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The review is devoted to the 
riti
al behaviour of the systems with Coulombi
 intera
tions.

The importan
e of polarizational e�e
ts near the 
riti
al point in su
h systems is emphasized. It is

shown that polarizational intera
tions essentially renormalize the initial e�e
tive Landau{Ginzburg

Hamiltonian of the systems. The dipole 
uid model as the basi
 one for the 
riti
ality of ioni
 liquids

(molten salts like NaCl) is 
onsidered. It is shown that taking into a

ount the internal degrees of

freedom, namely the rotational ones of an ioni
 pair allows to formulate the new approa
h to the

problem about the physi
al size of a pair. The estimates for the 
riti
al parameters within dipole


uid model are given. Possible s
enarios for the 
riti
ality of the system with Coulombi
 intera
tion

are proposed. The possibility of formation of inhomogeneous states in the 
riti
al region is dis
ussed.

Some spe
i�
 e�e
ts 
aused by the polarizational indu
ed intera
tion between order parameter and

the 
harge density 
u
tuation 
hara
teristi
 for the system with the dire
t Coulombi
 intera
tions

are dis
ussed. Some new problems 
onne
ted with the Coulombi
 
riti
ality are outlined.
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INTRODUCTION

In re
ent years 
riti
al phenomena in systems with

Coulombi
 intera
tion between parti
les have been the

obje
t of many review papers [1{12℄. From them it fol-

lows that the des
ription of the thermodynami
s of ioni


system is far from 
omplete understanding. In 
ontrast

to the 
riti
al behaviour in mole
ular liquids both mean

�eld and s
aling analysis for ioni
 liquids (IL) have yet

to be resolved. The 
hara
teristi
 problem for IL is the


onstru
tion of suitable mean-�eld theory whi
h would

give the reliable phase diagram and estimates for non

universal quantities like Ginzburg number, 
riti
al am-

plitudes, et
. With the help of su
h self-
onsistent mean

�eld approa
h the in
uen
e of interplay between dire
t

Coulomb and spe
i�
 intera
tions on the type of the


riti
al behaviour 
ould be investigated. The problem of

manifestation of pe
uliarities of interparti
le intera
tions

in non-universal 
hara
teristi
s of phase transitions be-


omes very important.

The experimental study of the 
riti
al phenomena

in systems with Coulombi
 intera
tions revealed unex-

pe
ted results. First of all, su
h systems demonstrate es-

sential di�eren
es in their 
riti
al behaviour. The main

question here is about the existen
e of the 
rossover re-

gion, whi
h for the systems of early studies [1℄ was found

to be of the order � =

T�T




T




� 10

�4

[13℄. A re
ent review

[11℄ of the experimental results of the lasts two de
ades

states that \. . . there are several sets of highly a

urate

data whi
h, however, 
ontradi
t fundamentally".
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There are suspi
ions that some systems show tri
riti-


al behaviour [16,15℄. In fa
t, it means that 1) Ginzburg

number for many systems with Coulombi
 intera
tion

(CI) is abnormally small or 2) for some systems the

Coulombi
 intera
tions lead to the quantitative 
hange

of the 
riti
al behaviour at all � . On the other hand the

nature of low values for the dimensionless 
riti
al densi-

ties and the temperature for molten salts like NaCl needs


lari�
ation. In parti
ular, the question about the degree

of ionization of the system near the 
riti
al point remains

open. The 
lear answer to these questions is one of the

main problem for the modern theory of 
riti
al phenom-

ena.

Here we should note that in fa
t there is another type

of the systems with Coulombi
 intera
tion | liquid met-

als (alkali metals and mer
ury). It is well grounded ex-

perimentally that liquidmetals belong to the Ising model

universality 
lass of the 
riti
al behaviour [14℄. More-

over their 
riti
al behaviour is 
hara
terized by the same

Ginzburg number value as that in mole
ular liquids like

Ar, Ne, et
. The di�eren
e in interparti
le intera
tion


auses the di�eren
e in nonuniversal 
riti
al amplitudes.

The asymmetry of a 
oexisten
e 
urve here serves as the


hara
teristi
 example. In monovalent alkali metals with

lowest T




(Cs, Rb) a strong asymmetry takes pla
e. In


ontrast to it the liquid{vapor equilibrium 
urve for di-

valent Hg looks nearly symmetri
al. This di�eren
e is


onne
ted with existen
e of metal{insulator transition

(MIT), whi
h leads to a signi�
ant di�eren
e in inter-

parti
le potential for vapour and liquid phases in alkali

metals. Alkali metals in liquid phase near 
riti
al point

are indeed metals with nearly free ele
tron transport

properties, while for Hg MIT happens at higher density

�

MI

> �




. Thus, with respe
t to the 
ondu
tivity values,

liquid mer
ury near 
riti
al region is treated as slightly

ionized 
uid rather than liquid metal [14℄.

From the thermodynami
 point of view the position

of the vapour{liquid 
riti
al point is determined by the


onditions:

�

�p

�v

�

T

= 0

�

�

2

p

�v

2

�

T

= 0 (1)

where p; v; T are the pressure, the spe
i�
 volume and the

temperature 
orrespondingly. These 
onditions do not

depend on the spe
i�
 
hara
ter of interparti
le intera
-

tions. Within the Landau approa
h for the free energy:

F = F

0

+ V

�

A

2

�

2

+ A

3

�

3

+A

4

�

4

+ : : :

�

(2)

from (1) it follows that only A

2

and A

3


an vanish at the


riti
al point.

The 
u
tuations of the order parameter � and the


harge density 
hange the initial values of 
oeÆ
ients A

i

.

For the non-ioni
 liquids these variations are not drasti


in the sense that A

4

remains positive. However, for the IL

a new possibility may be realized. Due to the asso
iation-

disso
iation pro
ess near the 
riti
al point the appear-

an
e of spatially inhomogeneous state is possible. More

exa
tly, the drops of fully disso
iated liquid 
an appear in

dipole 
uid and vise versa. Su
h a possibility will 
hange

essentially the type of the 
riti
al behaviour.

For the systems with CI there is one more important


ause whi
h in
uen
es the 
hara
ter of the phase transi-

tion. Due to strong 
u
tuations of the order parameter

the 
u
tuations of the diele
tri
 permittivity also abnor-

mally grow. As a result the intera
tion energy U


h

of

the 
harge 
u
tuations Æ� is not des
ribed by the simple

formula:

U


h

=

1

2�

0

Z Z

dr dr

0

Æ�(r)Æ�(r

0

)

jr� r

0

j

(3)


hara
teristi
 for the systems with quasi
onstant values

�

0

of the diele
tri
 permittivity. In the 
onsidered 
ase

the intera
tion energy will be more 
omplex fun
tional

of type:

U


h

=

1

2

Z Z

dr dr

0

Æ�(r)Æ�(r

0

)

1

X

i=0

1

n!

Z

K

n

(r; r

0

jq

1

; : : : ;q

n

) Æ�(r

1

) : : : Æ�(q

n

)dq

1

: : :dq

n

(4)

where K

0

=

1

�

0

jr�r

0

j

. The expli
it form for the kernels K

n

should be determined from the Poisson equation for a

medium with inhomogeneous diele
tri
 permittivity. The intera
tions, generated by the fun
tions K

n

; n � 1, we will

name as polarizational ones. As a 
onsequen
e of dire
t 
onne
tion between Æ� and � the polarizational terms to U


h

renormalize also the 
orresponding 
oeÆ
ients of the Landau{Ginzburg Hamiltonian (LGH):

H

LG

[�℄ =

Z

dV

�

b

2

(r�(r))

2

+

1

2

a

2

�

2

(r) +

1

4

a

4

�

4

(r) + : : :

�

(5)
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It is very essential to note that the renormalization may

be e�e
tively ampli�ed by the relatively small value of

a

4

, whi
h, as it appears, takes pla
e in IL in 
omparison

with mole
ular ones [6℄. The role of the polarizational

e�e
ts in the 
riti
al phenomena and 
onstru
tion of the

Landau{Ginzburg Hamiltonian for the solutions of ele
-

trolytes and ioni
 liquids were investigated in [17℄ and

[18℄.

In this review we present the main results of investiga-

tions of 
riti
al phenomena in systems with Coulombi


intera
tions with spe
ial a

ent on the role of the po-

larizational e�e
ts. Our attention will be fo
used on the

following main questions:

1. the nature of the 
riti
al point in molten salts like

NaCl;

2. the de�nition and dis
ussion of the main proper-

ties of polarizational intera
tions in ele
trolyte so-

lutions and IL;

3. the 
on
entration dependen
e of the Ginzburg

number for ele
trolytes near their vapour-liquid


riti
al points;

4. the estimate of the Ginzburg number for IL like

NaCl;

5. the nontrivial 
u
tuational shift of the 
riti
al

point lo
us for the ele
trolytes;

6. the new phase whi
h appearan
e is possible near

the 
riti
al point;

7. diele
tri
 properties of ioni
 
uids.

The material is arranged in the following way:

1. Chapter I is devoted to the general fa
ts on the 
rit-

i
al behaviour of di�erent systems with CI. Here we

present also the alternative basi
 models for the

des
ription of the Coulombi
 
riti
ality in molen

salts: the RPM and dipole 
uid (DF).

2. The de�nition and general dis
ussion of the polar-

izational intera
tions are in Chapter II. Our 
on-

sideration will be restri
ted by the dis
ussion of

the polarizational e�e
ts mostly on the mean �eld

level. The expli
it form of the LGH for the systems

of interest is proposed.

3. The dependen
e of the Ginzburg number on the

relevant parameters of the system with CI is dis-


ussed in Chapter III.

4. In Chapter IV su
h important 
hara
teristi
s as


ondu
tivity and the asymmetry of the binodal are

analyzed.

I. CRITICAL BEHAVIOUR OF THE SYSTEMS

WITH COULOMBIC INTERACTIONS

A. Types of systems with Coulombi
 intera
tions

and experimental fa
ts

Criti
al phenomena in 
uids with nondispersive

Coulombi
 intera
tions have attra
ted mu
h attention

in the last ten years owing to a diversity of experimental

results. Early experimental results of [2,13,19℄) favored

mean-�eld type of the 
riti
al behaviour while re
ent

studies [20,21℄ 
on�rmed Ising-like asymptoti
s for the

systems under investigation.

The variety of systems studied experimentally 
an be

divided into two groups. Below we will name them as

Type I and Type II systems.

The systems of Type I are those where as is suggested

the Coulombi
 
riti
ality takes pla
e. The latter is 
har-

a
terized by a pronoun
ed narrowing of the 
u
tuation

region with probable mean �eld or the tri
riti
al point

variants for 
riti
al behaviour. At least the apparent


rossover from 
lassi
al to Ising-like 
riti
al behaviour

is expe
ted. This group in
ludes pure ioni
 
uids with

liquid-gas phase separation su
h as molten alkali halides

NaCl, KCl, et
. [3,5℄. The liquid{vapor 
riti
al point

of these systems is lo
ated at very high temperatures

(T




' 10

3

K). This makes the experiments very diÆ
ult.

In addition for su
h systems the number of thermody-

nami
 degrees of freedom allows tri
riti
ality as rather

degenerated but not generi
 
ase.

It is expedient to introdu
e 
ommon dimensionless

density and temperature [9℄:

�

�

= na

3

; T

�

=

�k

B

T

q

2

=a

(6)

where a is the ioni
 diameter, n =

N

V

is the total number

density, q is the absolute value of the 
harge.

Typi
al values of � near the 
riti
al point is less than

0:1, and usually it is 
onne
ted with small asso
iation

taken into a

ount with the help of thermodynami
 per-

turbation theory. However, the reliability of su
h type

estimates is not quite 
lear. Therefore the development

of the alternative approa
h grounded on the dipole 
uid

model seems to be expedient. In the present paper we es-

timate the 
riti
al 
hara
teristi
s of the ioni
 molten in

the framework of the dipole 
uid approa
h. We will also

show that the 
hange of mole
ular parameters due to ro-

tations in
uen
es essentially the lo
ation of the 
riti
al

point.

From this point of view the ioni
 (quasi)binary mix-

tures with \room" 
riti
al temperatures (T




' 300 K) of

de
omposition used in the experiments by Pitzer and 
o-

workers are more suitable [2,19,22,23℄ and widely used.

Tri
riti
al variant of the 
riti
al behaviour for multi
om-

ponent systems 
annot by ex
luded a priory. The ex-

perimental results are interpreted in [16,15℄ within this

point of view. The possibility of tri
riti
al nature of ob-

served pe
uliarities was also dis
ussed in [6,7℄. For su
h
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a 
onje
ture to be valid the additional s
ale 
ompetitive

with 
orrelation length of an order parameter must exist

[6℄. For example, in polymer blends the apparent se
ond

s
ale is the size of a mole
ule [24℄, whi
h may lead to the


rossover. The physi
al meaning of its analogue, if there

exists one, for ioni
 melts and ele
trolyte solution is not


lear [16℄.

Analogous problems arise for the se
ond group, whi
h

in
ludes dilute solutions of ele
trolytes, su
h as aqueous

ele
trolytes (H

2

O+NaCl et
.) [25,26℄, and quasibinary

solutions [16℄. Here the admixture of ions 
hanges the

parameters of the 
riti
al point of pure solvent. Thus

the 
riti
al behaviour of a pure solvent is perturbed by

the Coulombi
 subsystem of ions. The 
riti
al behaviour

of these systems may exhibit a 
rossover from mean-�eld

to Ising-like asymptoti
s within the temperature inter-

val of an experiment. In parti
ular, experimental data

for some solutions were �tted with mean-�eld exponen-

tial law up to � � 10

�4

[13℄, i. e., the 
u
tuation region

is mu
h less in 
omparison with that for simple liquids

(Gi � 0:1�1). This is in apparent 
ontrast to the results

of [27℄ where Gi de
reases insigni�
antly if the ioni
ity

parameter grows.

I =

q

2

=a

k

B

T

(0)




(7)

Here T

(0)




is the 
riti
al temperature of the solvent, pro-

vided that the 
riti
al behaviour belongs to Ising-model

universality 
lass. The ioni
ity parameter (7) obviously

shows the relative strength of Coulombi
 and solvopho-

bi
, short range for
es. The last forms Ising like 
riti
al

behaviour of neutral system. Though the a

ount of di-

re
t Coulombi
 intera
tion in [27℄ was performed pertu-

batively without a

ounting the pair formation. It is 
lear

that in su
h a way there is no substantial intera
tion be-

tween Coulombi
 and mole
ular subsystems. Thus due to

simple s
reening of the Coulombi
 intera
tion no drasti



hanges would be expe
ted for Gi in su
h an approa
h.

To pro
ess su
h data, di�erent assumptions in [28,29℄

and [30℄ were 
onsidered. These a�e
ted the 
on
lu-

sions about the existen
e of the 
rossover in su
h sys-

tems. The results of [30℄ show the non
lassi
al behaviour

through the temperature interval without any 
rossover.

In [28,29℄ the experimental data were �tted by a 
lassi
al

EOS.

The basi
 model for these systems is the restri
ted

primitivemodel (RPM). The RPM is the system of equal

number of positive and negative 
harges �q of the diam-

eter a, immersed in a homogeneous medium of diele
tri


permittivity �. It 
an be expe
ted that su
h model is ade-

quate for ioni
 molten salts. Various theoreti
al approx-

imations and numeri
al simulations predi
t the liquid-

vapour 
riti
al point at very low dimensionless tempera-

tures and densities [6,31,12℄. The nature of 
riti
al 
u
-

tuations in this model are mu
h less studied. The main

diÆ
ulty here is the intera
tion between number density

and 
harge 
u
tuations.

B. Mean-�eld theories of RPM

The 
onsideration of the 
riti
al behaviour in su
h is

based on the so 
alled Primitive Model, whi
h is de�ned

by the 
lassi
al potential:

U (r) =

8

<

:

q

i

q

j

r

ij

; r

ij

� � =

�

+

+�

�

2

1 ; r

ij

< �

(8)

Note that due to 
lassi
al 
hara
ter of the model, the

masses of the 
harges plays no role. If the symmetry be-

tween 
harges is `broken', one gets the extended, `un-

restri
ted' version of the model (see [11℄ and referen
es

therein). The restri
ted version of this model deals with

spe
i�
 
ase of equisized ions with the same absolute

value of 
harge. The mean �eld theory for the 
riti
al be-

haviour of su
h a system is mainly 
onstru
ted in three

ways: 1) thermodynami
 perturbation theory [6℄; 2) pair


orrelation fun
tion analysis [7℄; 3) 
omputer simulation

of EOS [32,33℄. The lo
ation of the 
riti
al point for RPM

varies in dependen
e of the intera
tions in
luded into free

energy. Typi
al values of 
riti
al point lo
us are:

�

�




� 0:02� 0:035 T

�




� 0:04� 0:06 : (9)

The MC simulations give to some extent 
ontradi
-

tory results for the position of the 
riti
al point as well

as for the type of the 
riti
al behaviour. For the lasts the


areful analysis of the �nite size s
aling e�e
ts is needed.

This probably the main 
ause for the di�eren
es between

the results based on the Gibbs ensemble [34℄ whi
h lo-


ate the 
riti
al density at almost the same value as in

(9). Others based on the extrapolation of the dependen
e

of the 
ell size L suggest signi�
antly higher densities

�

�




� 0:07� 0:08 [32℄.

There have been proposed many approa
hes to investi-

gate the 
riti
ality of the RPM. The �rst approa
h is the

thermodynami
 perturbation theory. The main goal of it

is to in
orporate as mu
h physi
ally relevant e�e
tive in-

tera
tions into thermodynami
 potential (free energy) as

possible. In parti
ular, it is based on the generalization of


lassi
al Debye{H�u
kel (DH) theory [35℄ for ele
trolytes.

It is assumed that the free energy of the system per unit

volume has the form:

f(�; T ) =

X

i

f

(id)

(�

i

; T ) + f

(ex)

(T; �


h

; �

d

) (10)

where f

(id)

(�

i

; T ) is the ideal gas term for neutral

mole
ules or ions, �

i

is the number density of the 
harges

if i = +;� and dipole pairs at i = d. The se
ond term

53



V. L. KULINSKII, N. P. MALOMUZH

f

(ex)

(T; �


h

; �

d

) is the ex
hange part of the free energy

whi
h 
an be represented in the form:

f

(ex)

(T; �


h

; �

d

) = f

(n)

(T; �


h

; �

d

) + f

(
h)

(T; �


h

; �

d

)

(11)

where f

(n)

(T; �


h

; �

d

) is the part in
luding hard 
ore ef-

fe
ts and all dispersive intera
tions of neutral mole
ules

and ions. In parti
ular f

(n)

(T; �


h

; �

d

) 
an be taken in a

form leading to Carnahan{Starling EOS [36℄.

Dire
t Coulombi
 intera
tions are take into a

ount

by the se
ond term f

(
h)

(T; �


h

; �

d

). It expli
itly de-

pends on the 
harges q

i

via 
hara
teristi
 length s
ale

| s
reening length. The simplest form of this term is

given by the 
lassi
al Debye{H�u
kel theory, where for

small 
harge densities:

�f

(
h)

(T; �


h

; �

d

) � �f

(DH)

(T;�) = �

�

3

12�

+ o

�

�

3

�

;

(12)

where � =

1

k

B

T

. The parameter � is the inverse s
reening

length, and for the RPM it equals to:

�

2

= 4�q

2

�


h

T

�

; (13)

The 
lassi
al Debye{H�u
kel (DH) model was improved

[9,37℄ and extended to higher dimensions of spa
e [38℄.

The generalizations of the expression (12) for the free

energy in
ludes the �nite size of the ions:

�f

(DH)

(T; �


h

; �

d

) = �

1

4�

�

ln(1 + x)� x+

1

2

x

2

�

; (14)

and ion-dipole intera
tion

f

(di)

=

�

2

aa

1

T

�

a

2

�

d

!(a

2

�) (15)

where

x = a�

and

!(x) =

3

x

4

�

ln

�

1 + x+

1

3

x

2

�

� x+

1

6

x

2

�

:

The values of �


h

and �

d

are determined a

ording to :

�


h

= ��

�

; �

d

= (1��)

�

�

2

; (16)

where � is the degree of ionization. The mass a
tion law

relates � with the pair asso
iation 
onstant K(T ) [39℄:

2

1��

�

2

= �

�

K(T ) exp

�

��

(ex)

+

+ ��

(ex)

�

� ��

(ex)

d

�

; (17)

where �

(ex)

i

= �

i

� �

(id)

i

is the ex
ess 
hemi
al potential

for ions (i = +;�) or dipole pair (i = d). The expressions

for the 
hemi
al potentials are obtained in standard way

[39℄. As a result they are the fun
tions of �. Therefore

equation (17) is one for �. Also note that for the RPM

�

+

= �

�

.

The formation of asso
iated pairs of the ions is taken

into a

ount within the Bjerrum's 
on
ept [40℄. The Bjer-

rum 
riterion of the pair is based in the simplest mod-

eling K(T ) as the 
lassi
al partition fun
tion of dipole


on�guration, 
hara
terized by the only parameter |

the distan
e between ions:

K(T

�

) =

Z

a<r<R

exp

�

�

q

2

r

�

dr

= 4�a

3

R

�

Z

1

x

2

exp

�

1

xT

�

�

dx: (18)

The upper limit of integration is the Bjerrum length

whi
h 
orresponds to the minimum of the integrand and

is given by the Bjerrum energeti
 
ondition:

q

2

R

= 2k

B

T ;

so that:

R

�

=

�

1

2T

�

if T

�

�

1

2

1 if T

�

>

1

2

; R

�

= R=a : (19)

A more sophisti
ated approa
h to modeling the asso
ia-

tion 
onstant (18) was elaborated in [41℄. It was based on

the 
onsisten
y of mass a
tion law with virial expansions

for EOS of ioni
 system up to �

5=2


h

order. But the di�er-

en
e between asso
iation 
onstant (18) and that obtained

in [41℄ for the interval of densities and temperatures of

interest (T

�

< 0:1 ; �

�

< 0:1) appeared to be less than

1%. The 
oordinates of the 
riti
al point obtained in su
h

an approa
h are

T

�




= 0:055 ; �

�




= 0:026 ; P

�




= 3:6 � 10

�4

: (20)

For the reviews of the results see [6,12℄.

The se
ond approa
h is based on 
onstru
tion of

pair the 
orrelation fun
tions. The 
losure of Ornstein{

Zernike relation for pair 
orrelation fun
tion and subse-

quent 
onstru
tion of the thermodynami
 potential and

EOS are used. The above mentioned Debye{H�u
kel ap-

proximation 
an be obtained within this framework too.
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This is a 
lassi
al result of statisti
al physi
s (see, e. g.,

[39℄).

In this approa
h the Mean Spheri
al Approximation

(MSA) [42℄ for pair 
orrelation fun
tions is widely used.

Within the latter the equation for the pair 
orrelation

fun
tion in some 
ases [43℄ 
an be solved exa
tly. The

ion 
ontribution to the free energy in this approximation

is:

f

(
h)

= �

1

12�a

3

�

2 + 6x+ 3x

2

� 2(1 + 2x)

3=2

�

: (21)

The asso
iation e�e
ts are taken into a

ount as has been

outlined above with the help of the 
hemi
al asso
iation

theory [44,45℄. The 
oordinates of the 
riti
al point for

MSA-based models with the in
lusion of asso
iation [46℄

typi
ally are:

T

�




= 0:07 ; �

�




= 0:022 ; P

�




= 2:0 � 10

�4

: (22)

The results obtained within this approa
h 
an be found

in [7℄.

The main diÆ
ulty of this approa
h as well as any

other 
onne
ted with using approximations for lower 
or-

relation fun
tions is the ne
essity to satisfy many ther-

modynami
al identities. For Coulomb systems there are

additional identities known as sum rules [47℄. Usually

only the relations for the �rst (lo
al ele
troneutrality


onditon) and se
ond moments (Stillinger{Lovett sum

rule) are ful�lled (e. g., for DH or MSA). The absen
e of

reliable me
hanism within this approa
h whi
h expli
itly

takes into a

ount all thermodynami
 identities results

in violation of some exa
t inequalities as was shown in

[48℄.

Despite obvious progress in mat
hing the 
oordinates

of the 
riti
al point obtained in su
h mean-�eld ther-

modynami
 approa
h with those of MC 
al
ulations the

modi�ed DH theory still 
onfronts the diÆ
ulty in the

explanation of small values ofGi. Indeed, on
e the proper

mean �eld theory is given, the 
orresponding LGH 
an be


onstru
ted, thus providing the satisfa
tory estimates for

both 
riti
al point lo
us and the width of 
u
tuational

region.

C. Renormalization group analysis

and Kosterlitz{Thouless transition

The nature of 
riti
al 
u
tuations in the RPM whi
h

is dire
tly 
onne
ted with Coulombi
 
riti
ality has not

been thoroughly studied. The main diÆ
ulty here is the

intera
tion between the number density 
u
tuations and

the ones of 
harge. For the Coulomb gas of point parti
les

the 
oeÆ
ients a

2n

of the e�e
tive LGH are:

a

2n

= (�1)

n+1

with a

4

< 0. This model is isomorphi
 to the so-
alled

sine-Gordon �eld theory [49℄.

The RPM di�ers from gas model sin
e: 1) the ions

have �nite sizes 2) there is nonzero asso
iation in the

system. Therefore, to derive the proper LGH these fea-

tures should be in
luded.

The renormalization group (RG) analysis of 
riti
al


u
tuations in Coulomb gas was done in [50℄. The hard


ore e�e
ts were in
luded and treated with the help of

Hubbard{S
o�eld method [51℄ (see also [36℄). Note that

the in
lusion of hard 
ore e�e
ts leads to the density

dependen
e of the 
oeÆ
ients of the e�e
tive LGH. To


onsider the possibility of vanishing a

4

the e�e
tive LGH

in the \�

6

" approximation was used, where � is the �eld

variable 
onjugated to the 
harge density. It was shown

that the investigated model may exhibit either a �rst-

order transition or Ising-like 
riti
al behaviour depending

on the starting values of the LGH 
oeÆ
ients. Two types

of the 
riti
al behaviour mentioned above are formed due

to the existen
e of a tri
riti
al surfa
e in the spa
e of the


oeÆ
ients of the Hamiltonian. The behaviour depends

on the starting value of a

6

> 0. The LGH moves either

to the se
tor where a

4

< 0 or to Ising �xed point with

a

4

> 0 in the spa
e of the LGH 
oeÆ
ients. The estimate

for the width of the 
u
tuational region was not given.

In addition the value of the 
oeÆ
ient a

6

was 
onsid-

ered as an arbitrary parameter of the theory (a

6

> 0).

Though for lower densities (0:01 < � < 0:07) all the 
oef-

�
ients at �

n

; n < 22 in the LGH obtained are negative.

It should be noted that in this approa
h the importan
e

of asso
iation e�e
ts is ignored.

The unique theory where it appeared possible to


onsider the formation of bound states is 2D 
lassi
al

Coulomb gas of point parti
les. It also 
an be represented

by 2D XY -model on the square latti
e [52,53℄ (see also

[54℄) with the Hamiltonian:

H = �J

X

n;�


os (�

n

� �

n+�

) :

In the 
ontinual limit it is mapped onto sin-Gordon �eld

model [49℄. Here the 
ondu
tor{insulator transition o
-


urs at small densities. The existen
e of the Kosterlitz{

Thouless (KT) transition [52,53℄ may a�e
t the 3D be-

haviour in the view of (2 + �)-renormalization. Some nu-

meri
al MC results have been interpreted from this point

of view [33℄. The key points of KT theory of diluted 2D

Coulomb gas are: 1) the 
onsideration of in
uen
e of the

asso
iated dipole pairs on the intera
tion energy of two


harges through the diele
tri
 permittivity; 2) the last

is 
onne
ted with the diele
tri
 sus
eptibility �; 3) in

its turn � is determined in a self-
onsistent way with

the polarizability of an ioni
 pair. Thus the equation for

the diele
tri
 permittivity is derived. This is the main

point of KT-theory [55℄. In su
h model the disso
iation-

asso
iation transition (metal{insulator) takes pla
e. The

renormgroup 
onsideration of the model [56℄ gives the

equation for the T




:

�




�J � 2� exp

�

�

�

2

2

�




J

�

= 0:
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In this point the 
orrelation length � whi
h is propor-

tional to the size of a pair has singular behaviour:

� =

(

exp

�

a�

�

1

2

�

; T > T




1 ; T < T




:

The in�nite value of 
orrelation length in insulating

phase implies the algebrai
 behaviour of the 
harge{


harge 
orrelation fun
tion:

h�(0)�(r)i /

�

a

r

�

1

2��J

; T < T




:

It leads to the singularity in the sus
eptibility:

� =

�

�

2��

; T > T




1 ; T < T




;

with � = 1=4 [57℄.

There are di�erent views on the nature of the end point

of KT line. The analysis of [58℄ 
laims this point to be

of usual 
riti
al type, while the extended DH model de-

veloped in [38℄ predi
ts it to be a tri
riti
al one.

It is not quite 
lear also how to extend KT analy-

sis to higher densities. It is well known that the 
ase of

two dimensions is very spe
i�
 for 
riti
al phenomena

be
ause of an in�nite dimension of the 
onformal sym-

metry group. Indeed, as we 
an see the Poisson equation

(PE) for inhomogeneous isotropi
 diele
tri
 media

� (�(r)��(r)) = �S

d

�(r); S

d

=

2�

d=2

�(d=2)

(23)


an be interpreted as the PE for homogeneous media, in


onformally equivalent metri
:

ds

2

= �(r)dl

2

; (24)

where dl

2

= dx

i

dx

i

usual Eu
lidean metri
. Indeed, the

Lapla
e or Lapla
e{Beltrami operator for arbitrary met-

ri
 ds

2

= g

ik

dx

i

dx

k

is (see, e. g., [59℄)

�

LB

=

1

p

g

�

i

�

p

gg

ik

�

k

�

(25)

where

g = det jjg

ik

jj

Comparing (25) with (23) and taking into a

ount that

the density of any quantity in
ludes the 1=

p

g fa
tor we

get that inhomogeneous PE (23) takes the form:

�

LB

�(r) = �S

d

~�(r); ~� =

�

p

g

; (26)

whi
h is nothing but the PE for 
urved D-dimensional

spa
e with the metri
 tensor:

g

ik

= (�(r))

2

d�2

Æ

ik

; d 6= 2 : (27)

The spa
es with metri
 tensor g

ik

= f(r)Æ

ik

are 
alled


onformally 
at, i. e. their metri
 tensors are propor-

tional (the 2D 
ase is the ex
eption be
ause any 
urved

surfa
e is 
onformally equivalent to the 2-plane). So if

there exists the 
hange of 
oordinates (
onformal trans-

formation) so that the Eu
lidean metri
 transforms into

g

ik

= f(r)Æ

ik

the Green's fun
tion for su
h metri
s 
an

be obtained with the help of the Green's fun
tion for


at geometry by the 
hange of variables. In dimensions

D � 3 the 
onformal transformations (the so-
alled 
on-

formal group) are rotations, dilatations and inversions.

The only inhomogeneous transformations are inversions

but they lead to singular �(r) =

1

jrj

2

. In two dimen-

sions any 
omplex analyti
al transformation of 
oordi-

nates z = (x; y) ! w = f(z) leads to 
onformally 
at

metri
.

As is known the absen
e of the 
hara
teristi
 length

s
ale is the re
e
tion of the 
onformal invarian
e of the

system. For two dimensional systems with the behaviour

similar to the KT model (insulator{
ondu
tor) the 
on-

formal symmetry apparently forbids the spatial inhomo-

geneous phases. Apart from this in a 3D 
ase we 
an

expe
t the appearan
e of su
h phases. A typi
al exam-

ple of su
h a phase is the ex
itoni
 drop phase in solid

state [60℄.

D. Qualitative analysis of the 
riti
al behaviour

of the dipole liquid

NaCl is the simplest example of ioni
 liquid. In the

solid state it is ioni
 
rystal. Above the melting point the

positions of ions be
ome un�xed, but this liquid remains

strongly disso
iated. Due to thermal expansion at in-


reasing temperature the disso
iation degree diminishes

and the molten salt passes to a dipole liquid. At further

in
reasing temperature and de
reasing the molten den-

sity the disso
iation degree grows again and the molten

salt be
omes a 
ompletely ionized system. Thus, at some

temperature (T

1

; T

2

) and density (n

1

; n

2

) intervals the

molten NaCl 
an be 
onsidered as a dipole liquid. The

question about the degree of ionization of IL near their


riti
al points has been dis
ussinged for a long time [14℄.

The studies of this problemwere done in the early 1970ies

in [61℄. The van der Waals model with hard 
ore inter-

a
tion for the 
uid of diatomi
 mole
ules was used. The

estimations were obtained by the linear extrapolation of

the density data available [62℄ assuming the validity of

the law of re
tilinear diameter. The 
omparison of these

results with those obtained for 
ompletely ionized state

near the 
riti
al point favoured the assumption about

a low degree of ionization at the 
riti
al point. Further

additional arguments for this assumption will be given.
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Let us 
onsider general properties of this liquid and, in

parti
ular, its main 
riti
al parameters: the 
riti
al tem-

perature and density. The interparti
le intera
tion in a

dipole system takes the form:

U (1; 2) = U

w

(1; 2) + U

dd

(1; 2); (28)

where the �rst term des
ribes the van der Waals inter-

a
tion between mole
ules and

U

dd

=

1

�r

3

12

�

d

1

d

2

� 3

(d

1

r

12

)(d

2

r

12

)

r

2

12

�

(29)

the proper dipole{dipole intera
tion, r

12

= jr

1

� r

2

j is

the interparti
le spa
ing, i = r

i

;d

i

, d

i

= d

0

n

i

, i = 1; 2,

� is diele
tri
 permittivity. Be
ause the dipole-dipole in-

tera
tions are relatively weak the angular distribution of

dipole moments d

i

is 
lose to the isotropi
 one. More ex-

a
tly we assume that the two parti
le distribution fun
-

tion g(d

1

;d

2

) 
an be approximated by the �rst two terms

in the expansion:

g(d

1

;d

2

) = 1� �U

dd

(1; 2) + : : : : (30)

The approximation of su
h a kind allows us to ex
lude

the orientational degrees of freedom in the 
on�gura-

tional integral with the help of the perturbation theory.

In fa
t this pro
edure is equivalent to the usage of the

isotropi
 potential

U (r

12

) = hU (1; 2)i = U

w

(r

12

)� U

d

�

�

r

12

�

6

;

U

d

=

2

3

�

�d

2

�

2

�

2

�

6

(31)

Here � � a

+

+ a

�

� 2a, a

+

and a

�

are the diameters of

ions Na and Cl 
orrespondingly and for simpli
ity we put

a

+

= a

�

and negle
t the di�eren
e in masses of the ions,

� : : :� denotes the average with the internal partition

fun
tion of a pair. It is easy to 
he
k that the inequality

jU

w

(r

12

)j � U

d

�

�

r

12

�

6

takes pla
e at all r

12

. Therefore

further the 
ontribution jU

w

j will be ignored.

It is essential, that the averaging pro
edure restri
ts

the appli
ability region of the potential (31) by interpar-

ti
le spa
ings � � r

12

whi
h gives the size of the \av-

eraged" dipole of the order 2a. Though the value of �

may be slightly less than 2a sin
e rotating dipoles are

not the same as hard spheres of diameter 2a. It is quite


lear in view of s
attering 
ross se
tion for the hard ro-

tating dumbells. At this level � should be 
onsidered as

the parameter (in general temperature dependent) of the

dipole{dipole potential. The pro
edure of its �xing in the


riti
al point will be dis
ussed further.

To des
ribe the properties of the molten NaCl within

the interval, where it 
an be 
onsidered as a dipole liquid,

we 
an use the potential with hard wall:

U (r

12

) =

(

1 ; r

12

< �

�U

d

�

�

r

12

�

6

; � � r

12

: (32)

Su
h a potential leads to the van der Waals equation

of state

P =

n

d

k

B

T

1� n

d

b

� A(T )n

2

d

; (33)

where

A(T ) = ��

1

Z

�

U (r; T )r

2

dr =

��

3

3

U

d

; b =

2�

3

�

3

(34)

and n

d

is the pair number density. Therefore the overall

density is n = 2n

d

. In dimensionless form (33) and (34)

read as:

P

�

=

�

�

T

�

2� b�

�

�

~

A(T

�

)

4

�

�

2

; (35)

and

~

A(T

�

) =

2�

9T

�

�

3

� r

2

d

�

2

(36)

Here all spatial parameters are given in units of a. The

value of the parameter � r

d

� depends on the internal

stru
ture of the pair. Though by the order of magni-

tude � r

d

�� 1, nevertheless from [63℄ it follows that

the 
hara
teristi
 values of dipole moments 
orrespond

to � r

d

�< 1.

Sin
e � is 
onne
ted with the size of the pair we model

its temperature dependen
e via relation:

� =� r� Æ (37)

where Æ is the �tting parameter.

Note that � is temperature dependent whi
h is as-

sumed to be the same as that for � r�. The fun
tions

� r

n

� will be determined below. Note that the vapour

phase, whi
h 
onta
ts the liquid one, is the gas of dipole

mole
ules. The van der Waals EOS is appropriate ap-

proximation for EOS for su
h vapour phase. Thus we


an get the 
riti
al parameters of this system using the

van der Waals theory of the 
riti
al point.

Equation (33) leads to the following equations for the


riti
al temperature and density (note that n

d

= n=2,

where n is the total number density):

T

�




=

2

p

2

9�

3

� r

2

d

�; �

�




=

1

��

3

; (38)

The estimates for these parameters are straightforward

if we put � = 2, and take into a

ount that due to small
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dipole moment of NaCl � r

2

d

�= 1 (in units of a):

T

�




=

p

2

36

� 0:04 ; �

�




=

1

8�

� 0:04 ;

P

�




=

p

2

1536�

� 3 � 10

�4

; (39)

Z




=

P

�




�

�




T

�




=

3

16

� 0:19

whi
h are in satisfa
tory agreement with the values

T

�




= 0:055 ; �

�




= 0:026 ; P

�




= 3:6 � 10

�4

; (40)

Z




= 0:25

obtained within extended Debye{H�u
kel-Bjerrum theory

[64℄ augmented with ion{dipole intera
tion. Our value of

the 
riti
al density is greater due to negle
ting the dis-

so
iation of the dipole pairs.

Now we need to 
onsider the dipole pair as itself sin
e

the parameters of potential (32) a
tually are the aver-

ages over the internal partition fun
tion of a pair and

therefore are the temperature dependent fun
tions.

E. The disso
iation of the rotating dipole liquid

In the previous se
tion the model of 
ompletely asso-


iated ioni
 liquid 
onsisting of rotating dipoles has been

introdu
ed. Here we investigate the internal stru
ture of

the bound pair of ions. We take into a

ount the fa
t

that the energy of intera
tion of a pair should in
lude


entrifugal energy together with Coulombi
 potential as

in standard problem of two bodies intera
ting via 
entral

�eld.

The disso
iation temperature for NaCl-molten is de-

termined by the e�e
tive potential of an ion within a

rotating dipole whi
h in
ludes the 
entrifugal energy:

kT

d

� �U

e�

=

q

2

r

�

L

2

2I

; (41)

where I = �r

2

is the moment of inertia of the 
harge with

redu
ed mass � =

m

+

m

�

m

+

+m

�

= m=2. At su
h high temper-

atures all degrees of freedom are all in equilibrium and

we 
an use the estimate

E

rot

=

�

L

2

2I

�

= kT: (42)

Note that the equilibriumdistan
e between ions in a pair,

whi
h is determined by the minimum of e�e
tive poten-

tial (41) with the help of (42), is

a

eq

=

1

2T

�

; (43)

whi
h is exa
tly the Bjerrum size of the pairR

Bj

[40℄ (see

also [64℄). The 
hoi
e of (43) as the size of the ioni
 pair

is inappropriate from the physi
al point of view at low

temperatures T

�

� 1 [64℄. It is natural that with lower-

ing T the size of a pair should be
ome smaller tending

to a at T ! 0. That is why it was suggested to use it for

1=T

�

� 2 only.

Let us 
onsider this question within the pi
ture for-

mulated above. To be more 
orre
t, we will in
lude the

rotational energy into asso
iation 
onstant, whi
h is pro-

portional to the internal partition fun
tion of the pair

[12,64℄:

K(T

�

; R) = 4�

R

Z

a

exp(��U

e�

)r

2

dr: (44)

In 2D 
ase one 
an put R =1 be
ause of the logarithmi


growth of the ele
trostati
 potential and get the estima-

tion of Berezinskii{Kosterlitz{Thouless (KT) tempera-

ture of disso
iation [53℄. In 3D 
ase there is the problem

with upper 
uto� in su
h an approa
h where the asso
ia-

tion 
onstant is identi�ed with internal partition fun
tion

of the ioni
 pair.

To de�ne the size of a pair following Bjerrum we in-

vestigate the extremal points of the integrand in (44).

Doing so we get two solutions:

R

�

(T

�

) =

1�

p

1� 16T

�

�

4T

�

;

R

+

(T

�

) =

1 +

p

1� 16T

�

�

4T

�

(45)

where

� =

L

2

=2I

0

q

2

=a

; I

0

= �a

2

:

Here R

+

is a solution of the Bjerrum type (minimum of

the integrand in (44)), whi
h as has been said above is

inappropriate. R

�

is another solution 
orresponding to

the maximum of the integrand, whi
h has quite reason-

able values and 
orre
t behaviour at low T

�

. It is easy

to 
he
k that asymptoti
ally for low values of the tem-

perature T

�

the value of K(T

�

) is formed mainly by the

maximum of the integrand. In addition the appropriate

limiting behaviour to the hard-
ore 
onta
t at formal

limit T

�

! 0 is hold provided that � =

1

2

. This value of

� is in full a

ordan
e with the virial theorem [39℄. All

these fa
ts 
on�rm that we 
an treat the quantity R

�

as

the size of the pair even at `high' temperatures T

�

� 0:1.

In additionR

�

never ex
eeds 2, i. e., the interparti
le the
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distan
e when the in
uen
e of other pairs and 
harges on

the e�e
tive potential 
an be negle
ted (see Fig. 1).

Fig. 1. The temperature dependen
e of R

�

.

So we put R

�

as the physi
al 
uto� for (44). The

existen
e of su
h length s
ale was noted in [64℄ bas-

ing on the the numeri
al analysis of the fun
tion

K(T

�

; R)=K(T

�

; R

Bj

), though only Coulomb potential

was in
luded in Boltzmann fa
tor. It gives the rate at

whi
h K(T

�

; R) rises very rapidly to its plateau value.

In our 
ase we �nd the same behaviour of K(T

�

; R) at

small temperatures, T

�

< 0:04 (see Fig. 2).

Fig. 2. The ratio

~

K = K(T

�

; R

+

)=K(T

�

; Æ �R

�

) as a fun
-

tion of Æ and T

�

.

Finally we see that there is the natural temperature

interval for dipole 
uid whi
h is bound from above by

the temperature

T

�

upper

�

1

8

: (46)

Therefore for T < T

�

upper

the dipole is stable in itself.

Note that the existen
e of the temperature (46) reminds

Kosterlitz{Thouless (KT) transition in a 2D 
ase. In par-

ti
ular, the 
entrifugal energy introdu
ed above plays the

role analogous to the 
hemi
al potential \. . . required to


reate a pair of parti
les of equal and opposite 
harge at

a distan
e r

0

apart . . . " in Kosterlitz{Thouless model

[53℄. However, in 
ontrast to 2D 
ase in 3D 
ase there is

no any divergen
e in the size of the pair and therefore in

its polarizability, but its derivative on the temperature

has singular behaviour. In other words, the temperature

derivative of the polarizability is singular but not the

polarizability itself. This inferen
e might seem as mere

an artifa
t of introdu
ing the upper 
uto� in (44). But

it should be noted that taking diele
tri
 permittivity �

as the order parameter, whi
h is dire
tly 
onne
ted with

polarizability, we get exa
tly the divergen
e of its tem-

perature derivative even in mean �eld approximation.

This may serve as additional support for the 
onje
ture

of intensive breaking of the dipole pairs at the 
riti
al

point observed in some numeri
al experiments [33℄. Note

that our estimate (46) of T

�

upper

perfe
tly 
orresponds to

the temperature T

�

m

at whi
h the maximum of the spe-


i�
 heat was observed in MC simulation study of the

RPM performed in [33℄.

The existen
e of the intera
tion between dipoles and

the free 
harges provides additional instability me
ha-

nism for their disso
iation thus redu
ing the temperature

of `ideal' disso
iation (46) be
ause of the polarization of

the dipole in the external �eld of dipole{dipole potential

(32) and Coulombi
 �eld of free 
harges. The 
onsidera-

tion given above states that there are two 
hara
teristi


transition in the dipole-dipole 
uid: 1) `dipole liquid{

dipole gas' 
riti
al point of van der Waals type; 2) the

smeared disso
iation `transition' from asso
iated state to

almost 
ompletely disso
iated one. This smeared tran-

sition 
an be 
hara
terized by the temperature on the

binodal at whi
h the degree of disso
iation is

1

2

.

The intera
tion between translational degrees of free-

dom of the ions is 
hara
terized by the 
riti
al temper-

ature of the liquid{gas transition, while internal, rota-

tional degrees of freedom are involved into disso
iation of

su
h dipole 
uid. These degrees of freedom will strongly

intera
t if the 
orresponding potentials will be of the

same magnitude, i. e., T




� T

d

. The additional 
on�rma-

tion of 
oin
iden
e of su
h transitions is the high degree

of disso
iation above the 
riti
al point observed in nu-

meri
al experiments [33,65℄ and theoreti
al models [12℄,

whi
h in
orporate diele
tri
 permittivity resulting from

the existen
e of the dipole pairs. This means that T

d


an-

not be less than T




. All said above means that in su
h a

situation we 
annot rely on (33) sin
e appropriate EOS

should in
orporate all relevant intera
tions whi
h lead

to phase separation. In parti
ular, the 
riti
al tempera-

ture is sensitive to the temperature dependen
e of the

parameter A(T ).

The 
ondition for the disso
iation of a pair in external

ele
trostati
 �eld is:

hd �Ei = � � U

e�

� ; (47)

where
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d = d

0

+ d

ind

(48)

is the dipole moment, whi
h 
onsists of proper and in-

du
ed dipole moments. Obviously,

hd

0

�Ei = 0 ; hd

ind

�Ei = �hE

2

i: (49)

Here � is the polarizability of a pair. The averaging over

the thermal equilibrium gives:

hE

2

i =

3k

B

T

{V

ph

; (50)

where { is the diele
tri
 sus
eptibility of the mediumand

V

ph

is the 
hara
teristi
 volume . It is 
onne
ted with the

polarizability of the 
avity. A

ording to the de�nition:

{ =

� � 1

4�

=

1

2

��

�

: (51)

So we get the equation for the temperature in a dimen-

sionless form:

6

�

�

V

ph

T

�

= � � U

e�

� : (52)

Within the proposed approa
h we put V

ph

=

4�

3

l

3




where

l




is the radius of �rst 
oordination sphere. This is the

minimal volume for whi
h the 
on
eption of 
ontinuity of

the medium 
an be applied. By the order of magnitude

l




� 1:5 a. The solution of (52) gives the dependen
e

T

�

(Æ). In order to �x the value of Æ in the 
riti
al point

whi
h determine the size of the pair we should equate

T

�

(Æ) and T

�




(Æ) obtained above. This way we get:

T

�




= 0:048 ; �

�




= 0:054 ; P

�




= 4:8 � 10

�4

� = 1:8 ; Z




= 0:19; (53)

whi
h are 
lose to those obtained above (39). In nota-

tions of [64℄, � = 2a

2

. In this work the estimate for the

parameter a

2

from simple geometri
 
onsiderations was

given: 0:825 � a

2

� 1:565. Thus our estimate is in this

interval. From the results obtained above we 
an infer

that the dipole 
uid of rotating dipoles in the vi
inity of

its liquid{gas 
riti
al point is about to disso
iate. Sure

our 
onsideration is in
omplete sin
e it does not take into

a

ount the existen
e of free 
harges.

Finally we estimate the Ginzburg number by the for-

mula used for the mole
ular liquids [39℄:

Gi =

�

r

0

�

0

�

6

(54)

where r

0

=� r �� a is the interparti
le spa
ing within

ioni
 pair and �

0

is the amplitude of the 
orrelation

length for density 
u
tuations. Sin
e the density 
u
-

tuations are 
onne
ted with the ones for dipole pairs we

put it to be equal � � �. Using the parameters of the


riti
al point found in (53) we get the estimate:

Gi � 0:04: (55)

Remarks

The ioni
 and dipole liquids form two natural approxi-

mations to des
ribe the 
riti
al properties of the systems

similar to the molten NaCl. In our paper we have esti-

mated the main 
riti
al parameters for liquid with hard

dipole as well as 
onsider the in
uen
e of the e�e
ts aris-

ing due to softness of a dipole mole
ule. In parti
ular the

latter is very important to des
ribe the diele
tri
 prop-

erties of a system near the 
riti
al point. Besides, the

variation of mole
ule parameters due to the rotations al-

lows us to determine the equilibrium size of a ioni
 pair.

It is not ex
luded that the quantum 
orre
tions to in-

ternal states of the dipole pairs will also slightly 
hange

the estimates. In parti
ular the temperature dependen
e

of the vibrational 
ontributions to the heat 
apa
ity 
an

also be studied. The following step is to 
onstru
t the

equation of state for small `soft' dipole mole
ules and to

take into a

ount the disso
iation pro
ess with the help

of perturbation theory. The 
ombination of su
h an ap-

proa
h with that developed in [17℄ on the basis of ioni


liquid allows to narrow the region of the most probable

values for the 
riti
al parameters.

Our estimate for the 
riti
al temperature 
orrelates

with the known analyti
al results. Note that most of

the analyti
al approa
hes based on EOS for low density

Coulombi
 system (DH, MSA, et
.), where the disso
ia-

tion is taken into a

ount perturbatively.

Within the dipole liquid approa
h we have obtained

the estimate for the Ginzburg temperature and have

shown that it less than the one for a simple liquid by

the fa
tor 10

�2

� 10

�1

. The approximation of the dipole

liquid allows us to analyze in the evident form the 
on-

tribution of the polarizational e�e
ts [17℄. One 
an show

that the latter lead to a further 
onsiderable de
rease of

the Ginzburg temperature.

Note also the possibility for the appearan
e of new in-

homogeneous phase near the 
riti
al point of IL. Sin
e

the disso
iation temperature T

d

is near T




, the system


an desintegrate on the regions with the essentially dif-

ferent values of the degree of ionization �: the drops

of ioni
 and dipole liquids. As a 
onsequen
e the region

with the Ising-like behaviour 
annot be rea
hed. This

s
enario 
alls for a very 
areful investigation. These and

other questions will be studied further.

II. POLARIZATIONAL INTERACTIONS

The de�nitive role for the 
riti
al behaviour of systems

with CI belongs to the 
harge-order parameter intera
-

tions. This question was dis
ussed in [66℄ 
on
erned to

60



POLARIZATIONAL EFFECTS AND THE CRITICAL BEHAVIOUR. . .

the stru
ture of ele
trolyte solutions near their 
riti
al

point and super-ioni
 
rystals [67,68℄. So in [66℄ it was

assumed that the Hamiltonian of an ele
trolyte has the

stru
ture:

H = H

LG

+H


h

+H

int

; (56)

where H

LG

is the standard LGH,

H


h

=

1

2

X

�;�

Z

dr

Z

dr

0

Æn

�

(r)Æn

�

(r

0

)

�

0

jr� r

0

j

(57)

the Hamiltonian of interioni
 intera
tion, and

H

int

=

X

�

g

�

Z

�(r)n

�

(r)dr (58)

the Hamiltonian of 
harge-order parameter intera
tion.

In fa
t, the last takes into a

ount only the short-range

intera
tion between the order parameter and ions in a

system and does not des
ribe the ele
trostati
 e�e
ts.

On the basis of the Hamiltonian (56) in [66℄ the new

inhomogeneous phase in the vi
inity of the 
riti
al point

was predi
ted. However, its existen
e was not 
on�rmed

in further experiments. It shows expli
itly the in
orre
t-

ness of the assumptions about 1) 
onta
t 
hara
ter of


harge-order parameter intera
tion and 2) interioni
 in-

tera
tion in the form (58) 
orresponding to 
onstant

value of the diele
tri
 permittivity.

The analogous 
onta
t 
hara
ter of the 
harge-

deformation tensor intera
tion is postulated in works

[67,68℄, devoted to the phase transitions in super-ioni



rystals. Here we note that the diele
tri
 permittivity

of 
rystal 
hanges due to its deformation. Therefore the

ele
tri
 potential � inside system will be de�nitive fun
-

tional of the deformation tensor. As the result the energy

of Coulombi
 intera
tion:

f


h

=

1

2

Z

�� dV

in
ludes the 
harge-deformation tensor intera
tion by it-

self.

A. General theory of polarizational intera
tions

The free energy of the system with the 
harge 
u
tu-

ations near its 
riti
al point 
an be represented in the

form:

F [�(r); �(r)℄ = F

reg

+ F

LG

[�(r℄ + C

el

[�(r); �(r)℄ ; (59)

where F

r

is the regular part, F

LG

is the Landau{

Ginzburg fun
tional:

F

LG

[�(r)℄ =

Z

dV

�




2

(r�(r))

2

+ a

1

�(r) +

a

2

2

�(r)

2

+

a

4

4

�(r)

4

�

(60)

depending on the order parameter �(r) and

C

el

[�(r); �(r)℄ =

1

2

Z

dV �(r)�(r) =

1

2

Z Z

drdr

0

G[r

1

; r

2

j�(r

0

)℄Æ�(r

1

)Æ�(r

2

); (61)

is the 
ontribution of the 
harged subsystem, where

G[r

1

; r

2

jÆ�(r

0

)℄ is the Green's fun
tional for the inhomo-

geneous medium. In fa
t the 
hara
teristi
 time for the


harge 
u
tuations is essentially less then that for the

order parameter. Therefore, to des
ribe the 
riti
al be-

haviour of the system we should average expression (61)

over the 
harge 
u
tuations. Then the 
u
tuational de-

viations of the free energy from its regular part takes the

form:

ÆF = F

LG

[�(r)℄ + F

pol

[�(r)℄; (62)

where

F

pol

[�(r)℄ = hC

el

[�(r); �(r)℄i:

Here we assume that the 
u
tuations of the diele
tri


permittivity 
aused mainly the 
u
tuations of the total

number density of the parti
les. In the lo
al approxima-

tion we 
an write:

�(r) = �




�

1 + �

1

�(r) + �

2

�

2

(r) + : : :

�

(63)

where �




is the value of the diele
tri
 permittivity in the


riti
al point and

�

k

=

n

k




�




�

k

�

�n

k

�

�

�

�

n=n




: (64)
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By the de�nition we will 
all F

el

the polarizational


ontribution to the free energy of the system.

The deviation of free energy for weakly nonequilibrium

state near the 
riti
al point from (59) is:

ÆF [�(r); �(r)℄ = ÆC

el

[�(r); �(r)℄ + ÆF

LG

[�(r)℄ : (65)

Therefore,

ÆC

el

[�(r); �(r)℄ = �

Z

dV Æ�(r)

(r�)

2

8�

+

Z

dV Æ�(r)�(r): (66)

We also use the global ele
troneutrality 
ondition

Q[�℄ =

Z

Æ�(r)dV = 0: (67)

To get simpler form of the equations we use the linear

approximation for the deviation of the diele
tri
 permit-

tivity:

Æ� = b�(r) (68)

where b = �

1

�




is some fun
tion of temperature and


hemi
al potential. Its spe
i�
 form depends on the


hoi
e of an order parameter �.

In this 
ase (68) 
an be derived as the linear approx-

imation using any model for density dependen
e of di-

ele
tri
 permittivity. In the 
ase when the density 
u
-

tuations in
lude elasti
 
omponent, e. g., for solid ele
-

trolytes [67,68℄, (68) should in
lude the deformation �eld


omponent of the density:

Æ� = �ur�� n

��

�n

divu: (69)

Next step we make is to 
onne
t the density of the

order parameter �eld �(r) with the 
harge density Æ�(r).

Assuming that the linear approximation is valid we 
an

write:

Æ�(r) = Æ�

h

+ 
 �(r): (70)

where Æ�

h

is the 
harge 
u
tuations for the homogeneous

state. Substituting (68) and (70) in (66) for (65) we get:

ÆF [�(r); �(r)℄ = ÆF

LG

(71)

�

1

2

Z

dV �(r)

�

b

(r�)

2

4�

+ 2
�(r)

�

+

Z

Æ�

h

�(r)dV:

Now the basi
 relation between the �elds �(r) and �(r)


an be derived by standard minimization pro
edure for

the fun
tional (59) with 
ondition (67). Here the vari-

ations of the �elds �(r) and �(r) are independent and

therefore:

Æ

Æ�(r)

(F [�(r); �(r)℄� �Q[Æ�(r); �(r)℄) = 0

Æ

Æ�(r)

(F [�(r); �(r)℄� �Q[Æ�(r); �(r)℄) = 0:

(72)

It yields

�
��(r) + a

2

�(r) + a

4

�

3

(r)

�

1

2

�

b

(r�)

2

4�

+ 2
�(r)

�

= 0; (73)

br(�(r)r�) + 4�
�(r) + 4�Æ�

h

= 0

where we put �
 = �a

1

be
ause of asymptoti
 
ondi-

tions

�(r); �(r)! 0; if r!1:

It is 
lear that for large s
ales 
 is very small. Thus

the Green's fun
tion satis�es the inhomogeneous Poisson

equation:

r((�




+ Æ�(r))rG(r; r

0

)) = �4�Æ(r � r

0

): (74)

In lo
al approaximation the Green's fun
tion is:

G(r; r

0

) =

1

�




(1 + Æ~�(r� r

0

))

1

jr� r

0

j

: (75)

Substituting (75) to (65) we obtain

F

pol

[�℄ =

1

2

Z

dr

Z

dr

0

hÆ�(r)Æ�(r

0

)i

�




jr� r

0

j

�

1

1 + Æ~�(r)

� 1

�

(76)

The polarizational energy for the spatially homogeneous

state is equal to:

F

h

=

1

2

Z

dr

Z

dr

0

hÆ�(r)Æ�(r

0

)i

�




jr� r

0

j

(77)

and is ex
luded from (65). In the simplest limiting

Debye{H�u
kel approximation:

�F

(eq)

h

= �

1

12�

�

3




(78)

where

� =

a

r

s
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is the inverse s
reening length amplitude. The in
lusion

of hard 
ore e�e
ts leads to

F

h

� F

id

= �

1

4�

(ln(1 + �)� � + �

2

=2) (79)

in DH model. Other approa
h based on the mean spher-

i
al approximation for the 
orrelation fun
tion gives:

F

h

� F

id

= �

1

12�

�

2 + 6� + 3�

2

� 2(1 + 2�)

3=2

�

: (80)

Therefore we get:

F

pol

[�℄ = F

h

Z

dV

�

1

1 + Æ~�(r)

� 1

�

: (81)

Thus (81) 
an be represented in the form:

F

pol

=

Z

dr

1

X

n=1

1

n

a

(pol)

n

�

n

(r); (82)

where

a

(pol)

1

= ��

1

; a

(pol)

2

= ��

2

+ �

2

1

;

a

(pol)

3

= ��

3

+ 2�

1

�

2

� �

3

1

; (83)

a

(pol)

4

= ��

4

+ 2�

3

�

1

+ �

2

2

� 3�

2

�

2

1

+ �

4

1

; : : : (84)

In fa
t after negle
ting the terms of order n > 4 this

gives an addition to the initial LGH of the system (60).

Note that as far as expression (81) whi
h a

ounts for

polarizational e�e
ts used the polarizational 
ontribution

to a

4

is negative. It follows from the fa
ts that: a) the

diele
tri
al permittivity is monotoni
 fun
tion of the den-

sity and b) the Coulombi
 potential is 
onvex fun
tion

of the diele
tri
 permittivity 
) the ex
ess free energy

for ioni
 system is negative. It be
omes quite 
lear if we


hoose � =

���




�




as the order parameter. The in
luding

of (81) to the e�e
tive LGH leads to the diminishing of

the value of a

4

thus redu
ing the Ginzburg number.

The results obtained above serve as the ba
kground

for analysis the Ginzburg number in molten salt.

B. E�e
tive Landau{Ginzburg Hamiltonian for ioni


liquids

A

ording to [18℄ the e�e
tive LGH of molten salt

NaCl takes the stru
ture:

�H

e�

[�(r)℄ =

Z

dr

 

b

2

2

(r�(r))

2

+

4

X

m=1

a

m

m

�

m

(r)

!

;

(85)

where

a

m

= a

(0)

m

+ a

(pol)

m

; (86)

and

b

2

= b

(0)

2

: (87)

The expli
it expressions for a

(pol)

m

follow from the 
onsid-

eration of polarizational intera
tions des
ribed in previ-

ous se
tion.

The 
oeÆ
ients a

(0)

2

and a

(0)

4

are 
onne
ted with the

derivatives of pressure with respe
t to density by the re-

lations:

a

(0)

2

=

�P

�n

�

�

�

�

T

; a

(0)

4

=

�

3

P

�n

3

�

�

�

�

T

; (88)

in whi
h P in
ludes the 
ontributions of both short-range

repulsive and Coulombi
 intera
tions. Almost all equa-

tions of state for the RPM lead to very small values of

the 
oeÆ
ients a

(0)

i


ompared with those for mole
ular


uids at least by an order of magnitude [69,70℄.

a

(RPM)

2

a

(LJ)

2

= 0:01� 0:1;

a

(RPM)

4

a

(LJ)

4

= 0:001� 0:01: (89)

The only ex
eption is Debye{H�u
kel{Bjerrum (DHBj)

model where the values of these 
oeÆ
ients are of the

same order as for mole
ular 
uid. To 
al
ulate a

(pol)

m

we

use the formulas (83), (84) with 
oeÆ
ients �

k

, deter-

mined with the help of the 
anoni
al form for diele
tri


permittivity:

�� 1

�+ 2

= �(1 + �) (90)

where

� =

4�

3

�

e�

�

�




(91)

and �

�

= na

3

. Here n is the overall number density. In

a

ordan
e with (90) the parameter � satis�es the in-

equality � < 1. The value of � does not ex
eed 1:2 (in

vapour phase) [12,64℄.

The e�e
tive polarizability �

e�

is mainly formed by

the asso
iated ioni
 pairs:

�

e�

=

1��

6

Æ

2

1

T

�

; (92)
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where

� =

n

+

n

0

= 1�

n

dim

n

0

(93)

is the degree of disso
iation of the system de�ned above

(16), n

0

is the number density of the ions of parti
ular

type, i. e., n = 2n

0

, T

�

is the dimensionless tempera-

ture T

�

=

k

B

T

e

2

=a

and Æ = l=a is the dimensionless size of

an ioni
 pair (d

0

= el being its dipole moment) and we

put Z

+

= Z

�

= 1 for simpli
ity. The 
ondition � < 1

holds for all 
ases sin
e

�

�




T

�




suÆ
iently small. In addition

if

9T

�




2�Æ

2

�

�




< 1 we 
an get the low estimate for � at the


riti
al point:

1�

9T

�




2�Æ

2

�

�




< �




; (94)

This estimate is natural for 3D Coulombi
 systems whi
h

apparently 
annot undergo Kosterlitz{Thouless (KT)

transition [33℄, where � = 0 with r

s

divergen
e. Thus the

model (90) is a

eptable from this point of view even for

the 
riti
al point lo
ated at `high density' (�

�




=T

�




> 1).

Note that as Æ grows the degree of disso
iation �




at the


riti
al point be
omes 
loser to 1, whi
h is pretty natural

from the physi
al point of view.

Further analysis of the polarizational indu
ed terms

into LGH-
oeÆ
ients is sensible with respe
t to the 
oor-

dinates (�

�




; T

�




) of the 
riti
al point. To estimate �




and

T

�




di�erent models for the EOS: DH, MSA, DH with a
-


ount of dimerization (Bjerrum approa
h) and hard 
ore

intera
tions et
. were used (see [6,69,70℄). There are also

the 
omputer simulations of the phase diagram [32,33℄.

The values of parameter

�

�




T

�




obtained with the help of

analyti
al methods are small,

0:5 <

�

�




T

�




< 1

(`low 
riti
al density' 
ase). Unlike these analyti
al es-

timates re
ent 
omputer 
al
ulations give the values

1 <

�

�




T

�




< 2 [32℄. Basing on the estimate (94) one 
an

see that both these 
ases are 
onsistent (� < 1) with the

model. Note that model EOS like MSA with di�erent


orre
tions [12℄ and numeri
al MC 
al
ulations [33,32℄

also show high degree of disso
iation near 
riti
al point.

C. The e�e
tive Landau{Ginzburg Hamiltonian for

ele
trolyte solutions

The ele
trolyte solution near its vapour{liquid 
riti
al

point is 
hara
terized by two independent s
ales: a) the

s
reening length r

s
r

, whi
h in Debye approximation is:

r

s
r

� r

D

=

1

�

; (95)

and b) the 
orrelation length r




for density 
u
tuations

in a solvent:

r




= r

0

�

��

; � =

�

0:5 
lassi
al region;

0:63 
u
tuation region:

(96)

The 
riti
al behaviour of a solution depends on the in-

terplay of these s
ales. For experiments where

r

s
r

� r




the interioni
 ele
tri
 �eld a
ts as the additional pres-

sure whi
h 
hanges the position of the 
riti
al point. The


hara
ter of 
u
tuations of an order parameter for the

system does not 
hange and the range for 
rossover of


riti
al exponents is determined by the Ginzburg num-

ber for a solvent. In a more important se
ond 
ase when

r

s
r

< (�)r




(97)

the ele
tri
 �eld of 
harge 
u
tuations polarizes a solvent

and as a result leads to variation of intera
tion 
onstants

in the LGH and also to appearan
e of additional terms

in it.

This 
onsideration based on the important fa
t that

the s
reening length remains �nite at an approa
hing the

liquid{gas 
riti
al point. Su
h a 
on
lusion is a dire
t


onsequen
e of the isomorphism prin
iple for the 
riti-


al phenomena in multi
omponent mixtures and simple

liquids. In a

ordan
e with it the only extensive variable

of state is strongly 
u
tuating in the vi
inity of the 
rit-

i
al point. The level of 
u
tuations for others, whi
h or-

thogonal to it is bounded. `Swit
hing on' the Coulombi


intera
tion for ele
troneutral system additionally sup-

presses the long range 
u
tuations of the variable 
on-

ne
ted with the 
harge 
u
tuations.

The lower bound for the 
on
entration range where

Debye s
reening is not destroyed by the thermal 
u
tu-

ations is

x

min

= v

�

�k

B

T

q

2

�

3

; (98)

where v is the volume per mole
ule of a solvent.

Be
ause of polarization of a solvent the lo
al ele
-

trostati
 energy is 
u
tuating on the s
ales of density-

density 
orrelation length. The a

ount of this 
ontribu-

tion renormalizes the intera
tion 
onstants in the LGH.

To 
onstru
t the 
orresponding LGH we will use the in-

terrelation between 
u
tuations of density and diele
tri


permittivity,

� �! �(r) = �

�

1 + �

1

�(r) + �

2

�

2

(r) + : : :

�

; (99)

�

k

=

�

k




�(�




)

�

k

�

��

k

�

�

�

�

�=�




; � = �=�




� 1: (100)
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Here � is the equilibrium value for diele
tri
 permittivity.

We 
an obtain the e�e
tive LGH as follows. For homo-

geneous system the density of energy is a sum of non-

Coulombi
 
ontribution h

nC

and that for Coulombi
 sub-

system h

C

. Far away from the 
riti
al point the latter has

the stru
ture

h

C

= �

1

8�

�

3




1

(�=�




)

3=2

; (101)

and the index \
" indi
ate that the values are taken in

the 
riti
al point. To take into a

ount the large s
ale

inhomogeneity of the system, we assume that the 
ondi-

tion

r




> r

s
r

is ful�lled, where r




is the 
orrelation length for the 
u
-

tuations of an order parameter. We 
an use the analogous

expressions for h

nC

and h

C

in whi
h lo
al values of � and

n

n ! n(1 + ~�(r))

� ! �(1 + ~�(r))

(102)

should be substituted. As a result the 
u
tuational 
on-

tribution of Coulombi
 subsystem into the energy of the

system equals

�h

C

(x) = �

�

3




8�

"

1

(1 + ~�(x))

3

2

� 1

#

: (103)

The formal derivation of the quasilo
al approximation

(103) from the mi
ros
opi
 point of view is given in [17℄.

Adding the quasilo
al term

�h

(ql)

=

b

2

2

(r�(r))

2

(104)

we assume that the value of b 
an be evaluated with the

help of results [69,36℄.

Using the dimensionless form of 
oeÆ
ients of the LGH

the formulas (102) and (103) yield the following:

�H

e�

[�(x)℄ =

Z

dx

 

b

2

(r�(x))

2

+

1

X

m=1

a

m

m

�

m

(x)

!

;

(105)

where

a

m

= a

(0)

m

+ a

(el)

m

x

3=2

; m � 1 ; a

(0)

m

= 0 ; m � 5;

(106)

b = (


0

+ 
)�; (107)

and a

ording to Eq. (1)

a

(0)

1

= a

(0)

3

= 0:

Here � is the diameter of a mole
ule in a solvent. The

values of a

(el)

m

are determined from Eq. (103) and is equal

to

a

(el)

m

=

(�1)

m+1

16�

(2m + 1)!!

(2m � 2)!!

(�

�

�)

3

; �

�

=

�

p

x

:

(108)

The 
al
ulation of the LGH without taking into a
-


ount polarization e�e
ts was done in [69,70℄ basing on

di�erent models. The Ginzburg 
riterion obtained did

not show the existen
e of the 
rossover (Gi ' 10).

Now it is desirable to redu
e the initial Hamiltonian

of an ele
trolyte (105) in the vi
inity of the 
riti
al point

(r

D

� r




) to the Landau{Ginzburg form. Usually su
h

a redu
tion is performed by omitting all lo
al terms

� �

n

; n � 5. However, this step is 
onne
ted with the

loss of important information about 
orre
tions to the

leading asymptoti
 terms [71℄. A more suitable way is


onne
ted with attra
tion of ideas of the Catastrophe

Theory [72℄ within the framework of the so-
alled 
anoni-


al formalism [71℄. Its 
entral 
on
eption is the 
anoni
al

transformation of the order parameter:

� ! � = � +

1

2




2

�

2

+

1

3




3

�

3

+ : : : �

^

C�

whi
h redu
e the lo
al Hamiltonian of the system

�H

e�

[�(x)℄ =

Z

dx

 

1

X

m=1

a

m

m

�

m

(x)

!

; (109)

near the 
riti
al point to the 
anoni
al form, whi
h is an

analogue of that used in the Catastrophe Theory [74℄:

�H

e�

[�(x)℄ =

Z

dx

�

�

�h

�

�(x) +

1

2

A

2

�(x)

2

+

1

4

A

4

�(x)

4

�

; (110)

The 
anoni
al transformation of the order parameter

plays very important role establishing the isomorphism

between Ising model and liquids. Besides, the expli
it ex-

pressions for the generalized external �eld h

�

and `tem-

perature' A

2

are obtained. The 
oexisten
e 
urve of liq-

uids in new variables (h

�

; A

2

) is symmetri
 with respe
t

to transformation h

�

! �h

�

similarly to Ising model.

Its asymmetry appears only if initial (non
anoni
al) vari-

ables are used.
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The 
ombination of the 
anoni
al transformation with

standard RG pro
edure allows to get new version of RG

theory [75,76℄.

D. Canoni
al form for the e�e
tive Hamiltonian

As has been shown above the Hamiltonian of the sys-

tem has no Ising like form. It is essential that it in-


ludes two terms: the lo
alH

lo


, i. e., k-independent, and

quasilo
al H

ql

, i. e., k-dependent. Following [73℄ we will

show that the lo
al part of the Hamiltonian 
an be ex-

a
tly redu
ed to the 
anoni
al form H


an

(�) whi
h in


ase of the 2-nd order phase transition 
oin
ides with


lassi
al Landau{Ginzburg fun
tional. For 
onvenien
e

we in
lude � into the Hamiltonian. In a 
ase of simple

liquids, for example, the 
oeÆ
ients a

n

are de�nite fun
-

tions of the 
hemi
al potential � and the temperature T

if the nontrivial referen
e system is used [36℄. Further,

we 
onsider only a lo
al part of the Hamiltonian. Due to

lo
ality, for every point we 
an write:

�(r) = F (�(r)); (111)

where the fun
tion F (x) is smooth and invertible, and

besides it satis�es the 
ondition F (0) = 0. Then for the

integrand in the partition fun
tion of the system we 
an

write

exp

�

�h

(
an)

lo


(�)

�

=

Z

Æ (�� F (�)) exp

�

�h

(
an)

lo


(�)

�

d�;

(112)

h

(
an)

lo


(�) = A

1

� +

A

2

2

�

2

+

A

4

4

�

4

: (113)

The impli
it form for the 
anoni
al transformation of

the order parameter � is as follows:

�

Z

0

exp

�

�h

(
an)

lo


(z)

�

dz =

�

Z

0

exp (�h

lo


(z)) dz; (114)

whi
h means that the 
orresponding (lo
al) Gibbsian

measures 
oin
ide. The 
oeÆ
ients A

k

of the 
anoni
al

form are determined as fun
tions of the parameters of

the initial lo
al Hamiltonian by implying the 
ondition

that the ranges for the variables � and � are the same:

+1

Z

0

exp

�

�h

(
an)

lo


(�)

�

d� =

+1

Z

0

exp (�h

lo


(�)) d�;

0

Z

�1

exp

�

�h

(
an)

lo


(�)

�

d� =

0

Z

�1

exp (�h

lo


(�)) d�: (115)

One 
an show that the transformation (111) de�ned by

(114) is analyti
al provided that the lo
al part of the

e�e
tive Hamiltonian is analiti
al too.

Moreover, sin
e (111) is nothing but the rede�ning of

the order parameter, the lo
i for the 
riti
al point both

for initial and 
anoni
al Hamiltonians must 
oin
ide:

A

1

(P; T ) = 0 ; A

2

(P; T ) = 0 , a

1

(P; T ) = 0;

a

2

(P; T ) = 0: (116)

Sure it is implied that a

3

(P; T ) = 0 also be
ause of the

stability 
ondition. The 
onstraint (116) �xes the value

of A

4

> 0:

+1

Z

�1

exp

�

�

A

4

4

�

4

�

d�

=

+1

Z

�1

exp (�h

lo


(� ; a

1

= 0; a

2

= 0)) d�: (117)

This gives

A

4

=

�

4

 

�

�

3

4

�

+1

R

�1

exp (�h

lo


(� ; a

1

= 0; a

2

= 0)) d�

!

4

: (118)

Note that the fun
tional dependen
e of the 
anoni
al


oeÆ
ients A

i

; i = 1; 2; 4 on the parameters a

i

is deter-

mined by the form of the initial e�e
tive Hamiltonian.

Besides, sin
e A

i

are the 
oeÆ
ients of the LGH they

may be used as the approximates for the renormalized

�elds of the LGH in the vi
inity of the 
riti
al point.
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Note also that in su
h a way the problem of asymmetry

of the equation of state for the liquids disappears.

The transformation proposed is di�erent from that

used in the Catastrophe Theory for the fun
tions [72,74℄.

The latter is de�ned only in the neighbourhood of the


riti
al point. In fa
t, any (n�2) parametri
 set of prob-

ability densities performing the 
atastrophe of type A

2n

by 
hanging of the variable 
an be transformed into the


anoni
al form of exponent on the polynomial of the 2n

degree. In parti
ular, the probability density h(x) with

the only 
riti
al point 
an be transformed into gaussian

distribution g(~x) =

1

2�

exp

�

�~x

2

�

by transformation of

the variable x! ~x . The details of the realization of this

pro
edure for Ising-like systems are given in [73℄.

To illustrate the importan
e of the te
hnique formu-

lated above we give the results for the parameters of the

Ising model. The exa
t forms of the 
oeÆ
ients of the

initial e�e
tive Hamiltonian for this model equal those

for Curie{Weiss approximation (see [75℄):

a

2n

=

1

2n� 1

� 2D�JÆ

2;n

: (119)

The pro
edure of the 
anoni
al transformation leads to

the following results:

A

2

(T ) = �� + o (� ) ; A

4

= 0:53;

where � � 1 ; � =

T � T




T




: (120)

We see that the 
oeÆ
ient A

4

di�ers essentially from

a

4

=

1

3

while � pra
ti
ally does not 
hange.

It is important that the 
anoni
al order parameter �

is the analyti
al fun
tion of initial order parameter �:

� = �+

1

2

�

2

�

2

+

1

3

�

3

�

3

+ : : : ; (121)

where the 
oeÆ
ients �

i


an be expressed through the


oeÆ
ients a

n

of the initial Hamiltonian. Indeed, in the

vi
inity of the point � = 0; � = 0 from (114)

� +

Z

�

0

h

lo


(x) +

1

2

Z

�

0

h

lo


(x)

2

dx+ : : : = �+

Z

�

0

h

(
an)

lo


(x)dx+

1

2

Z

�

0

h

(
an)

lo


(x)

2

dx+ : : : : (122)

Using

h

lo


(�) = a

1

� +

1

2

a

2

�

2

+ : : : (123)

and (113) we get:

� +

1

2

a

1

�

2

+

1

6

�

a

2

+ a

2

1

�

�

3

+ : : : = �+

1

2

A

1

�

2

+

1

6

�

A

2

+ A

2

1

�

�

3

+ : : : (124)

and �nally

�

2

= A

1

� a

1

; �

3

=

1

2

�

A

2

+A

2

1

� a

2

� a

2

1

� 3 a

1

�

2

�

; et
: (125)

Further we assume that the pro
edure of the redu
tion of the e�e
tive Hamiltonian (105) to the 
anoni
al form

has been 
arried out.

III. INFLUENCE OF THE POLARIZATIONAL EFFECTS ON THE CRITICAL BEHAVIOUR

A. Ginzburg number for the ioni
 liquids

The expressions for a

(pol)

2

and a

(pol)

4

, whi
h follow from (83) and (90) read as:

a

(pol)

2

= 9

�

2

(1 + 2�)

2

(1� �)

2

�




f

(eq)


h

; (126)

a

(pol)

4

=

27

2

�

4

(1 + 2�)

4

(1� �)

4

�




f

(eq)


h

:
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It follows from (77) that polarizational 
ontribution to

a

4

is negative, therefore, the Ginzburg number de
reases

with a

ount of polarization e�e
ts. Here the approxima-

tion � � �




was used. Using the dimensionless form of


oeÆ
ients of the LGH obtained in [69,70℄ we 
al
ulate

the Ginzburg temperature for ioni
 
uid:

Gi =

9a

2

4

8�

2

~a

2

�

a

b

�

6

; (127)

where

~a

2

= lim

�!0

a

2

�

; � =

T � T




T




: (128)

It is useful to rewrite (127) in the following form

Gi = Gi

0

 

1 +

a

(pol)

4

a

(0)

4

!

2

(129)

where Gi

0

is the Ginzburg temperature without a

ount-

ing of the inhomogeneous polarization. Here we negle
t

the renormalization of the 
oeÆ
ients ~a

2

and b of the

LGH. It appears that in this approximation Gi slightly

de
reases in 
omparison with the initial value be
ause

the value of � is a
tually small (< 0:1) sin
e � 
lose to 1.

Below the 
riti
al point the system separates into

liquid and gaseous phases with di�erent densities be-


ause of strong density 
u
tuations. These phases have

di�erent degrees of disso
iation �

liq

and �

gas

sin
e ther-

modynami
ally the degree of disso
iation � is a fun
tion

of T

�

and �

�

. At the very 
riti
al point �

(liq)

= �

(gas)

but below �

liq

6= �

gas

be
ause of �

�

liq

6= �

�

g

. From the

physi
al point of view one 
an expe
t the new type (non-

Ising like asymptoti
s) for the 
riti
al behaviour only if

density 
u
tuations strongly intera
t with the ones for


harge. This intera
tion o

urs only if the dipoles ex-

ist sin
e 
u
tuations of their number are dire
tly 
on-

ne
ted with 
u
tuations of the density. Thus the very

fa
t that below 
riti
al point �

(liq)

6= �

(gas)

means that

the 
u
tuations of the number of neutral pairs are strong

and therefore the polarizational e�e
ts should be taken

into a

ount. Sin
e the density 
u
tuations are strong

the 
u
tuations of dipole number are strong too. That

means that the 
u
tuations of 
harge numbers are also

strong though mutually 
orrelated due to neutrality 
on-

dition (Æn

+

= �Æn

�

). Indeed, one 
ould expe
t the pe-


uliarities for the 
riti
al behaviour in IL if the degree of

disso
iation strongly depends on density near the 
riti
al

point. Therefore, to 
onsider the 
ase of strong intera
-

tion between 
harge and density 
u
tuations we should

not negle
t density dependen
e of � near the 
riti
al

point. It is 
lear that this dependen
e is very essential

for the diele
tri
 permittivity as has been noted above.

Here we use the linear approximation for su
h depen-

den
e:

�(�; � ) = �




+�

1

� + o(�): (130)

The estimate for �

1


an be obtained from [12℄, where

we 
an �nd that for di�erent EOS 0 < �

1

< 10. The


oeÆ
ients a

(pol)

2

and a

(pol)

4

take the values:

a

(pol)

2

= 9

(� ��

1

)

2

(1 + 2�)

2

(1� �)

2

�




f

(eq)


h

; (131)

a

(pol)

4

=

27

2

(� ��

1

)

4

(1 + 2�)

4

(1� �)

4

�




f

(eq)


h

:

Note that (131) 
orresponds to the linear approxima-

tion for the �(�) dependen
e. The main result, the di-

minishing of the Ginzburg temperature, appears in this

approximation. A
tually to 
onstru
t a

(pol)

4

the terms up

to the 4-th order in �-expansion for �(�) should be in-


luded. Sure the expli
it expressions for a

(pol)

2

and a

(pol)

4

be
ome very 
omplex and we will not give them here.

These results are represented in Fig. 3.

Fig. 3. The dependen
e of the Ginzburg temperature

g = Gi=Gi

0

obtained with (90) on the degree of ionization �

and �

1

at a

(0)

4

= 0:01; Æ = 1; �

�




=T

�




= 0:5.

The key feature is the vanishing of the Ginzburg num-

ber at low diele
tri
 permittivity values and small s
reen-

ing length while the value of �

1

is high enough and �

is 
lose to 1. This region of parameters naturally 
orre-

sponds to the state of the ioni
 liquid with high degree

of disso
iation at the 
riti
al point. Thus, the a

ount of

polarizational e�e
ts 
aused by the density 
u
tuations

is very essential for analysis of asymptoti
al behaviour

of ioni
 
uids whi
h was pointed out in [41℄. Using other

model equations of state like nonlimiting DH (nDH) ap-

proximation (14) and MSA equation (21) for 
onstru
t-

ing the LGH does not 
hange the results signi�
antly.

Namely, the di�eren
e between the results obtained with

the help of equations (79) and (21) does not ex
eeds 5%.

DH approximation gives qualitatively the same results

with the di�eren
e in 
omparison with MSA and nDH

EOS up to 20% for �




< 0:3. It dire
tly follows from

(76) whi
h shows that all polarizational 
orre
tions to

the LGH is proportional to �Æf

(eq)


h

. Sin
e DH EOS is
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valid only for low density systems the usage of this EOS

should be treated as mere illustrative.

For the 
omparison we also give the results (see Fig. 4)

for the Ginzburg temperature 
al
ulated basing on the

Onsager formula for the diele
tri
 permittivity [77℄:

� =

1

4

 

1 + 3x+ 3

r

1 +

2x

3

+ x

2

!

; (132)

where

x =

2� d

2

(1����

1

�)

3T

�

:

As follows from the obtained results for Gi the steep

in
rease of the degree of ionization with density may re-

sult in a signi�
ant lowering of Gi. For suÆ
iently great

values of �

1

=

��

��

the Ginzburg temperature may van-

ish. The value of �

1

at whi
h Gi = 0 in
reases if the lo
us

parameter

�

�




T

�




de
reases. This is quite natural sin
e for

the Coulombi
 
riti
ality to happen at low density the

stronger density dependen
e for the degree of disso
ia-

tion is needed.

Fig. 4. The dependen
e of the Ginzburg temperature

g = Gi=Gi

0

obtained with (132) on the degree of ionization

� and �

1

at a

(0)

4

= 0:01; Æ = 1; �

�




=T

�




= 0:5.

In other words the Coulombi
 driven 
riti
ality is 
har-

a
terized by a small value of Gi 
aused by strong density

dependen
e of the degree of disso
iation at the 
riti
al

region. The following s
enarios are possible:

1. � is 
ontinuous at the 
riti
al point but

��

��

�

�

�

�

�

=�

�




;T=T

�




is very large. Note that due to very

low estimates for �

�




in di�erent mean �eld approxi-

mations even if �

1

' 1 the value of

��

��

�

�

�

�

�

=�

�




' 10

2

.

Here the anomaly small value of Gi is observed

but the 
riti
al behaviour is Ising-like. The polar-

izability of a system also renormalizes the 
oeÆ-


ient b. As has been noted above the Coulombi


intera
tions prevent the spatial separation of op-

posite 
harges in a system. Therefore, in quasilo
al

approximation the energy of a system with inho-

mogeneous diele
tri
 permittivity should be higher

than that for the homogeneous one. In other words,

the polarization 
ontribution in
reases the value of

b. Thus, we obtain the upper estimate for Gi.

2. � is 
ontinuous at the 
riti
al point but its 
u
-

tuations are essential

p

h(Æ�)

2

i ' h�i. In gen-

eral � is the sum thermodynami
al equilibrium

part �

(eq)

(�

�

; T

�

) and 
u
tuation one �

(
)

: � =

�

(eq)

(�

�

; T

�

)+�

(
)

. Therefore the quantity �

liq

�

�

g

in
ludes the part orthogonal to the density 
u
-

tuations and 
an be 
onsidered as 
on
urrent order

parameter and a new type of 
riti
al behaviour dis-

tin
t from Ising like 
an be expe
ted. In parti
ular,

if the 
oeÆ
ient at the gradient term 
(��)

2

tends

to zero the spatial inhomogeneous phase with re-

spe
t to � and possibly the density is expe
ted.

The analogue of su
h a phase in Condense Mat-

ter is the ex
itoni
 drops [60℄. In su
h a 
ase the

initial liquid{vapour 
riti
al point 
an transform

to pe
uliar point similar to Lifshitz one [39℄. Note

that spatial inhomogeneity of � in no way means

the spatial separation of 
harges i. e., 
harge den-

sity wave phase. In addition this s
enario is 
losely


onne
ted with metal{insulator transition [33℄.

3. The dis
ontinuity of density dependen
e of � at

the mean �eld 
riti
al point. A

ording to the def-

inition at the point of the se
ond order phase tran-

sition the di�eren
e between phases disappear. If

there is a dis
ontinuity in � at the 
riti
al point

then it is not the se
ond order phase transition.

This 
ase needs detailed investigation.

Note that a spatiallymodulated 
harge density and order

parameter waves was predi
ted in [66℄. There was 
onsid-

ered a 
ompletely di�erent system namely ele
trolyte so-

lution of small 
on
entration, with strong 
onta
t inter-

a
tion between neutral density 
u
tuations and 
harged

subsystem. However, similar 
hara
ter of intermode in-

tera
tion 
annot be justi�ed. Unlike of this the possibil-

ity of appearan
e the mi
rohomogeneous state in molten

salt NaCl is 
onne
ted with realisti
 polarizational ef-

fe
ts and independent (un
orrelated) 
u
tuations of the

degree of disso
iation do not lead to spatial separation of


harges. The 
ase of repulsive hard-
ore driven 
riti
ality

[5,6℄, is 
hara
terized by insigni�
ant 
hange in Gi and

weak density dependen
e of degree of disso
iation.

B. Ginzburg 
riterion for ele
trolyte solutions

It is diÆ
ult to solve the problem of the type of 
rit-

i
al behaviour of a system in experiments. The main

question here is the estimation of the Ginzburg number,

whi
h 
ontrols the width of the asymptoti
 region t

�

. Its

magnitude depends on the mi
ros
opi
 parameters of a

system and as follows from experiments varies in a wide

range. In [22℄ the 
rossover from 
lassi
al to Ising-like be-

haviour was 
learly observed at t

�

� 10

�2

. In [2,19℄ the
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data were �tted by 
lassi
al asymptoti
s up to t

�

� 10

�4

near the 
riti
al point. The mole
ular dynami
s simula-

tions of molten salt [32℄ also show 
lassi
al behaviour of

an order parameter for � � 10

�2

; � =

T�T




T




, although

the in
uen
e of �nite size e�e
ts does not allow to say

exa
tly whether the 
rossover does take pla
e or not. In

all 
ases the width of 
u
tuation region is smaller than

the one for mole
ular liquids. In [23℄ the dependen
e of

the width of 
rossover region on diele
tri
 permittivity

� of a solvent was investigated. It was observed that the


rossover region be
omes smaller as � is de
reased. There

are not any physi
al reasons for the existen
e of su
h �

�

that Gi(�)! 0 as � ! �

�

> 1. In 
ase of �

�

= 1 we deal

with the plasma phase transitions [78℄.

In previous se
tion we have 
onstru
ted the e�e
tive

LGH for ele
trolyte solution near its vapour{liquid 
rit-

i
al point. It is well known [79℄ that the 
rossover from


lassi
al to Ising-like 
riti
al behaviour of a system o
-


urs at the temperature:

� � Gi; (133)

where

Gi =

a

(
)

2

4

T

2




�b

3

; � =

da

(
)

2

d�

�

�

�

�

�

T=T




: (134)

Values �

0

(a

(0)

2

= �

0

� ) and a

(0)

4

for initial Hamiltonian


an be extra
ted from the van der Waals equation (see

[71℄):

�

0

' �




�Æ

2

; a

(0)

4

' Æ

4

; (135)

where Æ = n




�

3

is the dimensionless density and �� is

the minimum value of the interparti
le potential for a

solvent. Using (108) yields:

a

(
)

4

a

(0)

4

= 1� ~a

4

x

3=2

+ o

�

x

3=2

�

;

�

�

0

= 1 + ~�x

3=2

+ o

�

x

3=2

�

; (136)

b




0

= 1 + �

1

x

1

2

+ o

�

x

1

2

�

;

where

~a

4

'

1

a

(0)

4

(�

�

�)

3

Æ

4

�

� ln �

� ln�

�

4

' 0:1� 1;

~

T =

T




� T

(0)




T

(0)




' 0:01;

~� '

1

�

0

(�

�

�)

3

Æ

2

�

� ln �

� ln �

�

2

' 1; (137)

�

1

'

1




0

(��

�

) ' 0:1:

The numeri
al estimations for ~a

4

; : : :�

1

are obtained for

the following values of parameters:

Æ ' 0:33; �




� ' 1:

We assume that

� ln �

� ln �


an be approximated by the for-

mula:

� ln �

� ln�

=

A�

�

(138)

and the 
oeÆ
ient A is equal to 280


m

3

g

for water in a
-


ordan
e with [81℄. At least by the order of magnitude

�

�

� < 1. Using (134) and (136) we obtain the following

renormalized value of the Ginzburg number:

Gi(x) � Gi

(0)

(1� ~a

4

x

3=2

)

2

(1 + ~�x

3=2

)(1 + �

1

x

1

2

)

3

; (139)

where Gi

(0)

is the Ginzburg number for a solvent. In fa
t

the Ginzburg number essentially depends on the ratio

of the amplitude of 
orrelation length r

0

and the De-

bye s
reening length. In a

ordan
e with said above the

Ginzburg number is a monotone de
reasing fun
tion of


on
entration. Besides this it also depends on the tem-

perature as a parameter. Summarizing our arguments for

the regions r

D

< (>)r




we 
an write:

Gi(xj� ) =

�

Gi

(0)

; x� x

D

(� )

Gi(x); x

D

(� )� (<)x

; (140)

where

x

D

(� ) =

�

1

�

�

r

0

�

2

�

2�

(141)

is the limit 
on
entration of an ele
trolyte, whi
h deter-

mines the appli
ability region of our polarization model.

The 
on
entration dependen
ies of Gi at some �xed �

and di�erent values of diele
tri
 permittivity are pre-

sented on Fig. (5).

Note that the greater is the value of diele
tri
 permit-

tivity the greater is Gi. This fa
t was noted experimen-

tally in [23℄. Fig. (6) shows the 
on
entration dependen
e

of Gi for ele
trolyte solution with � = 80 and �

�

� = 0:5.

The qualitative behaviour of Gi(x) near x

D

is shown by

dashed line.

Essentially that the value of a

4

vanishes and system

looses its stability at 
on
entration of an ele
trolyte:

x

�

= ~a

�

2

3

4

: (142)
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Obviously this possibility realizes only if ~a

4

> 1 (see

(136)). In this 
ase one 
an expe
t the multi
riti
al be-

haviour of a system [6℄.

Fig. 5. The relative value

Gi

Gi

0

of the Ginzburg number as a

fun
tion of 
on
entration (x-axis) and diele
tri
 permittivity

(y-axis) 
al
ulated by formula (139). The s
ales on x and y

axes equal to 1 : 0:0002 and 1 : 2 respe
tively.

Fig. 6. Con
entration dependen
e of the Ginzburg number

for parameters given in text.

Using the formula (140) is not 
onvenient sin
e usu-

ally experiments are 
arried out at a �xed 
on
entration.

Let us illustrate this situation 
onsidering the values of


riti
al exponent. A

ording to (140) we have:

� =

8

>

>

>

>

<

>

>

>

>

:

0:5; for

Gi

(0)

< �

D

(x) < � (a)

Gi < � < �

D

(x) (b)

0:625; for

� � Gi

(0)

< �

D

(x) (
)

� � Gi < �

D

(x) (d)

;

(143)

where

�

D

=

�

r

0

�

�

p

x

�

1=�

� x: (144)

At the end of this se
tion let us 
omplete obtained re-

sults with qualitative arguments. By order of magnitude

[79℄

Gi =

�

r

s

r

0

�

6

; (145)

where r

s

is the interparti
le spa
ing. Addition of an ele
-

trolyte leads to augmentation of the 
orrelation length

amplitude be
ause of its renormalization by 
harge{


harge 
u
tuations. It is 
lear that the behaviour of

strongly 
on
entrated ele
trolytes is expe
ted to be sim-

ilar to that of simple liquids or liquid metals.

Remarks

The important role of polarizational e�e
ts in the 
rit-

i
al behaviour of ioni
 melts has been demonstrated. It

is established that if the key parameters of a system take

the values: r

s

= 1� 5;�

1

> 0:5, the 
oeÆ
ient a

4

of the

e�e
tive LGH redu
es 
onsiderably or vanishes.

Similar situation is also 
hara
teristi
 for the 
riti
al

behaviour of ele
trolyte solutions. In them the 
harge


u
tuations of admixtured ions 
an essentially renormal-

ize the 
oeÆ
ient a

(0)

4

of the initial LGH for a solvent. At

de�nite 
on
entration x

�

of ele
trolyte a

4

(x

�

) = 0. For

higher 
on
entrations the standard s
enario of the 
riti-


al behaviour be
omes inappli
able and additional inves-

tigations are ne
essary. In 
onne
tion with this we note

the result obtained experimentally in [15℄, for ternary

aqueous solution of sodium bromide. It was observed that


u
tuation region at salt 
on
entration 0:17 (mass fra
-

tion) less than 10

�5

. To interpret this as well as spe
i�


dip on the line of lower 
riti
al points the 
onje
ture

about existen
e of 
ompeting mi
roheterogeneous phase

was put forward. In prin
iple, it is possible that at some


on
entration the line of the lower 
riti
al points may


onta
t the virtual phase spinodal whose bran
hes are di-

re
ted to lower temperatures. Then between the bran
hes

of the spinodal the state of ele
trolyte solution should

be heterogeneous a

ording to the thermodynami
 de-

mands.

The main pe
uliarities of the 
riti
al behaviour of

molten NaCl salt are determined by the density depen-

den
e of the degree of disso
iation � and its 
u
tuations.

When the 
u
tuations of � are relatively small, the 
rit-

i
al behaviour of the ioni
 liquid should be Ising-like.

From the thermodynami
 point of view it is supported

by the fa
t that the system is 
hara
terized by two ther-

modynami
 degrees of freedom [72℄. The spe
i�
ity of

the system displays only in the numeri
al value of the

Ginzburg number: it is the less the more the derivative

��

��

�

�

�

T

is.

If the 
u
tuations of � be
ome strong,

p

h(Æ�)

2

i '

h�i, the deviations from the Ising-like behaviour 
an be
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onsiderable. First of all, the system 
an demix on the

parameter �. In other words, the formation of drops with

di�erent values of � is possible. Sin
e � is 
ru
ial pa-

rameter, the 
hange of the type of the 
riti
al behaviour

seems to be probable.

It is not ex
luded that the phase diagram of molten

salt NaCl near its liquid{vapour 
riti
al point will

be more 
omplex in 
omparison with that for one-


omponent liquid with simple intermole
ular intera
tion.

In parti
ular, the derivative

�

3

P

�n

3

�

�

�

T=T





an be 
lose to

zero, that 
an lead to the 
hange of the type of the 
rit-

i
al point, e. g., tri
riti
al behaviour. However the van-

ishing of a

6

is impossible. The behaviour of 
ondu
tivity


an serve as additional test of the type of the 
riti
al be-

haviour. So the sharp 
hange of the 
ondu
tivity 
ould

testify the point of phase transition di�erent from the

se
ond order.

The most 
ru
ial for the 
riti
al behaviour is the de-

penden
e of a

4

on the degree of dimerization � of the

system whi
h dire
tly in
uen
es the polarizability. The

density of the ioni
 liquid is formed by the density of free


harges and bounded states. The density of the nondisso-


iated mole
ules (dipoles) is determined by the thermo-

dynami
al parameters of the state of the system (e. g.,

temperature and spe
i�
 volume). In parti
ular, the re-

sults of Monte Carlo simulations indi
ate that the prox-

imity of these two transition 
ould explain the 
rossover

phenomena in ioni
 
uids [33℄. Note that our 
onsider-

ation is based on mean �eld treatment. Therefore, the

thorough analysis of 
u
tuation e�e
ts is needed to de-

termine the type of the 
riti
al behaviour if a

4

= 0.

IV. SPECIFIC EFFECTS

A. Flu
tuation-indu
ed shift of the 
riti
al point in

solution of ele
trolytes

An anomalous 
urvature of the T � x and P � x pro-

je
tions of the 
riti
al line of ele
trolyte solution at very

small mole fra
tions of an ele
trolyte NaCl+H

2

O was ob-

served in many experimental works [26,82,83℄. But the

nature of very big values of

dT




(x)

dx

was not 
lari�ed.

We will show that the shift of the 
riti
al point of high

diluted solution from the lo
us of pure solvent is gov-

erned predominantly by the 
harge{
harge 
u
tuations.

The `square root' 
on
entration law for su
h a shift is a

dire
t 
onsequen
e of the polarizational 
harge{density


oupling theory proposed in previous se
tions. The de-

penden
e of the 
oeÆ
ients of the e�e
tive LGH at low


on
entrations is given by Eq. (136). In mean �eld ap-

proximation the shift of the 
riti
al temperature as it

follows from Eq. (136) is

�

(mean)

T




' x

3=2

: (146)

But the 
u
tuations 
hange slightly the value of the 
rit-

i
al temperature. This 
u
tuation-indu
ed shift of the


riti
al temperature (the lo
us of the 
riti
al point in

general) is proportional to

�

(
)

T




'

p

x: (147)

Indeed, let us de�ne renormalized order parameter so that the 
oeÆ
ient at the gradient term equals to unity:

�(r) =

p


(x) �(r) : (148)

The LGH for the new order parameter reads as follows

�H

e�

[�℄ =

Z

dV

�

1

2

(r�(r))

2

+ ~a

1

(T; x)�(r) +

1

2

~a

2

(T; x)�

2

(r) +

1

4

~a

4

(T; x)�

4

(r)

�

; (149)

where

~a

k

(T; x) = (
(x))

�k=2

a

k

(T; x) : (150)

In the �rst order of perturbation theory on 
u
tuation 
oupling 
onstant ~a

4

[84℄ we have

~a

R

2

(T; x) = ~a

2

(T; x) + 3~a

4

(T; x)

d

d�

�

Z

0

G

0

(q) dq

�

�

�

�

�

�

�=1

; G

0

(q) =

1

~a

2

(T; x) + q

2

: (151)
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From Eq. (147) it follows that

dT




(x)

dx

� x

�1=2

; (152)

whi
h explains the anomalously big values of

dT




(x)

dx

ob-

served in [26,82,83℄.Note, that su
h a term was used pure

empiri
ally in [85℄ to pro
ess the experimental data. The

same 
on
lusion on existen
e of

p

x terms is valid for

other 
oordinates of the 
riti
al point su
h as pressure

and density.

B. Asymmetry of a binodal for ele
trolyte solutions

In this se
tion we will show that the addition of ele
-

trolyte leads to essential additional asymmetry of the

vapour{liquid 
oexisten
e 
urve. This 
ir
umstan
e is


onne
ted with the 
hoi
e of appropriate order parame-

ter, whi
h restores the symmetri
al shape of a binodal.

Otherwise, the � �

2�

term, whi
h is absent in standard

variants of the asymptoti
 equation of state [79℄ should

be introdu
ed to �t the experimental data in laboratory

variables [80℄. We establish this fa
t in an evident form

within the framework of the 
anoni
al formalism [71,86℄,

whi
h gives a 
lear motivation for all standard asymp-

toti
 terms of the equation of state as well as for those of

form �

n�

, introdu
ed to pro
ess the experimental data.

As it follows from the s
ale-invariant theory of 
riti
al

phenomena the singular part of the equation of state is

given by the expression

h�i = jh

2

j

�

g

s

�

h

1

jh

2

j

�+


�

: (153)

The order parameter P and 
onjugated �elds h

1

; h

2

within the 
anoni
al formalism should be identi�ed with

� and the 
oeÆ
ients A

1

; A

2

; A

4

of the Hamiltonian

(113). As a result, the equation (153) takes the form

h�i = jA

2

j

�

g

s

 

A

1

jA

2

j

�+


!

: (154)

Here the bra
kets h: : :i designate the averaging on the

volume of the 
orrelation sphere (/ r

3




). In parti
ular,

the equation of binodal in
luding the additional Wegn-

er's term [87℄ is as follows

h�i

bin

= �jA

�

2

j

�

g

s

(0)

�

1 + b

2

jA

�

2

j

�

+ : : :

�

; (155)

where A

�

2

= A

2

j

A

1

=0

. Its `liquid' and `gas' bran
hes in

variables ( ; a

�

2

), as is 
lear from Eq. (154) are absolutely

symmetri
. But this symmetry disappears if we return to

the initial (`laboratory') variables (�; � ) [71,86℄. Indeed,

using (121) one 
an get:

h�i = h�i+

1

2




2

h�

2

i+ : : : : (156)

Sin
e (see [79℄)

h�

2

i = h�i

2

+ jh

2

j

1��

l

s

�

h

1

jh

2

j

�+


�

;

where fun
tion l

s

(x) is inverse to g

s

(x), Eq. (156) in

asymptoti
 region transforms to:

1

2

(h�i

+

bin

� h�i

�

bin

) = g

s

(0)ja

�

2

j

�

(1

+ b

2

ja

�

2

j

�

+ : : :) + : : : ;

1

2

(h�i

+

bin

+ h�i

�

bin

) =

1

2

�

2

�

g

2

s

(0)ja

�

2

j

2�

+ l

s

(0)ja

�

2

j

1��

�

+ : : : :

(157)

Note that the equation (157) besides standard terms

[79℄ in
ludes additional 
ontribution / j� j

2�

(as well as

other terms / j� j

n�

; n > 2). The latter was introdu
ed

in work [80℄ from the empiri
al reasons. This new term

with � = 0:5 appears in mean-�eld approximation [39℄

as well. Essentially, the asymmetry of the 
oexisten
e


urve is determined by produ
t of universal multipliers

g

s

(0) and l

s

(0) and 
oeÆ
ient �

2

des
ribing the individ-

ual properties of liquids and solutions. The temperature

and 
on
entration dependen
ies of 
oeÆ
ients �

2

; a

�

2

are

determined by the expressions (108), (125) and 
an be

represented as follows:

�

2

' �

(0)

2

+ �

(el)

2

;

a

�

2

' a

(0)

2

+ a

(el)

2

;

(158)

�

(0)

2

; a

(0)

2

are the values of the respe
tive 
oeÆ
ients in

absen
e of ele
trolyte. The values of terms indu
ed by

ele
trolyte impurity in Eq. (158) are of / x

3=2

order and

strongly depend on the parameter �

�

�. If �

�

� < (�) 0:1

they 
an be omitted. In the opposite 
ases, an a

ount

of additional terms is rather essential.

C. Condu
tivity of the ele
trolytes

Above it was shown that the pe
uliarities of the 
riti-


al behaviour of IL are determined by the density depen-

den
e �(�

�

) of the degree of disso
iation near the 
riti-


al point. The 
riti
ality of the 
ondu
tivity � for highly


on
entrated ioni
 mixtures and other ele
trolytes has

been studied mu
h less 
ompared with their equilibrium

thermodynami
al properties [1,88℄. The measurements

of the 
ondu
tivity for highly 
on
entrated nonaqueous

ele
trolytes was presented in [88℄.

It is well known (see [79℄) that for magneti
 systems

with Ising symmetry for an order parameter and 
onju-

gated �eld the 
riti
al 
u
tuations lead to a singularity

for the 
ondu
tivity � similar to that of entropy on the


riti
al iso
hor [79℄:
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� = �




+A

r

� +A

s

�

1��

+ : : : : (159)

Formally the appearan
e of the singular term is easily

explained with the help of a thermodynami
 relation be-

tween the variations of the 
ondu
tivity, Æ�, and the en-

tropy, Æs,

Æ� / �!

rel

(k = 0)

T

hj

2

i

�

2

Æs; (160)

where !

rel

is the 
hara
teristi
 relaxation rate for the


ondu
tivity, provided that it is nonzero at the 
riti
al

point, i. e., no 
riti
al slowing down for the 
ondu
tivity

o

urs. This is 
ertainly true for s
enario 1 above. Let

us 
onsider this 
ase in more detail fo
using on the 
on-

ne
tion of the singular term for the 
ondu
tivity with

the behaviour of the key parameter �. As is known, the


ondu
tivity of a system is determined by

� =

�

3

1

Z

0

Z

V

hj(r; t) � j(0; 0)idr dt (161)

where j(r; t) is the ele
tri
al 
urrent density,

j(r; t) = e�


h

(r; t)v(r; t) (162)

and �


h

(r; t) is the density 
u
tuation of 
harged 
om-

ponent. The overall density n is a sum of the density of


harged 
omponent (free 
arriers) and the double density

of dipole pairs. The density 
u
tuation is the sum of the


u
tuations of these terms. To 
al
ulate (161) we 
an

use the arguments of [89℄. Due to s
reening e�e
t, the


orrelation of 
harge 
u
tuations separated by distan
e

r > r

s

is negligible. Due to this, in DH approximation

we get

h�


h

(r; t)�


h

(0; 0)i �

1

4��r

2

s

�

��


h

��

�

T

e

�r=r

s

r

f(!

os


) ;

(163)

where

��


h

��

= n




��

��

+�




�n

��

: (164)

n is the overall density and f is a fun
tion without sin-

gularities. We will not be interested in time relaxation

of 
harge 
u
tuations here. The pe
uliarities of the 
riti-


al behaviour of the 
ondu
tivity are mainly determined

by the derivative

��


h

��

. Sin
e the number of 
harges is

N = N

0

�(�; T ) the singularity of

��

��

�

�

�

T=T





an be ob-

tained from the analysis of

�N

��

�

�

�

T




. The last is given by

the thermodynami
 identity (see, e. g., [39℄):

�

�N

��

�

T

=

�

�N

�T

�

2

�

�

�S

�T

�

�

�

C

V

T

; C

V

= T

�

�S

�T

�

V;N

;

T = T




(1 + � ) (165)

where in the vi
inity of the 
riti
al point C

V

= C

(reg)

V

+

C

(sing)

V

, where on the 
riti
al iso
hor C

(sing)

V

/ �

��

. The

value

�N

��

�

�

�

T




is nonzero be
ause of the 
ondition of ioniza-

tion equilibrium. Therefore, the leading divergent terms

in the denominator 
an
el out, but other less singular

terms su
h as �

1��

do not. The latter terms are respon-

sible for the singular terms in the 
ondu
tivity.

V. CONCLUSION

In our review we tou
h upon two questions, 
hara
-

teristi
 for 
riti
al phenomena in IL and ele
trolyte so-

lutions: 1) the basi
 model for IL and 2) the 
rossover

problem for the 
riti
al exponents in ele
trolyte solutions

and IL. We have paid the attention for the dipole 
uid as

the alternative model for the equation of state for the IL.

It was shown that the rotation of dipole mole
ules is very

important fa
t, whi
h should be taken into a

ount. It

was established that the de�nitive in
uen
e on the value

and behaviour of the Ginzburg number is 
aused by so-


alled polarizational intera
tions. The nature of the lasts

for ele
trolyte solutions and molten salts was dis
ussed

in detail. The possibility for the formation of spatially

inhomogeneous states near the 
riti
al point is 
onsid-

ered.

At the same time many important problems were not

in
luded in our analysis. First of all, the asso
iation{

disso
iation pro
esses need more 
areful investigation

both near the 
riti
al point and far away from it. Proba-

bly in
luding the quantum e�e
ts 
an in
uen
e the esti-

mates of relevant parameters. The polarizational intera
-

tions are also very important for the des
ription of asym-

metry e�e
ts in the equation of state. The 
onse
utive

using of the 
anoni
al formalism [73℄ also is very impor-

tant for this purpose. This formalism is also important

for ioni
 mi
ellar solutions [90,80℄. The polarizational ef-

fe
ts should play very important role for the quasibynary

solutions for whi
h the addition of ele
trolyte impuri-

ties leads to the appearan
e of double 
riti
al points and

phase separation [91℄. In those 
ases, when the 
oeÆ
ient

a

4

is small, the pe
uliarities of 
riti
al 
u
tuations should

be des
ribed with the help of RG-method applied to �

6

model. The detailed investigation of the diele
tri
 per-

mittivity is also very important for the a

urate solution

of problems of the 
riti
al behaviour.
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APPENDIX: CANONICAL FORM OF THE

DIELECTRIC PERMITTIVITY

There exist many approa
hes to the problem of diele
-

tri
 permittivity. Based on di�erent assumptions they al-

low to des
ribe with the most 
ompleteness only one or

several 
hara
teristi
 
ontributions. Unfortunately, too

hasty usage of model 
on
eptions lead to errors whi
h

are hard to 
ontrol. In parti
ular, this 
an 
hange the


hara
ter of inequalities and essentially in
uen
es the

values of the density derivatives of diele
tri
 permittivity.

Therefore, the dis
ussion of general stru
ture of diele
tri


permittivity as well as the nature of main 
ontributions

to it seems to be appropriate. By de�nition, diele
tri


permittivity for an isotropi
 medium [77℄ is equal to

�� 1 = 4�

P

E

(A1)

where P = jPj, P is the polarizability ve
tor, and E is

the strength of the Maxwell ele
tri
 �eld (PjjE). In gen-

eral, we should 
al
ulate P and E as fun
tions of the

external �eld strength E

0

. However, for a spe
imen of

the spheri
al shape the 
onne
tion between E and E

0

is

espe
ially simple:

E =

3

�+ 2

E

0

: (A2)

Therefore, we 
an write

�� 1

�+ 2

=

4�

3

P (E

0

)

E

0

�

4�

3

n�

e�

: (A3)

Sin
e the e�e
tive polarizability �

e�

is a 
hara
teristi
 of

a medium, but not of the shape of the spe
imen Eq. (A3),


onne
ting � and �

e�

, is of general 
hara
ter. The left

side of (A3) is always less than unity, so the inequality

4�

3

n�

e�

< 1

holds good.

To make a further 
on
lusion about �

e�

and �, we

rewrite the formula (A3) in the form

�� 1

�+ 2

=

4�

3

hDi

0

+

1

3

hD

2

i

0

E

0

V E

0

; (A4)

where D is the dipole moment of a system, V is its vol-

ume, and the angular bra
kets designate the average over

the equilibriumGibbs distribution. Note that the matter

within the spheri
al example is homogeneously polarized.

In general, the dipole moment has the stru
ture:

D = D

0

+ �̂E

0

; (A5)

where D

0

is the dipole moment of the isolated system

and �̂ is its polarizability. Following I. Fisher (unpub-

lished le
ture, Odessa University, 1978) �̂ 
an be repre-

sented in a form

�̂ =

N

X

i=1

X

k=1;2

�̂

(k)

1

(r

i

) +

X

1�i;j�N

X

k

1

;k

2

=1;2

�̂

k

1

;k

2

2

(r

i

; r

j

) + : : :

(A6)

where �̂

(k)

1

(r

i

) is the tensor of one-parti
le polarizability

for the i-th ion of type k, �̂

(k

1

;k

2

)

2

(r

i

; r

j

) is the tensor

of irredu
ible two-parti
le polarizability for i-th and j-th

ions of types k

1

and k

2

, 
orrespondingly, and so on. A

similar expansion is 
hara
teristi
 for the dipole moment:

D

0

=

X

1�i;j�N

X

k

1

;k

2

=1;2

d

(k

1

;k

2

)

2

(r

i

; r

j

) + : : : : (A7)

Note that within su
h an approa
h the 
entral problem

is the 
al
ulation of irredu
ible 
ontributions of di�erent

orders to �̂ andD but not the problem of the a
ting �eld

[77℄. From symmetry reasons it follows that:

h�̂

(k)

1

(r

i

)i

0

= �

(k)

1

^

I; (A8)

h�̂

(k

1

;k

2

)

2

(r

i

; r

j

)i

0

=

1

3

D

Sp �̂

(k

1

;k

2

)

2

(r

i

; r

j

)

E

0

^

I; k = 1; 2

(A9)

where the angular bra
ket h: : :i

0

designates the averag-

ing over the equilibrium distribution fun
tion and we

suppose that one-ion polarizability is a s
alar. The 
on-

tributions of higher order polarizabilities are relatively

small and will be ignored further. Sin
e hD

0

i

0

= 0, the

average hDi

0

= 0 
an be approximated by the expression

hDi

0

= n

h

�

+

+ �

�

+

z

12

(�

++

+ �

��

+ 2�

+�

)

i

(A10)

where z is the 
oordination number and for example

�

++

= Sp �̂

(+;+)

2

is the binary polarizability of two pos-

itive ions, whi
h are nearest neighbours (r

12

� a). Tak-

ing into a

ount that the main 
ontribution to �̂

(+;+)

2

is


aused by the dipole intera
tions, we 
an get the 
har-

a
teristi
 inequality

�

++

�

�

2

+

a

3

�

1

8

�

+

(A11)

sin
e �

+

� (

a

2

)

3

. Therefore, we 
on
lude that the 
ontri-

bution of the binary polarizability in Eq. (A10) 
annot

ex
eed

1

3

of that from the 
ontribution of one-parti
le

ones.
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To 
al
ulate hD

2

i at small E

0

we use the following

assumptions:

1. hD

2

i

0

� hD

2

0

i

0

2. the dipole moments of ions are strongly 
orrelated

only within the region whose size on the average is

equal to r

s

;

3. the 
hara
teristi
 dipole moment for this region has

order of the dipole momentd

0

for isolated mole
ule

NaCl.

As a result we 
an write

hD

2

i

0

� V

d

2

0

r

3

s

: (A12)

All these estimates allows us to 
on
lude that

�

e�

� �

+

+ �

�

+

1

3

d

2

0

k

B

T

�

a

r

s

�

3

: (A13)

The values �

+

and �

�


an be approximated by the po-

larizabilities of Ne and Ar. Using for r

s

the estimate ob-

tained above in su
h a way, we get

�

�

+ �

+

�

d

2

0

k

B

T

�

a

r

s

�

3

: (A14)

Hen
e the estimate of the diele
tri
 permittivity and its

derivatives with respe
t to density 
an be obtained with

the help of formulas of Lorentz{Lorenz type:

�� 1

�+ 2

=

4�

3

n

d

2

0

k

B

T

�

a

r

s

�

3

: (A15)

The spe
i�
 form of the relation between diele
tri
 per-

mittivity and the e�e
tive polarizability is espe
ially im-

portant for the 
al
ulation of the derivatives

�

k

�

�n

k

. From

this point of view the formula of Lorentz{Lorenz type is

obtained from �rst prin
iples and should be 
onsidered

as physi
ally grounded result. If the disso
iation is not


omplete the formula (A15) takes the form

�� 1

�+ 2

=

4�

3

n

d

2

0

k

B

T

 

1��

2

+�

�

a

r

s

�

3

!

: (A16)

The last term in Eq. (A16) is essential only in the 
lose

vi
inity of the 
riti
al point. In other situations its in
u-

en
e is negligible. Then

�� 1

�+ 2

=

2�

3

n

d

2

0

k

B

T

(1��) : (A17)
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V. L. KULINSKII, N. P. MALOMUZH

EFEKTI POL�RIZAC�Õ TA KRITIQNA POVED�NKA SISTEM

�Z KULON�VS^KIMI VZA�MOD��MI

V. Kul�ns~ki�, M. Malomu�

Odes~ki� na
�onal~ni� un�versitet, kafedra teoretiqnoÝ f�ziki

vul. Dvor�ns~ka, 2, Odesa, UkraÝna

Ogl�d prisv�qeno kritiqn�� poved�n
� sistem �z kulon�vs~kimi vza
mod��mi. Osoblivu uvagu prid�-

leno vagomost� pol�riza
��nih efekt�v poblizu kritiqnoÝ toqki v takih sistemah. Vi�vleno, wo pol�ri-

za
��n� vza
mod�Ý sutt
vo renormal�zu�t~ poqatkovi� efektivni� gam�l~ton��n sistem Landau{��nzbur�a.

Rozgl�nuto dvopol�snu r�dinnu model~ �k bazovu dl� tvorenn� �onnih r�din (roztoplenih sole� NaCl).

Pokazano, wo vrahuvann� vnutr�xn�h stupen�v v�l~nosti, zokrema rota
��nih, �k� vinika�t~ u �onn�� par�,

dozvol�
 sformul�vati novi� p�dh�d do zadaq� f�ziqnogo rozm�ru pari. Podano o
�nki kritiqnih pa-

rametr�v u me�ah dvopol�snoÝ r�dinnoÝ model�. Zaproponovano mo�liv� s
enar�Ý kritiqnosti sistemi z

kulon�vs~ko� vza
mod�
�. Opisano mo�liv�st~ formuvann� neodnor�dnih stan�v u kritiqn�� d�l�n
�. Pro-

anal�zovano okrem� efekti, pol�riza
��no spriqinen� vza
mod�
� m�� parametrom por�dku � fl�ktua
�
�

gustini zar�du, �ka harakterna dl� sistemi z pr�mimi kulon�vs~kimi vza
mod��mi. P�dkresleno de�k�

nov� problemi, pov'�zan� z kulon�vs~ko� kritiqn�st�.
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