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To investigate the 
orrelative properties of anisotropi
 binary mixture the Ornstein{Zernike sys-

tem of integral equations is used. The in
uen
e of the anisotropy on the 
riti
al behaviour of the

binary liquid mixture is 
onsidered by means of the �rst non-zero spatial moment for the dire
t


orrelation fun
tions. The pair 
orrelation fun
tions in three-moment approximation are found.

Basing on the expression for the pair 
orrelation fun
tions it is shown that at the 
lose vi
inity of

the 
riti
al point 
orrelative behaviour of binary mixture 
an be des
ribed in analogue with one-


omponent liquids only by one 
orrelation fun
tion. A dependen
e of the 
riti
al temperature on

the 
on
entration of the mixture 
omponents is 
onsidered. It is found that the anisotropy 
auses

the shift of the 
riti
al temperature. Close to the 
riti
al point the dependen
e of su
h a shift on

the e�e
tive �eld variable is of a s
aling-law form.
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INTRODUCTION

Criti
al phenomena and phase transitions in binary

liquid systems are of great theoreti
al and experimental

interest [1{7℄. As it is well-known at the 
riti
al state all

the systems are 
hara
terized with strong sus
eptibility

on the presen
e of impurities, external �elds, tempera-

ture gradients and other fa
tors. From this point of view

the additional 
omponent in binary mixture in 
ompar-

ison with pure liquid is the point that 
auses some in-

teresting e�e
ts. On the other hand, the universal be-

haviour of di�erent systems at the 
lose vi
inity of the


riti
al state allows to use the methods of s
aling theory

and hypothesis of isomorphism signi�
antly simplifying

analysis of those systems.

Most of the results in theory of liquids 
an be ob-

tained basing on the expressions for the pair 
orrela-

tion fun
tions and thus 
al
ulating them is the impor-

tant task of 
ondensed matter physi
s [8℄. To investigate


orrelative behaviour of binary mixture we propose to

use the Ornstein{Zernike (OZ) system of integral equa-

tions. This allows to �nd the asymptoti
 expressions for

the pair 
orrelation fun
tions of liquid binary system.

For these purposes it is ne
essary to transform the OZ

system of integral equations to the system of di�erential

equations.

I. THE PAIR CORRELATION FUNCTIONS

Let us 
onsider the OZ system of integral equations in

su
h a form:
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For the spatially homogeneous system the 
orrelation
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onst. Equation (1) in this 
ase gives:
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Moreover, for the isotropi
 systems the 
orrelation fun
-

tions do not depend on the dire
tion. This allows when

deriving the di�erential equation to use the two even spa-

tial moments for the dire
t 
orrelation fun
tions only [9℄.

In anisotropi
 systems (su
h anisotropy 
an be 
aused by

the external �eld, for example) all the 
orrelation fun
-

tions depend on two arguments. We will 
onsider the

weak anisotropy that does not e�e
t the homogeneity

of the system. In this 
ase the 
orrelation fun
tions de-

pend on the distan
e between the 
orrelating points as

well as on the dire
tion. So when deriving the di�erential

equations we should take into a

ount the odd moments

(namely the �rst moment) of the dire
t 
orrelation fun
-

tions [10℄.

To �nd the asymptoti
 solution of equation (2) we
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should transform it to the system of di�erential equa-

tions. Keeping in mind that the dire
t 
orrelation fun
-

tions di�ers from zero only when the distan
e between

the 
orrelating points is small enough [9℄ we obtain:
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dr. These matri
es should


ommute with ea
h other to satisfy the symmetry of the

initial OZ system of integral equations.

Let us 
onsider the 
orrelation fun
tions in su
h a
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in the following form:
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form equation (7) to the more simple form if we make

the substitution of 
oordinates in way that z-axis 
oin-


ides with the dire
tion of the external �eld (dire
tion

of the anisotropy). Then
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Taking the dire
t 
orrelation fun
tions being propor-

tional to the delta-fun
tion in the zero approximation,

i. e.,
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an get from (9) for the

matrix of the pair 
orrelation fun
tions:
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Thus the matrix of the pair 
orrelation fun
tions is:
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where 
̂ = 1=2

^
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C. Analysis of formulae (13) and (14)

allows to 
on
lude that there is a strong in
reasing of


u
tuation 
orrelation at the dire
tion of the external

�eld (dire
tion of the anisotropy) in 
omparison with the
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isotropi
 system, i.e. when there is no �eld. It is 
lear

that if we take

^

C

�

= 0 then equations (13) and (14) give

the expressions for the pair 
orrelation fun
tions of the

isotropi
 binary mixture [10℄.

II. CLOSE VICINITY OF THE CRITICAL POINT

Close to the 
riti
al point the expressions for the pair


orrelation fun
tions 
an be signi�
antly simpli�ed.

It is well-known that for the one-
omponent liquids at

the 
riti
al point the zero spatial moment �

0

of the dire
t


orrelation fun
tion �(r) approa
hes value of 1 providing

the following expression for the isothermal 
ompressibil-

ity �
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We may take the independent termodynami
al variables

[1{3℄ in way that the matrix of the zero spatial moments

of the dire
t 
orrelation fun
tions

^

W =

^

B

�1

(

^

E�

^

A+

^

S))

for the binary mixtures 
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spe
t to the independent un�xed variable (let it be tem-

perature) with �xed others has the following asymptoti


behaviour:
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� = 0 in the OZ approximation [12℄. It should be pointed

out that results still valid in linear approximation of �-

expansion for 
riti
al indexes. So taking into a

ount (16)

and spe
ial �xation of termodynami
al variables we 
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grows to in�nity at the 
riti
al point. So at the


lose vi
inity of the 
riti
al point for the binary mixture

all the pair 
orrelation fun
tions have the same form that

is similar to the OZ asymptoti
 expression for the pair


orrelation fun
tion of the one-
omponent liquid [9℄. As

it is seen from (18), the 
orrelation length is quite the

same for the di�erent 
orrelation fun
tions of binary mix-

tures. This result 
on�rms hypothesis of isomorphism of

the binary mixtures and pure liquids 
riti
al behaviour.

III. CRITICAL TEMPERATURE

It is naturally to 
onsider how the 
riti
al tempera-

ture of binary mixture depends on the 
on
entration of

the 
omponents and how the anisotropy e�e
ts on it.

A. Dependen
e of the 
riti
al temperature on


on
entration

Close to the 
riti
al state the matrix

^

W depends on

the temperature in agreement with the equation (16).

We may present the diagonal elements of the matrix
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as follows:
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al temperatures of the pure 
omponents, 
on
entration

x = h�

1

i=h�i, � and � are the 
onstants that do not

depend on the temperature and 
on
entration. Then at

the 
riti
al point we obtain the dependen
e of the 
riti
al

temperature of the binary mixture T




(x) on the 
on
en-

tration:
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where parameter � = (�=�)

1=2�


hara
terizes the inter-

a
tion of the 
omponents. It is 
learly seen from (21) that

the 
riti
al temperature T




= T

1

for x = 1 and T




= T

2

for x = 0, respe
tively. Dependen
e of the 
riti
al tem-

perature on the 
on
entration x is shown in Fig. 1. It

should be pointed out that equation (21) was obtained

in supposition that the temperature dependen
e of the

zero spatial moments of the dire
t 
orrelation fun
tions

has the form of equations (19), (20). This is 
orre
t at

the 
lose vi
inity of the 
riti
al points of the pure 
om-

ponents only. So, formula (21) may be used when the

temperature interval jT

1

� T

2

j is not too large or when

the 
on
entration x! 0 or x! 1. In another 
ases, i. e.,

for the wide vi
inity of the 
riti
al point, we should take

into a

ount next terms in the temperature dependen
e

of the zero moments of the dire
t 
orrelation fun
tions.
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Fig. 1. Dependen
e of the 
riti
al temperature on the 
on-


entration. Here it is assumed T

1

= 250 K, T

2

= 300 K and

line | for � = 1, squares | for � = 5 and 
rosses | for

� = 0:2

B. In
uen
e of anisotropy on the 
riti
al

temperature

Anisotropy 
auses shift of the 
riti
al temperature

in 
omparison with the isotropi
 mixture. To obtain

the formulae for the pair 
orrelation fun
tions of the

isotropi
 mixture we should take 
̂ = 0 in equations

(13) and (14). Then for the isotropi
 mixture we have
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 mixture. We will suppose that

at the 
lose vi
inity of the 
riti
al state of the isotropi


system
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ount that
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e (16) for the matrix
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where fun
tion �(h) = (Sp(
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�

))

1=2�

depends

on the e�e
tive external �eld h (this e�e
tive �led 
har-

a
terizes the anisotropy of the system). Su
h dependen
e


an be estimated if we take into a

ount that at the 
rit-

i
al point the 
orrelation length � is the only 
hara
ter-

isti
 size for the system. A

ording to the results of the

s
aling theory [13℄ we may 
on
lude that at the 
riti
al

point Sp(

^

B

�1

^

S)=Sp(â) � �

�2

. At the 
riti
al isotherm

we obtain for the 
orrelation length [11,13℄:

� � h

��=�Æ
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where � = 0:33 and Æ = 4:5 are the 
riti
al indi
es. Then

we have

�T = T

�
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1=�Æ
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where �

0

is the 
onstant that does not depend on h. Thus,

anisotropy (that 
hara
terized by the e�e
tive external

�eld h) 
auses the shift of the 
riti
al temperature in


omparison with the isotropi
 mixture. It is 
learly seen

from (26) that if h = 0, i. e., for the isotropi
 system,

there is no shift of the 
riti
al temperature.

CONCLUSIONS

We have found the expressions for the pair 
orrelation

fun
tions of the binary mixture that are valid in a wide

region of the 
riti
al state. It is shown that at the 
lose

vi
inity of the 
riti
al point these pair 
orrelation fun
-

tions demonstrate the universal behaviour. This result


on�rms the ideas of isomorphism of 
riti
al phenom-

ena in binary mixtures and one-
omponent liquids. It is

also found that anisotropy 
auses the shift of the 
riti-


al temperature in 
omparison with the isotropi
 system.

A dependen
e of this shift on the e�e
tive �eld is of a

s
aling-law form.
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KOREL�C��NA POVED�NKA AN�ZOTROPNOÕ B�NARNOÕ R�DKOÕ SISTEMI

V TRIMOMENTNOMU NABLI�ENN�
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Dl� doslid�enn� korel�
i�nih vlastivoste� anizotropnoÝ binarnoÝ sumixi vikoristano sistemu inte-

�ral~nih rivn�n~ Ornxta�na{Cernike. Vpliv anizotropiÝ na kritiqnu povedinku takoÝ sistemi vrahovano

qerez perxi� prostorovi� moment pr�moÝ korel�
i�noÝ funk
iÝ. Zna�deno virazi dl� parnih korel�
i�nih

funk
i� u trimomentnomu nabli�enni. Pokazano, wo v okoli kritiqnogo stanu parni korel�
iÝ binarnoÝ

sistemi, za analogi
� z odnokomponentnimi sistemami, mo�ut~ buti opisani za dopomogo� lixe odni
Ý

korel�
i�noÝ funk
iÝ. Rozgl�nuto zale�nist~ kritiqnoÝ temperaturi sumixi vid kon
entra
iÝ komponentiv.

Ustanovleno, wo anizotropi� viklika
 zsuv kritiqnoÝ temperaturi.
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