'D = f, (95)
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and b) the correlation length r. for density fluctuations
in a solvent:

- 0.5  classical region
— v — )
Te =TT - V= { 0.63 fluctuation region. (96)
The critical behaviour of a solution depends on the in-
terplay of these scales. For experiments where

Tser 2> Te

the interionic electric field acts as the additional pres-
sure which changes the position of the critical point. The
character of fluctuations of an order parameter for the
system does not change and the range for crossover of
critical exponents is determined by the Ginzburg num-
ber for a solvent. In a more important second case when

Pser < (€)7re (97)

the electric field of charge fluctuations polarizes a solvent
and as a result leads to variation of interaction constants
in the LGH and also to appearance of additional terms
in it.

This consideration based on the important fact that
the screening length remains finite at an approaching the
liquid—gas critical point. Such a conclusion is a direct
consequence of the isomorphism principle for the criti-
cal phenomena in multicomponent mixtures and simple
liquids. In accordance with 1t the only extensive variable
of state is strongly fluctuating in the vicinity of the crit-
ical point. The level of fluctuations for others, which or-
thogonal to it 1s bounded. ‘Switching on’ the Coulombic
interaction for electroneutral system additionally sup-
presses the long range fluctuations of the variable con-
nected with the charge fluctuations.

The lower bound for the concentration range where
Debye screening is not destroyed by the thermal fluctu-
ations 1s

kpT\*
$min:v<€ qB; ) ) (98)

where v is the volume per molecule of a solvent.

Because of polarization of a solvent the local elec-
trostatic energy is fluctuating on the scales of density-
density correlation length. The account of this contribu-
tion renormalizes the interaction constants in the LGH.
To construct the corresponding LGH we will use the in-
terrelation between fluctuations of density and dielectric
permittivity,

e —e(r) = c (14 An(r) + Xan*(r) +...), (99)

pe 0%c

g 100
e(pe) 0p% | =, (100)

, n=p/pc—1.
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Here € is the equilibrium value for dielectric permittivity.
We can obtain the effective LGH as follows. For homo-
geneous system the density of energy is a sum of non-
Coulombic contribution h,¢ and that for Coulombic sub-
system hc. Far away from the critical point the latter has
the structure

1, 1

he=——T3 ——
C 87T c (6/66)3/2 )

(101)

and the index “¢” indicate that the values are taken in
the critical point. To take into account the large scale
inhomogeneity of the system, we assume that the condi-
tion

rC > rSCI‘

is fulfilled, where r. is the correlation length for the fluc-
tuations of an order parameter. We can use the analogous
expressions for h,¢ and he in which local values of € and
n

n — n(l+7(r))
e = e(1+£(r) (102)
should be substituted. As a result the fluctuational con-
tribution of Coulombic subsystem into the energy of the
system equals

FB

8w

Bhe(x) = (103)

wjw

o 1] |
(14 é(x))

The formal derivation of the quasilocal approximation
(103) from the microscopic point of view is given in [17].
Adding the quasilocal term

an = (v (104)

we assume that the value of b can be evaluated with the
help of results [69,36].

Using the dimensionless form of coefficients of the LGH
the formulas (102) and (103) yield the following:

SHaln(x)] = [ dx (§<w<x>>2 £y %nm<x>) ,

m=1
(105)
where
am = al® 4+ alDg?? ;> 1, a£,3> =0, m>5h,
(106)
b= (co+¢)o, (107)

and according to Eq. (1)

Here o 1s the diameter of a molecule in a solvent. The
values of aﬁﬁl) are determined from Eq. (103) and is equal
to

(el) (—1)m+1 (2m + 1)”
a =
m 160 (2m —2)!!

(F*U)S’

The calculation of the LGH without taking into ac-
count polarization effects was done in [69,70] basing on
different models. The Ginzburg criterion obtained did
not show the existence of the crossover (Gi ~ 10).

Now 1t is desirable to reduce the initial Hamiltonian
of an electrolyte (105) in the vicinity of the critical point
(rp € 1¢) to the Landau-Ginzburg form. Usually such
a reduction is performed by omitting all local terms
~ 1", n > 5. However, this step is connected with the
loss of important information about corrections to the
leading asymptotic terms [71]. A more suitable way is
connected with attraction of ideas of the Catastrophe
Theory [72] within the framework of the so-called canoni-
cal formalism [71]. Tts central conception is the canonical
transformation of the order parameter:

1 1 )
n—>¢=n+§72n2+§73n3+...5077

which reduce the local Hamiltonian of the system

SHaln(x)] = [ dx (Z %nm<x>), (109)

m=1

near the critical point to the canonical form, which 1s an
analogue of that used in the Catastrophe Theory [74]:

BH.aln(x)] = / dx

x (—hmx) + 3 As6(x)” + iAMx)‘*) . ()

The canonical transformation of the order parameter
plays very important role establishing the isomorphism
between Ising model and liquids. Besides, the explicit ex-
pressions for the generalized external field hy and ‘tem-
perature’ Ao are obtained. The coexistence curve of lig-
uids in new variables (hg, A2) is symmetric with respect
to transformation hy — —hy similarly to Ising model.
Tts asymmetry appears only if initial (noncanonical) vari-
ables are used.
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The combination of the canonical transformation with
standard RG procedure allows to get new version of RG

theory [75,76].

D. Canonical form for the effective Hamiltonian

As has been shown above the Hamiltonian of the sys-
tem has no Ising like form. It is essential that it in-
cludes two terms: the local Hyyc, 1.¢e., k-independent, and
quasilocal Hq, i.e., k-dependent. Following [73] we will
show that the local part of the Hamiltonian can be ex-
actly reduced to the canonical form Hean(n) which in
case of the 2-nd order phase transition coincides with
classical Landau—Ginzburg functional. For convenience
we include § into the Hamiltonian. In a case of simple
liquids, for example, the coefficients a,, are definite func-
tions of the chemical potential i and the temperature T
if the nontrivial reference system is used [36]. Further,
we consider only a local part of the Hamiltonian. Due to
locality, for every point we can write:

(111)

where the function F(z) is smooth and invertible, and
besides it satisfies the condition F(0) = 0. Then for the
integrand in the partition function of the system we can
write

exp (=b{52 ) = [5 (6 = PO exp (~H52(0)) do.
(112)

can A A
b2 (n) = A+ o0+ St

loc 9 4 (113)

The implicit form for the canonical transformation of
the order parameter ¢ is as follows:

T

Ay =

7

/ exp (-hf§j“>(z)) dz = /¢ exp (—hioe (2)) dz,

0

(114)

which means that the corresponding (local) Gibbsian
measures coincide. The coefficients A of the canonical
form are determined as functions of the parameters of
the initial local Hamiltonian by implying the condition
that the ranges for the variables ¢ and 7 are the same:

o‘\—é—

+oo
exp (<0 () dn = [ exp (-hiee(9)) do,
0

0 0

[ e (-0 m) dn= [ exphel@)) ds. (13

— 00 — 00

One can show that the transformation (111) defined by
(114) is analytical provided that the local part of the
effective Hamiltonian is analitical too.

Moreover, since (111) is nothing but the redefining of
the order parameter, the loci for the critical point both
for initial and canonical Hamiltonians must coincide:

Al (P’ T) = 0 3

Ay(P,T)=0 &  ai(P,T)=0,

ax(P,T) = 0. (116)
Sure it is implied that a3z(P,T) = 0 also because of the

stability condition. The constraint (116) fixes the value
of A4 > 0:

+oo N
/ exp (—f?f*) dn
+oo
= / exp (—hioe(¢ ;a1 = 0,a3 = 0)) d¢. (117)
This gives
(118)

— 00

Note that the functional dependence of the canonical
coefficients A; ,7 = 1,2,4 on the parameters a; is deter-
mined by the form of the initial effective Hamiltonian.
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(r 2) *F exp (i 01 = 0,03 = 0) d¢)

Besides, since A; are the coefficients of the LGH they
may be used as the approximates for the renormalized
fields of the LGH in the vicinity of the critical point.
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Note also that in such a way the problem of asymmetry = The procedure of the canonical transformation leads to

of the equation of state for the liquids disappears. the following results:
The transformation proposed is different from that
used in the Catastrophe Theory for the functions [72,74]. Ay(T) = ar+o(r), As=053,
The latter is defined only in the neighbourhood of the
critical point. In fact, any (n—2) parametric set of prob- T—T.
ability densities performing the catastrophe of type As, where o~ 1, 7= T. (120)

by changing of the variable can be transformed into the
canonical form of exponent on the polynomial of the 2n
degree. In particular, the probability density h(z) with
the only critical point can be transformed into gaussian
distribution ¢(&) = %exp (—1‘2) by transformation of
the variable # — & . The details of the realization of this
procedure for Ising-like systems are given in [73]. 1 1

To illustrate the importance of the technique formu- n=¢+ -Ts¢? + —T3¢>+ ..., (121)
lated above we give the results for the parameters of the 2 3
Ising model. The exact forms of the coefficients of the
initial effective Hamiltonian for this model equal those
for Curie-Weiss approximation (see [75]):

We see that the coefficient A4 differs essentially from
a4 = % while « practically does not change.

It 1s important that the canonical order parameter ¢
is the analytical function of initial order parameter 5:

where the coefficients I'; can be expressed through the
coefficients a,, of the initial Hamiltonian. Indeed, in the
vicinity of the point n = 0, ¢ = 0 from (114)

1
9y = ——— —2DBJd5 . (119)
2n—1 ’
K 1 K ¢ (can) 1 ¢ (can)
n —1—/ hioe() + 5/ hloc(x)zdx +...=¢ —1—/ hio/(x)de + 5/ hyoo (x)zdx + ... (122)
0 0 0 0
Using
L,
hioe(n) = a1 + §a277 + ... (123)
and (113) we get:
Loy 1 2\ .3 1 2, 1 2\ .3
n+ gan —1—6(a2—|—a1)77 +...:¢+§A1¢ +8<A2+A1)¢ +... (124)
and finally
1
F2:A1—a1, F3: §(A2—|—A%—a2—a%—3a1f2), etc. (125)

Further we assume that the procedure of the reduction of the effective Hamiltonian (105) to the canonical form
has been carried out.

III. INFLUENCE OF THE POLARIZATIONAL EFFECTS ON THE CRITICAL BEHAVIOUR
A. Ginzburg number for the ionic liquids

. 1
The expressions for a(zpo)

and aipon, which follow from (83) and (90) read as:

2
(pol) _ A (cq)
T Y (EBYEA L 0
o 27 A .
aip 1) _ 2! 4ﬁch(hC1).

2 (T+20)* (1 - )
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It follows from (77) that polarizational contribution to
a4 1s negative, therefore, the Ginzburg number decreases
with account of polarization effects. Here the approxima-
tion A &~ A, was used. Using the dimensionless form of
coefficients of the LGH obtained in [69,70] we calculate
the Ginzburg temperature for ionic fluid:

9a2  /a\®
;= - 12
O Srtay (b) ’ (127)
where
T as _ T— Tc
s = Th_l% 7= T (128)
Tt is useful to rewrite (127) in the following form
a(pob) :
Gi=Gig | 1+ 5 (129)
a
4

where Gy is the Ginzburg temperature without account-
ing of the inhomogeneous polarization. Here we neglect
the renormalization of the coefficients @s and b of the
LGH. It appears that in this approximation Gt slightly
decreases in comparison with the initial value because
the value of A is actually small (< 0.1) since € close to 1.

Below the critical point the system separates into
liquid and gaseous phases with different densities be-
cause of strong density fluctuations. These phases have
different degrees of dissociation Ajq and Ay since ther-
modynamically the degree of dissociation A is a function
of T* and p*. At the very critical point A9 = Algas)
but below Ajq # Agas because of pf‘iq + pz. From the
physical point of view one can expect the new type (non-
Ising like asymptotics) for the critical behaviour only if
density fluctuations strongly interact with the ones for
charge. This interaction occurs only if the dipoles ex-
ist since fluctuations of their number are directly con-
nected with fluctuations of the density. Thus the very
fact that below critical point AU £ A(829) means that
the fluctuations of the number of neutral pairs are strong
and therefore the polarizational effects should be taken
into account. Since the density fluctuations are strong
the fluctuations of dipole number are strong too. That
means that the fluctuations of charge numbers are also
strong though mutually correlated due to neutrality con-
dition (dny = —dn_). Indeed, one could expect the pe-
culiarities for the critical behaviour in IL if the degree of
dissociation strongly depends on density near the critical
point. Therefore, to consider the case of strong interac-
tion between charge and density fluctuations we should
not neglect density dependence of A near the critical
point. It is clear that this dependence is very essential
for the dielectric permittivity as has been noted above.
Here we use the linear approximation for such depen-
dence:

Alp,7) = Ac+ A+ o(n). (130)
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The estimate for A; can be obtained from [12], where

we can find that for different EOS 0 < A; < 10. The

coefficients a(poI) and aipon take the values:
(pol) _ (/\ - Al)z (eq) 131
E o (1+2/\)2(1_/\)25ch}1 ’ (131)
o 27 A=A e
aip D=2 ( 1) 4ﬁcf£hq)~

2 L+ 202 (1= N\

Note that (131) corresponds to the linear approxima-
tion for the €(n) dependence. The main result, the di-
minishing of the Ginzburg temperature, appears in this
approximation. Actually to construct aipon the terms up
to the 4-th order in n-expansion for €(n) should be in-

cluded. Sure the explicit expressions for a(poI) and aipOI)

become very complex and we will not give them here.
These results are represented in Fig. 3.
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Fig. 3. The dependence of the Ginzburg temperature
g = Gi/Gip obtained with (90) on the degree of ionization A
and Ay at al” = 0.01, §= 1, p*/T = 0.5.

The key feature is the vanishing of the Ginzburg num-
ber at low dielectric permittivity values and small screen-
ing length while the value of A; is high enough and A
is close to 1. This region of parameters naturally corre-
sponds to the state of the ionic liquid with high degree
of dissociation at the critical point. Thus, the account of
polarizational effects caused by the density fluctuations
1s very essential for analysis of asymptotical behaviour
of ionic fluids which was pointed out in [41]. Using other
model equations of state like nonlimiting DH (nDH) ap-
proximation (14) and MSA equation (21) for construct-
ing the LGH does not change the results significantly.
Namely, the difference between the results obtained with
the help of equations (79) and (21) does not exceeds 5%.
DH approximation gives qualitatively the same results
with the difference in comparison with MSA and nDH
EOS up to 20% for T'. < 0.3. It directly follows from
(76) which shows that all polarizational corrections to

the LGH is proportional to ﬁéféﬁq). Since DH EOS is
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valid only for low density systems the usage of this EOS
should be treated as mere illustrative.

For the comparison we also give the results (see Fig. 4)
for the Ginzburg temperature calculated basing on the
Onsager formula for the dielectric permittivity [77]:

1 2
6:1(1—1—31‘—1—3\/1—1—;—1—1‘2),

(132)

where

2rd* (1 — A —Aqn)
T = )
3T

As follows from the obtained results for (G the steep
increase of the degree of ionization with density may re-
sult in a significant lowering of Gi. For sufficiently great
values of A; = %—A the Ginzburg temperature may van-
ish. The Valu*e of Aq at which GGi = 0 increases if the locus
the Coulombic criticality to happen at low density the
stronger density dependence for the degree of dissocia-
tion is needed.

parameter decreases. This 1s quite natural since for
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Fig. 4. The dependence of the Ginzburg temperature
g = Gi/Gip obtained with (132) on the degree of ionization
Aand Ay at al” = 001, 6§ = 1, p*/T* = 0.5.

In other words the Coulombic driven criticality is char-
acterized by a small value of (G¢ caused by strong density
dependence of the degree of dissociation at the critical
region. The following scenarios are possible:

1. A 18

oA
d9p

at the critical

is very large. Note that due to very

continuous point  but

pr=pt T=T¢
low estimates for p} in different mean field approxi-

mations even if Ay ~ 1 the value of % ~ 102.
pr=ps

Here the anomaly small value of G is observed
but the critical behaviour is Ising-like. The polar-
1zability of a system also renormalizes the coeffi-
cient b. As has been noted above the Coulombic
interactions prevent the spatial separation of op-

posite charges in a system. Therefore, in quasilocal
approximation the energy of a system with inho-
mogeneous dielectric permittivity should be higher
than that for the homogeneous one. In other words,
the polarization contribution increases the value of
b. Thus, we obtain the upper estimate for (4.

2. A is continuous at the critical point but its fluc-
tuations are essential \/((0A)2) ~ (A). In gen-
eral A is the sum thermodynamical equilibrium
part AD(p* T*) and fluctuation one AM: A =
ACD (p* T*) + A Therefore the quantity Ajiq —
Ag includes the part orthogonal to the density fluc-
tuations and can be considered as concurrent order
parameter and a new type of critical behaviour dis-
tinct from Ising like can be expected. In particular,
if the coefficient at the gradient term ¢(9A)? tends
to zero the spatial inhomogeneous phase with re-
spect to A and possibly the density is expected.
The analogue of such a phase in Condense Mat-
ter is the excitonic drops [60]. In such a case the
initial liquid—vapour critical point can transform
to peculiar point similar to Lifshitz one [39]. Note
that spatial inhomogeneity of A in no way means
the spatial separation of charges i.e., charge den-
sity wave phase. In addition this scenario is closely
connected with metal-insulator transition [33].

3. The discontinuity of density dependence of A at
the mean field critical point. According to the def-
inition at the point of the second order phase tran-
sition the difference between phases disappear. If
there is a discontinuity in A at the critical point
then it is not the second order phase transition.
This case needs detailed investigation.

Note that a spatially modulated charge density and order
parameter waves was predicted in [66]. There was consid-
ered a completely different system namely electrolyte so-
lution of small concentration, with strong contact inter-
action between neutral density fluctuations and charged
subsystem. However, similar character of intermode in-
teraction cannot be justified. Unlike of this the possibil-
ity of appearance the microhomogeneous state in molten
salt NaCl is connected with realistic polarizational ef-
fects and independent (uncorrelated) fluctuations of the
degree of dissociation do not lead to spatial separation of
charges. The case of repulsive hard-core driven criticality
[5,6], is characterized by insignificant change in G7 and
weak density dependence of degree of dissociation.

B. Ginzburg criterion for electrolyte solutions

It is difficult to solve the problem of the type of crit-
ical behaviour of a system in experiments. The main
question here is the estimation of the Ginzburg number,
which controls the width of the asymptotic region ¢ . Its
magnitude depends on the microscopic parameters of a
system and as follows from experiments varies in a wide
range. In [22] the crossover from classical to Ising-like be-
haviour was clearly observed at ¢y ~ 1072. In [2,19] the
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data were fitted by classical asymptotics up to ¢, &~ 107
near the critical point. The molecular dynamics simula-
tions of molten salt [32] also show classical behaviour of
an order parameter for 7 &~ 1072, 57 = T;T“, although
the influence of finite size effects does not allow to say
exactly whether the crossover does take place or not. In
all cases the width of fluctuation region is smaller than
the one for molecular liquids. In [23] the dependence of
the width of crossover region on dielectric permittivity
€ of a solvent was investigated. It was observed that the
crossover region becomes smaller as € is decreased. There
are not any physical reasons for the existence of such ¢*
that Gi(e) = 0 as € = ¢* > 1. In case of €* = 1 we deal
with the plasma phase transitions [78].

In previous section we have constructed the effective
LGH for electrolyte solution near its vapour-liquid crit-
ical point. It is well known [79] that the crossover from
classical to Ising-like critical behaviour of a system oc-
curs at the temperature:

T G, (133)
where
(€)? 2 ()
. ay T _ day
Gi= — a=— (134)
T=T,

(0) (0)

Values ag (ay,’ = ag7) and ay ' for initial Hamiltonian
can be extracted from the van der Waals equation (see

[71]):

ap~ 3067, al? ~ 6, (135)

where § = n.o? is the dimensionless density and —® is
the minimum value of the interparticle potential for a
solvent. Using (108) yields:

aizl—@x?’/z—l—o(x?’/z),

Qg
o ~ 3/2 3/2
ao_l—l—ax —|—0(x ), (136)
b 1 1
g:l—l—/\lx —|—0(x),
where
1 dlne\*
a _—F*0'34<—) ~0.1=1,
4 aglo)( ) 31np
I
T= o) ~ (.01,
Te
1 Olne\?
a_ao(F* )°d <3lnp) ~ 1, (137)
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1
A~ —(oTy) ~ 0.1

Co

The numerical estimations for a4, ...A; are obtained for
the following values of parameters:

6 ~0.33, [B.0~1.
We assume that g%ﬁ; can be approximated by the for-
mula:
Jlne  Ap
== 138
Jlnp € (138)

and the coefficient A is equal to 280“;13 for water in ac-

cordance with [81]. At least by the order of magnitude
I'.o < 1. Using (134) and (136) we obtain the following
renormalized value of the Ginzburg number:

(1 _ El4l‘3/2)2

(14 az3/2) (14 \ae2)3’

Gi(z) ~ Gil% (139)

where G4(%) is the Ginzburg number for a solvent. In fact
the Ginzburg number essentially depends on the ratio
of the amplitude of correlation length rg and the De-
bye screening length. In accordance with said above the
Ginzburg number is a monotone decreasing function of
concentration. Besides this it also depends on the tem-
perature as a parameter. Summarizing our arguments for
the regions rp < (>)r. we can write:

. Gi, r < ep(r
Gt ={ G, Tot e OO0
where
zp(r) = (F*lro) v (141)

1s the limit concentration of an electrolyte, which deter-
mines the applicability region of our polarization model.
The concentration dependencies of Gt at some fixed 7
and different values of dielectric permittivity are pre-
sented on Fig. (5).

Note that the greater is the value of dielectric permit-
tivity the greater is G7. This fact was noted experimen-
tally in [23]. Fig. (6) shows the concentration dependence
of GGi for electrolyte solution with ¢ = 80 and I'xo = 0.5.
The qualitative behaviour of G(z) near zp is shown by

dashed line.

Essentially that the value of a4 vanishes and system
looses its stability at concentration of an electrolyte:

—2
~7 3

Ty = Qy

(142)
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Obviously this possibility realizes only if @4 > 1 (see
(136)). In this case one can expect the multicritical be-
haviour of a system [6].
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Fig. 5. The relative value g—l’ of the Ginzburg number as a

function of concentration (x—a)gis) and dielectric permittivity
(y-axis) calculated by formula (139). The scales on « and y
axes equal to 1:0.0002 and 1 : 2 respectively.
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Fig. 6. Concentration dependence of the Ginzburg number
for parameters given in text.

Using the formula (140) is not convenient since usu-
ally experiments are carried out at a fixed concentration.
Let us illustrate this situation considering the values of
critical exponent. According to (140) we have:

Gi0 < m(z) < T (a)
0.5, for Gi < 71 < m(x) (b)
L ’
T < GiY < m(x) ()
0.625, for r < Gi < m(z) (d)
(143)
where

= (rolu/z) " ~ 2. (144)

At the end of this section let us complete obtained re-
sults with qualitative arguments. By order of magnitude

[79]
o= (2)

where 7, is the interparticle spacing. Addition of an elec-
trolyte leads to augmentation of the correlation length
amplitude because of its renormalization by charge-
charge fluctuations. It is clear that the behaviour of
strongly concentrated electrolytes is expected to be sim-
ilar to that of simple liquids or liquid metals.

(145)

Remarks

The important role of polarizational effects in the crit-
ical behaviour of ionic melts has been demonstrated. It
1s established that if the key parameters of a system take
the values: ry = 1 -5, Ay > 0.5, the coefficient a4 of the
effective LGH reduces considerably or vanishes.

Similar situation is also characteristic for the critical
behaviour of electrolyte solutions. In them the charge
fluctuations of admixtured ions can essentially renormal-

ize the coefficient aﬁf) of the initial LGH for a solvent. At
definite concentration z, of electrolyte as(x.) = 0. For
higher concentrations the standard scenario of the criti-
cal behaviour becomes inapplicable and additional inves-
tigations are necessary. In connection with this we note
the result obtained experimentally in [15], for ternary
aqueous solution of sodium bromide. It was observed that
fluctuation region at salt concentration 0.17 (mass frac-
tion) less than 10~°. To interpret this as well as specific
dip on the line of lower critical points the conjecture
about existence of competing microheterogeneous phase
was put forward. In principle, it is possible that at some
concentration the line of the lower critical points may
contact the virtual phase spinodal whose branches are di-
rected to lower temperatures. Then between the branches
of the spinodal the state of electrolyte solution should
be heterogeneous according to the thermodynamic de-
mands.

The main peculiarities of the critical behaviour of
molten NaCl salt are determined by the density depen-
dence of the degree of dissociation A and its fluctuations.
When the fluctuations of A are relatively small, the crit-
ical behaviour of the ionic liquid should be Ising-like.
From the thermodynamic point of view it is supported
by the fact that the system is characterized by two ther-
modynamic degrees of freedom [72]. The specificity of
the system displays only in the numerical value of the
Ginzburg number: it is the less the more the derivative

oA

22 s,
ap T

If the fluctuations of A become strong, \/{(dA)?) ~
(A), the deviations from the Ising-like behaviour can be
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considerable. First of all, the system can demix on the
parameter A. In other words, the formation of drops with
different values of A is possible. Since A is crucial pa-
rameter, the change of the type of the critical behaviour
seems to be probable.

It is not excluded that the phase diagram of molten
salt NaCl near its liquid-vapour critical point will
be more complex in comparison with that for one-
component liquid with simple intermolecular interaction.

3
ezl
zero, that can lead to the change of the type of the crit-
ical point, e.g., tricritical behaviour. However the van-
ishing of ag is impossible. The behaviour of conductivity
can serve as additional test of the type of the critical be-
haviour. So the sharp change of the conductivity could
testify the point of phase transition different from the
second order.

The most crucial for the critical behaviour is the de-
pendence of a4 on the degree of dimerization A of the
system which directly influences the polarizability. The
density of the ionic liquid is formed by the density of free
charges and bounded states. The density of the nondisso-
ciated molecules (dipoles) is determined by the thermo-
dynamical parameters of the state of the system (e.g.,
temperature and specific volume). In particular, the re-
sults of Monte Carlo simulations indicate that the prox-
imity of these two transition could explain the crossover
phenomena in ionic fluids [33]. Note that our consider-
ation is based on mean field treatment. Therefore, the
thorough analysis of fluctuation effects is needed to de-
termine the type of the critical behaviour if aqy = 0.

can be close to

In particular, the derivative

IV. SPECIFIC EFFECTS

A. Fluctuation-induced shift of the critical point in
solution of electrolytes

An anomalous curvature of the T'— x and P — z pro-
jections of the critical line of electrolyte solution at very
small mole fractions of an electrolyte NaCl4+H2O was ob-
served in many experimental works [26,82 83]. But the
nature of very big values of %x(x) was not clarified.

We will show that the shift of the critical point of high
diluted solution from the locus of pure solvent is gov-
erned predominantly by the charge—charge fluctuations.
The ‘square root’ concentration law for such a shift is a
direct consequence of the polarizational charge—density
coupling theory proposed in previous sections. The de-
pendence of the coefficients of the effective LGH at low
concentrations is given by Eq. (136). In mean field ap-
proximation the shift of the critical temperature as it
follows from Eq. (136) is

Almean) o~ 23/2, (146)

But the fluctuations change slightly the value of the crit-
ical temperature. This fluctuation-induced shift of the
critical temperature (the locus of the critical point in
general) is proportional to

AT, ~ /e, (147)

Indeed, let us define renormalized order parameter so that the coefficient at the gradient term equals to unity:

$(r) = /e(z) n(r). (148)
The LGH for the new order parameter reads as follows
sitalo) = [ v (§V60)7 + (221600 + Jas(T 67 (6) + JoalL0)6 ) ) (149)
where
ar (T, 2) = (c(x)) ™" 2a (T, x) . (150)
In the first order of perturbation theory on fluctuation coupling constant a4 [84] we have
A
() = (1) 43T gy [Galada) L Gola) = g (131)
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From Eq. (147) it follows that

dr.
dgix) ~a, (152)
which explains the anomalously big values of %x(x) ob-

served in [26,82,83]. Note, that such a term was used pure
empirically in [85] to process the experimental data. The
same conclusion on existence of \/z terms is valid for
other coordinates of the critical point such as pressure
and density.

B. Asymmetry of a binodal for electrolyte solutions

In this section we will show that the addition of elec-
trolyte leads to essential additional asymmetry of the
vapour—liquid coexistence curve. This circumstance is
connected with the choice of appropriate order parame-
ter, which restores the symmetrical shape of a binodal.
Otherwise, the ~ 727 term, which is absent in standard
variants of the asymptotic equation of state [79] should
be introduced to fit the experimental data in laboratory
variables [80]. We establish this fact in an evident form
within the framework of the canonical formalism [71,86],
which gives a clear motivation for all standard asymp-
totic terms of the equation of state as well as for those of
form 77 introduced to process the experimental data.

As it follows from the scale-invariant theory of critical
phenomena the singular part of the equation of state is
given by the expression

) = Viala. (s ) (153)

The order parameter P and conjugated fields hq, Ao
within the canonical formalism should be identified with
¢ and the coefficients Ay, A5, Ay of the Hamiltonian
(113). As a result, the equation (153) takes the form

A
(@) = 14sl” g, (ﬁ) :

Here the brackets (...) designate the averaging on the
volume of the correlation sphere (o< r2). In particular,
the equation of binodal including the additional Wegn-
er’s term [87] is as follows

(154)

(Dhbin = £|A51%g,(0) (1 +ba|A3[2 +..)) ,  (155)

where A5 = As|, _g. Its ‘liquid’ and ‘gas’ branches in
variables (¢, a¥), as is clear from Eq. (154) are absolutely
symmetric. But this symmetry disappears if we return to
the initial (‘laboratory’) variables (7, 7) [71,86]. Indeed,
using (121) one can get:

() = () + 5 72(6") + ... (156)

Since (see [79])

e h
@)= @7+ =1 ()

where function [, (z) is inverse to gs(z), Eq. (156) in
asymptotic region transforms to:

Mpin) = 9:(0)]az]7(1
+ bolas|A 4+ )+,

5 (M + M) = 5 T2 [92(0)]a3]*
+ L (0)]az' =] + ...

(M —

(157)

Note that the equation (157) besides standard terms
[79] includes additional contribution o |7|?? (as well as
other terms o< |7 n > 2). The latter was introduced
in work [80] from the empirical reasons. This new term
with 3 = 0.5 appears in mean-field approximation [39]
as well. Essentially, the asymmetry of the coexistence
curve is determined by product of universal multipliers
gs(0) and [;(0) and coefficient T’y describing the individ-
ual properties of liquids and solutions. The temperature
and concentration dependencies of coeflicients I', a are
determined by the expressions (108), (125) and can be
represented as follows:

ry ~ T 4+ 18,

12

(158)
* (el)

~ gl
ay = a3  +ay 7,

OO

5 ', ay "’ are the values of the respective coefficients in
absence of electrolyte. The values of terms induced by
electrolyte impurity in Eq. (158) are of o« 2312 order and
strongly depend on the parameter I'yvo. If T'o < (<) 0.1
they can be omitted. In the opposite cases, an account
of additional terms is rather essential.

C. Conductivity of the electrolytes

Above it was shown that the peculiarities of the criti-
cal behaviour of IL are determined by the density depen-
dence A(p*) of the degree of dissociation near the criti-
cal point. The criticality of the conductivity ¢ for highly
concentrated ionic mixtures and other electrolytes has
been studied much less compared with their equilibrium
thermodynamical properties [1,88]. The measurements
of the conductivity for highly concentrated nonaqueous
electrolytes was presented in [88].

Tt is well known (see [79]) that for magnetic systems
with Ising symmetry for an order parameter and conju-
gated field the critical fluctuations lead to a singularity
for the conductivity ¢ similar to that of entropy on the
critical isochor [79]:
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c=0cc+ AT+ AT L. (159)

Formally the appearance of the singular term is easily
explained with the help of a thermodynamic relation be-
tween the variations of the conductivity, do, and the en-
tropy, ds,

T
do x —wrel(k = 0)®02(55, (160)

where wpe 1s the characteristic relaxation rate for the
conductivity, provided that it is nonzero at the critical
point, i.e., no critical slowing down for the conductivity
occurs. This 1s certainly true for scenario 1 above. Let
us consider this case in more detail focusing on the con-
nection of the singular term for the conductivity with
the behaviour of the key parameter A. As is known, the
conductivity of a system is determined by

o= 5 [ [0 i0.0)dea (161)
0V
where j(r,t) is the electrical current density,
J(r,t) = epen(r,t)v(r,t) (162)

and pen(r,t) is the density fluctuation of charged com-
ponent. The overall density n is a sum of the density of
charged component (free carriers) and the double density
of dipole pairs. The density fluctuation is the sum of the
fluctuations of these terms. To calculate (161) we can
use the arguments of [89]. Due to screening effect, the
correlation of charge fluctuations separated by distance
r > r, 1s negligible. Due to this, in DH approximation
we get

1 Opch e=rirs
(e pen0.0) o (B2) )
(163)
where
3pch_n3A+A63n (164)

o~ Top T TCop

n is the overall density and f is a function without sin-
gularities. We will not be interested in time relaxation
of charge fluctuations here. The peculiarities of the criti-
cal behaviour of the conductivity are mainly determined
by the derivative 22t

T Since the number of charges is
N = NyA(p,T) the singularity of %

can be ob-

=ic

tained from the analysis of % . The last is given by
T

the thermodynamic identity (see,ce.g., [39]):
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3 T
T=T(l+7) (165)
where in the vicinity of the critical point Cy = C‘(/reg) +

C"(/Sing), where on the critical isochor C"(/Sing) ox 7% The

value %—N
Sy

tion equilibcrium. Therefore, the leading divergent terms
in the denominator cancel out, but other less singular
terms such as 717 do not. The latter terms are respon-
sible for the singular terms in the conductivity.

1s nonzero because of the condition of ioniza-

V. CONCLUSION

In our review we touch upon two questions, charac-
teristic for critical phenomena in IL and electrolyte so-
lutions: 1) the basic model for IL and 2) the crossover
problem for the critical exponents in electrolyte solutions
and IL. We have paid the attention for the dipole fluid as
the alternative model for the equation of state for the IL.
It was shown that the rotation of dipole molecules is very
important fact, which should be taken into account. It
was established that the definitive influence on the value
and behaviour of the Ginzburg number is caused by so-
called polarizational interactions. The nature of the lasts
for electrolyte solutions and molten salts was discussed
in detail. The possibility for the formation of spatially
inhomogeneous states near the critical point is consid-
ered.

At the same time many important problems were not
included in our analysis. First of all, the association—
dissociation processes need more careful investigation
both near the critical point and far away from it. Proba-
bly including the quantum effects can influence the esti-
mates of relevant parameters. The polarizational interac-
tions are also very important for the description of asym-
metry effects in the equation of state. The consecutive
using of the canonical formalism [73] also is very impor-
tant for this purpose. This formalism is also important
for ionic micellar solutions [90,80]. The polarizational ef-
fects should play very important role for the quasibynary
solutions for which the addition of electrolyte impuri-
ties leads to the appearance of double critical points and
phase separation [91]. In those cases, when the coefficient
a4 1s small, the peculiarities of critical fluctuations should
be described with the help of RG-method applied to ¢°
model. The detailed investigation of the dielectric per-
mittivity is also very important for the accurate solution
of problems of the critical behaviour.
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APPENDIX: CANONICAL FORM OF THE
DIELECTRIC PERMITTIVITY

There exist many approaches to the problem of dielec-
tric permittivity. Based on different assumptions they al-
low to describe with the most completeness only one or
several characteristic contributions. Unfortunately, too
hasty usage of model conceptions lead to errors which
are hard to control. In particular, this can change the
character of inequalities and essentially influences the
values of the density derivatives of dielectric permittivity.
Therefore, the discussion of general structure of dielectric
permittivity as well as the nature of main contributions
to 1t seems to be appropriate. By definition, dielectric
permittivity for an isotropic medium [77] is equal to

P
—1l=4r— Al
€ 7TE (A1)

where P = |P|, P is the polarizability vector, and E is
the strength of the Maxwell electric field (P||E). In gen-
eral, we should calculate P and E as functions of the
external field strength Ej. However, for a specimen of
the spherical shape the connection between E and Eg is
especially simple:

3
€+ 2

E= Eo. (A2)

Therefore, we can write

e—1 4n P(Ey) _ 4w
= — = —naeg.

€+2_ 3 Ey 3

(A3)

Since the effective polarizability aeg is a characteristic of
a medium, but not of the shape of the specimen Eq. (A3),
connecting € and aeg, 1s of general character. The left
side of (A3) is always less than unity, so the inequality

Am <1
—nae
3 1T

holds good.
To make a further conclusion about a.g and ¢, we
rewrite the formula (A3) in the form

-1 4r (D LD E
€ :_7T< Yo+ 5(D%)o 0’ (A4)
e+ 2 3 VEy

where D 1s the dipole moment of a system, V' is its vol-
ume, and the angular brackets designate the average over
the equilibrium Gibbs distribution. Note that the matter
within the spherical example is homogeneously polarized.

In general, the dipole moment has the structure:

D =Dy + aEy, (Ab)
where Dy 1s the dipole moment of the isolated system
and & is its polarizability. Following I. Fisher (unpub-
lished lecture, Odessa University, 1978) & can be repre-
sented in a form

N
a=3 a3 )+
i=1 k=1,2 1<ij<N ki,ko=1,2
(A6)
where d(lk)(ri) 1s the tensor of one-particle polarizability

for the i-th ion of type k, éz(zkl’k2)(ri,rj) is the tensor

of irreducible two-particle polarizability for i-th and j-th
ions of types k1 and ks, correspondingly, and so on. A
similar expansion is characteristic for the dipole moment:

Dy = Z Z d(zkl’k2)(1‘i,1‘j) + ...

1<ij <N k1,k2=1,2

(A7)

Note that within such an approach the central problem
is the calculation of irreducible contributions of different
orders to & and D but not the problem of the acting field
[77]. From symmetry reasons it follows that:

@ e))o = a1, (A8)

@ %2 (07 1)) = %<Sp @(Zkl,m)(ri’rj)%j, k=12

(A9)
where the angular bracket (...)o designates the averag-
ing over the equilibrium distribution function and we
suppose that one-ion polarizability is a scalar. The con-
tributions of higher order polarizabilities are relatively
small and will be ignored further. Since (Dg)p = 0, the
average (D)o = 0 can be approximated by the expression

z
(D)o =n| ay +o-+ laps +a-- +204)
(A10)
where z 1s the coordination number and for example
(++)

ayq = Sp Qy is the binary polarizability of two pos-
itive ions, which are nearest neighbours (r;2 = a). Tak-

ing into account that the main contribution to d(2+’+) is

caused by the dipole interactions, we can get the char-
acteristic inequality

2

<

pp <5 <

ay (A11)

0| =

a

since oy ~ (%), Therefore, we conclude that the contri-
bution of the binary polarizability in Eq. (A10) cannot
exceed % of that from the contribution of one-particle
ones.
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To calculate (D?) at small E; we use the following
assumptions:

1. (D?) = (D3)g

2. the dipole moments of ions are strongly correlated
only within the region whose size on the average is
equal to rg;

3. the characteristic dipole moment for this region has
order of the dipole moment dg for isolated molecule

NaCl.

As a result we can write

d2
(D > ~ V . (A12)
All these estimates allows us to conclude that
1 d2 a\?
Qeff R g + +3kBT ( ) . (A13)

The values a4 and a_ can be approximated by the po-
larizabilities of Ne and Ar. Using for r; the estimate ob-
tained above in such a way, we get

d2 a\®
k’BT< ) .

am F oy € (A14)

Hence the estimate of the dielectric permittivity and its
derivatives with respect to density can be obtained with
the help of formulas of Lorentz—Lorenz type:

e—1 4n  d2 a\’
=—n — ] .
€+2 3 kgT \ rg

The specific form of the relation between dielectric per-
mittivity and the effective polarizability 1s especially im-
portant for the calculation of the derivatives gnﬁ From
this point of view the formula of Lorentz—Lorenz type is
obtained from first principles and should be considered
as physically grounded result. If the dissociation is not

complete the formula (A15) takes the form

e—1 4rm d2 1-A a\?
= — 4+ A= . Al
c+2 3 kBT( 2 + (7“5) ) (A16)

The last term in Eq. (A16) is essential only in the close
vicinity of the critical point. In other situations its influ-
ence is negligible. Then

(A15)

e—1 271' d2

€—|—2: 3

(A17)
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EC®EKTH IIOJSIPU3AIII TA KPUTUYHA I[IOBEOIHKA CUCTEM
I3 KVJIOHIBCbKNMHM B3A€MOOISIMHA

B. Kymniucekuii, M. Masomyx
Odecoruti Haytonasvruti ynieepcumem, xadedpa meopemuunor @izuxu
eyna. Heoparcvra, 2, Odeca, Yxpaina

Oridn IpUCBAYEHO KPUTHYHIA HOBEOIHIN CHUCTEM 13 KyJIOHIBCBKHMH B3aeMomamu. OcobamMBy yBary mpuii-
JIEHO BAroMOCTI ToJiApm3aIiiiunx edeKTiB moban3y KPpUTHIHOI TOYKHM B TAKUX CHCTeMaX. BUABJIEHO, IO TTOJTAPH-
samifini B3aeMoil CYTTEBO PEHOPMAJII3yIOTh HoUaTKoBuH edeKTHBHUH raMigbToHisH cucreM Jlammay—I ins6ypra.
Po3riisiHyT0 OBOMOJIIOCHY PIIMHHY MOIeJb AK 6a30BY [JIsl TBOpeHH: HoHHUX pinuH (posromnenux coseli NaCl).
ITokasaHo, 10 BpaxyBaHH#A BHY TPIIIHIX CTYIIEHIB BIIBHOCTH, 30KpeMa POTaIiiHIX, AK1 BUHUKAIOTh y HOHHIN mapi,
103BoJIAE€ COPMYJIIOBATA HOBMM IMIXim A0 3adadi (hisMIHOTO po3Mipy mapu. [logaHO OIHKN KPUTUYHUX Ia-
paMeTpiB y MeXaX IBOIOJIIOCHOI PIIMHHOI MOOEeJIl. 3alpoloHOBAHO MOMKJIMBI ClleHapll KPUTUYHOCTH CHCTEMHU 3
KYJIOHIBCHKOIO B3aeMomiero. OMMcaHo MOXKJIMBICTh (pOpMYBaHHA HEOTHOPIOTHUX CTaHIB y KpurwaHiil miasarm. [Ipo-
aHaJII30BaHO OKpeMi edeKTH, MOIAPU3aIiiiHO CIIpUYMHEH] B3a€MOMIEI0 MIK ITapaMeTpOM MOPAIKY 1 PIIFOKTYAIEo
TYCTUHH 3apdAly, dKa XapaKTepHa [Jid CUCTEMHU 3 MPAMUMU KYJIOHIBCBKMUMU B3aeMOMiaAMH. linKpecieHo medaki
HOBI TIpobJjieMu, OB’ A3aHl 3 KYJOHIBCHKOIO KPUTHYIHICTIO.



