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To investigate the orrelative properties of anisotropi binary mixture the Ornstein{Zernike sys-

tem of integral equations is used. The inuene of the anisotropy on the ritial behaviour of the

binary liquid mixture is onsidered by means of the �rst non-zero spatial moment for the diret

orrelation funtions. The pair orrelation funtions in three-moment approximation are found.

Basing on the expression for the pair orrelation funtions it is shown that at the lose viinity of

the ritial point orrelative behaviour of binary mixture an be desribed in analogue with one-

omponent liquids only by one orrelation funtion. A dependene of the ritial temperature on

the onentration of the mixture omponents is onsidered. It is found that the anisotropy auses

the shift of the ritial temperature. Close to the ritial point the dependene of suh a shift on

the e�etive �eld variable is of a saling-law form.
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INTRODUCTION

Critial phenomena and phase transitions in binary

liquid systems are of great theoretial and experimental

interest [1{7℄. As it is well-known at the ritial state all

the systems are haraterized with strong suseptibility

on the presene of impurities, external �elds, tempera-

ture gradients and other fators. From this point of view

the additional omponent in binary mixture in ompar-

ison with pure liquid is the point that auses some in-

teresting e�ets. On the other hand, the universal be-

haviour of di�erent systems at the lose viinity of the

ritial state allows to use the methods of saling theory

and hypothesis of isomorphism signi�antly simplifying

analysis of those systems.

Most of the results in theory of liquids an be ob-

tained basing on the expressions for the pair orrela-

tion funtions and thus alulating them is the impor-

tant task of ondensed matter physis [8℄. To investigate

orrelative behaviour of binary mixture we propose to

use the Ornstein{Zernike (OZ) system of integral equa-

tions. This allows to �nd the asymptoti expressions for

the pair orrelation funtions of liquid binary system.

For these purposes it is neessary to transform the OZ

system of integral equations to the system of di�erential

equations.

I. THE PAIR CORRELATION FUNCTIONS

Let us onsider the OZ system of integral equations in

suh a form:
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Moreover, for the isotropi systems the orrelation fun-

tions do not depend on the diretion. This allows when

deriving the di�erential equation to use the two even spa-

tial moments for the diret orrelation funtions only [9℄.

In anisotropi systems (suh anisotropy an be aused by

the external �eld, for example) all the orrelation fun-

tions depend on two arguments. We will onsider the

weak anisotropy that does not e�et the homogeneity

of the system. In this ase the orrelation funtions de-

pend on the distane between the orrelating points as

well as on the diretion. So when deriving the di�erential

equations we should take into aount the odd moments

(namely the �rst moment) of the diret orrelation fun-

tions [10℄.

To �nd the asymptoti solution of equation (2) we
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should transform it to the system of di�erential equa-

tions. Keeping in mind that the diret orrelation fun-

tions di�ers from zero only when the distane between

the orrelating points is small enough [9℄ we obtain:
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ommute with eah other to satisfy the symmetry of the

initial OZ system of integral equations.
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Thus the matrix of the pair orrelation funtions is:
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C. Analysis of formulae (13) and (14)

allows to onlude that there is a strong inreasing of

utuation orrelation at the diretion of the external

�eld (diretion of the anisotropy) in omparison with the
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isotropi system, i.e. when there is no �eld. It is lear

that if we take

^

C

�

= 0 then equations (13) and (14) give

the expressions for the pair orrelation funtions of the

isotropi binary mixture [10℄.

II. CLOSE VICINITY OF THE CRITICAL POINT

Close to the ritial point the expressions for the pair

orrelation funtions an be signi�antly simpli�ed.
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grows to in�nity at the ritial point. So at the

lose viinity of the ritial point for the binary mixture

all the pair orrelation funtions have the same form that

is similar to the OZ asymptoti expression for the pair

orrelation funtion of the one-omponent liquid [9℄. As

it is seen from (18), the orrelation length is quite the

same for the di�erent orrelation funtions of binary mix-

tures. This result on�rms hypothesis of isomorphism of

the binary mixtures and pure liquids ritial behaviour.

III. CRITICAL TEMPERATURE

It is naturally to onsider how the ritial tempera-

ture of binary mixture depends on the onentration of

the omponents and how the anisotropy e�ets on it.

A. Dependene of the ritial temperature on

onentration

Close to the ritial state the matrix
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W depends on

the temperature in agreement with the equation (16).

We may present the diagonal elements of the matrix

^

W

as follows:

W

11

= 1� �x(1� t)

2�

; (19)

W

22

= 1� �(1� x)t

2�

; (20)

where t = (T � T

2

)=(T

1

� T

2

), T

1

and T

2

are the riti-

al temperatures of the pure omponents, onentration

x = h�

1

i=h�i, � and � are the onstants that do not

depend on the temperature and onentration. Then at
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where parameter � = (�=�)

1=2�

haraterizes the inter-

ation of the omponents. It is learly seen from (21) that

the ritial temperature T



= T

1

for x = 1 and T



= T

2

for x = 0, respetively. Dependene of the ritial tem-

perature on the onentration x is shown in Fig. 1. It

should be pointed out that equation (21) was obtained

in supposition that the temperature dependene of the

zero spatial moments of the diret orrelation funtions

has the form of equations (19), (20). This is orret at

the lose viinity of the ritial points of the pure om-

ponents only. So, formula (21) may be used when the

temperature interval jT

1

� T

2

j is not too large or when

the onentration x! 0 or x! 1. In another ases, i. e.,

for the wide viinity of the ritial point, we should take

into aount next terms in the temperature dependene

of the zero moments of the diret orrelation funtions.
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Fig. 1. Dependene of the ritial temperature on the on-

entration. Here it is assumed T

1

= 250 K, T

2

= 300 K and

line | for � = 1, squares | for � = 5 and rosses | for

� = 0:2

B. Inuene of anisotropy on the ritial

temperature

Anisotropy auses shift of the ritial temperature

in omparison with the isotropi mixture. To obtain

the formulae for the pair orrelation funtions of the

isotropi mixture we should take ̂ = 0 in equations

(13) and (14). Then for the isotropi mixture we have
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on the e�etive external �eld h (this e�etive �led har-

aterizes the anisotropy of the system). Suh dependene

an be estimated if we take into aount that at the rit-

ial point the orrelation length � is the only harater-

isti size for the system. Aording to the results of the

saling theory [13℄ we may onlude that at the ritial

point Sp(
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. At the ritial isotherm

we obtain for the orrelation length [11,13℄:
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where �

0

is the onstant that does not depend on h. Thus,

anisotropy (that haraterized by the e�etive external

�eld h) auses the shift of the ritial temperature in

omparison with the isotropi mixture. It is learly seen

from (26) that if h = 0, i. e., for the isotropi system,

there is no shift of the ritial temperature.

CONCLUSIONS

We have found the expressions for the pair orrelation

funtions of the binary mixture that are valid in a wide

region of the ritial state. It is shown that at the lose

viinity of the ritial point these pair orrelation fun-

tions demonstrate the universal behaviour. This result

on�rms the ideas of isomorphism of ritial phenom-

ena in binary mixtures and one-omponent liquids. It is

also found that anisotropy auses the shift of the riti-

al temperature in omparison with the isotropi system.

A dependene of this shift on the e�etive �eld is of a

saling-law form.
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KOREL�C��NA POVED�NKA AN�ZOTROPNOÕ B�NARNOÕ R�DKOÕ SISTEMI

V TRIMOMENTNOMU NABLI�ENN�
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Dl� doslid�enn� korel�i�nih vlastivoste� anizotropnoÝ binarnoÝ sumixi vikoristano sistemu inte-

�ral~nih rivn�n~ Ornxta�na{Cernike. Vpliv anizotropiÝ na kritiqnu povedinku takoÝ sistemi vrahovano

qerez perxi� prostorovi� moment pr�moÝ korel�i�noÝ funkiÝ. Zna�deno virazi dl� parnih korel�i�nih

funki� u trimomentnomu nabli�enni. Pokazano, wo v okoli kritiqnogo stanu parni korel�iÝ binarnoÝ

sistemi, za analogi� z odnokomponentnimi sistemami, mo�ut~ buti opisani za dopomogo� lixe odniÝ

korel�i�noÝ funkiÝ. Rozgl�nuto zale�nist~ kritiqnoÝ temperaturi sumixi vid konentraiÝ komponentiv.

Ustanovleno, wo anizotropi� viklika zsuv kritiqnoÝ temperaturi.
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