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The review is devoted to the ritial behaviour of the systems with Coulombi interations.

The importane of polarizational e�ets near the ritial point in suh systems is emphasized. It is

shown that polarizational interations essentially renormalize the initial e�etive Landau{Ginzburg

Hamiltonian of the systems. The dipole uid model as the basi one for the ritiality of ioni liquids

(molten salts like NaCl) is onsidered. It is shown that taking into aount the internal degrees of

freedom, namely the rotational ones of an ioni pair allows to formulate the new approah to the

problem about the physial size of a pair. The estimates for the ritial parameters within dipole

uid model are given. Possible senarios for the ritiality of the system with Coulombi interation

are proposed. The possibility of formation of inhomogeneous states in the ritial region is disussed.

Some spei� e�ets aused by the polarizational indued interation between order parameter and

the harge density utuation harateristi for the system with the diret Coulombi interations

are disussed. Some new problems onneted with the Coulombi ritiality are outlined.
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INTRODUCTION

In reent years ritial phenomena in systems with

Coulombi interation between partiles have been the

objet of many review papers [1{12℄. From them it fol-

lows that the desription of the thermodynamis of ioni

system is far from omplete understanding. In ontrast

to the ritial behaviour in moleular liquids both mean

�eld and saling analysis for ioni liquids (IL) have yet

to be resolved. The harateristi problem for IL is the

onstrution of suitable mean-�eld theory whih would

give the reliable phase diagram and estimates for non

universal quantities like Ginzburg number, ritial am-

plitudes, et. With the help of suh self-onsistent mean

�eld approah the inuene of interplay between diret

Coulomb and spei� interations on the type of the

ritial behaviour ould be investigated. The problem of

manifestation of peuliarities of interpartile interations

in non-universal harateristis of phase transitions be-

omes very important.

The experimental study of the ritial phenomena

in systems with Coulombi interations revealed unex-

peted results. First of all, suh systems demonstrate es-

sential di�erenes in their ritial behaviour. The main

question here is about the existene of the rossover re-

gion, whih for the systems of early studies [1℄ was found

to be of the order � =

T�T



T



� 10

�4

[13℄. A reent review

[11℄ of the experimental results of the lasts two deades

states that \. . . there are several sets of highly aurate

data whih, however, ontradit fundamentally".
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There are suspiions that some systems show tririti-

al behaviour [16,15℄. In fat, it means that 1) Ginzburg

number for many systems with Coulombi interation

(CI) is abnormally small or 2) for some systems the

Coulombi interations lead to the quantitative hange

of the ritial behaviour at all � . On the other hand the

nature of low values for the dimensionless ritial densi-

ties and the temperature for molten salts like NaCl needs

lari�ation. In partiular, the question about the degree

of ionization of the system near the ritial point remains

open. The lear answer to these questions is one of the

main problem for the modern theory of ritial phenom-

ena.

Here we should note that in fat there is another type

of the systems with Coulombi interation | liquid met-

als (alkali metals and merury). It is well grounded ex-

perimentally that liquidmetals belong to the Ising model

universality lass of the ritial behaviour [14℄. More-

over their ritial behaviour is haraterized by the same

Ginzburg number value as that in moleular liquids like

Ar, Ne, et. The di�erene in interpartile interation

auses the di�erene in nonuniversal ritial amplitudes.

The asymmetry of a oexistene urve here serves as the

harateristi example. In monovalent alkali metals with

lowest T



(Cs, Rb) a strong asymmetry takes plae. In

ontrast to it the liquid{vapor equilibrium urve for di-

valent Hg looks nearly symmetrial. This di�erene is

onneted with existene of metal{insulator transition

(MIT), whih leads to a signi�ant di�erene in inter-

partile potential for vapour and liquid phases in alkali

metals. Alkali metals in liquid phase near ritial point

are indeed metals with nearly free eletron transport

properties, while for Hg MIT happens at higher density

�

MI

> �



. Thus, with respet to the ondutivity values,

liquid merury near ritial region is treated as slightly

ionized uid rather than liquid metal [14℄.

From the thermodynami point of view the position

of the vapour{liquid ritial point is determined by the

onditions:

�

�p

�v

�

T

= 0

�

�

2

p

�v

2

�

T

= 0 (1)

where p; v; T are the pressure, the spei� volume and the

temperature orrespondingly. These onditions do not

depend on the spei� harater of interpartile intera-

tions. Within the Landau approah for the free energy:

F = F

0

+ V

�

A

2

�

2

+ A

3

�

3

+A

4

�

4

+ : : :

�

(2)

from (1) it follows that only A

2

and A

3

an vanish at the

ritial point.

The utuations of the order parameter � and the

harge density hange the initial values of oeÆients A

i

.

For the non-ioni liquids these variations are not drasti

in the sense that A

4

remains positive. However, for the IL

a new possibility may be realized. Due to the assoiation-

dissoiation proess near the ritial point the appear-

ane of spatially inhomogeneous state is possible. More

exatly, the drops of fully dissoiated liquid an appear in

dipole uid and vise versa. Suh a possibility will hange

essentially the type of the ritial behaviour.

For the systems with CI there is one more important

ause whih inuenes the harater of the phase transi-

tion. Due to strong utuations of the order parameter

the utuations of the dieletri permittivity also abnor-

mally grow. As a result the interation energy U

h

of

the harge utuations Æ� is not desribed by the simple

formula:

U

h

=

1

2�

0

Z Z

dr dr

0

Æ�(r)Æ�(r

0

)

jr� r

0

j

(3)

harateristi for the systems with quasionstant values

�

0

of the dieletri permittivity. In the onsidered ase

the interation energy will be more omplex funtional

of type:

U

h

=

1

2

Z Z

dr dr

0

Æ�(r)Æ�(r

0

)

1

X

i=0

1

n!

Z

K

n

(r; r

0

jq

1

; : : : ;q

n

) Æ�(r

1

) : : : Æ�(q

n

)dq

1

: : :dq

n

(4)

where K

0

=

1

�

0

jr�r

0

j

. The expliit form for the kernels K

n

should be determined from the Poisson equation for a

medium with inhomogeneous dieletri permittivity. The interations, generated by the funtions K

n

; n � 1, we will

name as polarizational ones. As a onsequene of diret onnetion between Æ� and � the polarizational terms to U

h

renormalize also the orresponding oeÆients of the Landau{Ginzburg Hamiltonian (LGH):

H

LG

[�℄ =

Z

dV

�

b

2

(r�(r))

2

+

1

2

a

2

�

2

(r) +

1

4

a

4

�

4

(r) + : : :

�

(5)
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It is very essential to note that the renormalization may

be e�etively ampli�ed by the relatively small value of

a

4

, whih, as it appears, takes plae in IL in omparison

with moleular ones [6℄. The role of the polarizational

e�ets in the ritial phenomena and onstrution of the

Landau{Ginzburg Hamiltonian for the solutions of ele-

trolytes and ioni liquids were investigated in [17℄ and

[18℄.

In this review we present the main results of investiga-

tions of ritial phenomena in systems with Coulombi

interations with speial aent on the role of the po-

larizational e�ets. Our attention will be foused on the

following main questions:

1. the nature of the ritial point in molten salts like

NaCl;

2. the de�nition and disussion of the main proper-

ties of polarizational interations in eletrolyte so-

lutions and IL;

3. the onentration dependene of the Ginzburg

number for eletrolytes near their vapour-liquid

ritial points;

4. the estimate of the Ginzburg number for IL like

NaCl;

5. the nontrivial utuational shift of the ritial

point lous for the eletrolytes;

6. the new phase whih appearane is possible near

the ritial point;

7. dieletri properties of ioni uids.

The material is arranged in the following way:

1. Chapter I is devoted to the general fats on the rit-

ial behaviour of di�erent systems with CI. Here we

present also the alternative basi models for the

desription of the Coulombi ritiality in molen

salts: the RPM and dipole uid (DF).

2. The de�nition and general disussion of the polar-

izational interations are in Chapter II. Our on-

sideration will be restrited by the disussion of

the polarizational e�ets mostly on the mean �eld

level. The expliit form of the LGH for the systems

of interest is proposed.

3. The dependene of the Ginzburg number on the

relevant parameters of the system with CI is dis-

ussed in Chapter III.

4. In Chapter IV suh important harateristis as

ondutivity and the asymmetry of the binodal are

analyzed.

I. CRITICAL BEHAVIOUR OF THE SYSTEMS

WITH COULOMBIC INTERACTIONS

A. Types of systems with Coulombi interations

and experimental fats

Critial phenomena in uids with nondispersive

Coulombi interations have attrated muh attention

in the last ten years owing to a diversity of experimental

results. Early experimental results of [2,13,19℄) favored

mean-�eld type of the ritial behaviour while reent

studies [20,21℄ on�rmed Ising-like asymptotis for the

systems under investigation.

The variety of systems studied experimentally an be

divided into two groups. Below we will name them as

Type I and Type II systems.

The systems of Type I are those where as is suggested

the Coulombi ritiality takes plae. The latter is har-

aterized by a pronouned narrowing of the utuation

region with probable mean �eld or the triritial point

variants for ritial behaviour. At least the apparent

rossover from lassial to Ising-like ritial behaviour

is expeted. This group inludes pure ioni uids with

liquid-gas phase separation suh as molten alkali halides

NaCl, KCl, et. [3,5℄. The liquid{vapor ritial point

of these systems is loated at very high temperatures

(T



' 10

3

K). This makes the experiments very diÆult.

In addition for suh systems the number of thermody-

nami degrees of freedom allows triritiality as rather

degenerated but not generi ase.

It is expedient to introdue ommon dimensionless

density and temperature [9℄:

�

�

= na

3

; T

�

=

�k

B

T

q

2

=a

(6)

where a is the ioni diameter, n =

N

V

is the total number

density, q is the absolute value of the harge.

Typial values of � near the ritial point is less than

0:1, and usually it is onneted with small assoiation

taken into aount with the help of thermodynami per-

turbation theory. However, the reliability of suh type

estimates is not quite lear. Therefore the development

of the alternative approah grounded on the dipole uid

model seems to be expedient. In the present paper we es-

timate the ritial harateristis of the ioni molten in

the framework of the dipole uid approah. We will also

show that the hange of moleular parameters due to ro-

tations inuenes essentially the loation of the ritial

point.

From this point of view the ioni (quasi)binary mix-

tures with \room" ritial temperatures (T



' 300 K) of

deomposition used in the experiments by Pitzer and o-

workers are more suitable [2,19,22,23℄ and widely used.

Triritial variant of the ritial behaviour for multiom-

ponent systems annot by exluded a priory. The ex-

perimental results are interpreted in [16,15℄ within this

point of view. The possibility of triritial nature of ob-

served peuliarities was also disussed in [6,7℄. For suh
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a onjeture to be valid the additional sale ompetitive

with orrelation length of an order parameter must exist

[6℄. For example, in polymer blends the apparent seond

sale is the size of a moleule [24℄, whih may lead to the

rossover. The physial meaning of its analogue, if there

exists one, for ioni melts and eletrolyte solution is not

lear [16℄.

Analogous problems arise for the seond group, whih

inludes dilute solutions of eletrolytes, suh as aqueous

eletrolytes (H

2

O+NaCl et.) [25,26℄, and quasibinary

solutions [16℄. Here the admixture of ions hanges the

parameters of the ritial point of pure solvent. Thus

the ritial behaviour of a pure solvent is perturbed by

the Coulombi subsystem of ions. The ritial behaviour

of these systems may exhibit a rossover from mean-�eld

to Ising-like asymptotis within the temperature inter-

val of an experiment. In partiular, experimental data

for some solutions were �tted with mean-�eld exponen-

tial law up to � � 10

�4

[13℄, i. e., the utuation region

is muh less in omparison with that for simple liquids

(Gi � 0:1�1). This is in apparent ontrast to the results

of [27℄ where Gi dereases insigni�antly if the ioniity

parameter grows.

I =

q

2

=a

k

B

T

(0)



(7)

Here T

(0)



is the ritial temperature of the solvent, pro-

vided that the ritial behaviour belongs to Ising-model

universality lass. The ioniity parameter (7) obviously

shows the relative strength of Coulombi and solvopho-

bi, short range fores. The last forms Ising like ritial

behaviour of neutral system. Though the aount of di-

ret Coulombi interation in [27℄ was performed pertu-

batively without aounting the pair formation. It is lear

that in suh a way there is no substantial interation be-

tween Coulombi and moleular subsystems. Thus due to

simple sreening of the Coulombi interation no drasti

hanges would be expeted for Gi in suh an approah.

To proess suh data, di�erent assumptions in [28,29℄

and [30℄ were onsidered. These a�eted the onlu-

sions about the existene of the rossover in suh sys-

tems. The results of [30℄ show the nonlassial behaviour

through the temperature interval without any rossover.

In [28,29℄ the experimental data were �tted by a lassial

EOS.

The basi model for these systems is the restrited

primitivemodel (RPM). The RPM is the system of equal

number of positive and negative harges �q of the diam-

eter a, immersed in a homogeneous medium of dieletri

permittivity �. It an be expeted that suh model is ade-

quate for ioni molten salts. Various theoretial approx-

imations and numerial simulations predit the liquid-

vapour ritial point at very low dimensionless tempera-

tures and densities [6,31,12℄. The nature of ritial u-

tuations in this model are muh less studied. The main

diÆulty here is the interation between number density

and harge utuations.

B. Mean-�eld theories of RPM

The onsideration of the ritial behaviour in suh is

based on the so alled Primitive Model, whih is de�ned

by the lassial potential:

U (r) =

8

<

:

q

i

q

j

r

ij

; r

ij

� � =

�

+

+�

�

2

1 ; r

ij

< �

(8)

Note that due to lassial harater of the model, the

masses of the harges plays no role. If the symmetry be-

tween harges is `broken', one gets the extended, `un-

restrited' version of the model (see [11℄ and referenes

therein). The restrited version of this model deals with

spei� ase of equisized ions with the same absolute

value of harge. The mean �eld theory for the ritial be-

haviour of suh a system is mainly onstruted in three

ways: 1) thermodynami perturbation theory [6℄; 2) pair

orrelation funtion analysis [7℄; 3) omputer simulation

of EOS [32,33℄. The loation of the ritial point for RPM

varies in dependene of the interations inluded into free

energy. Typial values of ritial point lous are:

�

�



� 0:02� 0:035 T

�



� 0:04� 0:06 : (9)

The MC simulations give to some extent ontradi-

tory results for the position of the ritial point as well

as for the type of the ritial behaviour. For the lasts the

areful analysis of the �nite size saling e�ets is needed.

This probably the main ause for the di�erenes between

the results based on the Gibbs ensemble [34℄ whih lo-

ate the ritial density at almost the same value as in

(9). Others based on the extrapolation of the dependene

of the ell size L suggest signi�antly higher densities

�

�



� 0:07� 0:08 [32℄.

There have been proposed many approahes to investi-

gate the ritiality of the RPM. The �rst approah is the

thermodynami perturbation theory. The main goal of it

is to inorporate as muh physially relevant e�etive in-

terations into thermodynami potential (free energy) as

possible. In partiular, it is based on the generalization of

lassial Debye{H�ukel (DH) theory [35℄ for eletrolytes.

It is assumed that the free energy of the system per unit

volume has the form:

f(�; T ) =

X

i

f

(id)

(�

i

; T ) + f

(ex)

(T; �

h

; �

d

) (10)

where f

(id)

(�

i

; T ) is the ideal gas term for neutral

moleules or ions, �

i

is the number density of the harges

if i = +;� and dipole pairs at i = d. The seond term
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f

(ex)

(T; �

h

; �

d

) is the exhange part of the free energy

whih an be represented in the form:

f

(ex)

(T; �

h

; �

d

) = f

(n)

(T; �

h

; �

d

) + f

(h)

(T; �

h

; �

d

)

(11)

where f

(n)

(T; �

h

; �

d

) is the part inluding hard ore ef-

fets and all dispersive interations of neutral moleules

and ions. In partiular f

(n)

(T; �

h

; �

d

) an be taken in a

form leading to Carnahan{Starling EOS [36℄.

Diret Coulombi interations are take into aount

by the seond term f

(h)

(T; �

h

; �

d

). It expliitly de-

pends on the harges q

i

via harateristi length sale

| sreening length. The simplest form of this term is

given by the lassial Debye{H�ukel theory, where for

small harge densities:

�f

(h)

(T; �

h

; �

d

) � �f

(DH)

(T;�) = �

�

3

12�

+ o

�

�

3

�

;

(12)

where � =

1

k

B

T

. The parameter � is the inverse sreening

length, and for the RPM it equals to:

�

2

= 4�q

2

�

h

T

�

; (13)

The lassial Debye{H�ukel (DH) model was improved

[9,37℄ and extended to higher dimensions of spae [38℄.

The generalizations of the expression (12) for the free

energy inludes the �nite size of the ions:

�f

(DH)

(T; �

h

; �

d

) = �

1

4�

�

ln(1 + x)� x+

1

2

x

2

�

; (14)

and ion-dipole interation

f

(di)

=

�

2

aa

1

T

�

a

2

�

d

!(a

2

�) (15)

where

x = a�

and

!(x) =

3

x

4

�

ln

�

1 + x+

1

3

x

2

�

� x+

1

6

x

2

�

:

The values of �

h

and �

d

are determined aording to :

�

h

= ��

�

; �

d

= (1��)

�

�

2

; (16)

where � is the degree of ionization. The mass ation law

relates � with the pair assoiation onstant K(T ) [39℄:

2

1��

�

2

= �

�

K(T ) exp

�

��

(ex)

+

+ ��

(ex)

�

� ��

(ex)

d

�

; (17)

where �

(ex)

i

= �

i

� �

(id)

i

is the exess hemial potential

for ions (i = +;�) or dipole pair (i = d). The expressions

for the hemial potentials are obtained in standard way

[39℄. As a result they are the funtions of �. Therefore

equation (17) is one for �. Also note that for the RPM

�

+

= �

�

.

The formation of assoiated pairs of the ions is taken

into aount within the Bjerrum's onept [40℄. The Bjer-

rum riterion of the pair is based in the simplest mod-

eling K(T ) as the lassial partition funtion of dipole

on�guration, haraterized by the only parameter |

the distane between ions:

K(T

�

) =

Z

a<r<R

exp

�

�

q

2

r

�

dr

= 4�a

3

R

�

Z

1

x

2

exp

�

1

xT

�

�

dx: (18)

The upper limit of integration is the Bjerrum length

whih orresponds to the minimum of the integrand and

is given by the Bjerrum energeti ondition:

q

2

R

= 2k

B

T ;

so that:

R

�

=

�

1

2T

�

if T

�

�

1

2

1 if T

�

>

1

2

; R

�

= R=a : (19)

A more sophistiated approah to modeling the assoia-

tion onstant (18) was elaborated in [41℄. It was based on

the onsisteny of mass ation law with virial expansions

for EOS of ioni system up to �

5=2

h

order. But the di�er-

ene between assoiation onstant (18) and that obtained

in [41℄ for the interval of densities and temperatures of

interest (T

�

< 0:1 ; �

�

< 0:1) appeared to be less than

1%. The oordinates of the ritial point obtained in suh

an approah are

T

�



= 0:055 ; �

�



= 0:026 ; P

�



= 3:6 � 10

�4

: (20)

For the reviews of the results see [6,12℄.

The seond approah is based on onstrution of

pair the orrelation funtions. The losure of Ornstein{

Zernike relation for pair orrelation funtion and subse-

quent onstrution of the thermodynami potential and

EOS are used. The above mentioned Debye{H�ukel ap-

proximation an be obtained within this framework too.
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This is a lassial result of statistial physis (see, e. g.,

[39℄).

In this approah the Mean Spherial Approximation

(MSA) [42℄ for pair orrelation funtions is widely used.

Within the latter the equation for the pair orrelation

funtion in some ases [43℄ an be solved exatly. The

ion ontribution to the free energy in this approximation

is:

f

(h)

= �

1

12�a

3

�

2 + 6x+ 3x

2

� 2(1 + 2x)

3=2

�

: (21)

The assoiation e�ets are taken into aount as has been

outlined above with the help of the hemial assoiation

theory [44,45℄. The oordinates of the ritial point for

MSA-based models with the inlusion of assoiation [46℄

typially are:

T

�



= 0:07 ; �

�



= 0:022 ; P

�



= 2:0 � 10

�4

: (22)

The results obtained within this approah an be found

in [7℄.

The main diÆulty of this approah as well as any

other onneted with using approximations for lower or-

relation funtions is the neessity to satisfy many ther-

modynamial identities. For Coulomb systems there are

additional identities known as sum rules [47℄. Usually

only the relations for the �rst (loal eletroneutrality

onditon) and seond moments (Stillinger{Lovett sum

rule) are ful�lled (e. g., for DH or MSA). The absene of

reliable mehanism within this approah whih expliitly

takes into aount all thermodynami identities results

in violation of some exat inequalities as was shown in

[48℄.

Despite obvious progress in mathing the oordinates

of the ritial point obtained in suh mean-�eld ther-

modynami approah with those of MC alulations the

modi�ed DH theory still onfronts the diÆulty in the

explanation of small values ofGi. Indeed, one the proper

mean �eld theory is given, the orresponding LGH an be

onstruted, thus providing the satisfatory estimates for

both ritial point lous and the width of utuational

region.

C. Renormalization group analysis

and Kosterlitz{Thouless transition

The nature of ritial utuations in the RPM whih

is diretly onneted with Coulombi ritiality has not

been thoroughly studied. The main diÆulty here is the

interation between the number density utuations and

the ones of harge. For the Coulomb gas of point partiles

the oeÆients a

2n

of the e�etive LGH are:

a

2n

= (�1)

n+1

with a

4

< 0. This model is isomorphi to the so-alled

sine-Gordon �eld theory [49℄.

The RPM di�ers from gas model sine: 1) the ions

have �nite sizes 2) there is nonzero assoiation in the

system. Therefore, to derive the proper LGH these fea-

tures should be inluded.

The renormalization group (RG) analysis of ritial

utuations in Coulomb gas was done in [50℄. The hard

ore e�ets were inluded and treated with the help of

Hubbard{So�eld method [51℄ (see also [36℄). Note that

the inlusion of hard ore e�ets leads to the density

dependene of the oeÆients of the e�etive LGH. To

onsider the possibility of vanishing a

4

the e�etive LGH

in the \�

6

" approximation was used, where � is the �eld

variable onjugated to the harge density. It was shown

that the investigated model may exhibit either a �rst-

order transition or Ising-like ritial behaviour depending

on the starting values of the LGH oeÆients. Two types

of the ritial behaviour mentioned above are formed due

to the existene of a triritial surfae in the spae of the

oeÆients of the Hamiltonian. The behaviour depends

on the starting value of a

6

> 0. The LGH moves either

to the setor where a

4

< 0 or to Ising �xed point with

a

4

> 0 in the spae of the LGH oeÆients. The estimate

for the width of the utuational region was not given.

In addition the value of the oeÆient a

6

was onsid-

ered as an arbitrary parameter of the theory (a

6

> 0).

Though for lower densities (0:01 < � < 0:07) all the oef-

�ients at �

n

; n < 22 in the LGH obtained are negative.

It should be noted that in this approah the importane

of assoiation e�ets is ignored.

The unique theory where it appeared possible to

onsider the formation of bound states is 2D lassial

Coulomb gas of point partiles. It also an be represented

by 2D XY -model on the square lattie [52,53℄ (see also

[54℄) with the Hamiltonian:

H = �J

X

n;�

os (�

n

� �

n+�

) :

In the ontinual limit it is mapped onto sin-Gordon �eld

model [49℄. Here the ondutor{insulator transition o-

urs at small densities. The existene of the Kosterlitz{

Thouless (KT) transition [52,53℄ may a�et the 3D be-

haviour in the view of (2 + �)-renormalization. Some nu-

merial MC results have been interpreted from this point

of view [33℄. The key points of KT theory of diluted 2D

Coulomb gas are: 1) the onsideration of inuene of the

assoiated dipole pairs on the interation energy of two

harges through the dieletri permittivity; 2) the last

is onneted with the dieletri suseptibility �; 3) in

its turn � is determined in a self-onsistent way with

the polarizability of an ioni pair. Thus the equation for

the dieletri permittivity is derived. This is the main

point of KT-theory [55℄. In suh model the dissoiation-

assoiation transition (metal{insulator) takes plae. The

renormgroup onsideration of the model [56℄ gives the

equation for the T



:

�



�J � 2� exp

�

�

�

2

2

�



J

�

= 0:

55



V. L. KULINSKII, N. P. MALOMUZH

In this point the orrelation length � whih is propor-

tional to the size of a pair has singular behaviour:

� =

(

exp

�

a�

�

1

2

�

; T > T



1 ; T < T



:

The in�nite value of orrelation length in insulating

phase implies the algebrai behaviour of the harge{

harge orrelation funtion:

h�(0)�(r)i /

�

a

r

�

1

2��J

; T < T



:

It leads to the singularity in the suseptibility:

� =

�

�

2��

; T > T



1 ; T < T



;

with � = 1=4 [57℄.

There are di�erent views on the nature of the end point

of KT line. The analysis of [58℄ laims this point to be

of usual ritial type, while the extended DH model de-

veloped in [38℄ predits it to be a triritial one.

It is not quite lear also how to extend KT analy-

sis to higher densities. It is well known that the ase of

two dimensions is very spei� for ritial phenomena

beause of an in�nite dimension of the onformal sym-

metry group. Indeed, as we an see the Poisson equation

(PE) for inhomogeneous isotropi dieletri media

� (�(r)��(r)) = �S

d

�(r); S

d

=

2�

d=2

�(d=2)

(23)

an be interpreted as the PE for homogeneous media, in

onformally equivalent metri:

ds

2

= �(r)dl

2

; (24)

where dl

2

= dx

i

dx

i

usual Eulidean metri. Indeed, the

Laplae or Laplae{Beltrami operator for arbitrary met-

ri ds

2

= g

ik

dx

i

dx

k

is (see, e. g., [59℄)

�

LB

=

1

p

g

�

i

�

p

gg

ik

�

k

�

(25)

where

g = det jjg

ik

jj

Comparing (25) with (23) and taking into aount that

the density of any quantity inludes the 1=

p

g fator we

get that inhomogeneous PE (23) takes the form:

�

LB

�(r) = �S

d

~�(r); ~� =

�

p

g

; (26)

whih is nothing but the PE for urved D-dimensional

spae with the metri tensor:

g

ik

= (�(r))

2

d�2

Æ

ik

; d 6= 2 : (27)

The spaes with metri tensor g

ik

= f(r)Æ

ik

are alled

onformally at, i. e. their metri tensors are propor-

tional (the 2D ase is the exeption beause any urved

surfae is onformally equivalent to the 2-plane). So if

there exists the hange of oordinates (onformal trans-

formation) so that the Eulidean metri transforms into

g

ik

= f(r)Æ

ik

the Green's funtion for suh metris an

be obtained with the help of the Green's funtion for

at geometry by the hange of variables. In dimensions

D � 3 the onformal transformations (the so-alled on-

formal group) are rotations, dilatations and inversions.

The only inhomogeneous transformations are inversions

but they lead to singular �(r) =

1

jrj

2

. In two dimen-

sions any omplex analytial transformation of oordi-

nates z = (x; y) ! w = f(z) leads to onformally at

metri.

As is known the absene of the harateristi length

sale is the reetion of the onformal invariane of the

system. For two dimensional systems with the behaviour

similar to the KT model (insulator{ondutor) the on-

formal symmetry apparently forbids the spatial inhomo-

geneous phases. Apart from this in a 3D ase we an

expet the appearane of suh phases. A typial exam-

ple of suh a phase is the exitoni drop phase in solid

state [60℄.

D. Qualitative analysis of the ritial behaviour

of the dipole liquid

NaCl is the simplest example of ioni liquid. In the

solid state it is ioni rystal. Above the melting point the

positions of ions beome un�xed, but this liquid remains

strongly dissoiated. Due to thermal expansion at in-

reasing temperature the dissoiation degree diminishes

and the molten salt passes to a dipole liquid. At further

inreasing temperature and dereasing the molten den-

sity the dissoiation degree grows again and the molten

salt beomes a ompletely ionized system. Thus, at some

temperature (T

1

; T

2

) and density (n

1

; n

2

) intervals the

molten NaCl an be onsidered as a dipole liquid. The

question about the degree of ionization of IL near their

ritial points has been disussinged for a long time [14℄.

The studies of this problemwere done in the early 1970ies

in [61℄. The van der Waals model with hard ore inter-

ation for the uid of diatomi moleules was used. The

estimations were obtained by the linear extrapolation of

the density data available [62℄ assuming the validity of

the law of retilinear diameter. The omparison of these

results with those obtained for ompletely ionized state

near the ritial point favoured the assumption about

a low degree of ionization at the ritial point. Further

additional arguments for this assumption will be given.
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Let us onsider general properties of this liquid and, in

partiular, its main ritial parameters: the ritial tem-

perature and density. The interpartile interation in a

dipole system takes the form:

U (1; 2) = U

w

(1; 2) + U

dd

(1; 2); (28)

where the �rst term desribes the van der Waals inter-

ation between moleules and

U

dd

=

1

�r

3

12

�

d

1

d

2

� 3

(d

1

r

12

)(d

2

r

12

)

r

2

12

�

(29)

the proper dipole{dipole interation, r

12

= jr

1

� r

2

j is

the interpartile spaing, i = r

i

;d

i

, d

i

= d

0

n

i

, i = 1; 2,

� is dieletri permittivity. Beause the dipole-dipole in-

terations are relatively weak the angular distribution of

dipole moments d

i

is lose to the isotropi one. More ex-

atly we assume that the two partile distribution fun-

tion g(d

1

;d

2

) an be approximated by the �rst two terms

in the expansion:

g(d

1

;d

2

) = 1� �U

dd

(1; 2) + : : : : (30)

The approximation of suh a kind allows us to exlude

the orientational degrees of freedom in the on�gura-

tional integral with the help of the perturbation theory.

In fat this proedure is equivalent to the usage of the

isotropi potential

U (r

12

) = hU (1; 2)i = U

w

(r

12

)� U

d

�

�

r

12

�

6

;

U

d

=

2

3

�

�d

2

�

2

�

2

�

6

(31)

Here � � a

+

+ a

�

� 2a, a

+

and a

�

are the diameters of

ions Na and Cl orrespondingly and for simpliity we put

a

+

= a

�

and neglet the di�erene in masses of the ions,

� : : :� denotes the average with the internal partition

funtion of a pair. It is easy to hek that the inequality

jU

w

(r

12

)j � U

d

�

�

r

12

�

6

takes plae at all r

12

. Therefore

further the ontribution jU

w

j will be ignored.

It is essential, that the averaging proedure restrits

the appliability region of the potential (31) by interpar-

tile spaings � � r

12

whih gives the size of the \av-

eraged" dipole of the order 2a. Though the value of �

may be slightly less than 2a sine rotating dipoles are

not the same as hard spheres of diameter 2a. It is quite

lear in view of sattering ross setion for the hard ro-

tating dumbells. At this level � should be onsidered as

the parameter (in general temperature dependent) of the

dipole{dipole potential. The proedure of its �xing in the

ritial point will be disussed further.

To desribe the properties of the molten NaCl within

the interval, where it an be onsidered as a dipole liquid,

we an use the potential with hard wall:

U (r

12

) =

(

1 ; r

12

< �

�U

d

�

�

r

12

�

6

; � � r

12

: (32)

Suh a potential leads to the van der Waals equation

of state

P =

n

d

k

B

T

1� n

d

b

� A(T )n

2

d

; (33)

where

A(T ) = ��

1

Z

�

U (r; T )r

2

dr =

��

3

3

U

d

; b =

2�

3

�

3

(34)

and n

d

is the pair number density. Therefore the overall

density is n = 2n

d

. In dimensionless form (33) and (34)

read as:

P

�

=

�

�

T

�

2� b�

�

�

~

A(T

�

)

4

�

�

2

; (35)

and

~

A(T

�

) =

2�

9T

�

�

3

� r

2

d

�

2

(36)

Here all spatial parameters are given in units of a. The

value of the parameter � r

d

� depends on the internal

struture of the pair. Though by the order of magni-

tude � r

d

�� 1, nevertheless from [63℄ it follows that

the harateristi values of dipole moments orrespond

to � r

d

�< 1.

Sine � is onneted with the size of the pair we model

its temperature dependene via relation:

� =� r� Æ (37)

where Æ is the �tting parameter.

Note that � is temperature dependent whih is as-

sumed to be the same as that for � r�. The funtions

� r

n

� will be determined below. Note that the vapour

phase, whih ontats the liquid one, is the gas of dipole

moleules. The van der Waals EOS is appropriate ap-

proximation for EOS for suh vapour phase. Thus we

an get the ritial parameters of this system using the

van der Waals theory of the ritial point.

Equation (33) leads to the following equations for the

ritial temperature and density (note that n

d

= n=2,

where n is the total number density):

T

�



=

2

p

2

9�

3

� r

2

d

�; �

�



=

1

��

3

; (38)

The estimates for these parameters are straightforward

if we put � = 2, and take into aount that due to small
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dipole moment of NaCl � r

2

d

�= 1 (in units of a):

T

�



=

p

2

36

� 0:04 ; �

�



=

1

8�

� 0:04 ;

P

�



=

p

2

1536�

� 3 � 10

�4

; (39)

Z



=

P

�



�

�



T

�



=

3

16

� 0:19

whih are in satisfatory agreement with the values

T

�



= 0:055 ; �

�



= 0:026 ; P

�



= 3:6 � 10

�4

; (40)

Z



= 0:25

obtained within extended Debye{H�ukel-Bjerrum theory

[64℄ augmented with ion{dipole interation. Our value of

the ritial density is greater due to negleting the dis-

soiation of the dipole pairs.

Now we need to onsider the dipole pair as itself sine

the parameters of potential (32) atually are the aver-

ages over the internal partition funtion of a pair and

therefore are the temperature dependent funtions.

E. The dissoiation of the rotating dipole liquid

In the previous setion the model of ompletely asso-

iated ioni liquid onsisting of rotating dipoles has been

introdued. Here we investigate the internal struture of

the bound pair of ions. We take into aount the fat

that the energy of interation of a pair should inlude

entrifugal energy together with Coulombi potential as

in standard problem of two bodies interating via entral

�eld.

The dissoiation temperature for NaCl-molten is de-

termined by the e�etive potential of an ion within a

rotating dipole whih inludes the entrifugal energy:

kT

d

� �U

e�

=

q

2

r

�

L

2

2I

; (41)

where I = �r

2

is the moment of inertia of the harge with

redued mass � =

m

+

m

�

m

+

+m

�

= m=2. At suh high temper-

atures all degrees of freedom are all in equilibrium and

we an use the estimate

E

rot

=

�

L

2

2I

�

= kT: (42)

Note that the equilibriumdistane between ions in a pair,

whih is determined by the minimum of e�etive poten-

tial (41) with the help of (42), is

a

eq

=

1

2T

�

; (43)

whih is exatly the Bjerrum size of the pairR

Bj

[40℄ (see

also [64℄). The hoie of (43) as the size of the ioni pair

is inappropriate from the physial point of view at low

temperatures T

�

� 1 [64℄. It is natural that with lower-

ing T the size of a pair should beome smaller tending

to a at T ! 0. That is why it was suggested to use it for

1=T

�

� 2 only.

Let us onsider this question within the piture for-

mulated above. To be more orret, we will inlude the

rotational energy into assoiation onstant, whih is pro-

portional to the internal partition funtion of the pair

[12,64℄:

K(T

�

; R) = 4�

R

Z

a

exp(��U

e�

)r

2

dr: (44)

In 2D ase one an put R =1 beause of the logarithmi

growth of the eletrostati potential and get the estima-

tion of Berezinskii{Kosterlitz{Thouless (KT) tempera-

ture of dissoiation [53℄. In 3D ase there is the problem

with upper uto� in suh an approah where the assoia-

tion onstant is identi�ed with internal partition funtion

of the ioni pair.

To de�ne the size of a pair following Bjerrum we in-

vestigate the extremal points of the integrand in (44).

Doing so we get two solutions:

R

�

(T

�

) =

1�

p

1� 16T

�

�

4T

�

;

R

+

(T

�

) =

1 +

p

1� 16T

�

�

4T

�

(45)

where

� =

L

2

=2I

0

q

2

=a

; I

0

= �a

2

:

Here R

+

is a solution of the Bjerrum type (minimum of

the integrand in (44)), whih as has been said above is

inappropriate. R

�

is another solution orresponding to

the maximum of the integrand, whih has quite reason-

able values and orret behaviour at low T

�

. It is easy

to hek that asymptotially for low values of the tem-

perature T

�

the value of K(T

�

) is formed mainly by the

maximum of the integrand. In addition the appropriate

limiting behaviour to the hard-ore ontat at formal

limit T

�

! 0 is hold provided that � =

1

2

. This value of

� is in full aordane with the virial theorem [39℄. All

these fats on�rm that we an treat the quantity R

�

as

the size of the pair even at `high' temperatures T

�

� 0:1.

In additionR

�

never exeeds 2, i. e., the interpartile the
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distane when the inuene of other pairs and harges on

the e�etive potential an be negleted (see Fig. 1).

Fig. 1. The temperature dependene of R

�

.

So we put R

�

as the physial uto� for (44). The

existene of suh length sale was noted in [64℄ bas-

ing on the the numerial analysis of the funtion

K(T

�

; R)=K(T

�

; R

Bj

), though only Coulomb potential

was inluded in Boltzmann fator. It gives the rate at

whih K(T

�

; R) rises very rapidly to its plateau value.

In our ase we �nd the same behaviour of K(T

�

; R) at

small temperatures, T

�

< 0:04 (see Fig. 2).

Fig. 2. The ratio

~

K = K(T

�

; R

+

)=K(T

�

; Æ �R

�

) as a fun-

tion of Æ and T

�

.

Finally we see that there is the natural temperature

interval for dipole uid whih is bound from above by

the temperature

T

�

upper

�

1

8

: (46)

Therefore for T < T

�

upper

the dipole is stable in itself.

Note that the existene of the temperature (46) reminds

Kosterlitz{Thouless (KT) transition in a 2D ase. In par-

tiular, the entrifugal energy introdued above plays the

role analogous to the hemial potential \. . . required to

reate a pair of partiles of equal and opposite harge at

a distane r

0

apart . . . " in Kosterlitz{Thouless model

[53℄. However, in ontrast to 2D ase in 3D ase there is

no any divergene in the size of the pair and therefore in

its polarizability, but its derivative on the temperature

has singular behaviour. In other words, the temperature

derivative of the polarizability is singular but not the

polarizability itself. This inferene might seem as mere

an artifat of introduing the upper uto� in (44). But

it should be noted that taking dieletri permittivity �

as the order parameter, whih is diretly onneted with

polarizability, we get exatly the divergene of its tem-

perature derivative even in mean �eld approximation.

This may serve as additional support for the onjeture

of intensive breaking of the dipole pairs at the ritial

point observed in some numerial experiments [33℄. Note

that our estimate (46) of T

�

upper

perfetly orresponds to

the temperature T

�

m

at whih the maximum of the spe-

i� heat was observed in MC simulation study of the

RPM performed in [33℄.

The existene of the interation between dipoles and

the free harges provides additional instability meha-

nism for their dissoiation thus reduing the temperature

of `ideal' dissoiation (46) beause of the polarization of

the dipole in the external �eld of dipole{dipole potential

(32) and Coulombi �eld of free harges. The onsidera-

tion given above states that there are two harateristi

transition in the dipole-dipole uid: 1) `dipole liquid{

dipole gas' ritial point of van der Waals type; 2) the

smeared dissoiation `transition' from assoiated state to

almost ompletely dissoiated one. This smeared tran-

sition an be haraterized by the temperature on the

binodal at whih the degree of dissoiation is

1

2

.

The interation between translational degrees of free-

dom of the ions is haraterized by the ritial temper-

ature of the liquid{gas transition, while internal, rota-

tional degrees of freedom are involved into dissoiation of

suh dipole uid. These degrees of freedom will strongly

interat if the orresponding potentials will be of the

same magnitude, i. e., T



� T

d

. The additional on�rma-

tion of oinidene of suh transitions is the high degree

of dissoiation above the ritial point observed in nu-

merial experiments [33,65℄ and theoretial models [12℄,

whih inorporate dieletri permittivity resulting from

the existene of the dipole pairs. This means that T

d

an-

not be less than T



. All said above means that in suh a

situation we annot rely on (33) sine appropriate EOS

should inorporate all relevant interations whih lead

to phase separation. In partiular, the ritial tempera-

ture is sensitive to the temperature dependene of the

parameter A(T ).

The ondition for the dissoiation of a pair in external

eletrostati �eld is:

hd �Ei = � � U

e�

� ; (47)

where
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d = d

0

+ d

ind

(48)

is the dipole moment, whih onsists of proper and in-

dued dipole moments. Obviously,

hd

0

�Ei = 0 ; hd

ind

�Ei = �hE

2

i: (49)

Here � is the polarizability of a pair. The averaging over

the thermal equilibrium gives:

hE

2

i =

3k

B

T

{V

ph

; (50)

where { is the dieletri suseptibility of the mediumand

V

ph

is the harateristi volume . It is onneted with the

polarizability of the avity. Aording to the de�nition:

{ =

� � 1

4�

=

1

2

��

�

: (51)

So we get the equation for the temperature in a dimen-

sionless form:

6

�

�

V

ph

T

�

= � � U

e�

� : (52)

Within the proposed approah we put V

ph

=

4�

3

l

3



where

l



is the radius of �rst oordination sphere. This is the

minimal volume for whih the oneption of ontinuity of

the medium an be applied. By the order of magnitude

l



� 1:5 a. The solution of (52) gives the dependene

T

�

(Æ). In order to �x the value of Æ in the ritial point

whih determine the size of the pair we should equate

T

�

(Æ) and T

�



(Æ) obtained above. This way we get:

T

�



= 0:048 ; �

�



= 0:054 ; P

�



= 4:8 � 10

�4

� = 1:8 ; Z



= 0:19; (53)

whih are lose to those obtained above (39). In nota-

tions of [64℄, � = 2a

2

. In this work the estimate for the

parameter a

2

from simple geometri onsiderations was

given: 0:825 � a

2

� 1:565. Thus our estimate is in this

interval. From the results obtained above we an infer

that the dipole uid of rotating dipoles in the viinity of

its liquid{gas ritial point is about to dissoiate. Sure

our onsideration is inomplete sine it does not take into

aount the existene of free harges.

Finally we estimate the Ginzburg number by the for-

mula used for the moleular liquids [39℄:

Gi =

�

r

0

�

0

�

6

(54)

where r

0

=� r �� a is the interpartile spaing within

ioni pair and �

0

is the amplitude of the orrelation

length for density utuations. Sine the density u-

tuations are onneted with the ones for dipole pairs we

put it to be equal � � �. Using the parameters of the

ritial point found in (53) we get the estimate:

Gi � 0:04: (55)

Remarks

The ioni and dipole liquids form two natural approxi-

mations to desribe the ritial properties of the systems

similar to the molten NaCl. In our paper we have esti-

mated the main ritial parameters for liquid with hard

dipole as well as onsider the inuene of the e�ets aris-

ing due to softness of a dipole moleule. In partiular the

latter is very important to desribe the dieletri prop-

erties of a system near the ritial point. Besides, the

variation of moleule parameters due to the rotations al-

lows us to determine the equilibrium size of a ioni pair.

It is not exluded that the quantum orretions to in-

ternal states of the dipole pairs will also slightly hange

the estimates. In partiular the temperature dependene

of the vibrational ontributions to the heat apaity an

also be studied. The following step is to onstrut the

equation of state for small `soft' dipole moleules and to

take into aount the dissoiation proess with the help

of perturbation theory. The ombination of suh an ap-

proah with that developed in [17℄ on the basis of ioni

liquid allows to narrow the region of the most probable

values for the ritial parameters.

Our estimate for the ritial temperature orrelates

with the known analytial results. Note that most of

the analytial approahes based on EOS for low density

Coulombi system (DH, MSA, et.), where the dissoia-

tion is taken into aount perturbatively.

Within the dipole liquid approah we have obtained

the estimate for the Ginzburg temperature and have

shown that it less than the one for a simple liquid by

the fator 10

�2

� 10

�1

. The approximation of the dipole

liquid allows us to analyze in the evident form the on-

tribution of the polarizational e�ets [17℄. One an show

that the latter lead to a further onsiderable derease of

the Ginzburg temperature.

Note also the possibility for the appearane of new in-

homogeneous phase near the ritial point of IL. Sine

the dissoiation temperature T

d

is near T



, the system

an desintegrate on the regions with the essentially dif-

ferent values of the degree of ionization �: the drops

of ioni and dipole liquids. As a onsequene the region

with the Ising-like behaviour annot be reahed. This

senario alls for a very areful investigation. These and

other questions will be studied further.

II. POLARIZATIONAL INTERACTIONS

The de�nitive role for the ritial behaviour of systems

with CI belongs to the harge-order parameter intera-

tions. This question was disussed in [66℄ onerned to
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the struture of eletrolyte solutions near their ritial

point and super-ioni rystals [67,68℄. So in [66℄ it was

assumed that the Hamiltonian of an eletrolyte has the

struture:

H = H

LG

+H

h

+H

int

; (56)

where H

LG

is the standard LGH,

H

h

=

1

2

X

�;�

Z

dr

Z

dr

0

Æn

�

(r)Æn

�

(r

0

)

�

0

jr� r

0

j

(57)

the Hamiltonian of interioni interation, and

H

int

=

X

�

g

�

Z

�(r)n

�

(r)dr (58)

the Hamiltonian of harge-order parameter interation.

In fat, the last takes into aount only the short-range

interation between the order parameter and ions in a

system and does not desribe the eletrostati e�ets.

On the basis of the Hamiltonian (56) in [66℄ the new

inhomogeneous phase in the viinity of the ritial point

was predited. However, its existene was not on�rmed

in further experiments. It shows expliitly the inorret-

ness of the assumptions about 1) ontat harater of

harge-order parameter interation and 2) interioni in-

teration in the form (58) orresponding to onstant

value of the dieletri permittivity.

The analogous ontat harater of the harge-

deformation tensor interation is postulated in works

[67,68℄, devoted to the phase transitions in super-ioni

rystals. Here we note that the dieletri permittivity

of rystal hanges due to its deformation. Therefore the

eletri potential � inside system will be de�nitive fun-

tional of the deformation tensor. As the result the energy

of Coulombi interation:

f

h

=

1

2

Z

�� dV

inludes the harge-deformation tensor interation by it-

self.

A. General theory of polarizational interations

The free energy of the system with the harge utu-

ations near its ritial point an be represented in the

form:

F [�(r); �(r)℄ = F

reg

+ F

LG

[�(r℄ + C

el

[�(r); �(r)℄ ; (59)

where F

r

is the regular part, F

LG

is the Landau{

Ginzburg funtional:

F

LG

[�(r)℄ =

Z

dV

�



2

(r�(r))

2

+ a

1

�(r) +

a

2

2

�(r)

2

+

a

4

4

�(r)

4

�

(60)

depending on the order parameter �(r) and

C

el

[�(r); �(r)℄ =

1

2

Z

dV �(r)�(r) =

1

2

Z Z

drdr

0

G[r

1

; r

2

j�(r

0

)℄Æ�(r

1

)Æ�(r

2

); (61)

is the ontribution of the harged subsystem, where

G[r

1

; r

2

jÆ�(r

0

)℄ is the Green's funtional for the inhomo-

geneous medium. In fat the harateristi time for the

harge utuations is essentially less then that for the

order parameter. Therefore, to desribe the ritial be-

haviour of the system we should average expression (61)

over the harge utuations. Then the utuational de-

viations of the free energy from its regular part takes the

form:

ÆF = F

LG

[�(r)℄ + F

pol

[�(r)℄; (62)

where

F

pol

[�(r)℄ = hC

el

[�(r); �(r)℄i:

Here we assume that the utuations of the dieletri

permittivity aused mainly the utuations of the total

number density of the partiles. In the loal approxima-

tion we an write:

�(r) = �



�

1 + �

1

�(r) + �

2

�

2

(r) + : : :

�

(63)

where �



is the value of the dieletri permittivity in the

ritial point and

�

k

=

n

k



�



�

k

�

�n

k

�

�

�

�

n=n



: (64)
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By the de�nition we will all F

el

the polarizational

ontribution to the free energy of the system.

The deviation of free energy for weakly nonequilibrium

state near the ritial point from (59) is:

ÆF [�(r); �(r)℄ = ÆC

el

[�(r); �(r)℄ + ÆF

LG

[�(r)℄ : (65)

Therefore,

ÆC

el

[�(r); �(r)℄ = �

Z

dV Æ�(r)

(r�)

2

8�

+

Z

dV Æ�(r)�(r): (66)

We also use the global eletroneutrality ondition

Q[�℄ =

Z

Æ�(r)dV = 0: (67)

To get simpler form of the equations we use the linear

approximation for the deviation of the dieletri permit-

tivity:

Æ� = b�(r) (68)

where b = �

1

�



is some funtion of temperature and

hemial potential. Its spei� form depends on the

hoie of an order parameter �.

In this ase (68) an be derived as the linear approx-

imation using any model for density dependene of di-

eletri permittivity. In the ase when the density u-

tuations inlude elasti omponent, e. g., for solid ele-

trolytes [67,68℄, (68) should inlude the deformation �eld

omponent of the density:

Æ� = �ur�� n

��

�n

divu: (69)

Next step we make is to onnet the density of the

order parameter �eld �(r) with the harge density Æ�(r).

Assuming that the linear approximation is valid we an

write:

Æ�(r) = Æ�

h

+  �(r): (70)

where Æ�

h

is the harge utuations for the homogeneous

state. Substituting (68) and (70) in (66) for (65) we get:

ÆF [�(r); �(r)℄ = ÆF

LG

(71)

�

1

2

Z

dV �(r)

�

b

(r�)

2

4�

+ 2�(r)

�

+

Z

Æ�

h

�(r)dV:

Now the basi relation between the �elds �(r) and �(r)

an be derived by standard minimization proedure for

the funtional (59) with ondition (67). Here the vari-

ations of the �elds �(r) and �(r) are independent and

therefore:

Æ

Æ�(r)

(F [�(r); �(r)℄� �Q[Æ�(r); �(r)℄) = 0

Æ

Æ�(r)

(F [�(r); �(r)℄� �Q[Æ�(r); �(r)℄) = 0:

(72)

It yields

���(r) + a

2

�(r) + a

4

�

3

(r)

�

1

2

�

b

(r�)

2

4�

+ 2�(r)

�

= 0; (73)

br(�(r)r�) + 4��(r) + 4�Æ�

h

= 0

where we put � = �a

1

beause of asymptoti ondi-

tions

�(r); �(r)! 0; if r!1:

It is lear that for large sales  is very small. Thus

the Green's funtion satis�es the inhomogeneous Poisson

equation:

r((�



+ Æ�(r))rG(r; r

0

)) = �4�Æ(r � r

0

): (74)

In loal approaximation the Green's funtion is:

G(r; r

0

) =

1

�



(1 + Æ~�(r� r

0

))

1

jr� r

0

j

: (75)

Substituting (75) to (65) we obtain

F

pol

[�℄ =

1

2

Z

dr

Z

dr

0

hÆ�(r)Æ�(r

0

)i

�



jr� r

0

j

�

1

1 + Æ~�(r)

� 1

�

(76)

The polarizational energy for the spatially homogeneous

state is equal to:

F

h

=

1

2

Z

dr

Z

dr

0

hÆ�(r)Æ�(r

0

)i

�



jr� r

0

j

(77)

and is exluded from (65). In the simplest limiting

Debye{H�ukel approximation:

�F

(eq)

h

= �

1

12�

�

3



(78)

where

� =

a

r

s
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is the inverse sreening length amplitude. The inlusion

of hard ore e�ets leads to

F

h

� F

id

= �

1

4�

(ln(1 + �)� � + �

2

=2) (79)

in DH model. Other approah based on the mean spher-

ial approximation for the orrelation funtion gives:

F

h

� F

id

= �

1

12�

�

2 + 6� + 3�

2

� 2(1 + 2�)

3=2

�

: (80)

Therefore we get:

F

pol

[�℄ = F

h

Z

dV

�

1

1 + Æ~�(r)

� 1

�

: (81)

Thus (81) an be represented in the form:

F

pol

=

Z

dr

1

X

n=1

1

n

a

(pol)

n

�

n

(r); (82)

where

a

(pol)

1

= ��

1

; a

(pol)

2

= ��

2

+ �

2

1

;

a

(pol)

3

= ��

3

+ 2�

1

�

2

� �

3

1

; (83)

a

(pol)

4

= ��

4

+ 2�

3

�

1

+ �

2

2

� 3�

2

�

2

1

+ �

4

1

; : : : (84)

In fat after negleting the terms of order n > 4 this

gives an addition to the initial LGH of the system (60).

Note that as far as expression (81) whih aounts for

polarizational e�ets used the polarizational ontribution

to a

4

is negative. It follows from the fats that: a) the

dieletrial permittivity is monotoni funtion of the den-

sity and b) the Coulombi potential is onvex funtion

of the dieletri permittivity ) the exess free energy

for ioni system is negative. It beomes quite lear if we

hoose � =

���



�



as the order parameter. The inluding

of (81) to the e�etive LGH leads to the diminishing of

the value of a

4

thus reduing the Ginzburg number.

The results obtained above serve as the bakground

for analysis the Ginzburg number in molten salt.

B. E�etive Landau{Ginzburg Hamiltonian for ioni

liquids

Aording to [18℄ the e�etive LGH of molten salt

NaCl takes the struture:

�H

e�

[�(r)℄ =

Z

dr

 

b

2

2

(r�(r))

2

+

4

X

m=1

a

m

m

�

m

(r)

!

;

(85)

where

a

m

= a

(0)

m

+ a

(pol)

m

; (86)

and

b

2

= b

(0)

2

: (87)

The expliit expressions for a

(pol)

m

follow from the onsid-

eration of polarizational interations desribed in previ-

ous setion.

The oeÆients a

(0)

2

and a

(0)

4

are onneted with the

derivatives of pressure with respet to density by the re-

lations:

a

(0)

2

=

�P

�n

�

�

�

�

T

; a

(0)

4

=

�

3

P

�n

3

�

�

�

�

T

; (88)

in whih P inludes the ontributions of both short-range

repulsive and Coulombi interations. Almost all equa-

tions of state for the RPM lead to very small values of

the oeÆients a

(0)

i

ompared with those for moleular

uids at least by an order of magnitude [69,70℄.

a

(RPM)

2

a

(LJ)

2

= 0:01� 0:1;

a

(RPM)

4

a

(LJ)

4

= 0:001� 0:01: (89)

The only exeption is Debye{H�ukel{Bjerrum (DHBj)

model where the values of these oeÆients are of the

same order as for moleular uid. To alulate a

(pol)

m

we

use the formulas (83), (84) with oeÆients �

k

, deter-

mined with the help of the anonial form for dieletri

permittivity:

�� 1

�+ 2

= �(1 + �) (90)

where

� =

4�

3

�

e�

�

�



(91)

and �

�

= na

3

. Here n is the overall number density. In

aordane with (90) the parameter � satis�es the in-

equality � < 1. The value of � does not exeed 1:2 (in

vapour phase) [12,64℄.

The e�etive polarizability �

e�

is mainly formed by

the assoiated ioni pairs:

�

e�

=

1��

6

Æ

2

1

T

�

; (92)
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where

� =

n

+

n

0

= 1�

n

dim

n

0

(93)

is the degree of dissoiation of the system de�ned above

(16), n

0

is the number density of the ions of partiular

type, i. e., n = 2n

0

, T

�

is the dimensionless tempera-

ture T

�

=

k

B

T

e

2

=a

and Æ = l=a is the dimensionless size of

an ioni pair (d

0

= el being its dipole moment) and we

put Z

+

= Z

�

= 1 for simpliity. The ondition � < 1

holds for all ases sine

�

�



T

�



suÆiently small. In addition

if

9T

�



2�Æ

2

�

�



< 1 we an get the low estimate for � at the

ritial point:

1�

9T

�



2�Æ

2

�

�



< �



; (94)

This estimate is natural for 3D Coulombi systems whih

apparently annot undergo Kosterlitz{Thouless (KT)

transition [33℄, where � = 0 with r

s

divergene. Thus the

model (90) is aeptable from this point of view even for

the ritial point loated at `high density' (�

�



=T

�



> 1).

Note that as Æ grows the degree of dissoiation �



at the

ritial point beomes loser to 1, whih is pretty natural

from the physial point of view.

Further analysis of the polarizational indued terms

into LGH-oeÆients is sensible with respet to the oor-

dinates (�

�



; T

�



) of the ritial point. To estimate �



and

T

�



di�erent models for the EOS: DH, MSA, DH with a-

ount of dimerization (Bjerrum approah) and hard ore

interations et. were used (see [6,69,70℄). There are also

the omputer simulations of the phase diagram [32,33℄.

The values of parameter

�

�



T

�



obtained with the help of

analytial methods are small,

0:5 <

�

�



T

�



< 1

(`low ritial density' ase). Unlike these analytial es-

timates reent omputer alulations give the values

1 <

�

�



T

�



< 2 [32℄. Basing on the estimate (94) one an

see that both these ases are onsistent (� < 1) with the

model. Note that model EOS like MSA with di�erent

orretions [12℄ and numerial MC alulations [33,32℄

also show high degree of dissoiation near ritial point.

C. The e�etive Landau{Ginzburg Hamiltonian for

eletrolyte solutions

The eletrolyte solution near its vapour{liquid ritial

point is haraterized by two independent sales: a) the

sreening length r

sr

, whih in Debye approximation is:

r

sr

� r

D

=

1

�

; (95)

and b) the orrelation length r



for density utuations

in a solvent:

r



= r

0

�

��

; � =

�

0:5 lassial region;

0:63 utuation region:

(96)

The ritial behaviour of a solution depends on the in-

terplay of these sales. For experiments where

r

sr

� r



the interioni eletri �eld ats as the additional pres-

sure whih hanges the position of the ritial point. The

harater of utuations of an order parameter for the

system does not hange and the range for rossover of

ritial exponents is determined by the Ginzburg num-

ber for a solvent. In a more important seond ase when

r

sr

< (�)r



(97)

the eletri �eld of harge utuations polarizes a solvent

and as a result leads to variation of interation onstants

in the LGH and also to appearane of additional terms

in it.

This onsideration based on the important fat that

the sreening length remains �nite at an approahing the

liquid{gas ritial point. Suh a onlusion is a diret

onsequene of the isomorphism priniple for the riti-

al phenomena in multiomponent mixtures and simple

liquids. In aordane with it the only extensive variable

of state is strongly utuating in the viinity of the rit-

ial point. The level of utuations for others, whih or-

thogonal to it is bounded. `Swithing on' the Coulombi

interation for eletroneutral system additionally sup-

presses the long range utuations of the variable on-

neted with the harge utuations.

The lower bound for the onentration range where

Debye sreening is not destroyed by the thermal utu-

ations is

x

min

= v

�

�k

B

T

q

2

�

3

; (98)

where v is the volume per moleule of a solvent.

Beause of polarization of a solvent the loal ele-

trostati energy is utuating on the sales of density-

density orrelation length. The aount of this ontribu-

tion renormalizes the interation onstants in the LGH.

To onstrut the orresponding LGH we will use the in-

terrelation between utuations of density and dieletri

permittivity,

� �! �(r) = �

�

1 + �

1

�(r) + �

2

�

2

(r) + : : :

�

; (99)

�

k

=

�

k



�(�



)

�

k

�

��

k

�

�

�

�

�=�



; � = �=�



� 1: (100)
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Here � is the equilibrium value for dieletri permittivity.

We an obtain the e�etive LGH as follows. For homo-

geneous system the density of energy is a sum of non-

Coulombi ontribution h

nC

and that for Coulombi sub-

system h

C

. Far away from the ritial point the latter has

the struture

h

C

= �

1

8�

�

3



1

(�=�



)

3=2

; (101)

and the index \" indiate that the values are taken in

the ritial point. To take into aount the large sale

inhomogeneity of the system, we assume that the ondi-

tion

r



> r

sr

is ful�lled, where r



is the orrelation length for the u-

tuations of an order parameter. We an use the analogous

expressions for h

nC

and h

C

in whih loal values of � and

n

n ! n(1 + ~�(r))

� ! �(1 + ~�(r))

(102)

should be substituted. As a result the utuational on-

tribution of Coulombi subsystem into the energy of the

system equals

�h

C

(x) = �

�

3



8�

"

1

(1 + ~�(x))

3

2

� 1

#

: (103)

The formal derivation of the quasiloal approximation

(103) from the mirosopi point of view is given in [17℄.

Adding the quasiloal term

�h

(ql)

=

b

2

2

(r�(r))

2

(104)

we assume that the value of b an be evaluated with the

help of results [69,36℄.

Using the dimensionless form of oeÆients of the LGH

the formulas (102) and (103) yield the following:

�H

e�

[�(x)℄ =

Z

dx

 

b

2

(r�(x))

2

+

1

X

m=1

a

m

m

�

m

(x)

!

;

(105)

where

a

m

= a

(0)

m

+ a

(el)

m

x

3=2

; m � 1 ; a

(0)

m

= 0 ; m � 5;

(106)

b = (

0

+ )�; (107)

and aording to Eq. (1)

a

(0)

1

= a

(0)

3

= 0:

Here � is the diameter of a moleule in a solvent. The

values of a

(el)

m

are determined from Eq. (103) and is equal

to

a

(el)

m

=

(�1)

m+1

16�

(2m + 1)!!

(2m � 2)!!

(�

�

�)

3

; �

�

=

�

p

x

:

(108)

The alulation of the LGH without taking into a-

ount polarization e�ets was done in [69,70℄ basing on

di�erent models. The Ginzburg riterion obtained did

not show the existene of the rossover (Gi ' 10).

Now it is desirable to redue the initial Hamiltonian

of an eletrolyte (105) in the viinity of the ritial point

(r

D

� r



) to the Landau{Ginzburg form. Usually suh

a redution is performed by omitting all loal terms

� �

n

; n � 5. However, this step is onneted with the

loss of important information about orretions to the

leading asymptoti terms [71℄. A more suitable way is

onneted with attration of ideas of the Catastrophe

Theory [72℄ within the framework of the so-alled anoni-

al formalism [71℄. Its entral oneption is the anonial

transformation of the order parameter:

� ! � = � +

1

2



2

�

2

+

1

3



3

�

3

+ : : : �

^

C�

whih redue the loal Hamiltonian of the system

�H

e�

[�(x)℄ =

Z

dx

 

1

X

m=1

a

m

m

�

m

(x)

!

; (109)

near the ritial point to the anonial form, whih is an

analogue of that used in the Catastrophe Theory [74℄:

�H

e�

[�(x)℄ =

Z

dx

�

�

�h

�

�(x) +

1

2

A

2

�(x)

2

+

1

4

A

4

�(x)

4

�

; (110)

The anonial transformation of the order parameter

plays very important role establishing the isomorphism

between Ising model and liquids. Besides, the expliit ex-

pressions for the generalized external �eld h

�

and `tem-

perature' A

2

are obtained. The oexistene urve of liq-

uids in new variables (h

�

; A

2

) is symmetri with respet

to transformation h

�

! �h

�

similarly to Ising model.

Its asymmetry appears only if initial (nonanonial) vari-

ables are used.
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The ombination of the anonial transformation with

standard RG proedure allows to get new version of RG

theory [75,76℄.

D. Canonial form for the e�etive Hamiltonian

As has been shown above the Hamiltonian of the sys-

tem has no Ising like form. It is essential that it in-

ludes two terms: the loalH

lo

, i. e., k-independent, and

quasiloal H

ql

, i. e., k-dependent. Following [73℄ we will

show that the loal part of the Hamiltonian an be ex-

atly redued to the anonial form H

an

(�) whih in

ase of the 2-nd order phase transition oinides with

lassial Landau{Ginzburg funtional. For onveniene

we inlude � into the Hamiltonian. In a ase of simple

liquids, for example, the oeÆients a

n

are de�nite fun-

tions of the hemial potential � and the temperature T

if the nontrivial referene system is used [36℄. Further,

we onsider only a loal part of the Hamiltonian. Due to

loality, for every point we an write:

�(r) = F (�(r)); (111)

where the funtion F (x) is smooth and invertible, and

besides it satis�es the ondition F (0) = 0. Then for the

integrand in the partition funtion of the system we an

write

exp

�

�h

(an)

lo

(�)

�

=

Z

Æ (�� F (�)) exp

�

�h

(an)

lo

(�)

�

d�;

(112)

h

(an)

lo

(�) = A

1

� +

A

2

2

�

2

+

A

4

4

�

4

: (113)

The impliit form for the anonial transformation of

the order parameter � is as follows:

�

Z

0

exp

�

�h

(an)

lo

(z)

�

dz =

�

Z

0

exp (�h

lo

(z)) dz; (114)

whih means that the orresponding (loal) Gibbsian

measures oinide. The oeÆients A

k

of the anonial

form are determined as funtions of the parameters of

the initial loal Hamiltonian by implying the ondition

that the ranges for the variables � and � are the same:

+1

Z

0

exp

�

�h

(an)

lo

(�)

�

d� =

+1

Z

0

exp (�h

lo

(�)) d�;

0

Z

�1

exp

�

�h

(an)

lo

(�)

�

d� =

0

Z

�1

exp (�h

lo

(�)) d�: (115)

One an show that the transformation (111) de�ned by

(114) is analytial provided that the loal part of the

e�etive Hamiltonian is analitial too.

Moreover, sine (111) is nothing but the rede�ning of

the order parameter, the loi for the ritial point both

for initial and anonial Hamiltonians must oinide:

A

1

(P; T ) = 0 ; A

2

(P; T ) = 0 , a

1

(P; T ) = 0;

a

2

(P; T ) = 0: (116)

Sure it is implied that a

3

(P; T ) = 0 also beause of the

stability ondition. The onstraint (116) �xes the value

of A

4

> 0:

+1

Z

�1

exp

�

�

A

4

4

�

4

�

d�

=

+1

Z

�1

exp (�h

lo

(� ; a

1

= 0; a

2

= 0)) d�: (117)

This gives

A

4

=

�

4

 

�

�

3

4

�

+1

R

�1

exp (�h

lo

(� ; a

1

= 0; a

2

= 0)) d�

!

4

: (118)

Note that the funtional dependene of the anonial

oeÆients A

i

; i = 1; 2; 4 on the parameters a

i

is deter-

mined by the form of the initial e�etive Hamiltonian.

Besides, sine A

i

are the oeÆients of the LGH they

may be used as the approximates for the renormalized

�elds of the LGH in the viinity of the ritial point.
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Note also that in suh a way the problem of asymmetry

of the equation of state for the liquids disappears.

The transformation proposed is di�erent from that

used in the Catastrophe Theory for the funtions [72,74℄.

The latter is de�ned only in the neighbourhood of the

ritial point. In fat, any (n�2) parametri set of prob-

ability densities performing the atastrophe of type A

2n

by hanging of the variable an be transformed into the

anonial form of exponent on the polynomial of the 2n

degree. In partiular, the probability density h(x) with

the only ritial point an be transformed into gaussian

distribution g(~x) =

1

2�

exp

�

�~x

2

�

by transformation of

the variable x! ~x . The details of the realization of this

proedure for Ising-like systems are given in [73℄.

To illustrate the importane of the tehnique formu-

lated above we give the results for the parameters of the

Ising model. The exat forms of the oeÆients of the

initial e�etive Hamiltonian for this model equal those

for Curie{Weiss approximation (see [75℄):

a

2n

=

1

2n� 1

� 2D�JÆ

2;n

: (119)

The proedure of the anonial transformation leads to

the following results:

A

2

(T ) = �� + o (� ) ; A

4

= 0:53;

where � � 1 ; � =

T � T



T



: (120)

We see that the oeÆient A

4

di�ers essentially from

a

4

=

1

3

while � pratially does not hange.

It is important that the anonial order parameter �

is the analytial funtion of initial order parameter �:

� = �+

1

2

�

2

�

2

+

1

3

�

3

�

3

+ : : : ; (121)

where the oeÆients �

i

an be expressed through the

oeÆients a

n

of the initial Hamiltonian. Indeed, in the

viinity of the point � = 0; � = 0 from (114)

� +

Z

�

0

h

lo

(x) +

1

2

Z

�

0

h

lo

(x)

2

dx+ : : : = �+

Z

�

0

h

(an)

lo

(x)dx+

1

2

Z

�

0

h

(an)

lo

(x)

2

dx+ : : : : (122)

Using

h

lo

(�) = a

1

� +

1

2

a

2

�

2

+ : : : (123)

and (113) we get:

� +

1

2

a

1

�

2

+

1

6

�

a

2

+ a

2

1

�

�

3

+ : : : = �+

1

2

A

1

�

2

+

1

6

�

A

2

+ A

2

1

�

�

3

+ : : : (124)

and �nally

�

2

= A

1

� a

1

; �

3

=

1

2

�

A

2

+A

2

1

� a

2

� a

2

1

� 3 a

1

�

2

�

; et: (125)

Further we assume that the proedure of the redution of the e�etive Hamiltonian (105) to the anonial form

has been arried out.

III. INFLUENCE OF THE POLARIZATIONAL EFFECTS ON THE CRITICAL BEHAVIOUR

A. Ginzburg number for the ioni liquids

The expressions for a

(pol)

2

and a

(pol)

4

, whih follow from (83) and (90) read as:

a

(pol)

2

= 9

�

2

(1 + 2�)

2

(1� �)

2

�



f

(eq)

h

; (126)

a

(pol)

4

=

27

2

�

4

(1 + 2�)

4

(1� �)

4

�



f

(eq)

h

:
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It follows from (77) that polarizational ontribution to

a

4

is negative, therefore, the Ginzburg number dereases

with aount of polarization e�ets. Here the approxima-

tion � � �



was used. Using the dimensionless form of

oeÆients of the LGH obtained in [69,70℄ we alulate

the Ginzburg temperature for ioni uid:

Gi =

9a

2

4

8�

2

~a

2

�

a

b

�

6

; (127)

where

~a

2

= lim

�!0

a

2

�

; � =

T � T



T



: (128)

It is useful to rewrite (127) in the following form

Gi = Gi

0

 

1 +

a

(pol)

4

a

(0)

4

!

2

(129)

where Gi

0

is the Ginzburg temperature without aount-

ing of the inhomogeneous polarization. Here we neglet

the renormalization of the oeÆients ~a

2

and b of the

LGH. It appears that in this approximation Gi slightly

dereases in omparison with the initial value beause

the value of � is atually small (< 0:1) sine � lose to 1.

Below the ritial point the system separates into

liquid and gaseous phases with di�erent densities be-

ause of strong density utuations. These phases have

di�erent degrees of dissoiation �

liq

and �

gas

sine ther-

modynamially the degree of dissoiation � is a funtion

of T

�

and �

�

. At the very ritial point �

(liq)

= �

(gas)

but below �

liq

6= �

gas

beause of �

�

liq

6= �

�

g

. From the

physial point of view one an expet the new type (non-

Ising like asymptotis) for the ritial behaviour only if

density utuations strongly interat with the ones for

harge. This interation ours only if the dipoles ex-

ist sine utuations of their number are diretly on-

neted with utuations of the density. Thus the very

fat that below ritial point �

(liq)

6= �

(gas)

means that

the utuations of the number of neutral pairs are strong

and therefore the polarizational e�ets should be taken

into aount. Sine the density utuations are strong

the utuations of dipole number are strong too. That

means that the utuations of harge numbers are also

strong though mutually orrelated due to neutrality on-

dition (Æn

+

= �Æn

�

). Indeed, one ould expet the pe-

uliarities for the ritial behaviour in IL if the degree of

dissoiation strongly depends on density near the ritial

point. Therefore, to onsider the ase of strong intera-

tion between harge and density utuations we should

not neglet density dependene of � near the ritial

point. It is lear that this dependene is very essential

for the dieletri permittivity as has been noted above.

Here we use the linear approximation for suh depen-

dene:

�(�; � ) = �



+�

1

� + o(�): (130)

The estimate for �

1

an be obtained from [12℄, where

we an �nd that for di�erent EOS 0 < �

1

< 10. The

oeÆients a

(pol)

2

and a

(pol)

4

take the values:

a

(pol)

2

= 9

(� ��

1

)

2

(1 + 2�)

2

(1� �)

2

�



f

(eq)

h

; (131)

a

(pol)

4

=

27

2

(� ��

1

)

4

(1 + 2�)

4

(1� �)

4

�



f

(eq)

h

:

Note that (131) orresponds to the linear approxima-

tion for the �(�) dependene. The main result, the di-

minishing of the Ginzburg temperature, appears in this

approximation. Atually to onstrut a

(pol)

4

the terms up

to the 4-th order in �-expansion for �(�) should be in-

luded. Sure the expliit expressions for a

(pol)

2

and a

(pol)

4

beome very omplex and we will not give them here.

These results are represented in Fig. 3.

Fig. 3. The dependene of the Ginzburg temperature

g = Gi=Gi

0

obtained with (90) on the degree of ionization �

and �

1

at a

(0)

4

= 0:01; Æ = 1; �

�



=T

�



= 0:5.

The key feature is the vanishing of the Ginzburg num-

ber at low dieletri permittivity values and small sreen-

ing length while the value of �

1

is high enough and �

is lose to 1. This region of parameters naturally orre-

sponds to the state of the ioni liquid with high degree

of dissoiation at the ritial point. Thus, the aount of

polarizational e�ets aused by the density utuations

is very essential for analysis of asymptotial behaviour

of ioni uids whih was pointed out in [41℄. Using other

model equations of state like nonlimiting DH (nDH) ap-

proximation (14) and MSA equation (21) for onstrut-

ing the LGH does not hange the results signi�antly.

Namely, the di�erene between the results obtained with

the help of equations (79) and (21) does not exeeds 5%.

DH approximation gives qualitatively the same results

with the di�erene in omparison with MSA and nDH

EOS up to 20% for �



< 0:3. It diretly follows from

(76) whih shows that all polarizational orretions to

the LGH is proportional to �Æf

(eq)

h

. Sine DH EOS is
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valid only for low density systems the usage of this EOS

should be treated as mere illustrative.

For the omparison we also give the results (see Fig. 4)

for the Ginzburg temperature alulated basing on the

Onsager formula for the dieletri permittivity [77℄:

� =

1

4

 

1 + 3x+ 3

r

1 +

2x

3

+ x

2

!

; (132)

where

x =

2� d

2

(1����

1

�)

3T

�

:

As follows from the obtained results for Gi the steep

inrease of the degree of ionization with density may re-

sult in a signi�ant lowering of Gi. For suÆiently great

values of �

1

=

��

��

the Ginzburg temperature may van-

ish. The value of �

1

at whih Gi = 0 inreases if the lous

parameter

�

�



T

�



dereases. This is quite natural sine for

the Coulombi ritiality to happen at low density the

stronger density dependene for the degree of dissoia-

tion is needed.

Fig. 4. The dependene of the Ginzburg temperature

g = Gi=Gi

0

obtained with (132) on the degree of ionization

� and �

1

at a

(0)

4

= 0:01; Æ = 1; �

�



=T

�



= 0:5.

In other words the Coulombi driven ritiality is har-

aterized by a small value of Gi aused by strong density

dependene of the degree of dissoiation at the ritial

region. The following senarios are possible:

1. � is ontinuous at the ritial point but

��

��

�

�

�

�

�

=�

�



;T=T

�



is very large. Note that due to very

low estimates for �

�



in di�erent mean �eld approxi-

mations even if �

1

' 1 the value of

��

��

�

�

�

�

�

=�

�



' 10

2

.

Here the anomaly small value of Gi is observed

but the ritial behaviour is Ising-like. The polar-

izability of a system also renormalizes the oeÆ-

ient b. As has been noted above the Coulombi

interations prevent the spatial separation of op-

posite harges in a system. Therefore, in quasiloal

approximation the energy of a system with inho-

mogeneous dieletri permittivity should be higher

than that for the homogeneous one. In other words,

the polarization ontribution inreases the value of

b. Thus, we obtain the upper estimate for Gi.

2. � is ontinuous at the ritial point but its u-

tuations are essential

p

h(Æ�)

2

i ' h�i. In gen-

eral � is the sum thermodynamial equilibrium

part �

(eq)

(�

�

; T

�

) and utuation one �

()

: � =

�

(eq)

(�

�

; T

�

)+�

()

. Therefore the quantity �

liq

�

�

g

inludes the part orthogonal to the density u-

tuations and an be onsidered as onurrent order

parameter and a new type of ritial behaviour dis-

tint from Ising like an be expeted. In partiular,

if the oeÆient at the gradient term (��)

2

tends

to zero the spatial inhomogeneous phase with re-

spet to � and possibly the density is expeted.

The analogue of suh a phase in Condense Mat-

ter is the exitoni drops [60℄. In suh a ase the

initial liquid{vapour ritial point an transform

to peuliar point similar to Lifshitz one [39℄. Note

that spatial inhomogeneity of � in no way means

the spatial separation of harges i. e., harge den-

sity wave phase. In addition this senario is losely

onneted with metal{insulator transition [33℄.

3. The disontinuity of density dependene of � at

the mean �eld ritial point. Aording to the def-

inition at the point of the seond order phase tran-

sition the di�erene between phases disappear. If

there is a disontinuity in � at the ritial point

then it is not the seond order phase transition.

This ase needs detailed investigation.

Note that a spatiallymodulated harge density and order

parameter waves was predited in [66℄. There was onsid-

ered a ompletely di�erent system namely eletrolyte so-

lution of small onentration, with strong ontat inter-

ation between neutral density utuations and harged

subsystem. However, similar harater of intermode in-

teration annot be justi�ed. Unlike of this the possibil-

ity of appearane the mirohomogeneous state in molten

salt NaCl is onneted with realisti polarizational ef-

fets and independent (unorrelated) utuations of the

degree of dissoiation do not lead to spatial separation of

harges. The ase of repulsive hard-ore driven ritiality

[5,6℄, is haraterized by insigni�ant hange in Gi and

weak density dependene of degree of dissoiation.

B. Ginzburg riterion for eletrolyte solutions

It is diÆult to solve the problem of the type of rit-

ial behaviour of a system in experiments. The main

question here is the estimation of the Ginzburg number,

whih ontrols the width of the asymptoti region t

�

. Its

magnitude depends on the mirosopi parameters of a

system and as follows from experiments varies in a wide

range. In [22℄ the rossover from lassial to Ising-like be-

haviour was learly observed at t

�

� 10

�2

. In [2,19℄ the
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data were �tted by lassial asymptotis up to t

�

� 10

�4

near the ritial point. The moleular dynamis simula-

tions of molten salt [32℄ also show lassial behaviour of

an order parameter for � � 10

�2

; � =

T�T



T



, although

the inuene of �nite size e�ets does not allow to say

exatly whether the rossover does take plae or not. In

all ases the width of utuation region is smaller than

the one for moleular liquids. In [23℄ the dependene of

the width of rossover region on dieletri permittivity

� of a solvent was investigated. It was observed that the

rossover region beomes smaller as � is dereased. There

are not any physial reasons for the existene of suh �

�

that Gi(�)! 0 as � ! �

�

> 1. In ase of �

�

= 1 we deal

with the plasma phase transitions [78℄.

In previous setion we have onstruted the e�etive

LGH for eletrolyte solution near its vapour{liquid rit-

ial point. It is well known [79℄ that the rossover from

lassial to Ising-like ritial behaviour of a system o-

urs at the temperature:

� � Gi; (133)

where

Gi =

a

()

2

4

T

2



�b

3

; � =

da

()

2

d�

�

�

�

�

�

T=T



: (134)

Values �

0

(a

(0)

2

= �

0

� ) and a

(0)

4

for initial Hamiltonian

an be extrated from the van der Waals equation (see

[71℄):

�

0

' �



�Æ

2

; a

(0)

4

' Æ

4

; (135)

where Æ = n



�

3

is the dimensionless density and �� is

the minimum value of the interpartile potential for a

solvent. Using (108) yields:

a

()

4

a

(0)

4

= 1� ~a

4

x

3=2

+ o

�

x

3=2

�

;

�

�

0

= 1 + ~�x

3=2

+ o

�

x

3=2

�

; (136)

b



0

= 1 + �

1

x

1

2

+ o

�

x

1

2

�

;

where

~a

4

'

1

a

(0)

4

(�

�

�)

3

Æ

4

�

� ln �

� ln�

�

4

' 0:1� 1;

~

T =

T



� T

(0)



T

(0)



' 0:01;

~� '

1

�

0

(�

�

�)

3

Æ

2

�

� ln �

� ln �

�

2

' 1; (137)

�

1

'

1



0

(��

�

) ' 0:1:

The numerial estimations for ~a

4

; : : :�

1

are obtained for

the following values of parameters:

Æ ' 0:33; �



� ' 1:

We assume that

� ln �

� ln �

an be approximated by the for-

mula:

� ln �

� ln�

=

A�

�

(138)

and the oeÆient A is equal to 280

m

3

g

for water in a-

ordane with [81℄. At least by the order of magnitude

�

�

� < 1. Using (134) and (136) we obtain the following

renormalized value of the Ginzburg number:

Gi(x) � Gi

(0)

(1� ~a

4

x

3=2

)

2

(1 + ~�x

3=2

)(1 + �

1

x

1

2

)

3

; (139)

where Gi

(0)

is the Ginzburg number for a solvent. In fat

the Ginzburg number essentially depends on the ratio

of the amplitude of orrelation length r

0

and the De-

bye sreening length. In aordane with said above the

Ginzburg number is a monotone dereasing funtion of

onentration. Besides this it also depends on the tem-

perature as a parameter. Summarizing our arguments for

the regions r

D

< (>)r



we an write:

Gi(xj� ) =

�

Gi

(0)

; x� x

D

(� )

Gi(x); x

D

(� )� (<)x

; (140)

where

x

D

(� ) =

�

1

�

�

r

0

�

2

�

2�

(141)

is the limit onentration of an eletrolyte, whih deter-

mines the appliability region of our polarization model.

The onentration dependenies of Gi at some �xed �

and di�erent values of dieletri permittivity are pre-

sented on Fig. (5).

Note that the greater is the value of dieletri permit-

tivity the greater is Gi. This fat was noted experimen-

tally in [23℄. Fig. (6) shows the onentration dependene

of Gi for eletrolyte solution with � = 80 and �

�

� = 0:5.

The qualitative behaviour of Gi(x) near x

D

is shown by

dashed line.

Essentially that the value of a

4

vanishes and system

looses its stability at onentration of an eletrolyte:

x

�

= ~a

�

2

3

4

: (142)
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Obviously this possibility realizes only if ~a

4

> 1 (see

(136)). In this ase one an expet the multiritial be-

haviour of a system [6℄.

Fig. 5. The relative value

Gi

Gi

0

of the Ginzburg number as a

funtion of onentration (x-axis) and dieletri permittivity

(y-axis) alulated by formula (139). The sales on x and y

axes equal to 1 : 0:0002 and 1 : 2 respetively.

Fig. 6. Conentration dependene of the Ginzburg number

for parameters given in text.

Using the formula (140) is not onvenient sine usu-

ally experiments are arried out at a �xed onentration.

Let us illustrate this situation onsidering the values of

ritial exponent. Aording to (140) we have:

� =

8

>

>

>

>

<

>

>

>

>

:

0:5; for

Gi

(0)

< �

D

(x) < � (a)

Gi < � < �

D

(x) (b)

0:625; for

� � Gi

(0)

< �

D

(x) ()

� � Gi < �

D

(x) (d)

;

(143)

where

�

D

=

�

r

0

�

�

p

x

�

1=�

� x: (144)

At the end of this setion let us omplete obtained re-

sults with qualitative arguments. By order of magnitude

[79℄

Gi =

�

r

s

r

0

�

6

; (145)

where r

s

is the interpartile spaing. Addition of an ele-

trolyte leads to augmentation of the orrelation length

amplitude beause of its renormalization by harge{

harge utuations. It is lear that the behaviour of

strongly onentrated eletrolytes is expeted to be sim-

ilar to that of simple liquids or liquid metals.

Remarks

The important role of polarizational e�ets in the rit-

ial behaviour of ioni melts has been demonstrated. It

is established that if the key parameters of a system take

the values: r

s

= 1� 5;�

1

> 0:5, the oeÆient a

4

of the

e�etive LGH redues onsiderably or vanishes.

Similar situation is also harateristi for the ritial

behaviour of eletrolyte solutions. In them the harge

utuations of admixtured ions an essentially renormal-

ize the oeÆient a

(0)

4

of the initial LGH for a solvent. At

de�nite onentration x

�

of eletrolyte a

4

(x

�

) = 0. For

higher onentrations the standard senario of the riti-

al behaviour beomes inappliable and additional inves-

tigations are neessary. In onnetion with this we note

the result obtained experimentally in [15℄, for ternary

aqueous solution of sodium bromide. It was observed that

utuation region at salt onentration 0:17 (mass fra-

tion) less than 10

�5

. To interpret this as well as spei�

dip on the line of lower ritial points the onjeture

about existene of ompeting miroheterogeneous phase

was put forward. In priniple, it is possible that at some

onentration the line of the lower ritial points may

ontat the virtual phase spinodal whose branhes are di-

reted to lower temperatures. Then between the branhes

of the spinodal the state of eletrolyte solution should

be heterogeneous aording to the thermodynami de-

mands.

The main peuliarities of the ritial behaviour of

molten NaCl salt are determined by the density depen-

dene of the degree of dissoiation � and its utuations.

When the utuations of � are relatively small, the rit-

ial behaviour of the ioni liquid should be Ising-like.

From the thermodynami point of view it is supported

by the fat that the system is haraterized by two ther-

modynami degrees of freedom [72℄. The spei�ity of

the system displays only in the numerial value of the

Ginzburg number: it is the less the more the derivative

��

��

�

�

�

T

is.

If the utuations of � beome strong,

p

h(Æ�)

2

i '

h�i, the deviations from the Ising-like behaviour an be
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onsiderable. First of all, the system an demix on the

parameter �. In other words, the formation of drops with

di�erent values of � is possible. Sine � is ruial pa-

rameter, the hange of the type of the ritial behaviour

seems to be probable.

It is not exluded that the phase diagram of molten

salt NaCl near its liquid{vapour ritial point will

be more omplex in omparison with that for one-

omponent liquid with simple intermoleular interation.

In partiular, the derivative

�

3

P

�n

3

�

�

�

T=T



an be lose to

zero, that an lead to the hange of the type of the rit-

ial point, e. g., triritial behaviour. However the van-

ishing of a

6

is impossible. The behaviour of ondutivity

an serve as additional test of the type of the ritial be-

haviour. So the sharp hange of the ondutivity ould

testify the point of phase transition di�erent from the

seond order.

The most ruial for the ritial behaviour is the de-

pendene of a

4

on the degree of dimerization � of the

system whih diretly inuenes the polarizability. The

density of the ioni liquid is formed by the density of free

harges and bounded states. The density of the nondisso-

iated moleules (dipoles) is determined by the thermo-

dynamial parameters of the state of the system (e. g.,

temperature and spei� volume). In partiular, the re-

sults of Monte Carlo simulations indiate that the prox-

imity of these two transition ould explain the rossover

phenomena in ioni uids [33℄. Note that our onsider-

ation is based on mean �eld treatment. Therefore, the

thorough analysis of utuation e�ets is needed to de-

termine the type of the ritial behaviour if a

4

= 0.

IV. SPECIFIC EFFECTS

A. Flutuation-indued shift of the ritial point in

solution of eletrolytes

An anomalous urvature of the T � x and P � x pro-

jetions of the ritial line of eletrolyte solution at very

small mole frations of an eletrolyte NaCl+H

2

O was ob-

served in many experimental works [26,82,83℄. But the

nature of very big values of

dT



(x)

dx

was not lari�ed.

We will show that the shift of the ritial point of high

diluted solution from the lous of pure solvent is gov-

erned predominantly by the harge{harge utuations.

The `square root' onentration law for suh a shift is a

diret onsequene of the polarizational harge{density

oupling theory proposed in previous setions. The de-

pendene of the oeÆients of the e�etive LGH at low

onentrations is given by Eq. (136). In mean �eld ap-

proximation the shift of the ritial temperature as it

follows from Eq. (136) is

�

(mean)

T



' x

3=2

: (146)

But the utuations hange slightly the value of the rit-

ial temperature. This utuation-indued shift of the

ritial temperature (the lous of the ritial point in

general) is proportional to

�

()

T



'

p

x: (147)

Indeed, let us de�ne renormalized order parameter so that the oeÆient at the gradient term equals to unity:

�(r) =

p

(x) �(r) : (148)

The LGH for the new order parameter reads as follows

�H

e�

[�℄ =

Z

dV

�

1

2

(r�(r))

2

+ ~a

1

(T; x)�(r) +

1

2

~a

2

(T; x)�

2

(r) +

1

4

~a

4

(T; x)�

4

(r)

�

; (149)

where

~a

k

(T; x) = ((x))

�k=2

a

k

(T; x) : (150)

In the �rst order of perturbation theory on utuation oupling onstant ~a

4

[84℄ we have

~a

R

2

(T; x) = ~a

2

(T; x) + 3~a

4

(T; x)

d

d�

�

Z

0

G

0

(q) dq

�

�

�

�

�

�

�=1

; G

0

(q) =

1

~a

2

(T; x) + q

2

: (151)
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From Eq. (147) it follows that

dT



(x)

dx

� x

�1=2

; (152)

whih explains the anomalously big values of

dT



(x)

dx

ob-

served in [26,82,83℄.Note, that suh a term was used pure

empirially in [85℄ to proess the experimental data. The

same onlusion on existene of

p

x terms is valid for

other oordinates of the ritial point suh as pressure

and density.

B. Asymmetry of a binodal for eletrolyte solutions

In this setion we will show that the addition of ele-

trolyte leads to essential additional asymmetry of the

vapour{liquid oexistene urve. This irumstane is

onneted with the hoie of appropriate order parame-

ter, whih restores the symmetrial shape of a binodal.

Otherwise, the � �

2�

term, whih is absent in standard

variants of the asymptoti equation of state [79℄ should

be introdued to �t the experimental data in laboratory

variables [80℄. We establish this fat in an evident form

within the framework of the anonial formalism [71,86℄,

whih gives a lear motivation for all standard asymp-

toti terms of the equation of state as well as for those of

form �

n�

, introdued to proess the experimental data.

As it follows from the sale-invariant theory of ritial

phenomena the singular part of the equation of state is

given by the expression

h�i = jh

2

j

�

g

s

�

h

1

jh

2

j

�+

�

: (153)

The order parameter P and onjugated �elds h

1

; h

2

within the anonial formalism should be identi�ed with

� and the oeÆients A

1

; A

2

; A

4

of the Hamiltonian

(113). As a result, the equation (153) takes the form

h�i = jA

2

j

�

g

s

 

A

1

jA

2

j

�+

!

: (154)

Here the brakets h: : :i designate the averaging on the

volume of the orrelation sphere (/ r

3



). In partiular,

the equation of binodal inluding the additional Wegn-

er's term [87℄ is as follows

h�i

bin

= �jA

�

2

j

�

g

s

(0)

�

1 + b

2

jA

�

2

j

�

+ : : :

�

; (155)

where A

�

2

= A

2

j

A

1

=0

. Its `liquid' and `gas' branhes in

variables ( ; a

�

2

), as is lear from Eq. (154) are absolutely

symmetri. But this symmetry disappears if we return to

the initial (`laboratory') variables (�; � ) [71,86℄. Indeed,

using (121) one an get:

h�i = h�i+

1

2



2

h�

2

i+ : : : : (156)

Sine (see [79℄)

h�

2

i = h�i

2

+ jh

2

j

1��

l

s

�

h

1

jh

2

j

�+

�

;

where funtion l

s

(x) is inverse to g

s

(x), Eq. (156) in

asymptoti region transforms to:

1

2

(h�i

+

bin

� h�i

�

bin

) = g

s

(0)ja

�

2

j

�

(1

+ b

2

ja

�

2

j

�

+ : : :) + : : : ;

1

2

(h�i

+

bin

+ h�i

�

bin

) =

1

2

�

2

�

g

2

s

(0)ja

�

2

j

2�

+ l

s

(0)ja

�

2

j

1��

�

+ : : : :

(157)

Note that the equation (157) besides standard terms

[79℄ inludes additional ontribution / j� j

2�

(as well as

other terms / j� j

n�

; n > 2). The latter was introdued

in work [80℄ from the empirial reasons. This new term

with � = 0:5 appears in mean-�eld approximation [39℄

as well. Essentially, the asymmetry of the oexistene

urve is determined by produt of universal multipliers

g

s

(0) and l

s

(0) and oeÆient �

2

desribing the individ-

ual properties of liquids and solutions. The temperature

and onentration dependenies of oeÆients �

2

; a

�

2

are

determined by the expressions (108), (125) and an be

represented as follows:

�

2

' �

(0)

2

+ �

(el)

2

;

a

�

2

' a

(0)

2

+ a

(el)

2

;

(158)

�

(0)

2

; a

(0)

2

are the values of the respetive oeÆients in

absene of eletrolyte. The values of terms indued by

eletrolyte impurity in Eq. (158) are of / x

3=2

order and

strongly depend on the parameter �

�

�. If �

�

� < (�) 0:1

they an be omitted. In the opposite ases, an aount

of additional terms is rather essential.

C. Condutivity of the eletrolytes

Above it was shown that the peuliarities of the riti-

al behaviour of IL are determined by the density depen-

dene �(�

�

) of the degree of dissoiation near the riti-

al point. The ritiality of the ondutivity � for highly

onentrated ioni mixtures and other eletrolytes has

been studied muh less ompared with their equilibrium

thermodynamial properties [1,88℄. The measurements

of the ondutivity for highly onentrated nonaqueous

eletrolytes was presented in [88℄.

It is well known (see [79℄) that for magneti systems

with Ising symmetry for an order parameter and onju-

gated �eld the ritial utuations lead to a singularity

for the ondutivity � similar to that of entropy on the

ritial isohor [79℄:
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� = �



+A

r

� +A

s

�

1��

+ : : : : (159)

Formally the appearane of the singular term is easily

explained with the help of a thermodynami relation be-

tween the variations of the ondutivity, Æ�, and the en-

tropy, Æs,

Æ� / �!

rel

(k = 0)

T

hj

2

i

�

2

Æs; (160)

where !

rel

is the harateristi relaxation rate for the

ondutivity, provided that it is nonzero at the ritial

point, i. e., no ritial slowing down for the ondutivity

ours. This is ertainly true for senario 1 above. Let

us onsider this ase in more detail fousing on the on-

netion of the singular term for the ondutivity with

the behaviour of the key parameter �. As is known, the

ondutivity of a system is determined by

� =

�

3

1

Z

0

Z

V

hj(r; t) � j(0; 0)idr dt (161)

where j(r; t) is the eletrial urrent density,

j(r; t) = e�

h

(r; t)v(r; t) (162)

and �

h

(r; t) is the density utuation of harged om-

ponent. The overall density n is a sum of the density of

harged omponent (free arriers) and the double density

of dipole pairs. The density utuation is the sum of the

utuations of these terms. To alulate (161) we an

use the arguments of [89℄. Due to sreening e�et, the

orrelation of harge utuations separated by distane

r > r

s

is negligible. Due to this, in DH approximation

we get

h�

h

(r; t)�

h

(0; 0)i �

1

4��r

2

s

�

��

h

��

�

T

e

�r=r

s

r

f(!

os

) ;

(163)

where

��

h

��

= n



��

��

+�



�n

��

: (164)

n is the overall density and f is a funtion without sin-

gularities. We will not be interested in time relaxation

of harge utuations here. The peuliarities of the riti-

al behaviour of the ondutivity are mainly determined

by the derivative

��

h

��

. Sine the number of harges is

N = N

0

�(�; T ) the singularity of

��

��

�

�

�

T=T



an be ob-

tained from the analysis of

�N

��

�

�

�

T



. The last is given by

the thermodynami identity (see, e. g., [39℄):

�

�N

��

�

T

=

�

�N

�T

�

2

�

�

�S

�T

�

�

�

C

V

T

; C

V

= T

�

�S

�T

�

V;N

;

T = T



(1 + � ) (165)

where in the viinity of the ritial point C

V

= C

(reg)

V

+

C

(sing)

V

, where on the ritial isohor C

(sing)

V

/ �

��

. The

value

�N

��

�

�

�

T



is nonzero beause of the ondition of ioniza-

tion equilibrium. Therefore, the leading divergent terms

in the denominator anel out, but other less singular

terms suh as �

1��

do not. The latter terms are respon-

sible for the singular terms in the ondutivity.

V. CONCLUSION

In our review we touh upon two questions, hara-

teristi for ritial phenomena in IL and eletrolyte so-

lutions: 1) the basi model for IL and 2) the rossover

problem for the ritial exponents in eletrolyte solutions

and IL. We have paid the attention for the dipole uid as

the alternative model for the equation of state for the IL.

It was shown that the rotation of dipole moleules is very

important fat, whih should be taken into aount. It

was established that the de�nitive inuene on the value

and behaviour of the Ginzburg number is aused by so-

alled polarizational interations. The nature of the lasts

for eletrolyte solutions and molten salts was disussed

in detail. The possibility for the formation of spatially

inhomogeneous states near the ritial point is onsid-

ered.

At the same time many important problems were not

inluded in our analysis. First of all, the assoiation{

dissoiation proesses need more areful investigation

both near the ritial point and far away from it. Proba-

bly inluding the quantum e�ets an inuene the esti-

mates of relevant parameters. The polarizational intera-

tions are also very important for the desription of asym-

metry e�ets in the equation of state. The onseutive

using of the anonial formalism [73℄ also is very impor-

tant for this purpose. This formalism is also important

for ioni miellar solutions [90,80℄. The polarizational ef-

fets should play very important role for the quasibynary

solutions for whih the addition of eletrolyte impuri-

ties leads to the appearane of double ritial points and

phase separation [91℄. In those ases, when the oeÆient

a

4

is small, the peuliarities of ritial utuations should

be desribed with the help of RG-method applied to �

6

model. The detailed investigation of the dieletri per-

mittivity is also very important for the aurate solution

of problems of the ritial behaviour.
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APPENDIX: CANONICAL FORM OF THE

DIELECTRIC PERMITTIVITY

There exist many approahes to the problem of diele-

tri permittivity. Based on di�erent assumptions they al-

low to desribe with the most ompleteness only one or

several harateristi ontributions. Unfortunately, too

hasty usage of model oneptions lead to errors whih

are hard to ontrol. In partiular, this an hange the

harater of inequalities and essentially inuenes the

values of the density derivatives of dieletri permittivity.

Therefore, the disussion of general struture of dieletri

permittivity as well as the nature of main ontributions

to it seems to be appropriate. By de�nition, dieletri

permittivity for an isotropi medium [77℄ is equal to

�� 1 = 4�

P

E

(A1)

where P = jPj, P is the polarizability vetor, and E is

the strength of the Maxwell eletri �eld (PjjE). In gen-

eral, we should alulate P and E as funtions of the

external �eld strength E

0

. However, for a speimen of

the spherial shape the onnetion between E and E

0

is

espeially simple:

E =

3

�+ 2

E

0

: (A2)

Therefore, we an write

�� 1

�+ 2

=

4�

3

P (E

0

)

E

0

�

4�

3

n�

e�

: (A3)

Sine the e�etive polarizability �

e�

is a harateristi of

a medium, but not of the shape of the speimen Eq. (A3),

onneting � and �

e�

, is of general harater. The left

side of (A3) is always less than unity, so the inequality

4�

3

n�

e�

< 1

holds good.

To make a further onlusion about �

e�

and �, we

rewrite the formula (A3) in the form

�� 1

�+ 2

=

4�

3

hDi

0

+

1

3

hD

2

i

0

E

0

V E

0

; (A4)

where D is the dipole moment of a system, V is its vol-

ume, and the angular brakets designate the average over

the equilibriumGibbs distribution. Note that the matter

within the spherial example is homogeneously polarized.

In general, the dipole moment has the struture:

D = D

0

+ �̂E

0

; (A5)

where D

0

is the dipole moment of the isolated system

and �̂ is its polarizability. Following I. Fisher (unpub-

lished leture, Odessa University, 1978) �̂ an be repre-

sented in a form

�̂ =

N

X

i=1

X

k=1;2

�̂

(k)

1

(r

i

) +

X

1�i;j�N

X

k

1

;k

2

=1;2

�̂

k

1

;k

2

2

(r

i

; r

j

) + : : :

(A6)

where �̂

(k)

1

(r

i

) is the tensor of one-partile polarizability

for the i-th ion of type k, �̂

(k

1

;k

2

)

2

(r

i

; r

j

) is the tensor

of irreduible two-partile polarizability for i-th and j-th

ions of types k

1

and k

2

, orrespondingly, and so on. A

similar expansion is harateristi for the dipole moment:

D

0

=

X

1�i;j�N

X

k

1

;k

2

=1;2

d

(k

1

;k

2

)

2

(r

i

; r

j

) + : : : : (A7)

Note that within suh an approah the entral problem

is the alulation of irreduible ontributions of di�erent

orders to �̂ andD but not the problem of the ating �eld

[77℄. From symmetry reasons it follows that:

h�̂

(k)

1

(r

i

)i

0

= �

(k)

1

^

I; (A8)

h�̂

(k

1

;k

2

)

2

(r

i

; r

j

)i

0

=

1

3

D

Sp �̂

(k

1

;k

2

)

2

(r

i

; r

j

)

E

0

^

I; k = 1; 2

(A9)

where the angular braket h: : :i

0

designates the averag-

ing over the equilibrium distribution funtion and we

suppose that one-ion polarizability is a salar. The on-

tributions of higher order polarizabilities are relatively

small and will be ignored further. Sine hD

0

i

0

= 0, the

average hDi

0

= 0 an be approximated by the expression

hDi

0

= n

h

�

+

+ �

�

+

z

12

(�

++

+ �

��

+ 2�

+�

)

i

(A10)

where z is the oordination number and for example

�

++

= Sp �̂

(+;+)

2

is the binary polarizability of two pos-

itive ions, whih are nearest neighbours (r

12

� a). Tak-

ing into aount that the main ontribution to �̂

(+;+)

2

is

aused by the dipole interations, we an get the har-

ateristi inequality

�

++

�

�

2

+

a

3

�

1

8

�

+

(A11)

sine �

+

� (

a

2

)

3

. Therefore, we onlude that the ontri-

bution of the binary polarizability in Eq. (A10) annot

exeed

1

3

of that from the ontribution of one-partile

ones.
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To alulate hD

2

i at small E

0

we use the following

assumptions:

1. hD

2

i

0

� hD

2

0

i

0

2. the dipole moments of ions are strongly orrelated

only within the region whose size on the average is

equal to r

s

;

3. the harateristi dipole moment for this region has

order of the dipole momentd

0

for isolated moleule

NaCl.

As a result we an write

hD

2

i

0

� V

d

2

0

r

3

s

: (A12)

All these estimates allows us to onlude that

�

e�

� �

+

+ �

�

+

1

3

d

2

0

k

B

T

�

a

r

s

�

3

: (A13)

The values �

+

and �

�

an be approximated by the po-

larizabilities of Ne and Ar. Using for r

s

the estimate ob-

tained above in suh a way, we get

�

�

+ �

+

�

d

2

0

k

B

T

�

a

r

s

�

3

: (A14)

Hene the estimate of the dieletri permittivity and its

derivatives with respet to density an be obtained with

the help of formulas of Lorentz{Lorenz type:

�� 1

�+ 2

=

4�

3

n

d

2

0

k

B

T

�

a

r

s

�

3

: (A15)

The spei� form of the relation between dieletri per-

mittivity and the e�etive polarizability is espeially im-

portant for the alulation of the derivatives

�

k

�

�n

k

. From

this point of view the formula of Lorentz{Lorenz type is

obtained from �rst priniples and should be onsidered

as physially grounded result. If the dissoiation is not

omplete the formula (A15) takes the form

�� 1

�+ 2

=

4�

3

n

d

2

0

k

B

T

 

1��

2

+�

�

a

r

s

�

3

!

: (A16)

The last term in Eq. (A16) is essential only in the lose

viinity of the ritial point. In other situations its inu-

ene is negligible. Then

�� 1

�+ 2

=

2�

3

n

d

2

0

k

B

T

(1��) : (A17)
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EFEKTI POL�RIZAC�Õ TA KRITIQNA POVED�NKA SISTEM

�Z KULON�VS^KIMI VZA�MOD��MI

V. Kul�ns~ki�, M. Malomu�

Odes~ki� na�onal~ni� un�versitet, kafedra teoretiqnoÝ f�ziki

vul. Dvor�ns~ka, 2, Odesa, UkraÝna

Ogl�d prisv�qeno kritiqn�� poved�n� sistem �z kulon�vs~kimi vzamod��mi. Osoblivu uvagu prid�-

leno vagomost� pol�riza��nih efekt�v poblizu kritiqnoÝ toqki v takih sistemah. Vi�vleno, wo pol�ri-

za��n� vzamod�Ý suttvo renormal�zu�t~ poqatkovi� efektivni� gam�l~ton��n sistem Landau{��nzbur�a.

Rozgl�nuto dvopol�snu r�dinnu model~ �k bazovu dl� tvorenn� �onnih r�din (roztoplenih sole� NaCl).

Pokazano, wo vrahuvann� vnutr�xn�h stupen�v v�l~nosti, zokrema rota��nih, �k� vinika�t~ u �onn�� par�,

dozvol� sformul�vati novi� p�dh�d do zadaq� f�ziqnogo rozm�ru pari. Podano o�nki kritiqnih pa-

rametr�v u me�ah dvopol�snoÝ r�dinnoÝ model�. Zaproponovano mo�liv� senar�Ý kritiqnosti sistemi z

kulon�vs~ko� vzamod��. Opisano mo�liv�st~ formuvann� neodnor�dnih stan�v u kritiqn�� d�l�n�. Pro-

anal�zovano okrem� efekti, pol�riza��no spriqinen� vzamod�� m�� parametrom por�dku � fl�ktua��

gustini zar�du, �ka harakterna dl� sistemi z pr�mimi kulon�vs~kimi vzamod��mi. P�dkresleno de�k�

nov� problemi, pov'�zan� z kulon�vs~ko� kritiqn�st�.
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